Magnetocaloric effect in ErNi$_2$ melt-spun ribbons

a Instituto Potosino de Investigación Científica y Tecnológica A.C., Camino a la Presa San José 2055, Col. Lomas 4°, San Luis Potosí, S.L.P. 78216, Mexico
b CPM-TIP, University Pavol Jozef Safárik, Park Angelinum 9, 04154 Kosice, Slovakia
c División Multidisciplinaría, Ciudad Universitaria, Universidad Autónoma de Ciudad Juárez (UACJ), Calle José de Jesús Macías Delgado # 18100, Ciudad Juárez 32579, Chihuahua, Mexico
d Departamento de Física, Universidad de Oviedo, Calvo Sotelo s/n, 33007 Oviedo, Spain

A B S T R A C T

ErNi$_2$ ribbons were produced by rapid solidification using the melt spinning technique. Their structural, magnetic and magnetocaloric properties in the as-solidified state were studied by X-ray diffraction, scanning electron microscopy, magnetization and specific heat measurements. Samples are single phase with the MgCu$_2$-type crystal structure, a Curie temperature T_C of 6.8 K and a saturation magnetization at 2 K and 5 T of 124.0 A·m2/kg. For a magnetic field change $\mu_0 \Delta H$ of 5 T (2 T) ribbons show a maximum magnetic entropy change ΔS_{max} of 24.1 (16.9) J/(K·kg), and an adiabatic temperature change $\Delta T_{\text{ad max}}$ of 8.1 (4.4) K; this is similar to the previously reported literature for bulk alloys that were processed through conventional melting techniques followed by prolonged thermal annealing. In addition, the samples also show slightly wider $\Delta S_{\text{max}}(T)$ curves with respect to bulk alloys leading to a larger refrigerant capacity.

Received 28 March 2019
Received in revised form 23 July 2019
Accepted 26 July 2019
Available online xxx

Keywords:
ErNi$_2$ Laves phase
Melt-spun ribbons
Magnetic entropy change
Adiabatic temperature change
Rare Earths

1. Introduction

In the past three decades, the magnetocaloric properties of a long list of rare-earth metals, their solid solutions and rare-earth-based intermetallic compounds have been studied.$^{1-6}$ Rare-earth (RE) intermetallic compounds based on heavy rare earths elements undergoing a second-order ferromagnetic-to-paramagnetic transition are of particular interest because they might show a large reversible magnetocaloric effect (MCE) in the temperature range of nitrogen and hydrogen liquefaction (i.e., from 10 to 80 K). In these compounds, the high magnetic moment of the lanthanide leads to a high saturation magnetization M_S, whereas the crystalline field at the RE site may lead to a sui-generis anisotropic behavior of magnetization. Among them, binary ferromagnetic Laves phases RNi$_2$ with R = Tb, Dy, Ho or Er, have received significant attention since they are stable, easy to produce and below 50 K exhibit large maximum magnetic entropy ΔS_{max} and adiabatic temperature $\Delta T_{\text{ad max}}$ changes.$^{7-9}$ In view of that, they have been referred as suitable working substances for their use in cryogenic magnetic refrigerators.10,11

These compounds typically crystallize into the cubic MgCu$_2$-type crystal structure with the space group $Fd\overline{3}m$ (also known as the C15 structure of Laves phases),12,13 and their magnetism only comes from the large localized magnetic moment of the 4f rare earth element (i.e., Ni atoms do not carry a magnetic moment) and their parallel coupling through the exchange interaction via conduction electrons. Present contribution reports the magnetocaloric (MC) properties of as-solidified melt-spun ribbons of the intermetallic compound ErNi$_2$ with the available data of literature reported for bulk alloys. This compound shows the lowest Curie temperature (T_C) among the above-mentioned ones (around 7 K),$^{3-15}$ as well as an interesting anisotropic behavior of magnetization as revealed by Gignoux and Givord,16 who performed magnetization measurements at 1.5 K up to a high magnetic field of 14 T for a single crystal through the significant crystallographic directions. Their study demonstrated that the spontaneous magnetization at $\mu_0 H = 0$ is found throughout the [100] direction although the crystalline field favors the [111] direction. The
spontaneous magnetization through those directions were 5.0 μB/Er³⁺ and 2.9 μB/Er³⁺, respectively. Furthermore, along both the [111] and [110] crystalline directions, the magnetization \(M(\mu_BH) \) increases rapidly at relatively low fields, surpassing the magnetization obtained along the [100] direction; the differences become significant above 2 T, since the magnetization along the easy direction tends to saturate, whereas along [110] and [111] directions progressively rise with the increasing of the magnetic field.

The existing information on the magnetocaloric properties of ErNi₂ is limited to the earlier theoretical calculations done by von Ranke et al.⁸ and then by Plaza et al.⁹ and the experimental studies carried out by Tomokiyo et al.¹⁷ and more recently by Cwik et al.¹⁸ The study of Plaza et al. considered the conventional and anisotropic magnetocaloric effect; for the conventional MCE they compared the shape and trend obtained for the \(\Delta M(T) \) and \(\Delta T(\text{ad})(T) \) curves that were in reasonable agreement with the experimental data. Their calculations were based on a Hamiltonian that considered the effects of the crystalline electrical field, the exchange interaction in a molecular-field approximation, and the Zeeman energy; the authors highlighted that the results of this theoretical calculation are more accurate than in their previous work. To the best of our knowledge, all the experimental results reported on the magnetocaloric properties of this compound correspond to bulk polycrystalline alloys that were produced by arc melting followed by a long-term thermal annealing under vacuum at temperatures between 1100 and 1173 K from 2 to 20 d.¹⁷,¹⁸ The present research was undertaken to fabricate ErNi₂ melt-spun ribbons in order to assess their MC response. This fabrication technique has been successfully applied in recent years to synthesize the isostructural Laves phases RNi₂ with R = (Tb, Dy, Ho).¹⁹–²¹

2. Experimental

First, a 4 g ingot with the stoichiometric composition of ErNi₂ was produced by Ar arc-melting from highly pure Er (99.9%, Sigma Aldrich) and Ni (99.998%, Alfa Aesar). To ensure its good starting homogeneity, the ingot was re-melted three times; the final mass of the as-cast ingot coincided with the starting one. From this sample, melt-spun ribbons flakes were obtained under a highly pure Ar atmosphere at a linear speed of the rotating copper wheel of 25 m/s in an Edmund Bühler model SC melt spinning system.

The X-ray diffraction (XRD) pattern of finely powdered melt-spun ribbons was recorded between 20° and 160° with a 2θ increment of 0.01° in a high-resolution Rigaku Smartlab diffractometer with a wavelength of 0.15418 nm corresponding to Cu Kα radiation. A dual beam scanning electron microscope (SEM, Helios Nanolab model ESEM FEI Quanta 200) was used in order to obtain secondary electron images of the microstructure; the system was equipped with an energy dispersive spectroscopy (EDS) detector.

The magnetic measurements were carried out using a 9 T Quantum Design Dynacool® physical property measurement system (PPMS) by means of the vibrating sample magnetometer option. Measurements were done on a needle-like ribbon sample applying the external magnetic field through the major length ribbon axis (that it is coincident with the rolling direction) to reduce the effect of the internal demagnetizing field. The temperature dependence of the specific magnetization, the \(M(T) \) curves, were measured under static magnetic fields of 5 mT and 5 T at a temperature sweeping rate of 1.0 K/min. The specific heat \(c_p \) as a function of temperature was measured by using the heat capacity module of a Quantum Design Evercool-Ir® PPMS® system; this option measures the thermal response of a small thin sample by means of a thermal-relaxation calorimeter.

3. Results and discussion

Fig. 1(a) shows several representative secondary electron SEM images of the ribbons microstructure. The foreground image corresponds to the free surface, whereas the cross-section appears at
the inset. Ribbons are polycrystalline, they show an average ribbon thickness of 21 μm, and are composed by micrometers in size grains with no visible orientation with respect to the ribbon plane. The cross-section shows a homogeneous distribution of grains, with no appreciable differences in grain morphology, in contrast to the columnar growth trend that has been observed in other RNi2 melt-spun ribbons.13,18,23,24 No secondary phases are observed. A large number of EDS analyses, performed on both ribbon surfaces and their cleaved cross-section, confirmed the average 1:2 composition in the fabricated samples (within a 0.1 at % of instrumental error).

Fig. 1(b) displays the room temperature X-ray powder diffraction pattern together with the Le Bail refinement performed using the FullProf suite package.22 It was correctly indexed considering the Bragg reflections of the cubic MgCu2-type crystal structure of the Laves phases (Strukturbericht designation: C15; space group: Fd3m; PDF card: 04-001-0543); the cubic structure shows a lattice constant a = 0.7126(1) nm. No evidence of secondary phases, either amorphous or crystalline, was found in the pattern (which agrees with SEM observations). As Table 1 evidences, the determined lattice constant is in good agreement with the values found in the literature for bulk alloys.13,18,23,24 Selecting several alloys we measured a set of isothermal magnetization curves up to 5 T obtained from numerical integration of the Maxwell relation (i.e., $S_T(T) = \int_0^\infty (c_p(T)/T)\,dT$) (also plotted in Fig. 2(b)). Fig. 3(a) shows curves, as well as the temperature dependence of the specific heat $c_p(T)$ at zero magnetic field; the resulting curves appear in Fig. 2(a) and (b), respectively. $M(\mu_0 H)$ isotherms illustrate that ribbons do not reach the saturated state even at $\mu_0 H = 5$ T. It is in agreement with the observed behavior of both single-crystal and polycrystalline ErNi2.13,18 Roughly speaking, the shape and values of the $c_p(T)$ dependence are consistent with those previously reported15,17,18; the curve exhibits the typical λ-type shape at the ferromagnetic-paramagnetic phase transition. From $c_p(T)$ we calculated the thermal dependence of the total entropy at zero field as $S_T(T) = \int_0^{\mu_0 H} (c_p(T)/T)\,dT$ (also plotted in Fig. 2(b)). Fig. 3(a) shows the $\Delta S_m(T)$ curves obtained from numerical integration of the Maxwell relation (i.e., $\Delta S_m(T, \mu_0 \Delta H) = \int_{\mu_0 H}^{\mu_0 H + \mu_0 \Delta H} \frac{\partial M(T, \mu_0 H)}{\partial H}\,dH$), whereas the relevant MC parameters derived from these curves are listed in Table 2. From $S_T(T)$ and the $\Delta S_m(T)$ curves obtained from Maxwell relation, we determined $S_T(T, \mu_0 \Delta H) = S_T(T, 0) + \Delta S_m(T, \mu_0 \Delta H)$ (not shown) and estimated the $\Delta T_{ad}(T)$ curves for $\mu_0 \Delta H = 2$ and 5 T.

Table 1

<table>
<thead>
<tr>
<th>Alloy</th>
<th>a (nm)</th>
<th>T_C (K)</th>
<th>$M^\parallel(5 \text{ T})$ (A m2/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ErNi2 ribbons</td>
<td>0.7126(1)a</td>
<td>6.8a</td>
<td>124 at 2.0 Ka</td>
</tr>
<tr>
<td>ErNi2 bulk alloys</td>
<td>0.712315,17, 0.711718, 0.71249(4)15,23, 0.712514</td>
<td>6.715,17, 6.514, 6.518, 6.514</td>
<td>134 at 4.2 K25</td>
</tr>
</tbody>
</table>

a This work.

Please cite this article as: Sánchez Llamazares JL et al., Magnetocaloric effect in ErNi2 melt-spun ribbons, Journal of Rare Earths, https://doi.org/10.1016/j.jre.2019.07.011
from $\Delta T_{ad}(T_0,\mu_B\Delta H) = T(S_T,\mu_B H) - T(S_T,\mu_B H) - T_0$; the results are plotted in Fig. 3(b). In Fig. 3(a) and (b) we compared the $\Delta S_m(T)$ and $\Delta T_{ad}(T)$ curves for magnetic field changes of 2 and 5 T with the experimental$^{[9,17,19]}$ and theoretical9 data informed in literature. Note that, as it was expected, the maximum for both $\Delta S_m(T)$ and $\Delta T_{ad}(T)$ curves appears at T ~ T_c. ΔS_m^{RB} reaches values of 4.4 and 8.1 K at 2 and 5 T, respectively. For a more comprehensive comparison, the significant parameters are listed in Table 2. It is also worth mentioning that these values agree, within the expected uncertainty, with those of bulk polycrystalline alloys. This situation coincides with the previous finding for as-solidified TbNi$_2$ ribbons$^{[19]}$ and contrasts with the behavior of DyNi$_2^{[19]}$ and HoNi$_2^{[19]}$ ribbons, in which enhanced MC properties were obtained due to the favorable combination of texture effects along ribbon length (extrinsic feature) and the anisotropic behavior of magnetization (i.e., due to the angle between the magnetic field and easy magnetization direction). But it is consistent with the absence of preferential grain growth in the fabricated ribbon samples. In order to verify the isotropic nature of the ribbons, a powdered sample was prepared from several ribbon flakes. The powder was carefully mixed with a tiny amount of GE-7031 varnish into a cylindrical shaped VSM powder sample holder. The sample was sonicated during several minutes in order to disperse particles until vanish solidification; this procedure avoids any preferential orientation of powder particles upon the application of an external magnetic field (i.e., preserving their spatial random orientation). The MC properties of this sample, that has been referred to as “pulverized ribbons”, derived from the $\Delta S_m(T)$ curves at 2 and 5 T are listed in Table 2. Notice that ΔS_m^{RB} value for melt-spun and pulverized ribbons for both magnetic field changes do not show a significant difference, highlighting the isotropic behavior of the MCE in the ErNi$_2$ melt-spun ribbons.

We have also determined the refrigerant capacity (RC), a figure of merit typically used to compare the amount of heat that can be removed from the load and to the environment by the working substance during an ideal refrigeration cycle. The RC is commonly estimated through three methods (hereafter referred to as RC-1, RC-2 and RC-3): RC-1 = ΔS_m^{RB} × $(T_{hot} - T_{cold})$, RC-2 = $\int_{T_{cold}}^{T_{hot}} \Delta S_m(T) dT$, and RC-3 = $\int_{T_{cold}}^{T_{hot}} \Delta T_{WHM}(T)$. The T_{hot} and T_{cold} are the temperatures that define the temperature interval ΔT_{WHM} of the full width at half-maximum.

Table 2

<table>
<thead>
<tr>
<th>Method</th>
<th>Specific heat measurements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bulk$^{[17,26]}$</td>
<td>Bulk$^{[18,26]}$</td>
</tr>
<tr>
<td>Samples state</td>
<td>Melt-spin ribbons</td>
</tr>
<tr>
<td>$\mu_B\Delta H$ (T)</td>
<td>ΔS_m^{RB} (J/kg K)</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>4.4a</td>
<td>8.1a</td>
</tr>
<tr>
<td>14.1</td>
<td>20.0</td>
</tr>
<tr>
<td>146</td>
<td>382</td>
</tr>
<tr>
<td>113</td>
<td>299</td>
</tr>
<tr>
<td>10.5</td>
<td>19.1</td>
</tr>
<tr>
<td>14.7</td>
<td>23.5</td>
</tr>
<tr>
<td>4.3</td>
<td>4.4</td>
</tr>
<tr>
<td>195</td>
<td>15</td>
</tr>
<tr>
<td>4.4</td>
<td>4.5</td>
</tr>
</tbody>
</table>

a Estimated values from the reported curves.
b Related to RC-3.
c Determined combining specific heat and entropy change curves determined from magnetization measurements.
d Annealed at 1173 K during 2 days in vacuum.
e Annealed at 1100 K during 1 month in vacuum.
f This work does not describe synthesis conditions.

Please cite this article as: Sánchez Llamazares JL et al., Magnetocaloric effect in ErNi$_2$ melt-spin ribbons. Journal of Rare Earths, https://doi.org/10.1016/j.jre.2019.07.011
of the $\Delta S_m(T)$ curve: $\Delta T_{\text{FWHM}} = T_{\text{hot}} - T_{\text{cold}}$, and RC-3 as the maximum rectangular area that can be inscribed below the $|\Delta S_m(T)|$ curve. Relevant data of the ErNi$_2$ ribbons for 2 and 5 T have been gathered in Table 2; note that the as-quenched and pulverized ribbons display comparable RC’s for $\mu S_H = 5$ T as a result of their similar $\Delta S_m(T)$ curves. When comparing them to the estimated parameters from the reported $\Delta S_m(T)$ in the literature (see Table 2), one can observe certain dispersion of values; nevertheless, those obtained from the ribbons are slightly larger mainly due to their extended span temperatures.

4. Conclusions

To conclude, we have evidenced that through the melt-spinning technique we were able to produce monophasic melt-spin ribbon of the ErNi$_2$ Laves phase with similar structural, magnetic and magnetocaloric properties than the data reported for bulk polycrystalline alloys that were fabricated using the conventional arc-melt technique followed by long-term high-temperature thermal annealing. The absence of texture explains the isotropic magnetocaloric response of the fabricated ribbon samples along the longitudinal direction; however, the slight extension of the working temperature span in comparison to the data reported for bulk alloys leads to a moderate, but perceptible improvement of their refrigerant capacity.

Acknowledgments

The support received from the following organizations is gratefully acknowledged: (a) Laboratorio Nacional de Nanociencias y Nanotecnología (LINAN, IPICYT), (b) Consejo Potosino de Ciencia y Tecnología (COPOCYT), and (c) Banco Santander Central Hispano and University of Oviedo. Authors are also indebted to M.Sc. B.A. Rivero-Escoto, M.Sc. A.I. Peña Maldonado and Dr. G.J. Labrada-Delgado for the technical support given. P.J. Ibarra Gaytán thanks to CONACYT for supporting his doctoral and postdoctoral studies at IPICYT and UPJS, respectively. C.F. Sánchez-Valdés is grateful to DMCU-UACJ for supporting his research stays at IPICYT (program PFCE and academic mobility grant); also, for the financial support received from SEP-CONACYT, Mexico. P. Alvarez-Alonso acknowledges the support received from MINECO, and Principado de Asturias, Spain.

References