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Abstract: Global continuous control for the finite-time or (local) exponential stabilization of mechanical systems with
bounded inputs is achieved involving desired conservative-force compensation. With respect to the on-line compensation
case, the proposed controller entails a closed-loop analysis with considerably higher degree of complexity, whence more
involved requirements prove to arise. Other important analytical limitations are further overcome through the developed
algorithm. Numerical simulations considering a robotic arm model corroborate the efficiency of the proposed scheme.
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1. INTRODUCTION
A global continuous state-feedback scheme for the

finite-time and exponential stabilization of mechanical
systems with bounded inputs was developed and thor-
oughly motivated in [1]. The explicit consideration of
input constraints and the explicit choice on the system
trajectory convergence are among the main characteris-
tics that distinguish such an approach from continuous
finite-time controllers developed for mechanical systems
before its appearance: [2], [3], [4] (see for instance [1,
§1] for a brief description of such works). Moreover,
while the cited previous approaches mainly rely on the
dynamic inversion technique (except for one of the two
controllers presented in [2]), the scheme in [1] bene-
fits from the inherent passive nature of mechanical sys-
tems. This is so in view of its (saturating) Proportional-
Derivative type structure with exclusive compensation of
the conservative-force (vector) term, which permits to re-
shape the closed-loop potential energy so as to set the
desired posture as the only equilibrium position on the
whole configuration space. The exclusive compensation
of the conservative-force term allows to reduce the sys-
tem model dependence of the designed scheme, conse-
quently simplifying the control structure and decreasing
the implied computation burden. However, such advan-
tages could still be improved if the on-line compensa-
tion term could be replaced by the conservative-force
term evaluated at the desired position. This idea was
first introduced in [5] in an unconstrained-input conven-
tional (infinite-time) stabilization framework and, since
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then, it has been well appreciated due to its simplicity
and simplification improvements. This is the main moti-
vation of this work, where a desired-conservative-force-
compensation extension of the finite-time/exponential
stabilization scheme from [1] is developed. Such a design
task is not as simple or direct as a simple replacement of
the on-line compensation term by the desired one, since
the required (desired) closed-loop equilibrium position is
kept, but not its uniqueness. Consequently, further de-
sign requirements prove to be needed to ensure that the
control-induced potential energy component dominates
the open-loop one (in order to solve the uniqueness is-
sue). This was already pointed out in [5], where such a
domination goal was shown to be achieved through a P
control (vector) term with a stronger growing rate than
that of the open-loop conservative force term in any di-
rection (at every point) on the configuration space; in
particular, under the simple consideration of uncoupled
linear P and D control actions, this was shown to be
achieved by simply fixing P gains higher than the high-
est (induced) norm value of the Jacobian matrix of the
conservative force term (assuming that such a Jacobian
matrix is bounded) [6]. But the solution of the referred
uniqueness issue cannot be that simple in the analytical
context considered here in view of the special functions
involved to guarantee the achievement of the formulated
stabilization goal. This represents an important analyti-
cal challenge to which this work succeeds to give a solu-
tion with the technical benefits from desired conservative-
force compensation.

We thus propose a global continuous state-feedback
scheme with desired conservative-force compensation for
the finite-time and exponential stabilization of mechan-



ical systems with bounded inputs. The developed ap-
proach implies an important simplification on the control
implementation with respect to the on-line compensation
version. Its efficiency is further corroborated through
simulation results.

2. PRELIMINARIES
Let X ∈ Rm×n and y ∈ Rn. Xij stands for the el-

ement of X at its ith row and jth column, Xi for the ith

row of X and yi for the ith element of y. With m = n,
X > 0 denotes that X is positive definite; for a sym-
metric matrix X , λm(X) and λM (X) respectively stand
for its minimum and maximum eigenvalues. 0n repre-
sents the origin of Rn and In the n × n identity matrix.
Rn>0 and Rn≥0 denote the set of n-tuples with positive and
non-negative entries, respectively. ‖ · ‖ stands for the
standard Euclidean norm for vectors and induced norm
for matrices. Let Sn−1c = {x ∈ Rn : ‖x‖ = c}: an
(n − 1)-dimensional sphere of radius c > 0 on Rn. We
denote Dgf the directional derivative of f : Rn → R
along g : Rn → Rn, i.e., Dgf(x) = ∂f

∂xg(x). We
consider the sign function sign(·) to be zero at zero, and
sat(ς) = sign(ς)min{|ς|, 1} The contents of the next sub-
sections were mostly included in [1, §2]; for the sake of
completeness, they are reproduced here.

2.1 Mechanical systems
Consider the n-degree-of-freedom (DOF) fully-

actuated mechanical system dynamics

H(q)q̈ + C(q, q̇)q̇ + g(q) = τ (1)

where q, q̇, q̈ ∈ Rn are the position (generalized co-
ordinates), velocity, and acceleration vectors; the iner-
tial matrix H(q) ∈ Rn×n is a continuously differen-
tiable positive definite symmetric matrix function, such
that H(q) ≥ µmIn, ∀q ∈ Rn, for some µm > 0; the
Coriolis and centrifugal effect matrix C(q, q̇) ∈ Rn×n,
defined through the Christoffel symbols of the first kind,
satisfies Ḣ(q, q̇) = C(q, q̇) + CT (q, q̇), ∀q, q̇ ∈ Rn, and
consequently

zT
[

1

2
Ḣ(x, y)− C(x, y)

]
z = 0 (2a)

∀x, y, z ∈ Rn, where Ḣ : Rn × Rn → Rn×n, with
Ḣij(q, q̇) =

∂Hij

∂q (q)q̇, i, j = 1, . . . , n,

‖C(x, y)‖ ≤ ψ(x)‖y‖ (2b)

for some ψ : Rn → R≥0, and C(x, y)z = C(x, z)y,
∀x, y, z ∈ Rn, whence we have that

C(q, aq̇)bq̇ = C(q, bq̇)aq̇ = C(q, abq̇)q̇ = C(q, q̇)abq̇

(3)

∀q, q̇ ∈ Rn, ∀a, b ∈ R; g(q) = ∇Uol(q), with Uol :
Rn → R being the potential energy function of the

open-loop system, or equivalently Uol(q) = Uol(q0) +∫ q
q0
gT (z)dz, for any q, q0 ∈ Rn; and τ ∈ Rn is the ex-

ternal input (generalized) force vector.
We consider the (realistic) bounded input case, where

each input τi is constrained by a saturation bound Ti > 0.
More precisely, letting ui represent the control variable
(controller output) relative to the ith degree of freedom,
we have that

τi = Tisat(ui/Ti) (4)

Assumption 2.1. H(q) is bounded, i.e. ‖H(q)‖ ≤ µM ,
∀q ∈ Rn, for some µM ≥ µm > 0.

Assumption 2.2. ψ(·) in (2b) is bounded and conse-
quently ‖C(x, y)‖ ≤ kC‖y‖, ∀x, y ∈ Rn, for some
kC ≥ 0.

Assumption 2.3. The gravity force vector is a con-
tinuously differentiable bounded vector function with
bounded Jacobian matrix ∂g

∂q , or equivalently: |gi(q)| ≤
Bgi, ∀q ∈ Rn, for some non-negative constant Bgi;∥∥∥∂g∂q (q)

∥∥∥ ≤ kg , ∀q ∈ Rn, for some non-negative con-

stant kg , and consequently ‖g(x)− g(y)‖ ≤ kg‖x− y‖,
∀x, y ∈ Rn.

Assumption 2.4. Ti > ηBgi, i = 1, . . . , n, with η ≥ 1.

Assumptions 2.1–2.3 apply e.g. for robot manipulators
having only revolute joints.

2.2 Local homogeneity, finite-time/δ-exponential sta-
bility

This work is developed within the analytical frame-
work of local homogeneity, which states a formal ana-
lytical platform permitting to handle vector fields with
bounded components [7]. Definitions and results in such
an analytical context are strongly related to family of di-
lations δrε , defined as δrε(x) =

(
εr1x1, . . . , ε

rnxn
)T

,
∀x ∈ Rn, ∀ε > 0, with r = (r1, . . . , rn)T , where the
dilation coefficients r1, . . . , rn are positive scalars.

Definition 2.1. [7] A function V : Rn → R, resp. vec-
tor field f =

∑n
i=1 fi

∂
∂xi

(with fi : Rn → R), is lo-
cally homogeneous of degree α with respect to δrε (lo-
cally r-homogeneous of degree α), if there exists an open
neighborhood of the origin D ⊂ Rn (domain of homo-
geneity), such that, for every x ∈ D and all ε ∈ (0, 1]:
δrε(x) ∈ D, and V (δrε(x)) = εαV (x), resp., fi(δrε(x)) =
εα+rifi(x), i = 1, . . . , n.

Fundamental concepts involved in the analytical con-
text underlying this work are those of homogeneous
norm (a positive definite continuous function being r-
homogeneous of degree 1) [8], [9], denoted ‖ · ‖r, and
r-homogeneous (n− 1)-sphere of radius c > 0: Sn−1r,c =
{x ∈ Rn : ‖x‖r = c}.

Consider an n-th order autonomous system

ẋ = f(x) (5)



where f is a vector field being continuous on an open
neighborhood of the origin D ⊂ Rn and such that
f(0n) = 0n, and let x(t;x0) represent the system so-
lution with initial condition x(0;x0) = x0. An important
definition for this work is that of a (globally) finite-time
equilibrium as stated in [10].

Remark 2.1. The origin is a globally finite-time stable
equilibrium of system (5) if and only if it is globally
asymptotically stable and finite-time stable. 4
Theorem 2.1. [7] Consider system (5) with D = Rn.
Suppose that f is a locally r-homogeneous vector field of
degree α with domain of homogeneityD ⊂ Rn. Then, the
origin is a globally finite-time stable equilibrium of sys-
tem (5) if and only if it is globally asymptotically stable
and α < 0.

The next definition is stated under the additional con-
sideration that, for some r ∈ Rn>0, f in (5) is locally
r-homogeneous with domain of homogeneity D ⊂ D.

Definition 2.2. [9], [8] The equilibrium point x = 0n
of (5) is δ-exponentially stable with respect to the homo-
geneous norm ‖ · ‖r if there exist a neighborhood of the
origin, V ⊂ D, and constants a ≥ 1 and b > 0 such that
‖x(t;x0)‖r ≤ a‖x0‖re−bt, ∀t ≥ 0, ∀x0 ∈ V .

Remark 2.2. If f in (5) is locally r-homogeneous of
degree α = 0 with dilation coefficients ri = r0, ∀i ∈
{1, . . . , n}, for some r0 > 0, then the origin turns out to
be exponentially stable (in the standard sense [11, Defi-
nition 4.5]) if and only if it is δ-exponentially stable [1,
Remark 2.5]. 4

Consider an n-th order autonomous system of the form

ẋ = f(x) + f̂(x) (6)

where f and f̂ are continuous vector fields on Rn such
that f(0n) = f̂(0n) = 0n.

Lemma 2.1. [1, Lemma 2.2] Suppose that, for some r ∈
Rn>0, f in (6) is a locally r-homogeneous vector field of
degree α < 0, resp. α = 0, with domain of homogeneity
D ⊂ Rn, and that 0n is a globally asymptotically, resp.
δ-exponentially, stable equilibrium of ẋ = f(x). Then,
the origin is a finite-time, resp. δ-exponentially, stable
equilibrium of system (6) if

lim
ε→0+

f̂i(δ
r
ε(x))

εα+ri
= 0

i = 1, . . . , n, ∀x ∈ Sn−1c , resp. ∀x ∈ Sn−1r,c , for some
c > 0 such that Sn−1c ⊂ D, resp. Sn−1r,c ⊂ D.

Remark 2.3. Notice that the condition required by
Lemma 2.1 may be equivalently verified through the sat-
isfaction of

lim
ε→0+

∥∥ε−αdiag
[
ε−r1 , . . . , ε−rn

]
f̂(δrε(x))

∥∥ = 0

∀x ∈ Sn−1c (resp. Sn−1r,c ). 4

2.3 Scalar functions with particular properties
Definition 2.3. A continuous scalar function σ : R→ R
will be said to be:
1. bounded —by M— if |σ(ς)| ≤ M , ∀ς ∈ R, for some
positive constant M ;
2. strictly passive if ςσ(ς) > 0, ∀ς 6= 0;
3. strongly passive if it is a strictly passive function sat-
isfying |σ(ς)| ≥ κ

∣∣a sat(ς/a)
∣∣b = κ

(
min{|ς|, a}

)b
,

∀ς ∈ R, for some positive constants κ, a and b.

Remark 2.4. Equivalent characterizations of strictly pas-
sive functions are: ςσ(ς) > 0 ⇐⇒ sign(ς)σ(ς) >
0 ⇐⇒ sign(σ(ς)) = sign(ς), ∀ς . 4

Lemma 2.2. [1, Lemma 2.3] Let σ : R → R, σ0 : R →
R and σ1 : R → R be strongly passive functions and k
be a positive constant. Then:
1.
∫ ς
0
σ(kν)dν > 0, ∀ς 6= 0;

2.
∫ ς
0
σ(kν)dν →∞ as |ς| → ∞;

3. σ0 ◦ σ1 is strongly passive.

3. THE PROPOSED CONTROL SCHEME
Consider the following SP-SD type controller with de-

sired conservative-force compensation

u(q, q̇) = −s1(K1q̄)− s2(K2q̇) + g(qd) (7)

where q̄ = q − qd, for any constant (desired equi-
librium position) qd ∈ Rn; Ki = diag[ki1, . . . , kin],
i = 1, 2, are positive definite diagonal matrices —
i.e. Ki = diag[ki1, . . . , kin], kij > 0, i = 1, 2,
j = 1, . . . , n— with K1 involved in an additional re-
quirement stated below (through (9)); for any x ∈ Rn,
si(x) =

(
σi1(x1), . . . , σin(xn)

)T
, i = 1, 2, with, for

each j = 1, . . . , n, σ1j being strongly passive and σ2j
being strictly passive functions such that

Bj , sup
(ς1,ς2)∈R2

∣∣σ1j(ς1) + σ2j(ς2)
∣∣ < Tj −Bgj (8)

both being locally Lipschitz-continuous on R \ {0}; and
with, for each j = 1, . . . , n, k1j and σ1j additionally
required to be such that, for all ς ∈ R,∣∣σ1j(k1jς)∣∣ > min

{
kg|ς| , 2Bgj

}
(9)

Remark 3.1. From the above formulation, we have that

2Bgj < |σ1j(k1jς)| ≤ Bj < Tj −Bgj

∀|ς| ≥ 2Bgj/kg , whence one sees that Assumption 2.4
with η = 3 is a necessary condition for the feasibility of
the simultaneous fulfilment of (8) and (9). 4

Remark 3.2. Inequality (9) implies the existence of con-
stants k̂1j > kg and bj > 2Bgj such that

∣∣σ1j(k1jς)∣∣ ≥
min

{
k̂1j |ς|, bj

}
> min

{
kg|ς|, 2Bgj

}
, ∀ς 6= 0. 4



Proposition 3.1. Consider system (1),(4) in closed loop
with the proposed control law (7), under Assumptions
2.1–2.3 and 2.4 with η = 3, and the above stated de-
sign specifications. Thus, global asymptotic stability of
the closed-loop trivial solution q̄(t) ≡ 0n is guaranteed
with |τj(t)| = |uj(t)| < Tj , j = 1, . . . , n, ∀t ≥ 0.

Proof. Observe that —for every j = 1, . . . , n— by (8),
we have that, for any (q, q̇) ∈ Rn×Rn and any qd ∈ Rn:
|uj(q, q̇)| ≤

∣∣σ1j(k1j q̄j) + σ2j(k2j q̇j)
∣∣ +

∣∣gj(qd)∣∣ ≤
Bj + Bgj < Tj . From this and (4), one sees that
Tj > |uj(q, q̇)| = |uj | = |τj |, ∀(q, q̇) ∈ Rn × Rn,
which shows that, along the system trajectories, |τj(t)| =
|uj(t)| < Tj , j = 1, . . . , n, ∀t ≥ 0. Hence, the closed-
loop dynamics takes the form

H(q)q̈+C(q, q̇)q̇+g(q) = −s1(K1q̄)−s2(K2q̇)+g(qd)

By defining x1 = q̄, x2 = q̇, and x = (xT1 , x
T
2 )T the

closed-loop dynamics adopts the form of (6) with

f(x) =

(
f(1)(x)
f(2)(x)

)
, f̂(x) =

(
f̂(1)(x)

f̂(2)(x)

)
(10)

where f(1)(x) = x2, f(2)(x) = −H−1(qd)
[
s1(K1x1) +

s2(K2x2)
]
, f̂(1)(x) = 0n, and

f̂(2)(x) = −H(x1 + qd)[C(x1 + qd, x2)x2 + g(x1 + qd)− g(qd)]

−H(x1)[s1(K1x1) + s2(K2x2)] (11)

with

H(x1) = H−1(x1 + qd)−H−1(qd) (12)

Thus, the closed-loop stability property stated through
Proposition 3.1 is corroborated by showing that x = 02n
is a globally asymptotically stable equilibrium of the state
equation ẋ = f(x) + f̂(x), which is proven through the
following theorem.

Theorem 3.1. Under the stated specifications, the origin
is a globally asymptotically stable equilibrium of ẋ =
f(x) + `f̂(x), ∀` ∈ {0, 1}, with f(x) and f̂(x) defined
through Eqs. (10).

Proof. For every ` ∈ {0, 1}, let us define the continu-
ously differentiable scalar function

V`(x1, x2) =
1

2
xT2H(`x1 + qd)x2 + U`(x1) (13)

where

U`(x1) ,
∫ x1

0n

sT1 (K1z)dz + `U(x1) (14)∫ x1

0n
sT1 (K1z)dz =

∑n
j=1

∫ x1j

0
σ1j(k1jzj)dzj ,

U(x1) , Uol(x1 + qd)− Uol(qd)− gT (qd)x1 (15a)

=

∫ x1

0n

[
g(z + qd)− g(qd)

]T
dz (15b)

=

∫ x1

0n

[ ∫ z

0n

∂g

∂q
(z̄ + qd)dz̄

]T
dz (15c)

Observe from Eqs. (15) and Assumption 2.3 that

U(x1) ≤
∫ x1

0n

[ ∫ z

0n

∥∥∥∥∂g∂q (z̄ + qd)

∥∥∥∥dz̄]T dz
≤
∫ x1

0n

kgz
T dz =

n∑
j=1

∫ x1j

0

kgzjdzj (16)

∀x1 ∈ Rn (from (15c)), and simultaneously that

U(x1) ≤
n∑
j=1

∫ x1j

0

sign(zj)
∣∣gj(z + qd)− gj(qd)

∣∣dzj
≤

n∑
j=1

∫ x1j

0

sign(zj)2Bgjdzj

∀x1 ∈ Rn (from (15b)). From these inequalities, the sat-
isfaction of (9), and Remark 3.2, we have that

U`(x1) ≥
n∑

j=1

∫ x1j

0
sign(zj) min

{
(k̂1j − `kg)|zj | ,

(bj − 2`Bgj)
}
dzj

=

n∑
j=1

w`j(x1j) , S`(x1) (17a)

with

w`j(x1j) =


k̄`j

2
x2

1j if |x1j | ≤ b̄`j/k̄`j
b̄`j
[
|x1j | − b̄`j/(2k̄`j)

]
if |x1j | > b̄`j/k̄`j

(17b)

for some k̂1j > kg and bj > 2Bgj , and any positive
constants k̄`j ≤ k̂1j − `kg and b̄`j ≤ bj − 2`Bgj .

Remark 3.3. Note from expressions (17) that S`(x1),
` = 0, 1, are positive definite radially unbounded func-
tions. Observe further that (involving previous arguments
and Remark 2.4)

Dx1U`(x1) = xT1

[
s1(K1x1) + `

(
g(x1 + qd)− g(qd)

)]
≥

n∑
j=1

|x1j |
[∣∣σ1j(k1jx1j)

∣∣− `∣∣gj(x1 + qd)− gj(qd)
∣∣]

≥
n∑

j=1

|x1j |min
{
k̄`j |x1j | , b̄`j

}
> 0 (18)

∀x1 6= 0n, whence one sees that, for every ` = 0, 1,
∇x1U`(x1) = s1(K1x1) + `

[
g(x1 + qd) − g(qd)

]
=

0n ⇐⇒ x1 = 0n 4
Thus, from Eqs. (13) and (17) and the properties of

H(q) we get that

V`(x1, x2) ≥ µm
2
‖x2‖2 + S`(x1) (19)

whence positive definiteness and radial unboundedness
of V`, ` = 0, 1, is concluded. Further, for every ` ∈
{0, 1}, the derivative of V` along the trajectories of ẋ =

f(x) + `f̂(x), is obtained, after basic developments, as

V̇`(x1, x2) = −xT2 s2(K2x2) = −
n∑
j=1

x2jσ2j(k2jx2j)



where, in the case of ` = 1, (2a) has been ap-
plied. Notice, from the strictly passive charac-
ter of σ2j , that V̇`(x1, x2) ≤ 0, ∀(x1, x2) ∈
Rn × Rn, with Z` , {(x1, x2) ∈ Rn ×
Rn : V̇`(x1, x2) = 0} = {(x1, x2) ∈ Rn
× Rn : x2 = 0n}. Further, from the system
dynamics ẋ = f(x) + `f̂(x) —due to the posi-
tive definiteness of H and Remark 3.3— one sees
that x2(t) ≡ 0n =⇒ ẋ2(t) ≡ 0n =⇒
s1(K1x1(t)) + `

[
g
(
x1(t) + qd

)
− g(qd)

]
≡ 0n

⇐⇒ x1(t) ≡ 0n (which shows that (x1, x2)(t) ≡
(0n, 0n) is the only system solution completely remain-
ing in Z`), and corroborates that at any (x1, x2) ∈
{(q̄, q̇) ∈ Z` : q̄ 6= 0n}, the resulting unbalanced force
terms act on the closed-loop dynamics

[
ẋ = f(x1, 0n) +

`f̂(x1, 0n) with (x1, x2) 6= (0n, 0n)
]
, forcing the system

trajectories to leave Z`, whence {(0n, 0n)} is concluded
to be the only invariant set in Z`, ` = 0, 1. Therefore,
by the invariance theory [12, §7.2], x = 02n is concluded
to be a globally asymptotically stable equilibrium of both
the state equation ẋ = f(x) and the (closed-loop) system
ẋ = f(x) + f̂(x).

3.1 Finite-time/exponential stabilization

Proposition 3.2. Consider the proposed control scheme
under the additional consideration that, for every j =
1, . . . , n, σij , i = 1, 2, are locally ri-homogeneous of
degree αj = 2r2−r1 —i.e. r1j = r1, r2j = r2 and α1j =
α2j = αj = 2r2− r1 for all j = 1, . . . , n— with domain
of homogeneity Dij = {ς ∈ R : |ς| < Lij ∈ (0,∞]},
for some dilation coefficients ri > 0, i = 1, 2, such that
αj = 2r2 − r1 > 0 > r2 − r1. Thus, global finite-time
stability of the closed-loop trivial solution q̄(t) ≡ 0n is
guaranteed with |τj(t)| = |uj(t)| < Tj , j = 1, . . . , n,
∀t ≥ 0.

Proof. Note that Proposition 3.1 holds and consequently
|τj(t)| = |uj(t)| < Tj , j = 1, . . . , n, ∀t ≥ 0. Then, all
that remains to be proven is that the additional consider-
ations give rise to finite-time stabilization. In this direc-
tion, let r̂i = (ri1, . . . , rin)T , i = 1, 2, r = (r̂T1 , r̂

T
2 )T ,

D , {(x1, x2) ∈ Rn×Rn : Kixi ∈ Di1×· · ·×Din , i =
1, 2} = {(x1, x2) ∈ Rn × Rn : |x1j | < L1j/k1j ,
|x2j | < L2j/k2j , j = 1, . . . , n}, and consider the previ-
ously defined state (vector) variables and the consequent
closed-loop state-space representation ẋ = f(x) + f̂(x),
with f and f̂ as defined through Eqs. (10). Since D
defines an open neighborhood of the origin, there exists
ρ > 0 such that Bρ , {x ∈ R2n : ‖x‖ < ρ} ⊂ D.
Moreover, for every x ∈ Bρ and all ε ∈ (0, 1], we have
that δrε(x) ∈ Bρ (since ‖δrε(x)‖ < ‖x‖, ∀ε ∈ (0, 1)),
and, for every j ∈ {1, . . . , n},

fj(δ
r
ε(x)) = εr2jx2j = ε(r2−r1)+r1jfj(x)

fn+j(δ
r
ε(x)) = −H−1j (qd)

(
s1(εr1K1x1) + s2(εr2K2x2)

)
= −εα1H−1j (qd)

(
s1(K1x1) + s2(K2x2)

)
= ε(r2−r1)+r2jfn+j(x)

whence one concludes that f is a locally r-homogeneous
vector field of degree α = r2 − r1, with domain of ho-
mogeneity Bρ. Hence, by Theorems 2.1 and 3.1, the ori-
gin of system ẋ = f(x) is concluded to be a globally
finite-time stable equilibrium since r2 − r1 < 0. Thus,
by Theorem 3.1, Lemma 2.1, and Remarks 2.1 and 2.3,
we conclude that the origin of the closed-loop system
ẋ = f(x) + f̂(x) is a global finite-time stable equilib-
rium, provided that r2 − r1 < 0, if

L0 , lim
ε→0+

∥∥∥ε−αδ−r̂2ε

(
f̂(2)(δ

r
ε(x))

)∥∥∥
= lim
ε→0+

∥∥∥ε−α−r2 f̂(2)(δrε(x))
∥∥∥

= lim
ε→0+

εr1−2r2
∥∥∥f̂(2)(δrε(x))

∥∥∥ = 0 (20)

for all x ∈ S2n−1
c = {x ∈ R2n : ‖x‖ = c}, for some c >

0 such that S2n−1
c ⊂ D. Hence, under the consideration

of (11) and (3), we have for all such x ∈ S2n−1
c :∥∥∥f̂(2)(δrε(x))

∥∥∥
≤
∥∥∥H−1(εr1x1 + qd)C(εr1x1 + qd, x2)ε2r2x2

∥∥∥
+
∥∥∥H−1(εr1x1 + qd)

∥∥∥∥∥∥g(εr1x1 + qd)− g(qd)
∥∥∥

+
∥∥∥H(εr1x1)

[
εα1s1(K1x1) + εα2s2(K2x2)

]∥∥∥
≤ ε2r2

∥∥∥H−1(εr1x1 + qd)C(εr1x1 + qd, x2)x2

∥∥∥
+
∥∥∥H−1(εr1x1 + qd)

∥∥∥kgεr1‖x1‖
+ ε2r2−r1

∥∥∥H(εr1x1)
[
s1(K1x1) + s2(K2x2)

]∥∥∥
and consequently, from (20) (recall that r1 > r2 > 0),

L0 ≤ lim
ε→0+

εr1
∥∥∥H−1(εr1x1 + qd)C(εr1x1 + qd, x2)x2

∥∥∥
+ kg‖x1‖ lim

ε→0+
ε2(r1−r2)

∥∥∥H−1(εr1x1 + qd)
∥∥∥

+ lim
ε→0+

∥∥H(εr1x1)
[
s1(K1x1) + s2(K2x2)

]∥∥
≤
∥∥H−1(qd)C(qd, x2)x2

∥∥ lim
ε→0+

εr1

+ kg‖x1‖
∥∥H−1(qd)

∥∥ lim
ε→0+

ε2(r1−r2)

+
∥∥s1(K1x1) + s2(K2x2)

∥∥ lim
ε→0+

∥∥H(εr1x1)
∥∥

≤
∥∥s1(K1x1) + s2(K2x2)

∥∥ · ∥∥H(0n)
∥∥ = 0

(21)

(note, from (12), that ‖H(0n)‖ = ‖H−1(qd) −
H−1(qd)‖ = 0), which completes the proof.



Corollary 3.1. Consider the proposed control scheme
taking σij , i = 1, 2, j = 1, . . . , n, such that

σij(ς) = sign(ς)|ς|βij ∀|ς| ≤ Lij ∈ (0,∞) (22)

with constants βij such that

0 < β1j ≤ 1 , β2j =
2β1j

1 + β1j
(23)

Thus, |τj(t)| = |uj(t)| < Tj , j = 1, . . . , n, ∀t ≥ 0, and
the closed-loop trivial solution q̄(t) ≡ 0n is:
1. globally finite-time stable if 0 < β1 < 1;
2. globally asymptotically stable and (locally) exponen-
tially stable if β1 = 1.

Item 1 of Corollary 3.1 is proven by corroborating
that, under the stated conditions, for every j = 1, . . . , n
and any r1 > 0, by taking r1j = r1 and r2j = r2 =
(1+β1)r1/2, the requirements of Proposition 3.2 are sat-
isfied with 0 < β1 < 1 =⇒ r2 − r1 < 0 < 2r2 − r1.
On the other hand, note that with r2 = r1 —or analo-
gously β1 = 1 in the context of Corollary 3.1— we have
that εr2−r1 = 1, ∀ε > 0. Hence, in this case, develop-
ments analog to those giving rise to inequalities (21) lead
to L0 ≤ kg‖x1‖‖H−1(qd)‖, and consequently, Lemma
2.1 (under the consideration of Remark 2.2) cannot be
applied to conclude (local) exponential stability (contrar-
ily to the on-line conservative-force compensation case
of [1]). However, while the global asymptotic stability
follows from Proposition 3.1, the (local) exponential sta-
bility stated through item 2 of Corollary 3.1 is proven by
showing that, for a sufficiently small value of ε,

V2(x1, x2) = V1(x1, x2) + εxT1H(x1 + qd)x2

—with V1 as defined through Eq. (13)— is a suitable
strict Luapunov function of the closed-loop system, on a
neighborhood of the origin 02n. In particular, with

ε < min{ε1, ε2}

ε1 =

[
k̄1mµm

]1/2
µM

ε2 =
k̄1mk2m

k̄1mkC%+ k̄1mµM + k22M/4

k̄1m = minj{k̄1j}, k2m = minj{k2j}, k2M =
maxj{k2j}, k1M = maxj{k1j}, % = maxx1∈Q1

‖x1‖,
Q1 = Q11 ∩ Q12, Q11 = {x1 ∈ Rn : |x1j | <
b̄1j/k̄1j , j = 1, . . . , n}, Q12 = {x1 ∈ Rn : |x1j | ≤
L1j/k1j , j = 1, . . . , n}, Q2 = {x2 ∈ Rn : |x2j | ≤
L2j/k2j , j = 1, . . . , n},

Q1 =

(
k̄1m −εµM
−εµM µm

)

Q2 =

(
k1M + kg εµM

εµM µM

)

Q3 =

(
εk̄1m −εk2M/2
−εk2M/2 k2m − εkC%− εµM

)
we have, on Q1 ×Q2, that

c1‖x‖2 ≤ V2(x) ≤ c2‖x‖2

V̇2(x) ≤ −c3‖x‖2

with c1 = λm(Q1)/2 > 0, c2 = λM (Q2)/2 > 0 and
c3 = λm(Q3) > 0, whence we conclude —by [11, The-
orem 4.10]— that the origin (x1, x2) = (0n, 0n) is a (lo-
cally) exponentially stable equilibrium of the closed-loop
system. The details omitted in this sketch of the proof
of Corollary 3.1 will be thoroughly developed in future
communications with more relaxed space limitations.

4. SIMULATION RESULTS
We implemented the proposed control scheme through

numerical simulations considering the model of the 2-
DOF revolute-joint mechanical manipulator used in [13],
with dynamics characterized by

H(q) =

(
2.351 + 10.168 cos q2 0.102 + 0.084 cos q2

0.102 + 0.084 cos q2 0.102

)

C(q, q̇) =

(
−0.084q̇2 sin q2 −0.084(q̇1 + q̇2) sin q2

0.084q̇1 sin q2 0

)

g(q) =

(
38.465 sin q1 + 1.825 sin(q1 + q2)

1.825 sin(q1 + q2)

)
Assumptions 2.1–2.3 are thus satisfied (this is a direct
consequence of the revolute nature of both joints of the
considered manipulator); in particular Assumption 2.3
is fulfilled with Bg1 = 40.29 Nm, Bg2 = 1.825 Nm
and kg = 40.37 Nm/rad. Input saturation bounds are
T1 = 150 Nm and T2 = 15 Nm, whence Assumption 2.4
is corroborated to be fulfilled with η = 3. For the sake of
simplicity, units will be subsequently omitted.

The proposed design methodology was applied under
the consideration of the following function definitions

σu(ς;β, a) = sign(ς) max{|ς|β , a|ς|} (24a)

σb(ς;β, a,M) = sign(ς) min{|σu(ς;β, a)|,M} (24b)

for constants β > 0, a ∈ {0, 1}, and M > 0. Examples
are shown in [1, §5].

We present a simulation test focusing on the compar-
ison among the two types of convergence: finite-time vs
exponential. The implementation was run taking the de-
sired configuration at qd =

(
π/4 π/2

)T
[rad] and initial

conditions as q(0) = q̇(0) = 02. Based on the functions
in Eqs. (24), we define, for every j = 1, 2,

σij(ς) = σb(ς;βi, aij ,Mij) i = 1, 2 (25)



Fig. 1 Finite-time vs exponential stabilization

with aij = 0, i = 1, 2, j = 1, 2. Conditions on their
parameters under which (9) is fulfilled are:

k1j > kg(2Bgj)
(1−β1)/β1 (26a)

M1j > 2Bgj (26b)

Let us note, from the involved functions, as defined
through Eq. (25), that Bj = M1j + M2j , j = 1, 2
(see (8)). Thus, by fixing M11 = 82, M21 = 18, and
M12 = M22 = 6, (8) and (26b) are simultaneously sat-
isfied. The control gain values were chosen taking care
that inequality (26a) was satisfied.

Figure 1 shows results obtained taking β1 = 1/2
and β2 = 2/3, and the control gains were taken, for
both (finite-time and exponential) controllers, as: K1 =
diag[3255, 150] and K2 = diag[150, 2]. One sees that
the proposed scheme achieves both types of convergence
avoiding input saturation, with the closed-loop trajectory
arising through the exponential controller presenting a
longer and more important transient. On the other hand,
the finite-time stabilizer shows a more efficient ability to
counteract the inertial effects through control signals with
considerably less and lower variations during the tran-
sient.

5. CONCLUSIONS
Global continuous control of mechanical systems with

input constraints guaranteeing finite-time or exponential
stabilization has been made possible and further sim-
plified through desired conservative-force compensation.
This controller is not a simple extension of the on-line
compensation case but it has rather proven to need more
involved requirements resulting from a closed-loop anal-
ysis with considerably higher degree of complexity. Sim-
ulation results have shown the actual ability of the pro-
posed approach to guarantee the considered types of con-
vergence avoiding input saturation, with finite-time con-

trol signals giving rise to less and lower variations dur-
ing the transient. A more detailed implementation test
study focusing on further aspects on the closed-loop per-
formance is intended to be presented on future communi-
cations with more relaxed space restrictions.
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