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Abstract

Background: The polyamine oxidases (PAOs) catabolize the oxidative deamination of the polyamines (PAs)
spermine (Spm) and spermidine (Spd). Most of the phylogenetic studies performed to analyze the plant PAO family
took into account only a limited number and/or taxonomic representation of plant PAOs sequences.

Results: Here, we constructed a plant PAO protein sequence database and identified four subfamilies. Subfamily PAO
back conversion 1 (PAObcT) was present on every lineage included in these analyses, suggesting that BC-type PAOs
might play an important role in plants, despite its precise function is unknown. Subfamily PAObc2 was exclusively
present in vascular plants, suggesting that t-Spm oxidase activity might play an important role in the development of
the vascular system. The only terminal catabolism (TC) PAO subfamily (subfamily PAOtc) was lost in Superasterids but it
was present in all other land plants. This indicated that the TC-type reactions are fundamental for land plants and that
their function could being taken over by other enzymes in Superasterids. Subfamily PAObc3 was the result of a gene
duplication event preceding Angiosperm diversification, followed by a gene extinction in Monocots. Differential
conserved protein motifs were found for each subfamily of plant PAOs. The automatic assignment using these motifs
was found to be comparable to the assignment by rough clustering performed on this work.

Conclusions: The results presented in this work revealed that plant PAO family is bigger than previously conceived.
Also, they delineate important background information for future specific structure-function and evolutionary
investigations and lay a foundation for the deeper characterization of each plant PAO subfamily.
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Background

PAOs are amino oxidases involved in polyamine metab-
olism. This group of enzymes catalyzes the oxidation of
free higher PAs such as Spm and Spd, and their acety-
lated derivatives at their secondary amino groups
through two known reaction modes [1]. Thus, PAOs act-
ing in the TC of PAs oxidize the carbon on the endo-side
of the N5 of Spm or Spd producing 1,3-diaminopropane
(DAP), H,0,, and the respective aldehydes [2]. In turn,
PAOs functioning in the BC pathway oxidize the carbon
on the endo-side of the N5 of Spm and Spd rendering
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Spd and putrescine (Put), respectively, as well as
3-aminopropanal and H,O, [2]. Put, Spd and Spm are
the most abundant free PAs in plants [3], and the oxida-
tion of these amines have been associated with numer-
ous events related to cell growth and development,
biotic and abiotic stress responses [4—8].

Plant PAOs show a great heterogeneity in terms of re-
action mode, substrates, products and subcellular
localization [9-19]. However, the current knowledge
about aspects of plant PAOs is limited to enzymes from
a few model plant species like Z. maize, A. thaliana, O.
sativa, G. hirsutum and B. distachyon [9-21]. On the
other hand, whereas three PAO protein crystal struc-
tures are available at the PDB database, only one of them
represents the plant kingdom: the maize apoplastic
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TC-type PAO1 (ZmPAO1) [22-25]. The other two PAO
crystals structures belong to the S. cerevisiae BC-type
PAO (FMS1) [26] and the M. musculus Nl-acetyl PA
oxidase (MmAPAO) [21, 27]. Although ZmPAO1 has
been used as template to model the structure of mam-
malian PAOs [28], molecular-modeling structure ana-
lysis of plant PAOs are scarce [29, 30].

The first aim of the present work was to build a protein
sequence database, through a domain architecture analysis
strategy [31], in order to investigate the evolutionary rela-
tionships among plant PAOs including an ample taxo-
nomic representation of the main angiosperm lineages.
The second aim was to analyze the structural features and
the conservation of the amino acids involved in the active
site of plant PAOs. In order to do this, we performed an
analysis of protein structures obtained by molecular mod-
eling using the available crystal structures of PAOs. Our
results showed that the plant PAO family is composed of
at least four subfamilies with distinct evolutionary rela-
tionships, structural and functional features. In addition,
their analysis allowed us to identify the amino acids poten-
tially involved in the enzymatic mechanism.

Results

Sequence database construction through a domain
architecture approach

The election of the remote-homology detection method
is an important factor when searching for plant PAOs
sequences, since the majority of the known members of
this group show low sequence identity (Additional file 1
Table S1). In this trend, the Pfam database, a domain
architecture HMM-based database [32], is probably the
most appropriate source of sequences. Therefore, we
searched the Pfam database for domains representing
amino oxidase enzymes.

Domain architecture analysis revealed the presence of a
single copy of the Amino_oxidase domain (PF01593) and
the absence of other domains in any of the sequences ana-
lyzed (Additional file 1 Figure S1). After filtering the se-
quences, the database comprised 543 sequences from 46
angiosperm species (17 monocot and 29 eudicot species,
and Amborella) and 124 sequences from early divergent
green plants (the Chlorophytes Chlorella variabilis, Micro-
monas pusilla and Chlamydomonas reinhardtii, the Charo-
phyta Klebsormidium nitens, the Bryophyta Physcomitrella
patens, the Lycopodiophyta Selaginella moellendorffii, the
Monilophyta Azolla filiculoides and the Gymnosperm
Araucaria cunninghamii).

Clustering of the sequence database

Sequences were clustered using a distance method
(UPGMA) and sequences from green plants species were
classified into thirteen clades (Fig. 1; Additional file 1 Table
S2). A new set of alignments within each clade showed that
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each of them comprehended a unique group of homolo-
gous sequences.

Clade I contained 31 sequences from eudicots species, in-
cluding the sequences of A. thaliana PAO1 (AtPAO1) and
G. hirsutum PAO5 (GhPAO5), both BC-type PAOs [10,
17]. Clade II was almost exclusively composed of genes
from monocots species (34 sequences from monocots out
of 37 total sequences), including the sequences of the apo-
plastic enzymes ZmPAO1 and O. sativa PAO6 (OsPAO6)
[18, 22, 33]. Even though ZmPAOL1 is a well-documented
TC-type PAO [20], OsPAO6 reaction mode has not yet
been determined. Clade III showed 34 sequences from
eudicots species, including the sequence of A. thaliana
PAO5 (AtPAOS5), a cytoplasmic BC-type PAO [14]. Clade
IV included 134 sequences, 81 from eudicots and 53 from
monocots species. Among these sequences were found
BC-type PAOs such as A. thaliana PAOs 2 to 4 (AtPAO2,
AtPAQO3, AtPAO4), O. sativa PAOs 3 to 5 (OsPAO3,
OsPAO4, OsPAO5) and B. distachyom PAOs 2 and 3
(BdPAO2, and BAPAO3) [11, 13, 19, 34, 35]. Interestingly,
AtPAO2, AtPAO3, AtPAO4, OsPAO3, OsPAO4 and
OsPAO5 were reported as peroxisomal enzymes [11, 13,
35]. Clade V was composed of seven sequences from
monocots species, including the cytoplasmic BC-type PAO
O. sativa PAO1 (OsPAQO1) [15]. Clades I to V did not in-
cluded any sequences of proteins previously reported and
characterized as non PAO enzymes. At last, Clades VI to
XIII did not include any sequence belonging to enzymes
with reported PAO activity, however some of these se-
quences were previously reported and characterized as non
PAO enzymes (Fig. 1). Features of the well-documented
PAOs within each clade were overviewed in Table 1.

Although there are differences in the subcellular localization
between known PAOs of different clades (Table 1), the results
of the prediction of subcellular localization were not consistent
and therefore they were not included as a classification criteria
(Additional file 1: Table S3).

Protein structure homology-modeling of plant PAOs

The protein sequences of all clades were modeled with the
three available PAO crystal structures. ZmPAOL1 resulted in
the best template for Clades I and II, whereas members of
Clades III to V were best modeled with MmAPAO. In turn,
low quality models were obtained with the sequences in-
cluded in Clades VI to XIII. Therefore, these results sug-
gested that only the clades I to V belong to plant PAO
subfamilies.

Sequences of clades I to V were then compared to their
best templates. Despite the variation in the inherent qual-
ity associated to the models, the structures obtained for
each group showed a high consistence and a good per-
centage of identity in the core of the structures (Fig. 2).
However, some of the groups showed portions of the se-
quences whose structure could not be determined.
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Fig. 1 Rough clustering of the sequence database. A distance tree was obtained by rough clustering using the UPGMA method. The names of
the well-documented plant PAOs and characterized enzymes as non PAO are indicated in grey within each clade. A. thaliana Protoporphyrinogen

oxidase 1, Prolycopene isomerase, Zeta-carotene desaturase and Phytoene desaturase (AtPPOC, AtCRTSO, AtZDS and AtPDS); S. moellendorffii
Prolycopene isomerase and Phytoene desaturase (SICRTSO and SIPDS); Z. mays Phytoene desaturase (ZmPDS); O. sativa Phytoene desaturase

(OsPDS). Grey colored clades correspond to non-PAO groups
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Table 1 Known plant PAOs summary table

Name Clade  UniprokKB ID  Reaction mode  Substrate Products Subcellular Localization  Bibliography
AtPAO1 1 Q9FNA2 BC Spm, N1-ac-Spm, Nor-Spm, t-Spm Spd + H,0, Cytoplasmic [10, 34, 35]
GhPAO5 1 IDL7VGD5 BC Spm Spd + H,0, - [17]

ZmPAOT 2 064411 TC Spd, Spm DAP + H,0, Apoplastic [22, 23, 33, 36]
OsPAO6 2 Q0J291 - - - Apoplastic 18]

OsPAO7 2 Q0J290 TC Spd, Spm, N1-Ac-PAs DAP + H,0, Apoplastic [16]

AtPAO5 3 Q9sU79 BC t-Spm, Spd, Spm, N1-Ac-PAs Spd/Put + H,0, Cytoplasmic [14]

AtPAO2 4 Q9SKX5 BC Spd, Spm, N1-Ac-PAs, tSpm, Nor-Spm  Spd/Put + H,O, Peroxisomal [11, 34, 35]
AtPAO3 4 QILYT1 BC Spd, Spm, N1-Ac-PAs, tSpm, Nor-Spm ~ Spd/Put + H,O,  Peroxisomal [11, 34, 35]
AtPAO4 4 Q8H191 BC Spd, Spm, tSpm Spd/Put + H,O, Peroxisomal [11, 34, 35]
BdPAO2 4 11125 BC Spd, Spm, N1-Ac-PAs, tSpm Spd/Put + H,0, - [19]

BAPAO3 4 11J380 BC Spm Spd +H,0; - [19]

OsPAO3 4 Q7X809 BC Spd, Spm, Nor-Spm Spd/Put + H,O, Peroxisomal [13]

OsPAO4 4 Q7XR46 BC Spd, Spm, Nor-Spm Spd +H,0, Peroxisomal [13]

OsPAO5 4 Q0J954 BC Spd, Spm, Nor-Spm Spd +H,0, Peroxisomal [13]

OsPAO1 5 Q5NAI7 BC tSpm, Spm, N1-Ac-Spm, Nor-Spm Spd + H,0, Cytoplasmic [15]

The conservation of key amino acids at the active site
was studied and compared among the clades (Table 2 and
Additional file 1 Table S4). Most of the amino acids that
constitute the active site were highly conserved within
each group, and all the plant PAO subfamilies displayed
the conservation of a lysine at the position of the residue
Lys300 of ZmPAO1, which forms the catalytically essential
structural motif Lys-H,O-FAD [25, 36]. In addition,
Glu60 of ZmPAOL1 is also present in all members of clade
I1, whereas those of clades III and IV exhibited a His in
the same position, and clades I and V displayed the con-
servation of the non-polar side chain amino acids Ala and
Gln, respectively. Interestingly, Glu60 of ZmPAO1 has
been considered one of the most relevant amino acids in
terms of interaction with the substrate, and it is
substituted by His in MmAPAO, FMS1 and mammalian
spermine oxidase (MmSMO) [24, 25, 36, 37].

The ZmPAO1 enzyme shows a Phe residue (Phe401)
that is positioned parallel to a Tyr (Tyr437), both flanking
the catalytic tunnel on opposite sides. These residues are
thought to define a kind of aromatic sandwich around the
substrate [37]. Our analysis showed that aromatic residues
were conserved in these positions in clades I and II, but
were absent in the other subfamilies (Table 2).

Plant PAO subfamilies phylogenetic distribution
Plant PAO subfamilies showed a distinct phylogenetic dis-
tribution as a result of gene duplication and extinction
events. Gymnosperms proteomes are still poorly docu-
mented, therefore no extinction event was hypothesize for
these lineage.

Our results indicate that clade IV conform a plant PAO
subfamily, here after referred as PAObcl. This subfamily is

present in all the main lineages of Streptophytes (including
Gymnosperms), and that a gene duplication even (both cop-
ies with BS > 85) occurred along with the Angiosperms ori-
gin (Fig. 3a and b and Fig. 4a). A second subfamily, PAOtc
(formerly referred as clade II), arose before the embryo-
phytes diversification, subsequently having at least one gene
extinction event in Superasterids (Fig. 3c and Fig 4b). Clade
L, here after subfamily PAObc3, is the result of a gene dupli-
cation event preceding Angiosperm diversification (BS > 85),
followed by a gene extinction in Monocots (Fig. 3c and Fig
4b. Subfamily PAObc2, comprehending clades III and 'V, is
exclusively present in single copy in vascular plants (except
Gymnosperms, but see above).

Identification of motifs in plant PAOs subfamilies
Differential conserved protein motifs were found for
each subfamily of plant PAOs (Table 3). A random sub-
set of sequences from every group was scanned against
the differential conserved motifs and the results were
contrasted with the phylogenetic tree localization. All
the sequences were assigned to the specific plant PAO
subfamily using this approach (Table 4).

Recently, some authors reported protein sequences
from cotton and flax, characterized as plant PAOs in
silico [17, 38]. These sequences were scanned against
the differential conserved motifs being most of them (13
out of 16 sequences) assigned to a unique plant PAO
subfamily (Table 4). This procedure was also carried out
with the sequences of two well-documented plant PAOs
that had not been considered in our previous analysis.
O. sativa PAO7 (OsPAQ?7) protein [16], which was not
included as it sequence did not passed the selection cri-
teria (it had less than five amino acids before the start of
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Clade V

Fig. 2 Protein structure of plant PAOs subfamilies. Protein structures were obtained by molecular modeling against the appropriate template.
ZmPAOT and MmAPAO templates showed on top colored by secondary structure, (a) and (d) respectively. Each picture shows an overlap of the
structures within each group of sequences. The color represents percentage of identity. (b) Clade 1. (c) Clade II. (e) Clade Ill. (f) Clade IV. (g)

Table 2 Plant PAOs active site analysis

ZmPAOT? Tyr437 Phe401 Glu168 Tyr296 Gluso Tyr167 Tyr163 Asn232 Lys300
MmAPAO? Thr469 - Val182 Tyr428 His59 Tyr194 Ser468 Glu179 Lys305
Clade | Tyr Tyr Glu Tyr Ala Phe lle Asn Lys
Clade Il Tyr Phe/Tyr Glu Tyr Glu Tyr Tyr/Phe Asn Lys
Clade Il Thr - Tyr Tyr His Tyr Ser GIn Lys
Clade IV Ser - Met/Leu Tyr His Glu Gly - Lys
Clade V Thr - Asp Tyr Gln Tyr Ser Glu Lys

#ZmPAOT and MmMAPAO are included as reference
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(See figure on previous page.)

Fig. 4 Evolution of plant PAO subfamilies. Grey thick branches correspond to the green plants species tree as recovered by Gitzendanner an
collaborators [61]. The black and grey thin branches denotes the gene trees for each plant PAO subfamily. Gene extinction is denoted by an X,
whereas? indicates uncertainty in the actual absence of the subfamilies in Gymnosperms. (a) Subfamily PAObc1. (b) Subfamily PAOtc and

PAObC3. (c) Subfamily PAObc2

the Amino_oxidase domain) and C. cinencis PAO4
(CsPAO4) [39], that was not included as it sequence was
not present in the Pfam or UniProtKb databases. These
sequences were scanned against the differential con-
served motifs, and they were assigned to the plant PAO
subfamily 2 and 3, respectively (Table 4).

Discussion

A critical task when constructing a protein database suitable
for phylogenetic analysis is the functional and structural
characterization of new proteins. This is often inferred on
the basis of the sequence similarities to proteins with known
structure or function. However, remote-homologues [40]
can be difficult to detect when distantly related proteins are
analyzed using homologues-assigning methods based on
pairwise procedures [41]. In this regard, Hidden Markov
model (HMM) based methods have been applied to detect
distantly related proteins with better results [40, 41]. In the
first part of this work we built a protein sequence database
of plant PAOs through a domain architecture analysis strat-
egy using the Pfam database, a domain architecture
HMM-based database [32]. Our sequence analysis revealed
that all the proteins with reported PAO activity presented a
single copy of the amino_oxidase domain without the pres-
ence of any other additional domain (Additional file 1 Fig-
ure S1). Even though proteins with single domains are
unusual [42], this feature was useful to perform the se-
quence search and to establish filter criteria. Moreover,
some clades included sequences of proteins previously re-
ported and characterized as non PAO enzymes indicating a
possible phylogenetic relation between these enzymes and
revealing the versatility of the PAO domain architecture.
The sequences in the final database shared the same do-
main architecture, but they did not define a unique group
of homologous sequences. This was in line with the obser-
vation that the percentages of identity among some of the
well-documented plant PAOs were lower than expected for
homologous sequences (Additional file 1 Table S1) [43].
However, the clades detected in this work were constituted
by unique groups of homologous sequences. Even though
the distance trees constructed with the sequence database
showed a similar topology as previous plant PAO phylogen-
etic studies [13, 15, 16, 34, 44, 45], it is noteworthy that we
used a larger sequence database. Therefore, it was possible
to build groups that included higher number of sequences
and species (an average of 40 sequences and 26 species per
clade) and to detect a higher number of clades than previ-
ous reports. This suggested that the plant PAO family is

bigger than previously conceived. Although we only consid-
ered five of the thirteen clades as part of plant PAO subfam-
ilies, we cannot rule out that other clades constitute
subfamilies of these plant enzymes with a structure that
cannot be modeled with any of the currently available PAO
crystal structures.

We also investigated the evolutionary relationships
among plant PAOs. Even though several phylogenetic
studies of plant PAOs have been performed [13, 15, 16,
19, 34, 38, 44—47], most of them included only a limited
number and/or taxonomic representation of plant PAOs
sequences hindering the elucidation of the evolution of
this protein family in plants. For this reason, we decided
not only to enrich the database in terms of number of
protein sequences and structures, but also to increase
the taxonomic representation of the main green plant
lineages. The breadth of our taxon sampling allowed us
to determine the phylogenetic distribution of each plant
PAO subfamilies. No plant PAO subfamily was identified
for Chlorophyta, however this is most probably due to
the ample sequence divergence of this lineage compared
to the other green plant lineages. The low gymnosperm
sequence count in the database (only four) question the
correct representation of Gymnosperm sequences in the
database and suggest us to be cautious with the inter-
pretation of the absence of several plant PAO subfam-
ilies in this group. Therefore, as stated before, no
extinction event was hypothesized for this plant group.
The plant PAObcl subfamily is ubiquitous in almost all
green plants and was most probably present since the
ancestral Streptophytes (Fig. 5). The peroxisomal subcel-
lular location reported for some PAObcl sequences is in
agreement with the presence on this subfamily in Charo-
phyta, since they present peroxisomes that are more
similar to those of land plants compared to other green
algae [48]. The apoplastic subfamily PAOtc is involved
on cell wall loosening and stiffening during plant devel-
opment [5, 7]. A different enzyme or group of enzymes
must be replacing this function in Superasterids, like
copper-containing amine oxidases (a hypothesis that has
been already discussed) [49, 50]. The PAObc2 is known
to participate during vascular development and this is in
agreement with the presence of this subfamily exclu-
sively in vascular plants (Fig. 5). The gene duplication
events that gave rise of both copies of PAObcl and
PAObc3 identified since the early diverged angiosperm
A. trichopoda suggest that the newly acquired plant
PAOs formed part of the new gene content that first
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D Organism Assignation by phylogeny Assignation by motif search
U5G093 P. trichocarpa Subfamily 1 Subfamily 1
AOA078CR66 B. napus Subfamily 1 Subfamily 1
MOXC59 H. vulgare Subfamily 2 Subfamily 2
B8BGH2 O. sativa Subfamily 2 Subfamily 2
ROF4R6 C. rubella Subfamily 3 Subfamily 3
AOA087GI24 A. alpina Subfamily 3 Subfamily 3
C5XI179 S. bicolor Subfamily 3 Subfamily 3
AOAODOVAT9 L. perrieri Subfamily 3 Subfamily 3
ROFMX3 C. rubella Subfamily 4 Subfamily 4
11J381 B. distachyon Subfamily 4 Subfamily 4
Lus10020726 L. usitatissimum Not Included No Hit
Lus10005021 L. usitatissimum Not Included Subfamily 4
Lus10039599 L. usitatissimum Not Included No Hit
Lus10019725 L. usitatissimum Not Included No Hit
Gh_A05G0221 G. hirsutum Not Included Subfamily 3
Gh_A07G0104 G. hirsutum Not Included Subfamily 3
Gh_A08G0331 G. hirsutum Not Included Subfamily 4
Gh_A08G0507 G. hirsutum Not Included Subfamily 1
Gh_A12G2582 G. hirsutum Not Included Subfamily 4
Gh_D05G0300 G. hirsutum Not Included Subfamily 3
Gh_D07G2378 G. hirsutum Not Included Subfamily 3
Gh_D08G0428 G. hirsutum Not Included Subfamily 4
Q0J290 O. sativa Not Included Subfamily 2
Cs4g14150.1 C. cinnensis Not Included Subfamily 3

appeared in the ancestral angiosperms, possibly as a re-
sult of the Zeta (seed plants) and/or Epsilon (angio-
sperms) genome duplications [51, 52].

To strengthen our study, we also analyzed the struc-
tural features and the conservation of the amino acids
involved in the active site of plant PAOs. Even though it
is plausible that proteins with similar structures share
similar functions, the protein structure homology-
modeling showed us a discrepancy for the subfamily 1
with regard to this statement. Thus, the best template
for this group was the TC-type PAO ZmPAO1. However,
all of their well-documented members were character-
ized as BC-type enzymes (Table 1) [10, 17]. The
remaining subfamilies showed an agreement between
the reaction mode of its members and the reaction mode
of its structure modeling templates. Many reports asso-
ciated the PAO reaction modes with the presence of par-
ticular residues in their active site or in their catalytic
tunnels. The TC reaction mode has been related to the
presence of Glu in the active site and an aromatic sand-
wich in the catalytic tunnel [36, 37]. In this trend, Glu60
has been largely accepted as one of the more relevant
residues for catalysis [36, 37], in terms of interaction

with the substrate or its accommodation within the ac-
tive site of ZmPAO]1, as it forms a hydrogen bound with
the N5 atom of the substrate [44]. The residue in this
position in the active site of the BC-Type PAOs was also
suspected to be important for the catalysis, but in this
case it is substituted by His [26, 28, 39, 47]. In line with
this, in the ZmPAO1 active site the residues that com-
pose the aromatic sandwich around the substrate have
been proposed to be important to define the reaction
mode of the enzyme [37]. Glu and the aromatic sand-
wich were presented in the subfamily PAOtc, in its
orthologe in Amborella and in all the sequences from
early divergent green plants related to this clade, in
agreement with the reaction mode of their members as
well as the template for homology-modeling of this
group, ZmPAO1. Moreover, these features were absent
in subfamilies PAObcl and PAObc2, suggesting that the
members of these groups are BC-type enzymes. On the
other hand, subfamily PAObc3 showed the conservation
of the residues that conforms the aromatic sandwich,
but Ala was conserved in the position corresponding to
Glu60. Also its orthologe in Amborella presented the
aromatic sandwich and a basic residue in the position
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corresponding to Glu60. These results suggested that
the aromatic sandwich is a structural feature that is only
present in the phylogenetically related subfamilies
PAOtc and PAObc3 and more likely unrelated with the
reaction mode of the enzyme. The presence of Glu to

interact with the N5 of the substrate might be a critical
factor determining the accommodation of the substrate
to be oxidized on the endo side of the Ns. Moreover, our
results suggested that the presence of either a basic or
an uncharged residue might lead to a BC-type PAO
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reaction mode. In this regard, Tavladoraki et al. (2011)
carried out site-directed mutagenesis experiments on
the His that occupies this position in the MmSMO, and
they reported that its substitution by Glu leads to en-
zyme inactivation [28]. It would be of great interest to
perform a site-directed mutagenesis experiment on a
member of the subfamily PAObc3, such as AtPAO1 or
GhPAOS5, as they are more structurally similar to
ZmPAOJI, to unravel the function of this key residue.

When the structural, and catalytic features and the
phylogenetic distribution of the plant PAO subfamilies
were analyzed together, the following conclusions could
be drawn:

a) Subfamily PAObcl was present on every lineage in-
cluded in these analyses (Fig. 5) suggesting that BC-type
PAOs might play an important role in plants, despite its
precise function is unknown.

b) Subfamily PAObc2 was exclusively present in vascu-
lar plants included in these analyses (Fig. 5) suggesting
that t-Spm oxidase activity might play an important role
in the development of the vascular system.

c¢) The only TC-type PAO subfamily (subfamily
PAOtc) was lost in Superasterids but it is present in all
other land plants (Fig. 5). This indicated that the
TC-type reactions are fundamental for land plants and
that their function could being taken over by other en-
zymes in Superasterids, a hypothesis that was already
suggested in previous reports [49, 50].

As we stated at the introduction of this work, the plant
PAO family showed heterogeneity in terms of reaction
mode, substrate specificity, reaction products, subcellular
localization and structural features. Therefore, we made
an effort to enrich the sequence database, grouping and
characterizing the sequences and defining plant PAO sub-
families in order to obtain a more homogeneous an accur-
ate classification of this enzyme family. The plant PAO
subfamilies proposed here revealed that this protein family
is conformed, at least in part, by homogeneous groups in
terms of reaction mode and structural features.

The assessment of the correct evolutionary relation-
ship between proteins and the assignment of an individ-
ual sequence to a functional or evolutionary group
requires rigorous and time-consuming phylogenetic ana-
lyses and the use of differential conserved protein motifs
could be an alternative approach to reach this goal. The
automatic assignment using differential conserved motifs
for each plant PAO subfamily was found to be compar-
able to the assignment by rough clustering and phylo-
genetic analysis performed in this work (Table 4).
Furthermore, OsPAO7 was assigned to subfamily PAOtc
(Table 4). This was consistent with the overall character-
istics of this subfamily, as OsPAO7 is an apoplastic
TC-type PAO (Table 1) [17]. On the contrary, CsPAO4
was not assigned to subfamily PAOtc as expected, given
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that it has been characterized as a TC-type PAO. In-
stead, it was located in subfamily PAObc2 (Table 4),
which is in agreement with the sequence similarity of
the members of this subfamily and with the lack of in-
trons in the gene sequence, a particular feature shared
with AtPAO5 [14, 45]. A further analysis revealed that
CsPAO4 can be better modeled using MmAPAO as tem-
plate, and the model obtained revealed the absence of
the aromatic sandwich and the presence of His instead
of Glu in the active site (Additional file 1: Table S5).
Therefore, these motifs might be a useful tool for the
identification from scratch of new plant PAOs as long as
in the future the plant PAO subfamilies proposed in this
work proves to be an accurate classification.

Conclusion

The results presented in this work reveal that the plant PAO
family is bigger than previously conceived and provides new
information on sets of candidate plant PAO sequences offer-
ing a potential starting point for further experimental verifi-
cations. Besides, the models obtained through the structure
modeling analysis revealed that the residue interacting with
the N5 of the substrate PA might be one of the factors deter-
mining the reaction mode of the enzyme. Future additions
to the structural and enzymatic properties of plant PAOs
from different subfamilies may provide the necessary infor-
mation needed to further characterize these groups. As an
overall, this work delineates important background informa-
tion for future specific structure-function and evolutionary
investigations and lay a foundation for the in depth
characterization of each plant PAO subfamily.

Methods

Domain architecture analysis

Domain architecture of all the currently well-documented
PAO sequences was performed. ZmPAO1 (UniprotKB ID
064411), FMS1 (P50264), MmAPAO (Q8COL6), AtPAO1
to 5 (Q9FNA2, Q9SKX5, QILYT1, Q8H191 and
Q9SU79), OsPAO1 (Q5NAI7), OsPAO3 to 5 (Q7X809,
Q7XR46 and Q0J954), OsPAO7 (Q0J290), BAPAO 2 and 3
(I1J1Z5 and 11J380), GhPAOS5 (IDL7VGDS5), SynPAO
(Cyanobacterium  synechocystis PAO; Q6ZEN7) and
BjPAO (Braquiostoma japonicum PAQO; AO0A059VBM4)
were chosen since their kinetic properties, substrate speci-
ficity and reaction mode were well documented [9-21, 47,
53]. The protein sequences were scanned against the Pfam
domain database using hmmscan software from the
HMMER web server (http://www.hmmer.org/). Complete
sequences were analyzed not excluding regions that that
were not assigned to any domains.

Data collection and database construction
An amino acidic sequence database based on the peptides
domain architecture was constructed. In this regard,


http://www.hmmer.org/

Bordenave et al. BMC Evolutionary Biology (2019) 19:28

peptides sequences with a single Amino_oxidase domain
(PF01593) and no other domains were selected from the
PFAM database. Protein sequences with other domain ar-
chitectures containing the Amino_oxidase domain and
other extra domains are known to have functions different
from PAO, and no PAOs have been reported containing
other extra domains (i.e. plant lysine histone demethilases
posses an extra SWIRM domain) [54, 55]. Sequences from
angiosperms and other early divergent green plant species
were retrieved and filtered with the following selection cri-
teria based on the domain architecture analysis:

1. Less or equal to 50 amino acids missing on any side
of the Amino_oxidase domain.

2. No s gap with less or equal than 150 amino acids long.

3. At least five amino acids before the start and five
amino acids after the end of the Amino_oxidase
domain (to avoid truncated sequences).

4. No more than 700 amino acids in length (to
exclude proteins with additional domains that could
not been currently identified by the Pfam software).

With the purpose of improving the taxonomic represen-
tation, the genome of the recently sequenced fern Azolla
filiculoides was searched for protein sequences that
matched the PAO domain architecture using the stand
alone version of the HMMR software. Sequences that
passed the selection criteria were added to the database.

Global alignment and rough clustering

Sequences were aligned using the MAFFT online service
[56], with a gap opening penalty of five. The resulting
alignment was then manually adjusted and ambiguously
aligned flanking regions were trimmed before subse-
quent clustering analysis.

For the rough clustering, a distance method (UPGMA)
was used to construct a distance tree. Nodes separated
by accumulative branch length less than 0.3 were con-
sidered to belong to the same cluster.

Search for sequences annotated as a different enzyme
other than PAOs

Sequences within the database were used to perform a
search in UniprotKB. IDs with a annotated status of
“Reviewed” were selected to perform a manual search of
the bibliography. Proteins other than PAOs whose activity
was determined were considered as a different enzyme.

Prediction of subcellular localization

In order to predict subcellular localization of sequences
within clades I to V, sequences were analyzed with a set
of software using the standard configuration for plant
protein sequences: SignalP 4.1 (cbs.dtu.dk/services/Sig-
nalP/), WoLF PSORT (wolfpsort.hgc.jp), LOCALIZER

Page 13 of 15

(localizer.csiro.au/), slplocal2 (sunflower.kuicr.kyoto-u.ac.jp/
~smatsuda/slplocal.html), DeepLoc1,0 (cbs.dtu.dk/services/
DeepLoc/), PredSL (aias.biol.uoa.gr/PredSL/), TargetP1.1
(cbs.dtu.dk/services/TargetP/) and Pprowler (bioinf.scmb.u-
q.edu.au:8080/pprowler_webapp_1-2/).

Protein structure homology-modeling of plant PAOs
Three new alignments were made for each individual
cluster including in each one the sequences of one of
the three PAOs with known structure. Then, each se-
quence from the individual clusters was modeled using
the ZmPAO1 (pdb code 3KU9), FMS1 (pdb code 1XPQ)
and MmAPAO (pdb code 5MBX) structures as tem-
plates. For this, the alignment mode module from the
SWISS-MODEL server was used (https://swissmodel.ex-
pasy.org/), with the corresponding alignment. Model
quality parameters and .pdb files were retrieved. Al-
though models with absolute QMEAN Z-score >4 are
considered to be of low quality [57] we decided to use a
more lax criteria as the template for some models was
taxonomically distant from the sequence to model
Models with more than 4.5 of absolute QMEAN
Z-Score or less than 0.6 of GMQE were considered to
be of low quality. Clusters whose sequences could not be
modeled with any of the three templates (i.e. models ob-
tained for every sequence were of low quality) were con-
sidered not belonging to plant PAO subfamilies.

Phylogenetic analyses

PAO sequences from the green plant lineages Charophy-
tas, Bryophytes, Lycopodiophyta, Monilophyta, and
Gymnosperms, as well as respective sequences from A.
trichopoda, the single living representative from the sis-
ter lineage to all other angiosperms, were incorporated
into the dataset to increase the breadth of our taxo-
nomic sampling within angiosperms. These sequences
were retrieved and filtered from Pfam with the same cri-
teria used on the construction of the database. A second
round of alignments was performed with MAFFT online
service, now with a gap opening penalty of three. The
resulting alignments were then manually adjusted and
ambiguously aligned regions were trimmed before subse-
quent analyses. The best fitting model of substitution
was selected with PartitionFinder 2 [58]. Maximum
Likelihood was used for phylogenetic reconstructions
with the program RAXxML HPC2 version 8.2.9 [59], ap-
plying the “rapid Bootstrap and search for best-scoring
ML tree” algorithm.

Structure analysis and active site amino acidic profiles

A multi-sequence structural analysis was carried out
using the models obtained with the most suitable tem-
plate for each subfamily. For this, the models obtained
with the template that more frequently prompted the
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higher modeling quality parameters were selected for
each subfamily and analyzed using the Multiseq module
of the VMD software [60], applying the Stamp Structure
Alignment tool.

The individual residues and its proposed equivalents
were selected for analyzing based on previously pub-
lished works [21, 24, 25, 36, 37].

Differential conserved motifs identification

Motif search for automatic classification of plant PAOs
were performed by using PRATT tool from ExPASy Bio-
informatic Resource Portal (expasy.org/PRATT) using
the aligned sequences for each plant PAO subfamily. Se-
quence scanning against motifs was carried out using
the Scanprosite program (expasy.org/tools/scanprosite).
Sequences of recent reports of plant PAOs not included
on this work were used to test the automatic classifica-
tion of plant PAOs by aminoacidic motif search.
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Additional file 1: Figure S1. Domain Architecture of well-documented
plant PAOs. Table S1. Percentages of identity between some of the
well-documented plant PAOs. Table S2. Model quality parameters of
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