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Abstract

We propose a method for analysing a sequence of noisy interferograms with closed fringes acquired at a high–speed frame
rate. Our method is appropriate for analysing ESPI sequences of transient phenomena such as deformations caused by
vibrations. Firstly, we compute a differential phase between frames using a procedure based on a Gabor filter bank. We
then refine this initial phase with a regularised quadratic cost function that keeps the consistency of the restored phase
with the fringe patterns. In addition, we also present the robust version of our phase refining method. This prevents
the introduction of phase deformations by the smoothing process. We demonstrate by means of numerical and real–data
experiments that our method is appropriate for analysing ESPI sequences of transient phenomena.

Keywords: Imaging ultrafast phenomena, Fringe analysis, Speckle interferometry, Optical metrology, Vibration
analysis, Two phase step methods, Gabor filter bank, Robust image processing.

1. Introduction

We present a method for analysing transient, or dynamic,
phenomena with interferometric techniques; examples of
such deformations are given by vibrations [1, 2]. In par-
ticular, we are interested in the case in which the studied
object is under dynamic deformation and yields a spatial–
variable phase shift in the Fringe Pattern (FP). A popular
method for generating FPs in the study of transient phe-
nomena for industrial applications is the so-called Elec-
tronic Speckle Pattern Interferometry (ESPI) technique
[1, 2, 3]. Advances in video cameras have allowed the im-
plementation of high–speed ESPI systems for acquiring FP
sequences of transient phenomena at frame rates of 1 kHz
[4, 5, 6], or superior [8].

In this work, we assume adverse experimental conditions
that produce time and spatial variations in the unknown
background illumination and local fringes’ contrast; for
example, those characteristics are present in the simple
synthetic interferograms shown in Panels (a) and (b) in
Figure 1 (the remaining panels will be described latter).
The mathematical model of the FP sequences we analyse
is given by

Ik(x) = ak(x) + bk(x) cos(φk(x) + kδ) + ηk(x), (1)

where the vector x ∈ Z2 denotes the pixel position in a
regular lattice L and we assume a constant phase shift, δ,
between consecutive FPs indexed by k (time). The back-
ground illumination and the local fringe contrast are de-
noted by a and b, respectively. Finally, η is the residual.
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We use the general definition of residuals: the differences
between the truth data (observed or ideal) and the best
prediction with the fitted model. Such a residual is prod-
uct of noise in the data (observation residual), model bias
(the model limitations) and estimation residual, (associ-
ated with the numerical method solver) [7]. In the case of
ESPI, the noise is correlated with the FP’s intensity [2, 9].

In our model (1), we have a phase, φ, that depends on
time k, as opposed to classical phase stepping algorithms
where the phase φ is kept constant [10]. An algorithm that
analyses the simpler case of a temporal constant phase and
unknowns phase steps is reported in [11]. In order to anal-
yse sequences of FP with temporal variable phase, there
are techniques based on special experimental setups that
simultaneously acquire a set of phase shifted FPs [12, 8].
Thus, a transient phenomenon can be analysed by acquir-
ing an evolution sequence of a set of phase shifted FPs.
The drawbacks of such a technique are the complexity
of the experimental setup and the resulting reduction in
the FP’s spatial resolution [8]. Other configurations use
RGB colour codification for generating three simultane-
ously phase shifted FPs [3].

We simplify the experimental setup by acquiring a se-
quence of single FPs (with temporally variable phase) with
known phase shifts, kδ. Herein we present a method for
computing the differential phase between contiguous FP in
the sequence. Our method assumes that the FP sequence
is acquired at a high–speed rate such that the local fringes’
shift is in the interval [0, π). This experimental condition
allows us to compute an initial solution for the differential
phase that we refine afterwards.

We organise this paper as follows. We present our two–
stages method in section 2. In subsection 2.1 we present
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the stage for computing the initial solution for the phase
variation with respect to time. Afterwards, in subsection
2.2, we present the stage in which we refine such an initial
solution. In subsection 2.3, we propose a robust variant
of our refinement process that fits for cases where the ini-
tial differential phase estimate is corrupted with outliers.
In section 3, we present a discussion on related work and
techniques. More specifically, subsection 3.1 shows the re-
lationship between our approach based on a Gabor filter
bank [13] and the Short-Term Fourier Transform [14]; and
subsection 3.2 contrasts our refining solution versus simple
phase filtering approaches. In section 4, we present numer-
ical and real experiments that demonstrate the suitability
of our method for analysing ESPI sequence of transient
phenomena. Finally, our conclusions are given in section
5.

2. Method

2.1. Computing the initial time–differential phase

Let {Ik}k=1,2,...,K be a sequence of FPs. We define the
differential phase sequence {fk}k=2,...,K as follows:

fk(x)
def
= φk(x)− φk−1(x) (2)

where [φk, φk−1] are the phases of [Ik, Ik−1], respectively.
In this context, fk is a spatial–variant phase that codifies
the information of the transient phenomena of interest.

When analysing transient phenomena, one is interested
in computing the variation of the phase with respect to
time. In the framework of inverse problem solutions, one
needs to define the relationship between the observed data
and the unknown variables by means of an observation
model. For example, the model (1) establishes the rela-
tionship between the observed FP Ik and the unknown
phase φk. A possible way to compute the phase differ-
ences (2) is to estimate a solution to the inverse problem
stated by the model (1). That is, to estimate the phase
φk for each FP using a general single closed FP algorithm
[15, 16, 17, 18, 19, 20, 21]. The inconvenience of such a
strategy is that closed FP analysis procedures are of prop-
agating type are prone to fail with either noisy FP, or
relatively large constant regions, or variations in the illu-
mination conditions. Therefore, before using a closed FP
analysis method, the FPs are frequently preprocessed in
order to filter out noise and normalise their illumination
components. Since methods build upon the propagation
of a seed solution with a flood-fill strategy, their computa-
tional efficiency depends on the image dimension; i.e., the
pixels should sequentially be updated.

Our approach can be related to methods that compute
the global phase step between two interferograms when the
phase shift is unknown [13, 22, 23]. However, we compute
a spatially variable phase shift.

First, we compute the magnitude, µk(x), and phase,
ψk(x) ∈ [−π, π), of each FPs (for k = 1, 2, . . . ,K) at each

Figure 1: Summary of the procedure to estimate the initial differ-
ential phase. Fringe patterns: a) Ik and b) Ik−1. Local phases
computed with the GFB: c) ψk and d) ψk+1. e) Phase differences

map: gk = ψk − ψk−1. f) Initial differential phase f̃k = |W{gk}|.

pixel (∀x ∈ L) using the operator H:

{µk, ψk}(x) = H{Ik}(x). (3)

According to [13] and using our model (1), the computed
local phase, ψ, follows the model

ψk(x) =W{sk(x)[φk(x) + kδ] + η̃k(x)}; (4)

where W is the wrapping operator, η̃k is a residual with
zero mean and sk ∈ {−1, 1}]L is a random sign map. Since
η in (1) is assumed white noise( i.e., it has all the frequency
components), then η̃ are the noise components that pass
through the Gabor Filter.

In this work we implemented H using a Gabor Filter
Bank (GFB) as is reported in [13], see section 3.1. The
noise reduction and illumination components’ normalisa-
tion are implicit in the GFB.
The next proposition introduces a subrogate model that
relates the computed phases ψk and ψk−1 with the un-
known differential phase fk.

Proposition 1. Let gk be the simple differences map com-
puted as

gk(x)
def
= ψk(x)− ψk−1(x). (5)
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The relationship of gk with the unknown differential phase
fk is given by

W{gk(x)} = sk(x)[fk(x) + δ] + η̂k(x) + 2π nk(x); (6)

where 2πnk factor is by the wrapping operator and

η̂k(x)
def
= [sk(x)− sk−1(x)][φk−1(x) + (k − 1)δ] +

η̃k(x)− η̃k−1(x) (7)

can be understood as a new residual that absorbs the
remainders that results of the phase estimations by the
GBF (4) and introduced by the change in the sign map
(sk − sk−1).

Details of the proof of Proposition 1 are presented in
Appendix A.

Formula (6) can be understood as a surrogated model
that explains the indirect observations, gk, from the un-
knowns, fk and sk. Unfortunately, such a problem is still
difficult to solve because it is nonlinear (product of the
unknowns fields, the effect of the wrapping and absolute-
value operators) and has correlated residual. In order to
simplify model (6), we impose some conditions on the ex-
perimental setup; i.e., in the acquisition protocol.

Proposition 2. Assume that known constant phase shift,
δ, and the high–speed acquisition rate are such that

fk(x) + δ ∈ [0, π). (8)

Thus, the absolute value of (5),

fk(x)
def
= |W{gk(x)}|,

results in the simplified model:

fk(x) = fk(x) + δ + rk(x); (9)

where the new residual rk satisfies 0 ≤ fk + δ + rk ≤
min{π, fk + δ+ |η̂k + 2π nk|} and has an important contri-
bution of the correlated residual (sk − sk−1).

Details of the proof of Proposition 2 are presented in
Appendix A.

We note that the sign map sk is related to the local
orientations of the fringes and the GFB design. The con-
stant fringe shift δ between FPs keeps the local frequency
constant and, consequently, does not affect the sign map.
At high acquisition rate of the FP sequence, the transient
phenomenon will introduce small changes in the fringe’s
orientation that could produce slight changes in the sign
map (i.e., sk ≈ sk−1):

|φ̂′k(x)− φ̂′k−1(x)| ≈ 0,∀x→ sk ≈ sk−1 (10)

where φ̂′k = ∇φk/‖∇φk‖ is the normalised spatial gradient
of the kth FP.

Thus, from Propositions 1 and 2, our problem is cast by
our simplified model (9) as: the estimation of the shifted–
differential phase fk + δ, with δ ∈ [0, π/2) known, given
the observed (computed) differential phase

fk = |W{ψk(x)− ψk−1(x)}|. (11)

Figure 1 shows two FPs (Ik and Ik−1); the computed local
phase maps (φk and φk−1); the phase difference φk−φk−1
and the estimated initial differential map, fk. Observe
that large residuals appear in regions close to the places
where the sign changes occur.

2.2. Refining the time–differential phase

Now, we compute an additive correction map pk, to the
initial differential phase fk, to obtain a refined differential
phase f̂k:

f̂k(x) = fk(x) + pk(x). (12)

We compute the correction map pk as the minimiser of a
regularised cost function of the general form

pk = argmin
p

D(p;ψk, ψk−1, fk) + λR(p; fk), (13)

where the data attachment term D promotes consistency
of the refined differential phase f̂k and the computed local
phases ψk and ψk−1. The regularisation term R induces
the refined differential phase to be smooth. The positive
parameter λ controls the relative weight of both terms.

Since the local phases (ψk and ψk−1) are wrapped and
are multiplied by their respective random–signs maps (sk
and sk−1), we need an agnostic function to such draw-
backs. That in order to build the data term that reflects
the desired consistency among (ψk, ψk−1) and fk(x) +
pk(x). Then, the initial version of our data term is:∑
x∈L

[cos(fk(x) + pk(x))− cos(ψk(x)− ψk−1(x))]
2
. (14)

Moreover, we assume that the correction to the initial es-
timate phase is small enough (|pk(x)| < 1) such that we
can use an expansion based on the Taylor series of the first
order for the second term in (14):

cos (fk(x) + pk(x)) ≈ cos (fk(x))−pk(x) sin (fk(x)) . (15)

Now, we define

Ck(x)
def
= cos (fk(x))− cos (ψk(x)− ψk−1(x)) (16)

Sk(x)
def
= sin (fk(x)) . (17)

It is important to note that if fk corresponds to 11, one
can cancel the term Ck. However, this is not the case if
one uses a filtered version of fk, as we will see afterwards;
for the moment, we will keep it in our formulation. Hence,
using these definitions, we substitute (15) into (14) and
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rewrite the data term (14). Hence, our final version in or-
der to compute pk is a regularised quadratic cost function:

pk = argmin
p

∑
x∈L

{[
Ck(x)− Sk(x)p(x)

]2
+ γ p(x)2

+ λ
∑
x′∈Nx

[
fk(x) + p(x)− fk(x′)− p(x′)

]2}
;

(18)

where

Nx = {x′ ∈ L : ‖x− x′‖ = 1}

is the set of first neighbour pixels of the pixel x. The first
term in (18) enforces the correction map to be consistent
with a phase difference model. The second term, weighted
by the positive parameter γ, enforces the reduction of the
magnitude of p(x). The third term in (18) induces smooth-
ness in the differential phase map.

Since our cost function (18) is quadratic and convex, one
has several methods to chose from to solve the optimisation
problem. A simple and memory efficient procedure is the
iterative Gauss-Seidel scheme with the updating formula:

p(x) =

Sk(x)Ck(x) + λ
∑

x′∈Nx

[fk(x′) + p(x′)− fk(x)]

Sk(x)2 + λ ]Nx + γ
,

(19)
where we use the symbol ] for cardinality. Note that, given
that the correction terms pk’s are mutually independent,
then they can be updated in any order. Moreover, we
choose to update the pixels with formula (19) from left
to right and top to down order; however, it is well-known
that Gauss-Seidel does not imposes a particular updating
order for updating.

Since we penalised the magnitude of p in order to
keep valid the first Taylor series approximation (15), then
we may require of the accumulation of several small re-
finement to achieve large phase corrections. Let f̂k ←
Refine(ψk, ψk−1, fk) be our phase refining process, then we
can iterate the refinement to improve the updated phase
using

f̂k ← Refine(ψk, ψk−1, f̂k). (20)

Note that we are using a previously refined phase as pa-
rameter to our Refine(·) process, then the term Ck (16) is
not zero. This iterative refinement converges rapidly and
therefore we use only six iterations in our experiments.
This iterative procedure is presented in Algorithm 1.

2.3. Robust refining the time–differential phase

In the analysis of transient phenomena for industrial
applications by ESPI techniques, it is common to have ex-
perimental setups that produces low quality FP sequences:
low contrast, inhomogeneous background illuminations,
low frequency regions and high levels of noise. This charac-
teristics produces that the computed phase with the GFB

Algorithm 1 Refine the differential phase between two
consecutive frames
Require: The local phase of the consecutive frames

(ψk, ψk−1 ), the estimate of the differential phase f
and parameters of the refinement (λ, γ), the number
of iterative refinements N .

1: function Refine(ψk, ψk−1, f, λ, γ,N)
2: Let L be the set of pixels positions in the kth frame
3: for t = 1 : N do
4: Compute Ck with (16)
5: Compute Sk with (17)
6: repeat
7: Update pk(x) for x ∈ L with (19)
8: until convergence
9: Update the differential phase fk = fk + pk

10: end for
11: return the refined phase fk
12: end function

would be incorrect at some pixels; i.e., the filter with max-
imum response is detuned with the FP’s local-frequency.
In order to eliminate the contribution of initial differential
phases that uses detuned estimations of local phases, we
become robust our refinement energy. In particular, we
transform our refinement to the half-quadratic regularisa-
tion variant [24, 25]:

pk, wk = argmin
p,w

∑
x∈L

{
V
(
Ck(x)− Sk(x)p(x)

)
+ γ p(x)2

+ λ
∑
x′∈Nx

[
fk(x) + p(x)− fk(x′)− p(x′)

]2}
;

(21)

where V is a robust and convex potential (M-estimator)
[24, 25, 26]. Then, the global optimum can be computed
by alternating iterations of the w–weighted Gauss-Seidel
update formula [24, 25]:

p(x) =

Sk(x)Ck(x)w(x) + λ
∑

x′∈Nx

[fk(x′) + p(x′)− fk(x)]

Sk(x)2w(x) + λ ]Nx + γ
,

(22)
and a closed formula for updating w. That, in our case,
we choose V as the Fiar potential [26], thus:

w(x) =
β

β + |Ck(x)− Sk(x)p(x)|
; (23)

where β is a positive parameter that establishes the out-
liers sensitivity.

In our experiments we use β = 0.1 and we denote with
f̂R the refined phase with our robust procedure.

3. Discussion on Related Work

3.1. Gabor Filters and the Short Time Fourier Transform

A Gabor filter can be understood as the convolution of the
FP with a complex filter made up of the product of the
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complex exponential exp(−i ωx) with a low-pass Gaussian

filter, G—where i
def
=
√
−1. The complex response of a

Gabor filter, tuned to the frequency ω, is computed as
follows:

GF{I}(x;ω) = I(x)⊗ [exp(−i ωx)G(x, σ)] (24)

where ⊗ denotes the convolution. It is common that the
Gaussian width σ (consequently, the filter window size)

depends on the frequency. That is, σ
def
= [σ1(ω1), σ2(ω2)]

are filter scale–parameters in the image dimensions x1 and
x2, respectively. A GFB is a set of Gabor filters defined
by the set of respective frequencies {ω(1), ω(2), . . . , ω(K)}.
Thus, for a given neighbourhood around the pixel x′, the
Gabor filter (24) with maximal response [magnitude of
GF{I}(x′;ω∗) ] is obtained when the filter frequency ω∗

approximates the local FP frequency ω(x): ω∗ ≈ ω(x′)
[13, 27].

Figure 2: Illustration of filtering procedures for the initial differential
phase f shown in panel 1f. a) Samples {xj} for the RBF based in-
terpolation. Phases smoothed with b) the RBF-interpolation (frbf ),

c) the membrane filter (fM ) and with the proposed method (f̂).

In general, the filter bank of this form is expressed by
the Short Time Fourier Transform (STFT) [28, 29, 30];
which we write in the following form:

STFT{I}(x;ω, σ,G) = [I(x) exp(−i ωx)]⊗G(x, σ). (25)

In STFT, the particular selection of the window G defines
the filter.

We note that, if a Gaussian window is selected for
the STFT, its response (for the proper frequency and
bandwidth) only differs on the multiplicative phase term
exp(i ωx) from the GF. see Appendix A for the proof to
this claim. In such case, the local frequency detector based
on the maximal magnitude response of a GFB or the STFT

providing a proper parameter selection. Indeed, both ap-
proaches (Gabor filters or STFT) has been used for esti-
mating local, absolute, frequency maps in interferometric
FP with closed fringes [13, 14, 31].

3.2. Alternative Filtering Methods

The phase refining method proposed in subsection 2.2
can be seen as a filtering post-process to the initial
differential phase computed with (11). However, this
could be a simplistic interpretation of the importance
of the refining procedure that builds upon the data
term that keeps consistency between the resultant dif-
ferential phases, {f̂k}k=2,3,...,K , and the normalised FPs,
{cos(ψk)}k=2,3,...,K . To clarify our claim, in the experi-
ments we compare the performance of our proposal with
two strategies that directly filter the initial differential
phase maps, {fk}. The alternatives do not take into ac-
count the normalised FPs. Thus, they are prone to intro-
ducing large deviation in the phase. Our comparison is
not exhaustive: we intend to point our the importance of
filtering the phase by preserving the consistency with the
normalised FPs, rather than with initial differential phases
alone; as a classical filtering process.

We evaluate a Radial Basis Function based interpola-
tion and a membrane filter. By sampling the phase map
and interpolating such samples with an RBF technique,
we try to reduce the chance of selecting points with large
structured error. Meanwhile, the membrane filter differs
from our proposal in the data attachment term.

RBF Interpolation. A computationally efficient
method for filtering noisy versions of smooth functions is
to interpolate scattered samples with Radial Basis Func-
tions (RBF) [32]. The procedure consists in sampling the
phase map and and interpolating such samples with the
RBF. Here, we denote by S = {xj}j=1,2,...,N ⊂ L the sam-
ple (random subset) of pixels in the reticula space. Thus,
the filtered local phase map, frgb, is computed as

f
(k)
rgb(x) =

N∑
j=1

hj(x)α
(k)
j + rk(x), ∀x ∈ L, (26)

where rk is a residual (it includes noise and the model
limitations, model bias) and h is given by the multiquadric
kernel [33]:

hj(x) =
√
dj(x)/κ+ 1, (27)

where dj(x) = ‖x − xj‖2, xj the centre of the jth basis
function and κ a parameter that controls the smoothness
of the interpolation. In our experiments, we set κ equal to
the average of the square distance between sampled points
{xj}. Since the residual rx is not Gaussian, we need the
RBF to be made robust. Hence, the contribution α(k)

of the jth basis function is computed by minimising the
ridge–regularised quadratic potential:

α(k) = arg min
α
‖Aα− y(k)‖2 + λR‖α‖2, (28)
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Figure 3: Top row, test FP sequence. Second row, local phase maps ψk computed with the GFB. Third row, phase difference ψk − ψk−1.
Fourth row, initial differential phase |W{ψk−ψk−1}|. Fifth row, reconstructed FP with the phase in the fourth row (displayed for comparison
purpose). Sixth row, refined differential phase with the proposed method and, last row, corresponding reconstructed FP sequence (displayed
for comparison purpose).

where λR is a positive parameter (ridge regression’s pa-
rameter) that controls the smoothing process;

y
(k)
i

def
= gk(xi). (29)

and A is, in general, a symmetric and positive semidefinite
matrix [34, 35]; with

[A]ij
def
= hj(xi). (30)

Hence, we compute the coefficients with

α(k) = M y(k) (31)

where

M
def
= [AA+ λRI]−1A. (32)

Note that we can precompute M owing to its independence
on k.

To illustrate the method, we show in panel (a) in Figure
2 depicts the pixels sampled; the initial phase corresponds

to the shown in Fig 1f. The filtered phase using RBF based
interpolation is shown in Fig. 2b and the levelset shows a
smooth reconstruction.

Membrane Filter. In order to compute the filtered
version fM of the noisy map f , one can use a membrane
filter. In this case, the filtered map is computed by min-
imising the quadratic cost function:

f
(k)
M = arg min

m

∑
x∈L

{[
m(x)− fk(x)

]2
+ λM

∑
x′∈Nx

[
m(x)−m(x′)

]2}
, (33)

where the positive parameter λm controls the solution’s
smoothness. The minimisation of (33) can be achieved
by iterating a Gauss-Seidel scheme with the updating for-
mula:

m(x) =
fk(x) + λM

∑
x′∈Nx

m(x′)

1 + λM ]Nx
. (34)

The Panel (c) in Figure 2 shows the result of apply the
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Figure 4: Top row, filtered phase differences using the membrane filter and (second row) reconstructed FP sequence. Third row, filtered
phase differences using an RBF interpolation and (fourth row) reconstructed FP sequence.

membrane filter to the initial phase in Fig 1f. The levelset
shows that large residuals associated with sign changes
(sk − sk−s) are not completely clean out. For illustration
purposes, Panel (d) depicts the refined phase computed
with the proposed that seems to produce results of bet-
ter quality: the quantitative evaluation of the methods’
performance is presented in next Section.

4. Experiment

Figure 3 shows a simulated ESPI sequence. The first row
depicts the interferograms generated with the model

Ik(x) =
∣∣b(x) cos(η(x) +kδ)− b(x) cos(η(x) +φk(x) +kδ)

∣∣,
(35)

where η is randomly generated with a large variance uni-
form distribution. The second row shows the correspond-
ing phase computed with the GFB (note the sign ambigu-
ity). The third row shows the differences between consec-
utive phases gk = ψk − ψk−1. The fourth row shows the
initial differential phase fk with (11). Since fk ∈ [0, π),
it is unwrapped. We can note that despite the initial dif-
ferential phase presents large errors at regions around the
critical points (i.e. the point of zero frequency), they are
filtered out by our phase refinement. For illustration pur-
poses, the fifth row shows the reconstructed and filtered
FPs computed as the cosine of the true synthetic phase
in the acquisition at time k − 1 and the initial differen-
tial phase: cos(φk−1 + fk). Compare the FP structure
with the original in the first row. The residual noise in
this reconstructed FP sequence is the effect of the residual
rk in our simplified model (9). The sixth row shows the
refined phase differences and the last row shows the recon-
structed FP sequence with cos(φk−1 + f̂k). The additional

parameters used in the experiments were the following:
test images of 256×256 pixels, GFB tuned as in Ref. [13],
RBF interpolation with N = 200 samples, regularisation
parameters in (18) were set γ = 1 and λ = 10.

In order to demonstrate the suitablility of our refinement
process, we compare our method with two phase filtering
strategies: a membrane filter and an RBF based interpo-
lation. Both strategies directly smooth out the initial dif-
ferential phase without considering the FP structure. The
data corresponds to the fourth row in the Figure 3 and
the filtered results are shown in Figure 4. The first row
shows the filtered phases with a membrane filter and the
second row the reconstructed FP. The third row shows the
filtered phases with the RBF interpolation and the fourth
row shows the corresponding reconstructions.

Figures 3 and 4 depict the results of a single Monte Carlo
experiment of 100 simulations with the same sequence and
independent noise realisations. The errors for the recon-
structed FP sequence are shown in the boxplots in Figure
5. We can observe that, consistently, the mean of the Mean
Absolute Error (MAE) for the initial differential phase is
reduced with the filtering methods, and the best results
are obtained by our proposal. In our opinion, Figure 5
is very informative of our method capabilities. It depicts
MAE, variances, extreme values and cases with error out
of range. It also illustrated the method’s behaviour across
the time, an important feature when analysing transient
phenomena.

In case the reader is interested in computing an estimate
of the absolute phases φ, then a reference phase φa is re-
quired. Thus, the differential phases are integrated using

φ̃b(x) =

b∑
k=a

fk(x) + φa(x) (36)
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Figure 5: Summary of 100 Monte Carlo experiments for differential phase reconstructions of the FP sequence in Figure 3. The boxplots
depict the distributions of the Mean Absolute Error (MAE) with respect the ground truth (synthetic data). None corresponds to the
initial differential phase computed with (11). Membrane corresponds to filter the initial differential phase with the membrane filter. RBF
corresponds to the results using the RBF based interpolation and Proposal corresponds to the refined solution computed with our method.

For example, the reference phase could be computed using
a method in Refs. [15, 16, 17, 18, 19, 20, 21] in the case
the FP presents closed fringes. The computation of the
reference phase is beyond the scope the present work

Last experiment is conducted in a sequence acquired at
20,000 fps rate. It records, with an out–of–plane sensi-
ble ESPI experimental setup, the deformations of a ham-
mered steel plate. The environmental conditions produced
fringes of poor quality: low contrast, background inhomo-
geneity and highly noisy. First row in Figure (6) shows
three FPs, second row shows the computed phases with
the GFB. Note the effect of the random sign map, regions
with incorrect phase by fringes’ contrast loss and noise
moles that could not be filtered out. Third row shows the
initial differential phase, f . Despite the one can recognise
a propagation pattern in form of wave expanding from the
image centre, there are large phase moles corresponding
to unfiltered noise. Such phase moles are not eliminated
by the refining process as is shown in the results depicted
in fourth row; the phase moles induce correlated artefacts
in the refined phase, f̂ . In order to consider the moles
as phase outliers, the data term in the refinement phase
must be robust. The robust refined phase f̂R computed
with the procedure proposed in subsection 2.3 is shown in

row fifth.

5. Conclusions

We have presented a method for analysing FPs sequence.
Our contribution is given by the computation of an initial
differential phase based on a GFB and a refinement pro-
cess. Two variants of the refinement stage are proposed:
one based on a quadratic regularised (18) that is adequate
for cases where the initial differential phase estimate is
close to the true phase and a half-quadratic regularised
(21) that fit for cases where the initial differential phase
estimate is corrupted with outliers.

Our method allows us to analyse FP sequences of tran-
sient phenomena acquired with ESPI standard systems. It
may provide an advantage in industrial applications where
the experimental control is limited and sophisticated ESPI
acquisition setups are hard to implement. The experimen-
tal evidence demonstrated that our method can be applied
to noisy, time–varying illumination components and com-
plex FPs with closed fringes. Such characteristics made
the method suitable for the analysis of ESPI sequences
of transient phenomena, providing FPs with contiguous

8



Figure 6: Differential phase recovered from real transient ESPI se-
quence, see text.

smooth phase difference and dynamic range in the inter-
val [0, π).

The experiments demonstrated that our phase refine-
ment process [based on the minimisation of (18)] effec-
tively enforces consistency of the solution with the FP and
induces small corrections in order to maintain the valid-
ity of the first–order Taylor approximation. By contrast,
if one filters the initial phase a large error may be intro-
duced in the final phase; see experiments with the filter
membrane (33) and the RBF interpolation. The exper-
iments are computed with the Gauss-Seidel scheme (19)
for the case of the quadratic energy and and for the half–
quadratic energy alternating a Gauss-Seidel iteration with
a weights w update [24, 25]. Future work will focus on de-
veloping efficient minimisation methods to improve overall
performance. For example, we are interested in multigrid
approaches such that reported in [36].
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Appendix A

Since the operations are pixelwise, we omit the dependence
on x in the corresponding variables the sake of notation
simplicity.

Proof of Proposition 1. First we note that W
{
W{x} −

W{y}
}

= W{x − y}. This relies on the definition of the

wrap operatorW{x}
def
= x+2πn for an integer n such that

W{x} ∈ [−π, π). Indeed,

W
{
W{x} −W{y}

}
=[[x+ 2πn1]− [y + 2πn2]] + 2πn3

=[x− y] + 2πñ =W{x− y}, (37)

for some integers n1, n2 and n3. Thus, the integer ñ =
n1 − n2 + n3 directly wraps x − y. Hence, by using (4),
the wrapped phase difference gives

W{ψk − ψk−1} =W
{
sk[φk + kδ] + η̃k

− sk−1[φk−1 + (k − 1)δ]− η̃k−1}
}

=W
{
skφk + skkδ + η̃k

− sk−1φk−1 − sk−1(k − 1)δ − η̃k−1
− skφk−1 + skφk−1 − skδ + skδ

}
=W{sk(φk − φk−1) + skδ

+ (sk − sk−1)[φk−1 + (k − 1)δ]

+ η̃k − η̃k−1},
=W{sk[fk + δ] + η̂k}, (38)

where we use (2) and the define the residual

η̂k
def
= (sk − sk−1)[φk−1 + (k − 1)δ] + η̃k − η̃k−1 (39)

that absorbs the contribution of the residuals (η̃k, η̃k−1)
and the change in the sign–map (sk − sk−1). Now apply
the wrapping operator, we have

W{ψk − ψk−1} = sk[fk + δ] + η̂k + 2π nk, (40)

where nk is a field of integers.

Proof of Proposition 2. From (6), we have

0 ≤ fk = |sk[fk + δ] + η̂k + 2π nk| ≤ π.
(41)

Recall that if a ≥ 0, that 0 ≤ |a+ b| ≤ a+ |b|. Thus,

fk = fk + δ + rk ≤ fk + δ + |η̂k + 2π nk|. (42)

for a residual rk. The residual rk in (42) is difficult to char-
acterise with a particular probability density distribution.
However, it fulfils

0 ≤ fk + δ + rk ≤ min{π, fk + δ + |η̂k + 2π nk|}. (43)
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Relationship of Gabor Filters and the STFT. We use the
definition of the convolution, (24) and (25). Thus, we have

GF{I}(x;ω) =

∫ ∞
−∞

I(τ) exp[−i ω(x− τ)]G(x− τ, σ) d τ

= exp[−i ωx]

∫ ∞
−∞

I(τ) exp[i ωτ ]G(x− τ, σ) d τ

= exp[−i ωx]STFT{I}(x;ω, σ,G) (44)

Hence, a Gabor filter is the particular case of a coefficient
of the STFT when the Gaussian window is selected and its
response is multiplied by the phase factor: exp[−i ωx].
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