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A class of Piecewise Linear Systems without
equilibria with 3-D grid multiscroll chaotic

attractors
R.J. Escalante-González and E. Campos-Cantón, Member, IEEE

Abstract—In this paper a new class of piecewise linear (PWL)
dynamical system without equilibria which exhibits a three
dimensional (3D) grid multiscroll chaotic attractor is presented.
The number of scrolls of the attractor generated can be easily
changed by the number of linear parts of three piecewise
constant functions. A particular system with a 3D grid multiscroll
attractor whose scrolls appear in an arrangement of 3× 3× 3 is
taken as a case study. Moreover, an electronic circuit realization
is proposed for the particular system and simulation data as well
as experimental data is provided.

Index Terms—dynamical systems; systems without equilib-
rium; linear systems.

I. INTRODUCTION

THE study of dynamical systems along the history has
been constantly focused on the behavior of the system

around the equilibria. There is a special interest in the chaotic
behavior exhibited by some systems. Since several of the
mathematical tools and theory used for analyzing and clas-
sifying dynamical systems consider the existence of at least
an equilibrium point, they cannot be applied to the study
of systems without equilibria which presents an interesting
research area. For instance, the Hartman-Grobman theorem
is a very important result in the local qualitative theory of
ordinary differential equations and assumes an equilibrium
point. The theorem states that the behavior of a dynamical
system in a domain near a hyperbolic equilibrium point is
qualitatively the same as the behavior of its linearization near
this equilibrium point, where hyperbolicity means that no
eigenvalue of the linearization has real part equal to zero.

One of the first dynamical systems with an oscillating be-
havior but no equilibria was described by Arnold Sommerfeld
in 1902 [1] while the system sprott case A (1994) is the first
reported chaotic system without equilibria [2]. This last one
is a particular case of the Nose-Hoover system [3]. According
to [4] systems without equilibria can be considered as hidden
attractors since the basin of attraction does not intersect
with small neighborhoods of equilibria. More recently, three-
dimensional systems with chaotic attractor and no equilibria
have been reported in [5]–[8]. Also, four-dimensional systems
with chaotic or hyperchaotic attractors have been reported in
[9]–[12].

PWL systems with chaotic attractors have been reported.
One of the most studied PWL systems is the Chua’s circuit
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whose attractor exhibit a double scroll. The idea of increasing
the number of scrolls has been studied in [13]–[18].

A PWL system is defined by using a partition
{D1, . . . , Dm} of the phase space Rn that has an associated
vector field of the form:

ẋ = Aix+Bi, if x ∈ Di, (1)

where x = [x1, . . . , xn]T is the state vector of the system,
Bi are constant vectors that one of them could be zero, the
domains Di, with i = 1, 2, . . . , m, of the partition fulfill⋃m

i=1Di = Rn and
⋂m

i=1Di = ∅.
A PWL system has no equilibria in all Rn when each

subsystem presents one of the next two cases. The former is
when x ∈ Di and for each equilibrium point x∗ of the linear
affine vector field ẋ = Aix + Bi, x∗ ∈ Dj with i 6= j. The
latter is when the linear affine vector field ẋ = Aix+Bi has
no equilibria in all Rn due to all Ai are singular.

Even tough there are reported multiscroll hidden attractors
as those in [19] and [20], or multiscroll chaotic sea [21],
we did not find any reported method to design a three
dimensional grid attractor with a three-dimensional system
without equilibria. Thus, a class of PWL systems that exhibits
any desired number of scrolls in each direction of the 3D-grid
is proposed.
The approach uses a singular matrix A, however, the way how
the functions are defined allows the use of non singular matrix
whose eigenvalues have positive real parts.

In section II a new class of dynamical system without
equilibria whose attractor presents 1D, 2D, 3D-grid multiscroll
attractor is introduced. A particular system with a 3D grid
multiscroll attractor of twenty seven scrolls in an arrangement
of 3×3×3 is taken as a case study in section III-A. In section
IV a possible circuit realization for the case study is proposed
and electronic simulation data along with experimental results
are shown.

II. NEW PWL SYSTEM CLASS

Consider a dynamical system given by (1) in R3 with linear
operators Ai = A given as follows:

A =

a+c
2 −b c−a

2
b
2 a −b

2
c−a

2 b a+c
2

 , (2)

where a, b ∈ R − {0} and c ∈ R. The eigenvalues are
λ1 = c, λ2,3 = a ± ib. According to the Jordan canonical
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form theorem, that states that a real matrix A can be reduced
to its Jordan canonical form J , i.e., J = P−1AP , P is given
by a basis of generalized eigenvectors {p1, p2, p3}. Thereupon,
matrices J and P are given as follows:

P =

1 0 1
0 1 0
1 0 −1

 =
[
p1 p2 p3

]
, J =

c 0 0
0 a b
0 −b a

 ,
(3)

So, the dynamical system has an associated vector field of
the form:

ẋ = PJP−1x+B(x). (4)

We define PJP−1 = A =
[
a1 a2 a3

]
and B(x) is

defined as follows:

B(x) = −f1(x)a1 − f2(x, f1)a2 − f3(x)a3+
f4(x, f1, f3)p1 − f5(x, f1, f3)(a1 − a3),

(5)

where f1, . . . , f5 are piecewise constant functions given by

f1(x) =


0, if x ≤ S11;
∆x1

, if S11 < x ≤ S12;
...
p∆x1 , if S1p < x;

(6)

where ∆x1
∈ R>0, S1i for i = 1, . . . , p are the switching

surfaces given by S1i =
{
x ∈ R3|x1 =

(2i−1)∆x1

2

}
. We use

the notation x > S1i if x is in the set pointed by the vector
[1, 0, 0]T , x ≤ Six if x is in the opposite set or on the plane.

f2(x, f1) =


0, if x ≤ S21;
∆x2

, if S22 < x ≤ S22;
...,
q∆x2

, if x > S2q.

(7)

where ∆x2
∈ R>0, S2i for i = 1, . . . , r are the switching

surfaces given by S2i =
{
x ∈ R3|x2 =

(2i−1)∆x3

2 − kf1(x)
}

where k ∈ R. We use the notation x > S2i if x is in the set
pointed by the vector [0, 1, 0]T , x ≤ Six if x is in the opposite
set or on the plane.

f3(x) =


0, if x ≤ S31;
∆x3

, if S31 < x ≤ S32;
...
r∆x3

, if x > S3r;

(8)

where ∆x3
∈ R>0, S3i for i = 1, . . . , r are the switching

surfaces given by S3i =
{
x ∈ R3|x3 =

(2i−1)∆x3

2

}
. We use

the notation x > S3i if x is in the set pointed by the vector
[0, 0, 1]T , x ≤ Six if x is in the opposite set or on the plane.
These three piecewise constant functions f1, f2, f3 generate a
partition of the phase space R3 where the PWL system (4)
under an appropriate selection of parameters can display 1D,
2D or 3D-grid scroll attractor of p+ 1× q + 1× r + 1. Now
we need to define a function that assures the location of the
scrolls no mater the value of λ1, as follows:

f4(x, f1, f3) =

 v, if x < S4;
0, if x = S4;
−v, if x > S4;

(9)

where v ∈ R>0 and the switching plane S4 = {x ∈ R3|x1 +
x3 = f1(x) + f3(x)}, we use the notation x > S4 if x is
in the set pointed by the vector [1, 0, 1]T , x < S4 if x is in
the opposite set and x = S4 if x is on the plane. Notice that
a trajectory could be trapped on a point in S4 located at the
center of the scroll even for the case λ1 = 0 (c = 0) which
could be called a virtual point, in order to avoid this situation
a new function is defined as follows:

f5(x, f1, f3) =

{
−w, si x ≤ S5;
w, si x > S5;

(10)

where w ∈ R>0 and the switching plane S5 = {x ∈ R3| −
x1 + x3 = f3(x) − f1(x)}, we use the notation x > S5 if x
is in the set pointed by the vector [−1, 0, 1]T , x ≤ Six if x is
in the opposite set or on the plane.

III. ANALYSIS OF THE SOLUTION

The electronic implementation of the system (4) for c = 0
results in a system without equilibria. But it is impossible to
guarantee experimentally the value of c = 0 due to tolerance
and noise on all electronic circuits. So the interest is to work
with a system without equilibria c = 0, but considering
perturbations δ, i. e., c = δ ∈ R such that |δ| << 1.

The system (4) can be rewritten considering (5) as:

ẋ = PJP−1

x1 − f1(x)− f5(x, f1, f3)
x2 − f2(x, f1)

x3 − f3(x) + f5(x, f1, f3)

+

f4(x, f1(x), f3(x))
0

f4(x, f1(x), f3(x))

 .
(11)

Considering a change of variables y1 = x1 − f1(x) −
f5(x, f1, f3), y2 = x2 − f2(x, f1) and y3 = x3 − f3(x) +
f5(x, f1, f3) with the appropiate transformation of the function
f4 we get:

ẏ = PJP−1y +
[
f4(y), 0, f4(y)

]T
, (12)

with the switching plane S4 = {y ∈ R3|y1 + y3 = 0}. It
can be seen that:

f4(y)P−1p1 =
[
f4(y) 0 0

]T
. (13)

thus considering a change of variable z = P−1y:

ż = Jz +
[
f4(z), 0, 0

]T
, (14)

with the switching plane S4 = {z ∈ R3|z1 = 0}. The flows
of the systems (11), (12) and (14) are topological equivalent.
When c = 0 the solution of the systems (14), (12) and (11)
are given as follows:

z = exp(Jt)z0 +
[
f4(z)t, 0, 0

]T
, (15)

y = exp(At)y0 +
[
f4(y)t, 0, f4(y)t

]T
, (16)
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(a) (b)

(c) (d)

Fig. 1. Attractor of the system (4) with the affine part given in (5) and the
the parameters p = q = r = 2, a = 0.7, b = 10, c = 0, v = 11, w = 0.1,
k = 0.25, ∆x1 = ∆x2 = 2 and ∆x3 = 2.2 for the initial condition
x0 = (0, 0, 0)T in the space (a) R3 and its projections onto the planes: (b)
(x1, x2), (c) (x1, x3), and (d) (x2, x3).

x = exp(At)

x1(0)− f1(x)− f5(x, f1, f3)
x2(0)− f2(x, f1)

x3(0)− f3(x) + f5(x, f1, f3)



+

f4(x, f1, f3)t
0

f4(x, f1, f3)t

−
−f1(x)− f5(x, f1, f3)

−f2(x)
−f3(x) + f5(x, f1, f3)

 .
(17)

When c 6= 0 the solution of the systems (11), (12) and (14)
are given as:

z = exp(Jt)z0 +

 f4(z)
c (exp(ct)− 1)

0
0

 , (18)

y = exp(At)y0 +

 f4(y)
c (exp(ct)− 1)

0
f4(y)

c (exp(ct)− 1)

 , (19)

x = exp(At)

x1(0)− f1(x)− f5(x, f1, f3)
x2(0)− f2(x, f1)

x3(0)− f3(x) + f5(x, f1, f3)

+

 f4(x,f1,f3)
c (exp(ct)− 1)

0
f4(x,f1,f3)

c (exp(ct)− 1)

−
−f1(x)− f5(x, f1, f3)

−f2(x, f1)
−f3(x) + f5(x, f1, f3)

 .
(20)

(a) (b)

Fig. 2. Attractor of the system (4) with the affine part given in (5) and the
parameters p = q = r = 2, a = 0.7, b = 10, c = 0, v = 11, w = 0.1,
k = 0.25, ∆x1 = ∆x2 = 2 and ∆x3 = 2.2 plus a perturbation in the
parameter c of (a) −0.1 and (b) 0.1.

The function f4(z) can be written in z coordinates as:

f4(z) =

 v, if z1 < 0;
0, if z1 = 0;
−v, if z1 > 0;

(21)

Looking at the solution in (15) when z1(0) 6= 0 and c = 0,
z1(t) = z1(0) + f4(z)t, thus the trajectories goes towards the
plane S4.

When c 6= 0, i.e. when there is a perturbation in the eigen-
value λ1 = 0, there are two cases, when c > 0 and c < 0. The
solution for z1 is z1(t) = exp(ct)z1(0) + f4(z)

c (exp(ct)− 1)
and from the equation (14) the equilibrium point is given by:

z∗ =
[
− f4(z)

c , 0, 0
]T
. (22)

For the case z1(0) 6= 0 and c < 0, sgn(z∗1) 6= sgn(z1(0)),
thus the trajectories go towards to the plane {z ∈ R3|z1 = z∗1}
which guarantees these reach the plane S4 = {z ∈ R3|z1 =
0}.

For the case when z1(0) 6= 0 and c > 0 sgn(z∗1) =
sgn(z1(0)), however it is assumed that the perturbation on
λ1 it is small and |z∗1 | >> 1. Then the trajectories move away
from the plane {z ∈ R3|z1 = z∗1} and reach S4.

The absence of equilibrium points in all R3 even when λ1

is perturbed is stated with the following theorem.
Theorem. Let the system (4) with (5), (6), (7), (8), (9), and
(10) be a PWL system, then the system (4) has no equilibria
for c = 0 or 0 < |c| << 1.
Proof: Let us rewrite the system as

ẋ = PJP−1

 x1 − f1(x)
x2 − f2(x, f1(x))

x3 − f3(x)

+ PJP−1

−f5(x)
0

f5(x)

+

f4(x, f1, f3)
0

f4(x, f1, f3)

 .
(23)

Considering a change of variables y1 = x1 − f1(x), y2 =
x2 − f2(x, f1(x)) and y3 = x3 − f3(x):

ẏ = PJP−1

y1

y2

y3

+

−f5(y)a
−f5(y)b
f5(y)a

+

f4(y)
0

f4(y)

 , (24)
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(a) (b) (c)

(d) (e) (f)

Fig. 3. Sub-circuits for the signals: (a)x1, (b)x2, (c)x3, (d)f1, (e)f2, and (f)f3.

considering the change of variable z = P−1y

ż = J

z1

z2

z3

+

 0
−f5(z)b
−f5(z)a

+

f4(z)
0
0

 , (25)

ż = J

 z1

z2

z3 − f5(z)

+

f4(z)
0
0

 . (26)

Then f5(z) can be written as:

f5(z) =

{
−w, if z1 > 0;
w, if z1 ≤ 0;

(27)

When c = 0 and f4(z) 6= 0 there is no equilibria because
[f4(z), 0, 0]T belongs to the eigenspace associated to λ1 [8].
When f4(z) = 0, i.e., the flow on the surface S4 the
equilibrium point is virtually located at [0, 0, f5(z)]T , then
there is no equilibrium points in all R3. When c 6= 0 the
equilibrium point is located at [−f4(z)/c, 0, f5(z)]T then there
are not equilibria in all R3. This complete the proof.

�

A. Particular system

Consider the system (4) with the affine part given by (5)
p = q = r = 2, a = 0.7, b = 10, c = 0, v = 11, w = 0.1,
k = 0.25, ∆x1 = ∆x2

= 2 and ∆x3
= 2.2. The system

presents a 3× 3× 3 grid scroll chaotic attractor.
The resulting attractor for the ideal case when c = 0 is

shown in Figure 1. In Figure 2 the 3×3×3 grid scroll chaotic
attractor generated for λ1 = −0.1 and λ1 = 0.1 are shown.
As it can be seen the attractor is preserved even when there
is a perturbation in the eigenvalue λ1.

The Maximum Lyapunov exponent (MLE) was calculated
using a Fourth order Runge-Kutta method with a fixed step of

(a) (b)

Fig. 4. Sub-circuits for the signals: (a)f4 and (b)f5.

0.0001s as 1.02 by approximating the average separation of ten
trajectories. Wolf’s algorithm was also performed with a time
step of 0.001, the calculated exponents are {1.16, 0,−20.42}
which gives a Kaplan-York dimension of 2.056. Approximated
functions f1, . . . , f5 via tanh(·) were used for the Wolf’s
algorithm.

IV. CIRCUIT REALIZATION

In this section an electronic realization for the previous
system is proposed. The electronic diagram has been divided in
eight sub-circuits. The responsible sub-circuits for the output
signals x1, x2 and x3 are shown in Figures 3a, 3b and 3c,
and are composed basically of an adder-subtractor and an
integrator.

The sub-circuits in Figures 3d and 3f are composed by two
comparators followed by buffers that go to an adder and are
responsible for the signals f1 and f3, respectively. The sub-
circuit in the diagram of Figure 3e has the same structure
but with an additional adder before the comparators and is
responsible for the signal f2. The sub-circuits in Figures 4a
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(a) (b)

Fig. 5. Attractor generated by electronic simulation in ngspice projected on
the planes: (a) (x1, x2) and (c) (x1, x3).

and 4b are composed of an adder-subtractor followed by
a comparator, a buffer and finally an attenuator, and are
responsible for the signals f4 and f5, respectively.

The proposed electronic realization makes use of the general
purpose JFET-input dual Operational amplifier TL082CP and
the quad differential comparator LM339AN. The calculated
resistor values were approximated to achievable values either
by one or two resistors from the E12 series configured either
in parallel or series.

An electronic simulation of the circuit was run and the
resulting projections on the planes (x1, x2) and (x1, x3) are
shown in Figure 5.

The circuit was also implemented physically and the result
is presented in the Figure 6. The measurement was done with
the Tektronix DPO 5054B Digital Phosphor Oscilloscope with
a sample rate of 20.0kS/s and a resolution of 50µs.

(a) (b)

Fig. 6. Attractor of the physically implemented circuit in Figure 3 projected
on: (a) (x1, x2) and (c) (x1, x3).

V. CONCLUSION

In this paper a new class of PWL dynamical system with-
out equilibria whose chaotic attractor can display a 3D-grid
scroll structure has been introduced. A detailed mathematical
analysis has been performed to the solution of the system in
order to show the absence of equilibria and the persistence
of the behavior under perturbation of the eigenvalue λ1 = 0.
The number of scrolls as well as their distribution in the grid
attractor can been easily modified using the functions f1, f2

and f3. A particular case with an scroll arrangement of 3×3×3
has been studied and its electronic realization has been tested
by numerical simulation as experimentally.

The extension of the approach for a four-dimensional sys-
tems in order to obtain hyperchaotic grid attractors has not

been addressed, however, since there are reported hyperchaotic
multiscroll attractors in systems with equilibria, it is reasonable
to think in a hyperchaotic grid attractor and is considered as
future work.
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