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Abstract— The conjunction of the complementarity 
framework and bond graphs is presented as an appropriate 
technique for the modeling of electric machine drives. The 
proposed approach uses complete models of switched systems. 
It also allows the modeling of several parts of a drive of electrical 
machines and related systems. With the presented method, 
different configurations of drives can be represented and 
studied. A high interconnection capacity is also shown as an 
attractive feature. 

Keywords—Complementarity, bond graph, motor drive, hybrid 
systems. 

I. INTRODUCTION 
Electric machines are the force that moves the 

industrialized world of today. Besides, a substantial increase 
in its use is foreseen due to the imminent mass deployment of 
electric traction vehicles. The topics related to electric 
machines are being subjected to intensive research. 

There are several tools to model electric machines. Thus, 
during the electromagnetic design, finite element methods are 
generally used [1]. For the study of dynamic performance, 
however, other tools that allow the design of control strategies 
are often used [2]. In this line, this paper presents the 
complementarity framework in conjunction with bond graphs 
as a modeling technique. 

The complementarity framework is a formalism that, 
among its applications, allows the representation of switched 
converters through complete models, that is, they have a fixed 
topology [3]. It is not necessary to study the change of modes 
that appear in other methodologies, and a single model 
represents all the possible states of the converter. This 
formalism has modeled different topologies of converters. 

Bond graphs allow the representation of multiphysics 
systems. For example, electrical, mechanical, thermal and 
fluidic subsystems can be included in a single dynamic model 
in a standardized context [4]. Bond graphs also have the 
property of causality. This feature allows determining some 
properties of the modeled system visually. Causality also 
enables the state equation of a bond graph to be derived 
systematically. 

Through the union of the two formalisms mentioned 
above, it is possible to model multiphysics systems, including 
hybrid systems. Because the control of rotary field motors is 
mainly carried out by utilizing switched converters, the 
complementarity framework and bond graphs are presented in 

this paper as an alternative for the modeling and simulation of 
complete drives. 

Although some approaches have already been presented 
for the modeling of electrical machines through Bond Graphs 
[5], this paper intends to contribute with a different proposal. 

II. COMPLEMENTARITY AS MODELING TOOL 
One of the typical modeling methods for switched systems 

is the averaging method in which simplifications are usually 
performed to represent a converter. These simplifications 
inhibit the representation of fast dynamics that can occur only 
in times very close to the switching instants. Other methods 
consider the changes that occur at each switching moment, but 
they approach the problem from a variable topology 
perspective. The model must be divided into different 
submodels called modes. The constant transition from one 
mode to another causes issues such as changing the order of 
the system, inconsistency in the initial conditions in each 
mode, and the impossibility of simultaneous switching of two 
or more switches. 

A proposal to abate the problems mentioned above has 
been made in [3] and reinforced with some other works, such 
as [6]. The methodology is named complementarity 
framework and allows modeling converters that present the 
fast dynamics existing at switching times. Also, the formalism 
allows the model of a converter to maintain a fixed topology, 
making the concept of mode change unnecessary. 

The complementarity framework is based on the 
representation and solution of a linear complementarity 
problem (LCP) of the form [7]: 

 𝑤𝑤 = 𝑀𝑀𝑀𝑀 + 𝑞𝑞  (1.a) 0 ≤ 𝑤𝑤 ⊥ 𝑀𝑀 ≥ 0  (1.b) 
 

In Equation (1) w and z are complementarity variables. M 
and q are matrices of adequate dimensions. The solution to the 
problem implies calculating z given M and q [8]. The existence 
and uniqueness of the solution of Equation (1) are guaranteed 
if M is a P-matrix, that is, all their major minors are positive 
[6]. There are several algorithms to solve the problem 
represented by Equation (1). In the simulations presented in 
this paper, the algorithm provided in the multiparametric 
toolbox [9], which runs in Matlab [10] is used. 

In [7] it is shown how to convert a circuit of a switched 
converter to the form described by Equation (1). 



III. BOND GRAPH MODELING 
Bond graphs, introduced by Henry Paynter [11] have 

traditionally been used for the modeling of linear systems in a 
highly systematized manner. The fundamental element of this 
methodology consists of the bond. The bond is a graphic 
element that allows the interconnection of two elements of the 
modeled system. Once two components have been 
interconnected by a bond, the energy that can be transferred 
from one to the other can be determined. The exchange of 
energy is carried out through the interaction of two types of 
generalized variables: effort and flow. The generalized 
variables are chosen so that their product is always power. The 
bond graph methodology allows the representation of systems 
from different physical domains. Depending on the physics 
represented, the generalized variables can be defined as shown 
in Table 1. 

TABLE I.  GENERALIZED VARIABLES 

Domain Effort Flow 

Translational Force Velocity 

Rotational Torque Angular speed 

Electric Voltage Current 

Hydraulic Pressure Flow rate 

 

Bond graph methodology presents a high structural 
organization. Figure 1 shows the block diagram in a bond 
graph. 

 

According to Figure 1, the physical models that can be 
represented by a bond graph consist of dissipating elements, 
which allow the release of energy to the outside of the system. 
They also consist of energy storage elements that at some 
instants absorb it from the system, and at other moments 
release it to the system. The source block includes all the 
elements that introduce energy to the system. The block of the 
junction structure represents the topology of the system. Here 
information is stored on how the components of the rest of the 
blocks are interconnected. The junction structure presents the 
property of being conservative, it only allows the exchange of 
energy, but it does not add or liberate it from the system. The 
block of non-linear elements does not appear in the traditional 
bond graphs. However, this block is necessary for the 
methodology used in this paper. Elements with non-linear 

PWL constitutive relations that resemble nonlinear behavior 
are located there. 

The bond graph methodology makes extensive use of the 
concept of causality. Graphically in a bond, a bar is placed in 
one of the ends, which indicates the direction of the effort in 
the constitutive relation of the represented element. The bar is 
called a causal stroke. 

 

As an elementary example, in Figure 2 (a) a bond 
representing a resistor is shown. The causal stroke is pointing 
towards the label of the element, so the effort (voltage) is 
considered as an independent variable. Then the flow (the 
current) is the dependent variable. According to Ohm's law, 
the constitutive relation must be written as 𝑖𝑖 = (1/𝑅𝑅)𝑣𝑣 

and therefore this causal orientation can be called conductance 
causality. If the causal stroke is at the opposite extreme, as in 
Figure 2 (b), then the flow (current) "enters" the element and 
is considered as an independent variable. In this way, the 
effort (voltage) is the dependent variable. According to Ohm's 
law, the constitutive relation for this causal relation is  𝑣𝑣 = 𝑅𝑅𝑖𝑖 
and the orientation can be called resistance causality. 

Through the study of causality several properties can be 
described visually before any calculation. For example, 
controllability and observability can be determined by causal 
paths [12]. 

One of the problems that hybrid systems present when 
they are represented in the bond graph methodology is the 
constant change of causality required. A reassignment of 
causality is necessary during mode changes. 

The bond graph methodology is a modeling technique 
with well-established principles. It would be impossible to 
present a complete introduction here for reasons of space. The 
uninitiated reader can consult different references to go deeper 
into the theoretical basis of this methodology. The work of [4] 
can represent a good first entry point. 

IV. INDUCTION MOTOR DRIVE MODELING 
It has been mentioned that the complementarity 

framework allows representing switched converters in fixed 
topology models. It has also been mentioned that traditional 
approaches to model hybrid systems in bond graphs present 
the problem of dynamic causality. In [13] a methodology is 
shown to represent models in the complementarity framework 
from bond graph models. The methodology allows addressing 
the problem of causality changes. 

The complementarity framework has been used mainly for 
the modeling of switched power electronics converters. 

  
Fig. 1. Blocks that make up a bond graph model. 

  
 

Fig. 2. Causal orientations in a resistor. 



However, the work presented in [13] allows extending the 
approach to other types of systems, as long as a bond graph 
can represent them. 

Electric machines are systems in which physical processes 
of different domains intervene. In particular, electrical, 
magnetic, mechanical and thermal processes are carried out 
inside an electric machine. If we consider that the bond graph 
methodology allows the representation of different physical 
domains in the same context, then it seems adequate to model 
electric machines. 

Modern electrical machines are usually electronically 
commuted and support their operation in switched converters. 
By utilizing a converter, it is possible to force the magnetic 
fields within the stator to rotate at a preset arbitrary frequency. 
If it is considered that the primary application of the 
complementarity framework has been in switched converters, 
it is natural to select it as an option here. 

Due to the two reasons mentioned above, the methodology 
presented in [13] finds an area of natural application in 
modern electrical machine systems. Each machine type 
presents its particular characteristics. The study conducted in 
this paper, however, focuses on the variable speed induction 
motor. 

A three-phase induction motor drive can be represented 
according to the diagram of Figure 3. 

 

In the diagram of Figure 3, the converter is a six-pulse 
three-phase inverter. For modeling purposes, it is considered 
that the equivalent circuit per phase is described as shown in 
Figure 4 [14]. 

 

In the circuit of Figure 4, Rs and Ls correspond to the 
resistance and inductance in the stator, respectively. Lm is the 
mutual inductance of the stator to the rotor. Rr and Lr 
correspond to the resistance and the inductance in the rotor, 
respectively. Rc is a resistance that allows representing the 
losses that occur in the core. 

The model considers that the converted power is dissipated 
in the far right resistor. The value of this resistor is modulated 
by the slip with a factor of [14]: 1 − 𝑠𝑠𝑠𝑠  

Where s is the slip. 

The value of this resistance is usually small, a circuit can 
be connected to its output as shown in figure 5. 

 

 

As the values of R and C in the circuit of figure 5 are high, 
Rr does not experiment a noticeable load effect. Thus the 
circuit allows determining the peak voltage. By knowing this 
voltaje value in the resistive element, it is easy to determine 
the power Pconv that is delivered. The voltage is scaled by a 
constant factor to calculate the value that will modulate the 
effort source of Figure 6. 

 

In Figure 6, the effort source represents the developed 
torque and the elements J and Rb represent the moment of 
inertia of the load and rotatory friction, respectively. 

The presented subsystems allow the modeling of the linear 
part of the system. For the non-linear part, the 
complementarity framework is used. 

In the work of [7], a representation of the complementarity 
framework is proposed according to: 

 �̇�𝑥 = 𝐴𝐴𝑐𝑐𝑥𝑥 + 𝐵𝐵𝑐𝑐𝜑𝜑 + 𝐸𝐸𝑐𝑐𝑢𝑢 + 𝑔𝑔𝑐𝑐  (2.a) 𝜆𝜆 = 𝐶𝐶𝑐𝑐𝑥𝑥 + 𝐷𝐷𝑐𝑐𝜑𝜑 + 𝐹𝐹𝑐𝑐𝑢𝑢 + ℎ𝑐𝑐  (2.b) 
 𝜑𝜑 = 𝐴𝐴𝑠𝑠𝜆𝜆 + 𝐵𝐵𝑠𝑠𝑀𝑀 + 𝐸𝐸𝑠𝑠𝑢𝑢𝑠𝑠 + 𝑔𝑔𝑠𝑠  (3.a) 𝑤𝑤 = 𝐶𝐶𝑠𝑠𝜆𝜆 + 𝐷𝐷𝑠𝑠𝑀𝑀 + 𝐹𝐹𝑠𝑠𝑢𝑢𝑠𝑠 + ℎ𝑠𝑠  (3.b) 
 

The matrices in Equation (2) are obtained from the 
topology of the system. In the work of [13] the methodology 
for obtaining these matrices from a Bond Graph is presented. 

 
 

Fig. 3. Diagram of an induction motor drive. 

 
 

Fig. 4. Per phase equivalent circuit. 

 
 

Fig. 5. Peak detector circuit. 

 
 

Fig. 6. Mecanical load and modulated torque source. 



The matrices in Equation (3) are entirely dependent on the 
complementarity representation of the non linear devices. In 
this paper, the following relationships are used for the 
switches. For resistance causality, the relations are as follows: 

 𝜑𝜑𝑆𝑆 = 𝑟𝑟0𝜆𝜆𝑆𝑆 − 𝑟𝑟0𝑀𝑀𝑅𝑅   (4.a) 𝑤𝑤𝑅𝑅 = −𝑟𝑟0𝜆𝜆𝑆𝑆 + (𝑟𝑟0 + 𝑟𝑟1)𝑀𝑀𝑅𝑅 + 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑘𝑘 + 𝑉𝑉𝐹𝐹  (4.b) 
 

While for conductance causality the following  is used: 

 𝜑𝜑𝑆𝑆 = ( 1𝑟𝑟0) 𝜆𝜆𝑆𝑆 + 𝑀𝑀𝐶𝐶  (5.a) 𝑤𝑤𝐶𝐶 = −𝜆𝜆 + 𝑟𝑟1𝑀𝑀𝐶𝐶 + 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑘𝑘 + 𝑉𝑉𝐹𝐹  (5.b)  
The bond graph of the complete system is shown in Figure 

7. 

 

Because the model does not contain elements in derivative 
causality, the methodology requires the calculation of a 
junction structure matrix with the following form: 

[ �̇�𝑥𝐷𝐷𝑖𝑖𝑖𝑖𝜆𝜆 ] = [𝑆𝑆11 𝑆𝑆12 𝑆𝑆13 𝑆𝑆14𝑆𝑆21 𝑆𝑆22 𝑆𝑆23 𝑆𝑆24𝑆𝑆31 𝑆𝑆32 𝑆𝑆33 𝑆𝑆34] [ 𝜁𝜁𝐷𝐷𝑜𝑜𝑜𝑜𝑜𝑜𝑢𝑢𝜑𝜑 ]  (6) 

 

 

Because the order of the system is high, the complete 
junction structure matrix cannot be written in the space 

provided. Instead, the submatrixes will be written, by 
accommodating them where space allows it. 

 

In the bond graph of Figure 7, the key vectors are: �̇�𝑥 = [𝑒𝑒11 𝑒𝑒12 𝑒𝑒13 𝑒𝑒18 𝑒𝑒19 𝑒𝑒20 𝑒𝑒26 𝑒𝑒27 𝑒𝑒28 𝑓𝑓31 𝑒𝑒34]𝑇𝑇 𝜁𝜁 = [𝑓𝑓11 𝑓𝑓12 𝑓𝑓13 𝑓𝑓18 𝑓𝑓19 𝑓𝑓20 𝑓𝑓26 𝑓𝑓27 𝑓𝑓28 𝑒𝑒31 𝑓𝑓34]𝑇𝑇 𝐷𝐷𝑖𝑖𝑖𝑖 = [𝑓𝑓8 𝑓𝑓9 𝑓𝑓10 𝑓𝑓14 𝑓𝑓15 𝑓𝑓16 𝑓𝑓17 𝑓𝑓21 𝑓𝑓22 𝑓𝑓23 𝑓𝑓24 𝑓𝑓25 𝑒𝑒32 𝑓𝑓35]𝑇𝑇 𝐷𝐷𝑜𝑜𝑜𝑜𝑜𝑜=[𝑒𝑒8 𝑒𝑒10 𝑒𝑒14 𝑒𝑒15 𝑒𝑒16 𝑒𝑒17 𝑒𝑒21 𝑒𝑒22 𝑒𝑒23 𝑒𝑒24 𝑒𝑒25 𝑓𝑓32 𝑒𝑒35]𝑇𝑇 𝜆𝜆 = [𝑓𝑓1 𝑒𝑒2 𝑓𝑓3 𝑒𝑒4 𝑓𝑓5 𝑒𝑒6 𝑓𝑓30]𝑇𝑇 𝜑𝜑 = [𝑒𝑒1 𝑓𝑓2 𝑒𝑒3 𝑓𝑓4 𝑒𝑒5 𝑓𝑓6 𝑒𝑒30]𝑇𝑇 

 

After analyzing causality, the submatrices of the junction 
structure matrix can be formed. 

The last row of matrix 𝑆𝑆11 is: [0 0 0 0 0 0 0 0 0 𝐺𝐺0 0] 
The rest of the rows are zero. 𝐺𝐺0 is a constant that allows 

calculating the torque from the RMS value of the voltage 
present in the resistance 𝑅𝑅𝑟𝑟𝑐𝑐. 

 𝑆𝑆13 = [1 0 0 1 0 0 1 0 0 0 0]𝑇𝑇 

 

𝑆𝑆12 =
[��
���
���
��−1 −1 0 0 0 0 0 0 0 0 0 0 0 00 1 0 0 0 0 0 0 0 0 0 0 0 00 1 −1 −1 0 0 0 0 0 0 0 0 0 00 0 0 0 −1 −1 0 0 0 0 0 0 0 00 0 0 0 0 1 0 0 0 0 0 0 0 00 0 0 0 0 1 −1 −1 0 0 0 0 0 00 0 0 0 0 0 0 0 −1 −1 0 0 0 00 0 0 0 0 0 0 0 0 1 0 0 0 00 0 0 0 0 0 0 0 0 1 −1 −1 0 00 0 0 0 0 0 0 0 0 0 0 0 −0 00 0 0 0 0 0 0 0 0 0 0 0 0 0]��

���
���
��
 

 
 

Fig. 7. Complete Bond Graph model. 



𝑆𝑆14 =
[��
���
���
��−1 0 0 0 0 0 00 0 0 0 0 0 00 0 0 0 0 0 00 0 −1 0 0 0 00 0 0 0 0 0 00 0 0 0 0 0 00 0 0 0 −1 0 00 0 0 0 0 0 00 0 0 0 0 0 00 0 0 0 0 0 10 0 0 0 0 0 0]��

���
���
��
 

 

 

𝑆𝑆21 =

[��
���
���
���
��1 0 0 0 0 0 0 0 0 0 01 −1 −1 0 0 0 0 0 0 0 00 0 1 0 0 0 0 0 0 0 00 0 1 0 0 0 0 0 0 0 00 0 0 1 0 0 0 0 0 0 00 0 0 1 −1 −1 0 0 0 0 00 0 0 0 0 1 0 0 0 0 00 0 0 0 0 1 0 0 0 0 00 0 0 0 0 0 1 0 0 0 00 0 0 0 0 0 1 −1 −1 0 00 0 0 0 0 0 0 0 1 0 00 0 0 0 0 0 0 0 1 0 00 0 0 0 0 0 0 0 0 1 00 0 0 0 0 0 0 0 0 0 1]��

���
���
���
��
 

 𝑆𝑆22 = [0], 𝑆𝑆23 = [0] 
 

𝑆𝑆24 =

[��
���
���
���
��0 0 0 0 0 0 00 0 0 0 0 0 00 0 0 0 0 0 00 0 0 0 0 0 00 0 0 0 0 0 00 0 0 0 0 0 00 0 0 0 0 0 00 0 0 0 0 0 00 0 0 0 0 0 00 0 0 0 0 0 00 0 0 0 0 0 00 0 0 0 0 0 −10 0 0 0 0 0 00 0 0 0 0 0 0 ]��

���
���
���
��
 

 𝑆𝑆33 = [0 1 0 1 0 1 0]𝑇𝑇 

 

𝑆𝑆34 =
[��
���
� 0 0 0 1 0 0 00 0 0 0 −1 0 00 0 0 0 0 1 0−1 0 0 0 0 0 00 1 0 0 0 1 00 0 −1 0 0 0 00 0 0 0 0 0 0]��

���
�
 

 

The partial LCP can be written from Equations (3), (4) and 
(5) as follows: 𝐴𝐴𝑠𝑠 = 𝑑𝑑𝑖𝑖𝑑𝑑𝑔𝑔 (𝑟𝑟0, 1𝑟𝑟0 , 𝑟𝑟0, 1𝑟𝑟0 𝑟𝑟0, 1𝑟𝑟0 , 1𝑟𝑟0)  𝐵𝐵𝑠𝑠 = 𝑑𝑑𝑖𝑖𝑑𝑑𝑔𝑔(−𝑟𝑟0, 1, −𝑟𝑟0, 1, −𝑟𝑟0, 1,1)  𝐸𝐸𝑠𝑠 = [0]  𝑔𝑔𝑠𝑠 = [0]  𝐶𝐶𝑠𝑠 = 𝑑𝑑𝑖𝑖𝑑𝑑𝑔𝑔(−𝑟𝑟0, −1, −𝑟𝑟0, −1, −𝑟𝑟0, −1, −1)  𝐷𝐷𝑠𝑠 = 𝑑𝑑𝑖𝑖𝑑𝑑𝑔𝑔(𝑟𝑟0 + 𝑟𝑟1, 𝑟𝑟1, 𝑟𝑟0 + 𝑟𝑟1, 𝑟𝑟1𝑟𝑟0 + 𝑟𝑟1, 𝑟𝑟1, 𝑟𝑟1)  

𝐹𝐹𝑠𝑠 =
[��
���
�𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 0 0 0 0 00 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 0 0 0 00 0 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 0 0 00 0 0 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 0 00 0 0 0 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 00 0 0 0 0 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚0 0 0 0 0 0 ]��

���
�
 

 

Parameters for the relations in the non linear elements are 
shown in table 2. 

TABLE II.  PARAMETERS FOR NON LINEAR ELEMENTS. 

Parameter Value 𝑟𝑟0 1 × 106 𝑟𝑟1 1 × 10−4 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 1 × 104 

 

The value of k in Equations (4) and (5) refers to a binary 
variable which allows controlling the state of the switch.  

Matrices in Equation (6) are processed according to the 
methodology presented in [13] to form a system of the form 
of Equations (2-3). Also, the methodology is applied to get the 
final form of Equation (1) which can be simulated. A 
simulation is carried out using the parameters shown in table 
3. 

TABLE III.  PARAMETERS FOR SIMULATION. 

Parameter Value 𝑅𝑅𝑠𝑠 3 × 10−1 {𝑂𝑂ℎ𝑚𝑚} 𝑅𝑅𝑐𝑐 1 × 103 {𝑂𝑂ℎ𝑚𝑚} 𝑅𝑅𝑟𝑟 15 × 10−2 {𝑂𝑂ℎ𝑚𝑚} 𝐿𝐿𝑠𝑠 1.4 × 10−3 {𝐻𝐻𝑒𝑒𝐻𝐻𝑟𝑟𝐻𝐻} 𝐿𝐿𝑚𝑚 40 × 10−3 {𝐻𝐻𝑒𝑒𝐻𝐻𝑟𝑟𝐻𝐻} 𝐿𝐿𝑟𝑟 0.7 × 10−3 {𝐻𝐻𝑒𝑒𝐻𝐻𝑟𝑟𝐻𝐻} 𝐽𝐽 0.4 {𝐾𝐾𝑔𝑔 ∗ 𝑚𝑚2} 𝑅𝑅𝑏𝑏 1 × 10−4 



Parameter Value 𝐸𝐸𝑖𝑖 220 {𝑉𝑉} 𝑅𝑅 2 × 103{𝑂𝑂ℎ𝑚𝑚} 𝐶𝐶 470 {𝐹𝐹} 

 

The simulation is started with the initial conditions in zero. 
At 𝑡𝑡 = 0 a frequency of 90 𝐻𝐻𝑀𝑀 is applied to the converter. 
Then, at 𝑡𝑡 = 3.6 𝑠𝑠  the frequency changes to 60 𝐻𝐻𝑀𝑀. At 𝑡𝑡 =7.1 𝑠𝑠 and 𝑡𝑡 = 10.7 𝑠𝑠 new frequency changes occur. 

As expected, the machine runs at two different angular 
speeds, as can be seen in Figure 8. 

 

 

The acceleration ramp shows an adequate dynamic 
performance. The same happens in the moments of 
deceleration. The model allows observing the behavior of the 
drive in open loop with variable frequency inputs. 

CONCLUSIONS 
The mixture of methodologies formed by the 

complementarity framework and bond graph modeling has 
been applied to an induction electric machine. The proposed 
technique shows feasibility in modeling complete drives. 
Moreover, the interconnection of the drive with related 
systems, such as mechanical loads, controllers and electric 
power sources can be carried out at the model level with the 
presented approach. It could be noted in the paper that the 
simulation was carried out with a balanced load. However, the 
methodology used allows performing simulations with 
conditions different from the standard ones, for example, with 
unbalance in the load. 

The presented methodology allows the modeling of drives 
of other electric machines. In future works, these drives will 
be studied, as well as the interconnection to related systems, 
such as renewable energy sources and specific mechanical 
loads. 

 

ACKNOWLEDGMENT 
N. V. V. acknowledges the support of the National Council 

of Science and Technology (CONACyT), the Potosino 
Council of Science and Technology (COPOCyT) and the 
Advanced Technology Center (CIATEQ). 

 

REFERENCES 
 

[1] S. J. Salon, “Finite Element Analysis of Electrical Machines,” 
Springer, 1995. 

[2] P. C. Krause, O. Wasynczuk, and S. D. Sudhoff, “Analysis of Electric 
Machinery and Drive Systems,” 2002. 

[3] F. Vasca, L. Iannelli, M. K. Camlibel, and R. Frasca, “A New 
Perspective for Modeling Power Electronics Converters: 
Complementarity Framework,” IEEE Transactions on Power 
Electronics, vol. 24, no. 2, pp. 456–468, Feb. 2009. 

[4] W. Borutzky, “Bond Graph Methodology,” 2010. 
[5] S. Junco and A. Donaire, “Bond Graph Modeling and Simulation of 

Electrical Machines,” Bond Graph Modelling of Engineering Systems, 
pp. 269–321, 2011. 

[6] V. Sessa, L. Iannelli, and F. Vasca, “A Complementarity Model for 
Closed-Loop Power Converters,” IEEE Transactions on Power 
Electronics, vol. 29, no. 12, pp. 6821–6835, Dec. 2014. 

[7] G. Angelone, F. Vasca, L. Iannelli, and K. Camlibel, “Dynamic and 
Steady-State Analysis of Switching Power Converters Made Easy: 
Complementarity Formalism,” Dynamics and Control of Switched 
Electronic Systems, pp. 217–243, 2012. 

[8] M. K. Camlibel, W. P. M. H. Heemels, A. J. van der Schaft, and J. M. 
Schumacher, “Switched networks and complementarity,” IEEE 
Transactions on Circuits and Systems I: Fundamental Theory and 
Applications, vol. 50, no. 8, pp. 1036–1046, Aug. 2003. 

[9] Herceg, M. Kvasnica, C. N. Jones, and M. Morari, “Multi-Parametric 
Toolbox 3.0,” 2013 European Control Conference (ECC), Jul. 2013. 

[10] MathWorks, Natick, Massachusetts, USA. MATLAB, 
http://www.mathworks.com (accessed 3 March 2018). 

[11] H. Paynter, 1961. Analysis And Design Of Engineering Systems; Class 
Notes For Mit Course 2,751. 

[12] C. Sueur and G. Dauphin-Tanguy, “Structural 
controllability/observability of linear systems represented by bond 
graphs,” Journal of the Franklin Institute, vol. 326, no. 6, pp. 869–883, 
Jan. 1989. 

[13] N. Villa-Villaseñor and J. J. Rico-Melgoza, “Complementarity 
framework formulation from bond graphs to model a class of nonlinear 
systems and hybrid systems with fixed causality,” SIMULATION, p. 
003754971775128, Jan. 2018. 

[14] S. J. Chapman, Electric machinery and power system fundamentals. 
Vol. 3. New York: McGraw-Hill, 2002. 

 

 

 
 

Fig. 8. Time evolution of angular velocity. 


