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Riccati parametric deformations of the Cornu spiral
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A parametric deformation of the Cornu spiral is introduced. The parameter is an integration
constant which appears in the general solution of the Riccati equation related to the Fresnel
integrals. Argand plots of the deformed spirals are presented and a supersymmetric (Darboux)
structure of the deformation is revealed through the factorization approach.
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I. INTRODUCTION

One of the most famous spirals with important sci-
entific and technological consequences is Euler’s spiral,
also known as Cornu’s spiral in optics, and also as the
clothoid, which means looking-like Clotho, as proposed
by note geometer Cesàro in 1890. Schwartzman, in his
book “The Words of Mathematics” [1], mentions that
Clotho was the youngest of the three fates “moirai” in
ancient Greek mythology. The little sister Clotho was
responsible for spinning the thread of human life. Pre-
sumably, Cesàro was inspired by the resemblance of the
spiral to a spinning wheel. However, here, we will call
this spiral as Cornu’s spiral since it was Cornu who first
drew the entire spiral with its two foci, while Euler drew
only the positive arm.

Perhaps the simplest mathematical definition of the
Cornu spiral F , is as the Argand plane representation,
F = X + iY , with X and Y , the two Fresnel integrals

C(z) =

∫ z

0

cos
(π

2
s2
)
ds ≡ X, (1)

S(z) =

∫ z

0

sin
(π

2
s2
)
ds ≡ Y, (2)

which are parametrized by the arclength of the spiral,
s. In optics, the square modulus |F|2 is related to the
intensity of light at a given point in diffraction patterns.

On the other hand, geometrically, the Cornu spiral is
defined as the curve whose curvature increases linearly
with arclength, which means the radius of curvature ρ(t)
times the arc length s(t) is constant at each point of the
curve. This is represented by the Cesàro equation ρ(t) =
c2

s(t) , with c any constant. Other important property is

related to the Fresnel integrals for which c = 1√
π

; both

approach slowly the point ( 1
2 ,

1
2 ) as s → ∞ in the first
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quadrant, and because both functions are odd, the curve
spirals towards (− 1

2 ,−
1
2 ) in the third quadrant [2].

Its most immediate technological use is in the layout of
civil engineering works (roads, railways, pipelines, among
others) as road transitions to join straight sections with
curved sections or to connect two circular sections [3, 4].
This is one of its most important engineering application,
since the radius of curvature decreases inversely propor-
tional to the distance traveled on it, and this feature
allows the driver a smooth change of trajectory. Other
applications in which clothoids have been considered are
for controlled trajectories of robots [5], and in design-
ing roller coasters [6], and aesthetic shapes of industrial
products [7].

Various generalizations of the Cornu spiral from the
viewpoint of different applications can be found in the
literature [8–11]. In this communication, we introduce a
parametric generalization which can be also considered
as a deformation of the Cornu spiral. This is achieved by
means of a complex parameter which appears in the gen-
eral solution of the Riccati equation that corresponds to
the Fresnel integrals. In Section 2, we show the reduction
of the third order ordinary differential equation (ode) sat-
isfied by the Fresnel integrals as particular solutions to
the corresponding Riccati equation, whose general solu-
tion is obtained explicitly. We then write the solution
of the third order ode based on the general Riccati solu-
tion and present Argand plots of this solution. In Section
3, the similarity with supersymmetric quantum mechan-
ics is emphasized by means of the factorization approach
[12–16] which is applied to the second-order linear ode
that comes into play in the reduction process of Section
2.

II. FROM THE THIRD ORDER ODE TO THE
RICCATI EQUATION AND BACK

We start with the known linear third order ode satisfied
by the Fresnel integrals [17]

zw′′′ − w′′ + π2z3w′ = 0 , (3)
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which can be reduced by using w′(z) = v(z), with ′ = d
dz ,

to obtain

v′′ − 1

z
v′ + π2z2v = 0. (4)

Letting z2 = ζ we obtain the simple harmonic oscillator

d2v

dζ2
+
(π

2

)2
v = 0 . (5)

Thus, the solution for (4) is

v(z) = c1 cos
(π

2
z2
)

+ c2 sin
(π

2
z2
)
, (6)

and by one integration the solution to (3) is

w(z) = c1C(z) + c2S(z) + w(0) , (7)

where C(z), and S(z) are the Fresnel integrals given by
(1) and (2).

On the other hand, using the logarithmic derivative

y(z) = v′(z)
v(z) , (4) becomes the Riccati equation

y′ + y2 =
1

z
y − π2z2 (8)

with particular solution

yp(z) = iπz. (9)

Since v(z) = c1e
∫
ypdz, then a particular solution for (4)

is

vp(z) = c1e
iπ2 z

2

, (10)

which can be also obtained from (6) by setting c2 =
ic1.Thus, the particular solution of (3) for w(0) = 0 is

wp(z) = c1
∫ z
0
ei
π
2 s

2

ds . (11)

To construct the general solution of Riccati equation
(8) using any particular solution yp we let

y(z) = yp(z) +
1

u(z)
, (12)

where u satisfies the linear equation

u′ +

(
1

z
− 2yp

)
u = 1 . (13)

The solution of (13) is

u(z) =
γ +

∫ z
0
µ(s)ds

µ(z)
, (14)

where µ(z) is the integrating factor

µ(z) = ze−2
∫
yp(z)dz , (15)

which gives the general solution

yg(z) = yp(z) +
µ(z)

γ +
∫ z
0
µ(s)ds

, (16)

and γ arbitrary.
We now use the particular solution given by (9) to

construct the linear equation in u which becomes

u′ +

(
1

z
− 2iπz

)
u = 1. (17)

By using the integrating factor

µ(z) = ze−iπz
2

, (18)

the general solution of Riccati equation (8) is

yg(z) = πz

(
i+

2

i+ (2πγ − i)eiπz2
)
. (19)

By redefining the constant γ = i(θ+1)
2π , (19) takes the

simpler form

yg(z) = iπz

(
θeiπz

2 − 1

θeiπz2 + 1

)
. (20)

Notice that for the limiting cases of θ → 0, and θ → ∞
then yg(z)→ −iπz, and yg(z)→ iπz respectively. When

θ → 1, and θ → −1, then yg(z) → −πz tan
(
πz2

2

)
, and

yg(z)→ πz cot
(
πz2

2

)
respectively.

To find the general solution for (4), we use vg(z) =

Re
∫
yg(z)dz to obtain

vg(z) = R
(
e−i

π
2 z

2

+ θei
π
2 z

2
)
. (21)

By one integration, assuming w(0) = 0 and using Euler’s
formula, the deformed solution of (3) is given by

wg(z) = R[(1 + θ)C(z) + i(−1 + θ)S(z)] . (22)

By writing the solution as

wg(z) = wR(z) + iwI(z) (23)

and letting θ = a+ ib, we obtain

wR(z) = R[(a+ 1)C(z)− bS(z)] ,
wI(z) = R[bC(z) + (a− 1)S(z)].

(24)

Comparing (7) with (23) and (24), one can see that we
managed to replace the superposition constants c1 and
c2 by the real and imaginary components of the param-
eter entering the general Riccati solution. This is not a
trivial replacement because as we will see next one can
disentangle an underlying supersymmetric structure of
the solution expressed in this way. We present the Ar-
gand plots Y = wI(z), X = wR(z) in Fig. 1 for various
parameters a and b. All figures except a = 0, b = 0 are
scaled by the factor R = 1√

a2+b2
.
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III. FACTORIZATION OF EQUATION (4) AND
SUPERSYMMETRIC APPROACH

We will now demonstrate the supersymmetric features
of the solution in which the complex Riccati parameter
is used.

Equation (4) can be written in the factorized form
A−A+v = 0 using the differential operators given by

A+ = 1√
z
d
dz + π

√
z tan πz2

2

A− = d
dz

1√
z
− π
√
z tan πz2

2 .
(25)

Proceeding like in supersymmetric quantum mechanics,
the supersymmetric partner equation of (4) is

A+A−Ψ ≡ Ψ′′ − 1

z
Ψ′ +

(
π2z2 + ∆Darb(z)

)
Ψ = 0 . (26)

The extra term in (26) with respect to (4) given by

∆Darb(z) = −2π2z2 +
3

4z2
− π tan

πz2

2
− 2π2z2 tan2 πz

2

2
(27)

is the Darboux distortion of (4), and is presented in the
first plot of Fig. 2.

To find out what second-order linear ODE corresponds
to the deformed Cornu spirals, we first write the general
Riccati solution (20) in the trigonometric form

yg(z) = −πz tan

(
πz2

2
+ φ

)
, θ =

1

R
eiφ , (28)

and simply substitute it instead of the particular Riccati
solution in the factorization (26)[

1√
z

d

dz
− yg(z)√

z

] [
d

dz

1√
z

+
yg(z)√
z

]
Ψ̃ = 0 . (29)

One obtains the equation

Ψ̃′′ − 1

z
Ψ̃′ +

[
π2z2 + ∆Darb(z;φ)

]
Ψ̃ = 0 , (30)

with the Darboux distortion depending parametrically
on the phase shift φ

∆Darb(z;φ) = −2π2z2 + 3
4z2 − π tan

(
πz2

2 + φ
)

−2π2z2 tan2
(
πz2

2 + φ
)
. (31)

To find the general solution to (30), we let A−Ψ̃ = Φ̃,

thus the homogenous equation A+Φ̃ = 0 has solution

Φ̃(z;φ) = b1 cos

(
πz2

2
+ φ

)
. (32)

By solving the nonhomogeneous equation A−Ψ̃ = Φ̃ we
obtain the general solution of (30)

Ψ̃(z;φ) =
√
z

4

b2 + 2b1z +
√

2b1
[
cos 2φ C(

√
2z)− sin 2φ S(

√
2z)
]

cos
(
πz2

2 + φ
) .

(33)

Denoting

C̃(z;φ) =

∫ z

0

cos(πs2 + 2φ)ds (34)

and choosing the arbitrary constants to be b1 = 2, b2 = 0,
(33) takes the compact form

Ψ̃(z;φ) =
√
z
z + C̃(z;φ)

cos
(
πz2

2 + φ
) . (35)

In Fig. (2), we display various cases of the parametric
Darboux distortions ∆Darb(z;φ) of the deformed Cornu
spirals presented in Fig. (1). We notice the negative
parabolic envelope as given by the first term in (31) to-
gether with the singularities due to the terms containing
the tangents for nonzero z. The singularities at the origin
are due to the 1/z2 term except for the cases φ = ±π/2
when the dominant contribution comes from the cotan-
gent terms. For these values of phase the Darboux dis-
tortion simplifies to

∆Darb(z; 0) = 3
4z2 −

π(sinπz2+4πz2)
cosπz2+1 ,

∆Darb(z;±π/4) = 3
4z2 +

π(cosπz2±4πz2)
sinπz2∓1 ,

∆Darb(z;±π/2) = 3
4z2 −

π(sinπz2−4πz2)
cosπz2−1 .

The factorization patterns discussed here unravel the
Darboux origin of this deformation, which is a counter-
part of the same construction in supersymmetric quan-
tum mechanics, where parametric families of supersym-
metric isospectral potentials have been obtained with the
property that all the members of those families have the
same supersymmetric partner potential [12, 13, 15]. The
initial potential and its supersymmetric partner are re-
produced for extremal values of the parameters. In the
case of the Cornu spiral, our parametrization has been
chosen such that when a and b are nought the supersym-
metric partner spiral is obtained, whereas the standard
Cornu spiral is obtained when a→∞ and b = 0. This is
graphically demonstrated in Fig. (3) where even for the
rather small value of a = 10 and b = 0, the spiral is very
close to the standard one as known from textbooks [2].

IV. CONCLUSION

A parametric deformation of the Cornu spiral has been
introduced based on the usage of the corresponding gen-
eral Riccati solution instead of the particular solution.
Geometrically, the origin of this kind of deformation lies
in the two independent shifts, a and b, along the two or-
thogonal axes of the plane in which the spiral is plotted.
These shifts can generate not only the deformation of the
rolls of the spiral but also its global rotation as seen in
the plots. Foreseen applications are in the same range as
those of the standard Cornu spiral.
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FIG. 1: Argand plots for the Riccati deformed Cornu spirals
for different values of a and b. The a = 0, b = 0 case at the
centre corresponds to the supersymmetric partner equation
(26), while all the other cases correspond to equation (30).
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FIG. 2: Darboux distortion of (4) for various phases φ. The
Darboux distortion of the supersymmetric partner of the
Cornu spiral corresponds to φ = 0. The other cases cor-
respond to members of the parametric deformed family of
spirals having the same supersymmetric partner.
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FIG. 3: The Cornu supersymmetric partner spiral, a = 0, b =
0, from the centre of Fig. (1) and the parametric Cornu spiral
for a = 10, b = 0 which is already very close to the standard
Cornu spiral. Notice also that in the limit a→ ∞ the super-
symmetric partner spiral is the image of the standard spiral
under real axis reflection.


	I Introduction
	II From the third order ode to the Riccati equation and back
	III Factorization of equation (??) and supersymmetric approach
	IV Conclusion
	 References

