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1. INTRODUCTION

Classical Proportional-Integral-Derivative (PID) control
has been a usual practice for the stabilization of robot
manipulators in actual applications (Rocco, 1996). This is
mainly due to its effectiveness on the achievement of the
regulation objective experienced through its simple linear
structure which avoids involving accurate data from the
system, such as parameter values or model expressions.
Nevertheless, through such a simple linear structure, there
is no analytical certainty that the experienced stability
properties have a global character. For this reason, alter-
native nonlinear versions of the PID controller, aiming at
guaranteeing global regulation, have been developed for in-
stance in (Kelly, 1998; Santibáñez and Kelly, 1998). How-
ever, these algorithms implicitly assume that actuators
can generate any torque value. Unfortunately, this is un-
realistic in view of the saturation phenomenon commonly
observed in real actuators. Furthermore, disregarding such
natural constraints may lead to undesirable system behav-
iors and/or degraded closed-loop performances (Krikelis
and Barkas, 1984). For this reason, bounded PID-type
approaches have been further developed. For instance,
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semiglobal regulators with different saturating PID-type
structures have been developed in (Alvarez-Ramirez et al.,
2003) and (Alvarez-Ramirez et al., 2008). Through the sin-
gular perturbation methodology, these works showed the
existence of an appropriate tuning mainly characterized by
the requirement of small enough integral action gains and
sufficiently high proportional and derivative ones. As far
as the authors are aware, the first bounded PID-type con-
troller for global regulation was presented in (Gorez, 1999);
the algorithm permits to include or disregard velocities in
the feedback. Nevertheless, the structure of the developed
scheme is quite complex. Other works have focused on the
solution of the global PID position stabilization problem
for manipulators with bounded inputs through simpler
structures, giving rise to the SP-SI-SD type algorithm
developed in (Meza et al., 2005) via passivity theory and
later on in (Su et al., 2010) through Lyapunov stability
analysis, and to the SPD-SI type scheme presented in (San-
tibáñez et al., 2008). In particular, the work in (Su et al.,
2010) includes a velocity-free version of the proposed SP-
SI-SD algorithm through the conventional (linear) dirty
derivative (dynamic) operator.

The above cited bounded PID-type approaches give a
solution to the formulated problem under input constraints
and restricted data. In this direction, output-feedback
schemes, like the velocity-free extensions of the algorithms
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Zona Universitaria 78290, San Luis Potośı, Mexico (e-mail:
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Santibáñez was supported by CONACYT (project no. 134534) and
TNM (Tecnológico Nacional de México), Mexico.
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presented in (Gorez, 1999) and (Su et al., 2010), are
particularly important since they achieve regulation not
only without the need for the exact knowledge of the
system structure and parameter values but also through
the exclusive feedback of the position variables. This
proves to be particularly useful when velocity measure-
ments are unavailable which seems a common practical
situation. However, it is not yet clear how can a bounded
output-feedback version/extension of the SPD-SI struc-
ture could be analytically supported. A solution to such
an open problem has not only been motivated by the
implicated analytical challenge but also by the nice perfor-
mance expectations generated by analog SPD-type struc-
tures in gravity-compensation-type state-feedback contexts
(Zavala-Ŕıo and Santibáñez, 2006). Such a solution is
developed in this work by contributing an output-feedback
global regulator for robot manipulators with bounded in-
puts that adopts an SPD-SI structure by keeping both the
P and D actions together within a generalized saturation
function while including an additional similar saturating
integral action separately. Moreover, the proposed scheme
permits the choice of the saturation functions and releases
the control gains from saturation avoidance conditions.
The global regulation objective is guaranteed —avoiding
input saturation— considerably reducing the system data
involved in the feedback by releasing this not only from
exact knowledge of the system model and parameter values
but also from velocity measurements. Experimental tests
on a 2-degree-of-freedom (DOF) direct-drive manipulator
corroborate the contributed result.

2. PRELIMINARIES

Let X ∈ Rm×n and y ∈ Rn. Throughout this paper, Xij

represents the element of X at its ith row and jth column,
and yi denotes the ith element of y. 0n stands for the
origin of Rn and In represents the n × n identity matrix.
∥ · ∥ denotes the standard Euclidean norm for vectors,
i.e. ∥y∥ =

√∑n
i=1y

2
i , and induced norm for matrices,

i.e. ∥X∥ =
√
λmax{XTX} where λmax{XTX} represents

the maximum eigenvalue of XTX. For a continuous scalar
function ψ : R $→ R, ψ′ denotes its derivative, when
differentiable, D+ψ its upper right-hand (Dini) derivative,

i.e. D+ψ(ς) = lim suph→ 0+
ψ(ς+h)−ψ(ς)

h , with D+ψ = ψ′

at points of differentiability (Khalil, 2002, Appendix C.2),
and ψ−1 its inverse, when invertible.

Consider the n-DOF serial rigid manipulator dynamics
with viscous friction (Kelly et al., 2005)

H(q)q̈ + C(q, q̇)q̇ + F q̇ + g(q) = τ (1)

where q, q̇, q̈ ∈ Rn are, respectively, the position (general-
ized coordinates), velocity, and acceleration vectors, H(q)
∈ Rn×n is the inertia matrix, and C(q, q̇)q̇, F q̇, g(q), τ ∈
Rn are respectively the vectors of Coriolis and centrifugal,
viscous friction, gravity, and external input generalized
forces, with F ∈ Rn×n being a positive definite constant
diagonal matrix whose entries fi > 0, i = 1, . . . , n, are the
viscous friction coefficients, and g(q) = ∇U(q), with U(q)
being the gravitational potential energy, or equivalently

U(q) = U(q0) +
∫ q

q0

gT (r)dr (2a)

with

∫ q

q0

gT (r)dr =

∫ q1

q01

g1(r1, q02, . . . , q0n)dr1

+ · · ·+
∫ qn

q0n

gn(q1, . . . , qn−1, rn)drn (2b)

for any1 q, q0 ∈ Rn. Some well-known properties charac-
terizing the terms of such a dynamical model are recalled
here (Kelly et al., 2005, Chap. 4). Subsequently, we denote
Ḣ the rate of change of H, i.e., Ḣ : Rn × Rn → Rn×n :

(q, q̇) $→
[
∂Hij

∂q (q)q̇
]
.

Property 1. H(q) is a continuously differentiable matrix
function being positive definite, symmetric and bounded
on Rn, i.e. such that µmIn ≤ H(q) ≤ µMIn, ∀q ∈ Rn, for
some constants µM ≥ µm > 0.

Property 2. The Coriolis matrix C(q, q̇) satisfies:

2.1. ∥C(q, q̇)∥ ≤ kC∥q̇∥, ∀(q, q̇) ∈ Rn × Rn, for some
constant kC ≥ 0;

2.2. for all (q, q̇) ∈ Rn× Rn, q̇T
[
1
2Ḣ(q, q̇) − C(q, q̇)

]
q̇ = 0

and actually Ḣ(q, q̇) = C(q, q̇) + CT (q, q̇).

Property 3. The viscous friction coefficient matrix satisfies
fm∥q̇∥2 ≤ q̇TF q̇ ≤ fM∥q̇∥2, ∀q̇ ∈ Rn, where 0 < fm !
mini{fi} ≤ maxi{fi} ! fM .

Property 4. The gravity force term g(q) is a continuously
differentiable bounded vector function with bounded Ja-
cobian matrix2 ∂g

∂q . Equivalently, every element of the

gravity force vector, gi(q), i = 1, . . . , n, satisfies:

4.1. |gi(q)| ≤ Bgi, ∀q ∈ Rn, for some constant Bgi > 0;
4.2. ∂gi

∂qj
, j = 1, . . . , n, exist and are continuous and

such that
∣∣∣ ∂gi∂qj

(q)
∣∣∣ ≤

∥∥∥∂g∂q (q)
∥∥∥ ≤ kg, ∀q ∈ Rn, for

some positive constant kg, and consequently |gi(x) −
gi(y)| ≤ ∥g(x) − g(y)∥ ≤ kg∥x − y∥, ∀x, y ∈ Rn.

Let us suppose that the absolute value of each input τi is
constrained to be smaller than a given saturation bound
Ti > 0, i.e., |τi| ≤ Ti, i = 1, . . . , n. More precisely,
letting ui represent the control variable (controller output)
relative to the ith degree of freedom, we have that

τi = Ti sat(ui/Ti) (3)

where sat(·) is the standard saturation function, i.e.
sat(ς) = sign(ς)min {|ς|, 1}.
From Eqs. (1),(3), one sees that Ti ≥ Bgi (see Property
4.1), ∀i ∈ {1, . . . , n}, is a necessary condition for the robot
to be stabilizable at any desired equilibrium configuration
qd ∈ Rn. This important fact is integrated to the analytical
framework of the present work as follows.

Assumption 1. Ti > αBgi, i = 1, . . . , n, for some α ≥ 1.

Functions fitting the following definition will be involved.

1 Since g(q) is the gradient of the gravitational potential energy
U(q), a scalar function, then, for any q, q0 ∈ Rn, the inverse relation
in (2a) is independent of the integration path (Khalil, 2002, p.
120). Eq. (2b) considers integration along the axes. This way, on
every axis (i.e. at every integral in the right-hand side of (2b)), the
corresponding coordinate varies (according to the specified integral
limits) while the rest of the coordinates remain constant.
2 Property 4 is satisfied e.g. by robots having only revolute joints
(Kelly et al., 2005, §4.3).
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presented in (Gorez, 1999) and (Su et al., 2010), are
particularly important since they achieve regulation not
only without the need for the exact knowledge of the
system structure and parameter values but also through
the exclusive feedback of the position variables. This
proves to be particularly useful when velocity measure-
ments are unavailable which seems a common practical
situation. However, it is not yet clear how can a bounded
output-feedback version/extension of the SPD-SI struc-
ture could be analytically supported. A solution to such
an open problem has not only been motivated by the
implicated analytical challenge but also by the nice perfor-
mance expectations generated by analog SPD-type struc-
tures in gravity-compensation-type state-feedback contexts
(Zavala-Ŕıo and Santibáñez, 2006). Such a solution is
developed in this work by contributing an output-feedback
global regulator for robot manipulators with bounded in-
puts that adopts an SPD-SI structure by keeping both the
P and D actions together within a generalized saturation
function while including an additional similar saturating
integral action separately. Moreover, the proposed scheme
permits the choice of the saturation functions and releases
the control gains from saturation avoidance conditions.
The global regulation objective is guaranteed —avoiding
input saturation— considerably reducing the system data
involved in the feedback by releasing this not only from
exact knowledge of the system model and parameter values
but also from velocity measurements. Experimental tests
on a 2-degree-of-freedom (DOF) direct-drive manipulator
corroborate the contributed result.

2. PRELIMINARIES

Let X ∈ Rm×n and y ∈ Rn. Throughout this paper, Xij

represents the element of X at its ith row and jth column,
and yi denotes the ith element of y. 0n stands for the
origin of Rn and In represents the n × n identity matrix.
∥ · ∥ denotes the standard Euclidean norm for vectors,
i.e. ∥y∥ =

√∑n
i=1y

2
i , and induced norm for matrices,

i.e. ∥X∥ =
√
λmax{XTX} where λmax{XTX} represents

the maximum eigenvalue of XTX. For a continuous scalar
function ψ : R $→ R, ψ′ denotes its derivative, when
differentiable, D+ψ its upper right-hand (Dini) derivative,

i.e. D+ψ(ς) = lim suph→ 0+
ψ(ς+h)−ψ(ς)

h , with D+ψ = ψ′

at points of differentiability (Khalil, 2002, Appendix C.2),
and ψ−1 its inverse, when invertible.

Consider the n-DOF serial rigid manipulator dynamics
with viscous friction (Kelly et al., 2005)

H(q)q̈ + C(q, q̇)q̇ + F q̇ + g(q) = τ (1)

where q, q̇, q̈ ∈ Rn are, respectively, the position (general-
ized coordinates), velocity, and acceleration vectors, H(q)
∈ Rn×n is the inertia matrix, and C(q, q̇)q̇, F q̇, g(q), τ ∈
Rn are respectively the vectors of Coriolis and centrifugal,
viscous friction, gravity, and external input generalized
forces, with F ∈ Rn×n being a positive definite constant
diagonal matrix whose entries fi > 0, i = 1, . . . , n, are the
viscous friction coefficients, and g(q) = ∇U(q), with U(q)
being the gravitational potential energy, or equivalently

U(q) = U(q0) +
∫ q

q0

gT (r)dr (2a)

with

∫ q

q0

gT (r)dr =

∫ q1

q01

g1(r1, q02, . . . , q0n)dr1

+ · · ·+
∫ qn

q0n

gn(q1, . . . , qn−1, rn)drn (2b)

for any1 q, q0 ∈ Rn. Some well-known properties charac-
terizing the terms of such a dynamical model are recalled
here (Kelly et al., 2005, Chap. 4). Subsequently, we denote
Ḣ the rate of change of H, i.e., Ḣ : Rn × Rn → Rn×n :

(q, q̇) $→
[
∂Hij

∂q (q)q̇
]
.

Property 1. H(q) is a continuously differentiable matrix
function being positive definite, symmetric and bounded
on Rn, i.e. such that µmIn ≤ H(q) ≤ µMIn, ∀q ∈ Rn, for
some constants µM ≥ µm > 0.

Property 2. The Coriolis matrix C(q, q̇) satisfies:

2.1. ∥C(q, q̇)∥ ≤ kC∥q̇∥, ∀(q, q̇) ∈ Rn × Rn, for some
constant kC ≥ 0;

2.2. for all (q, q̇) ∈ Rn× Rn, q̇T
[
1
2Ḣ(q, q̇) − C(q, q̇)

]
q̇ = 0

and actually Ḣ(q, q̇) = C(q, q̇) + CT (q, q̇).

Property 3. The viscous friction coefficient matrix satisfies
fm∥q̇∥2 ≤ q̇TF q̇ ≤ fM∥q̇∥2, ∀q̇ ∈ Rn, where 0 < fm !
mini{fi} ≤ maxi{fi} ! fM .

Property 4. The gravity force term g(q) is a continuously
differentiable bounded vector function with bounded Ja-
cobian matrix2 ∂g

∂q . Equivalently, every element of the

gravity force vector, gi(q), i = 1, . . . , n, satisfies:

4.1. |gi(q)| ≤ Bgi, ∀q ∈ Rn, for some constant Bgi > 0;
4.2. ∂gi

∂qj
, j = 1, . . . , n, exist and are continuous and

such that
∣∣∣ ∂gi∂qj

(q)
∣∣∣ ≤

∥∥∥∂g∂q (q)
∥∥∥ ≤ kg, ∀q ∈ Rn, for

some positive constant kg, and consequently |gi(x) −
gi(y)| ≤ ∥g(x) − g(y)∥ ≤ kg∥x − y∥, ∀x, y ∈ Rn.

Let us suppose that the absolute value of each input τi is
constrained to be smaller than a given saturation bound
Ti > 0, i.e., |τi| ≤ Ti, i = 1, . . . , n. More precisely,
letting ui represent the control variable (controller output)
relative to the ith degree of freedom, we have that

τi = Ti sat(ui/Ti) (3)

where sat(·) is the standard saturation function, i.e.
sat(ς) = sign(ς)min {|ς|, 1}.
From Eqs. (1),(3), one sees that Ti ≥ Bgi (see Property
4.1), ∀i ∈ {1, . . . , n}, is a necessary condition for the robot
to be stabilizable at any desired equilibrium configuration
qd ∈ Rn. This important fact is integrated to the analytical
framework of the present work as follows.

Assumption 1. Ti > αBgi, i = 1, . . . , n, for some α ≥ 1.

Functions fitting the following definition will be involved.

1 Since g(q) is the gradient of the gravitational potential energy
U(q), a scalar function, then, for any q, q0 ∈ Rn, the inverse relation
in (2a) is independent of the integration path (Khalil, 2002, p.
120). Eq. (2b) considers integration along the axes. This way, on
every axis (i.e. at every integral in the right-hand side of (2b)), the
corresponding coordinate varies (according to the specified integral
limits) while the rest of the coordinates remain constant.
2 Property 4 is satisfied e.g. by robots having only revolute joints
(Kelly et al., 2005, §4.3).
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Definition 1. Given a positive constant M , a nondecreas-
ing Lipschitz-continuous function σ : R → R is said to be
a generalized saturation with bound M if

(a) ςσ(ς) > 0, ∀ς ̸= 0;
(b) |σ(ς)| ≤ M , ∀ς ∈ R.
If in addition

(c) σ(ς) = ς when |ς| ≤ L,

for some positive constant L ≤ M , σ is said to be a linear
saturation for (L,M).

Lemma 1. Let σ : R → R be a generalized saturation with
bound M and let k be a positive constant. Then

1. lim|ς|→∞ D+σ(ς) = 0;
2. ∃σ′

M ∈ (0,∞) such that 0 ≤ D+σ(ς) ≤ σ′
M , ∀ς ∈ R;

3. ς[σ(ς + η)−σ(η)] ≥0, ∀ς, η ∈ R;
4. [σ(kς + η) −σ(η)]2 ≤ σ′

Mkς[σ(kς + η) −σ(η)] ≤
(σ′

Mkς)2, ∀ς, η ∈ R;
5. σ2(kς)

2kσ′
M

≤
∫ ς
0σ(kr)dr ≤ kσ′

M ς2

2 , ∀ς ∈ R;
6.
∫ ς
0σ(kr)dr > 0, ∀ς ̸= 0;

7.
∫ ς
0σ(kr)dr → ∞ as |ς| → ∞;

8. With σ strictly increasing, for any constant a, σ̄(ς) =
σ(ς + a) −σ(a) is a strictly increasing generalized
saturation function with bound M̄ = M + |σ(a)|.

Proof. Items 1, 2, 5–8 are proven in (López-Araujo et al.,
2013). As for items 3 and 4, see Appendix A. ✷

3. THE PROPOSED CONTROL SCHEME

The proposed control law is defined as

u(q,ϑ,φ) = −sP (KP q̄ +KDϑ) + sI(KIφ) (4)

where q̄ = q −qd, for any constant desired equilibrium
position vector qd ∈ Rn; φ,ϑ ∈ Rn are the output vector
variables of the integral-action dynamics, defined as3

φ̇c = −εK−1
P sP (KP q̄) (5a)

φ = −q̄ + φc (5b)

and the velocity estimation subsystem, defined as

ϑ̇c = −A[ϑc +Bq̄] (6a)
ϑ = ϑc +Bq̄ (6b)

respectively; for any x ∈ Rn, sP (x) =
(
σP1(x1), . . . ,

σPn(xn)
)T

and sI(x) =
(
σI1(x1), . . . ,σIn(xn)

)T
, with

σPi(·), i = 1, . . . , n, being linear saturation functions
for (LPi,MPi) and σIi(·), i = 1, . . . , n, being strictly
increasing generalized saturation functions with bounds
MIi, such that

LPi > 2Bgi (7a)

MIi > Bgi (7b)

MPi +MIi ≤ Ti (7c)

i = 1, . . . , n;KP = diag[kP1, . . . , kPn],KD = diag[kD1, . . . ,
kDn], KI = diag[kI1, . . . , kIn], A = diag[a1, . . . , an] and
B = diag[b1, . . . , bn], with kIi > 0, ∀i = 1, . . . , n, and the

3 Under time parametrization of the system trajectories, the
integral-action dynamics in Eqs. (5) adopts the (equivalent) integral-

equation form φ(t) = φ(0) + q̄(0) − q̄(t) −
∫ t

0
εK−1

P sP
(
KP q̄(ς)

)
dς,

for any initial vector values φ(0), q̄(0) ∈ Rn.

rest of the control gains being positive constants such that

kPm ! min
i
{kPi} > kg (8a)

(see Property 4.2) and

βd ! min
i

{
ai
bi

}
>

κ

2fm
(8b)

with κ ! maxi{σ′
PiMkDi}, σ′

PiM being the positive bound
of D+σPi(·), in accordance to item 2 of Lemma 1; and ε
(in Eq. (5a)) is a positive constant satisfying

ε < εM ! min{ε1, ε2, ε3} (9)

where

ε1!
√
β0βPµm

µ2
M

, ε2! β0βdkPm

κ

ε3!
fm − κ

2βd

βM +
f2
M

β0kPm

<
fm − κ

2βd

βM
! ε4

(observe that by inequality (8b): fm− κ
2βd

> 0), with β0!

1−max

{
kg

kPm
,maxi

{
2Bgi

LPi

}}
(observe that by inequalities

(8a) and (7a): 0 < β0 < 1), βM ! kCBP + µMσ′
PM ,

βP ! mini
{

kPi
σ′
PiM

}
, BP !

√
∑n

i=1

(
MPi
kPi

)2
, σ′

PM !
maxi {σ′

PiM}, and µm, µM , kC , fm, fM , Bgi and kg as
defined through Properties 1–4.

Remark 1. Note that q̇ is not involved in any of the
expressions in Eqs. (4)–(6). In fact, q̇ is estimated on-line
through the auxiliary subsystem in Eqs. (6), driven by q̄
as input variable. Its output variable ϑ gives the estimated
vector value of q̇. In fact, the auxiliary subsystem in Eqs.
(6) gives rise to the so-called dirty derivative of q̄. This is
the derivative of q̄ (or the velocity vector q̇) with every of
its components going through a first-order low pass filter.
This is commonly done in practice to bound the high-
frequency gains, giving rise to a causal (approximated)
derivative operator. ▹

Remark 2. Let us note that inequalities (7) (stating con-
ditions on the saturation function parameters) require
the satisfaction of Assumption 1 with α = 3. A similar
condition on the control input bounds has been required
by other approaches where input constraints have been
considered (Colbaugh et al., 1997). In saturating PID-
type schemes from previous references, a similar or analog
condition on the control input bounds remains implicit by
requiring corresponding parameters to be high enough to
satisfy conditions coming from the stability analysis and
simultaneously low enough to fulfill the input-saturation-
avoidance inequalities. ▹

4. CLOSED-LOOP ANALYSIS

Consider system (1),(3) taking u = u(q,ϑ,φ) as defined
through Eqs. (4)–(6). Define the variable transformation

⎛

⎝
q̄
ϑ
φ̄

⎞

⎠ =

(
q −qd

ϑc +B(q −qd)
−q̄ + φc −φ∗

)
(10)

with φ∗ = (φ∗1, . . . ,φ
∗
n)

T such that sI(KIφ∗) = g(qd), or
equivalently φ∗i = σ−1

Ii

(
gi(qd)

)
/kIi, i = 1, . . . , n (notice
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that their strictly increasing character renders the general-
ized saturation functions σIi invertible). Observe that, for
every i ∈ {1, . . . , n} and all (q,ϑ,φ) ∈ Rn×Rn×Rn, by (7c)
and the strictly increasing character of σIi, we have that
|ui(q,ϑ,φ)| ≤ |σPi(kPiq̄i + kDiϑi)| + |σIi(kIiφ)| < MPi +
MIi ≤ Ti. From this and (3), one sees that

Ti > |ui(q̄ + qd,ϑ, φ̄+ φ∗)| = |ui| = |τi| i = 1, . . . , n

∀(q̄,ϑ, φ̄) ∈ Rn × Rn × Rn (11)

Hence, under the consideration of the variable change (10),
the closed-loop dynamics adopts the (equivalent) form

H(q)q̈ + C(q, q̇)q̇ + F q̇ + g(q)

= − sP (KP q̄ +KDϑ) + s̄I(φ̄) + g(qd) (12a)

ϑ̇ = −Aϑ+Bq̇ (12b)
˙̄φ = − q̇ − εK−1

P sP (KP q̄) (12c)

where s̄I(φ̄) = sI(KI φ̄ + KIφ∗) − sI(KIφ∗). Observe
that, by item 8 of Lemma 1, the elements of s̄I(φ̄), i.e.
σ̄Ii(φ̄i) = σIi(kIiφ̄i + kIiφ∗i ) − σIi(kIiφ∗i ), i = 1, . . . , n,
turn out to be strictly increasing generalized saturations.

Proposition 1. Consider the closed-loop system in Eqs.
(12), under the satisfaction of Assumption 1 with α = 3
and inequalities (7). Thus, for any positive definite di-
agonal matrices KI , KP , KD, A and B such that in-
equalities (8) are satisfied, and any ε fulfilling inequality
(9), global asymptotic stability of the closed-loop triv-
ial solution (q̄,ϑ, φ̄)(t) ≡ (0n, 0n, 0n) is guaranteed with
|τi(t)| = |ui(t)| < Ti, i = 1, . . . , n, ∀t ≥ 0.

Proof. By (11), one sees that, along the system trajectories,
|τi(t)| = |ui(t)| < Ti, ∀t ≥ 0. This proves that, under the
proposed scheme, the input saturation values, Ti, are never
reached. Now, in order to carry out the stability analysis,
a scalar function V (q̄, q̇,ϑ, φ̄) is defined as follows4

V =
1

2
q̇TH(q)q̇ + εsTP (KP q̄)K

−1
P H(q)q̇ + U(q) − U(qd)

− gT (qd)q̄ +

∫ q̄

0n

sTP (KP r)dr+

∫ φ̄

0n

s̄TI (r)dr+
κ

2
ϑTB−1ϑ

where
∫ φ̄
0n

s̄TI (r)dr =
∑n

i=1

∫ φ̄i

0 σ̄Ii(ri)dri,
∫ q̄
0n

sTP (KP r)dr =
∑n

i=1

∫ q̄i
0 σPi(kPiri)dri, and recall that U represents the

gravitational potential energy. Note, by recalling Eqs. (2),
that the defined scalar function can be rewritten as

V =
1

2
q̇TH(q)q̇ + εsTP (KP q̄)K

−1
P H(q)q̇ + Uc

γ0(q̄)

+ γ0

∫ q̄

0n

sTP (KP r)dr +

∫ φ̄

0n

s̄TI (r)dr +
κ

2
ϑTB−1ϑ

where

Uc
γ0(q̄) =

∫ q̄

0n

[
g(r + qd) − g(qd) + (1 − γ0)sP (KP r)

]T
dr

=
n∑

i=1

∫ q̄i

0

[
ḡi(ri) − gi(qd) + (1 − γ0)σPi(kPiri)

]
dri

4 Note that, in the error variable space, q = q̄ + qd. Consequently
H(q) = H(q̄ + qd), C(q, q̇) = C(q̄ + qd, q̇) and g(q) = g(q̄ + qd).
However, for the sake of simplicity, H(q), C(q, q̇), and g(q) are
used throughout the paper. Moreover, the arguments of V and
its derivative along the system trajectories, V̇ , will be dropped
throughout the developments.

with
ḡ1(r1) = g1(r1 + qd1, qd2, . . . , qdn)
ḡ2(r2) = g2(q1, r2+ qd2, qd3, . . . , qdn)

...
ḡn(rn) = gn(q1, q2, . . . , qn−1, rn + qdn)

and γ0 is a constant satisfying

β0
ε2

ε21
< γ0< β0 (13)

(observe, from inequality (9) and the definition of β0, that
0 < β0ε2/ε21 < β0< 1). Under this consideration, Uc

γ0(q̄)
turns out to be lower-bounded by

W10(q̄) =
n∑

i=1

w10
i (q̄i) (14a)

where

w10
i (q̄i) !

⎧
⎪⎨

⎪⎩

kli
2
q̄2i if |q̄i| ≤ q̄∗i

kliq̄
∗
i

(
|q̄i| −

q̄∗i
2

)
if |q̄i| > q̄∗i

(14b)

with 0 < kli ≤ (1− γ0)kPi − kg and q̄∗i = [LPi − 2Bgi/(1−
γ0)]/kPi (note that by inequality (13) and the definition
of β0: 0 < (1 − γ0)kPi − kg and q̄∗i > 0); this is proven in
(Mendoza et al., 2015, Appendix 2). From this, Property
1 and item 5 of Lemma 1, we have

V ≥ µm

2
∥q̇∥2− εµM∥K−1

P sP (KP q̄)∥∥q̇∥+W10(q̄)

+ γ0

n∑

i=1

σ2
Pi(kPiq̄i)

2kPiσ′
PiM

+

∫ φ̄

0n

s̄TI (r)dr +
κ

2
ϑTB−1ϑ

≥ W11(q̄, q̇) +W10(q̄) +

∫ φ̄

0n

s̄TI (r)dr +
κ

2
ϑTB−1ϑ (15)

where
W11(q̄, q̇)

=
µm

2
∥q̇∥2− εµM∥K−1

P sP (KP q̄)∥∥q̇∥

+
γ0βP
2

∥K−1
P sP (KP q̄)∥2

=
1

2

(
∥K−1

P sP (KP q̄)∥
∥q̇∥

)T

Q11

(
∥K−1

P sP (KP q̄)∥
∥q̇∥

)

withQ11 =

(
γ0βP − εµM

− εµM µm

)
. By inequality (13),W11(q̄, q̇)

is positive definite (since with ε < εM ≤ ε1, in accordance
to inequality (9), any γ0 satisfying (13) renders Q11 posi-
tive definite) and note that W11(0n, q̇) → ∞ as ∥q̇∥ → ∞
while, from Eqs. (14) and items 6-7 of Lemma 1, it is clear
that W10 and the integral term in the right-hand side of
(15) are radially unbounded positive definite functions of
q̄ and φ̄ respectively. Thus, V (q̄, q̇,ϑ, φ̄) is concluded to be
positive definite and radially unbounded. Its upper right-
hand derivative along the system trajectories, V̇ = D+V
(Michel et al., 2008, §6.1A), is given by

V̇ = − q̇TF q̇ − q̇T sd(q̄,ϕ) − εsTP (KP q̄)K
−1
P F q̇

− εsTP (KP q̄)K
−1
P

[
g(q) + sP (KP q̄) − g(qd)

]

− εsTP (KP q̄)K
−1
P sd(q̄,ϑ) + εq̇T s′P (KP q̄)H(q)q̇

+ εq̇TC(q, q̇)K−1
P sP (KP q̄) − κϑTB−1Aϑ+ κϑT q̇

where H(q)q̈ and ˙̄φ have been replaced by their equivalent
expressions from the closed-loop dynamics in Eqs. (12),
Property 2.2 has been used and
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that their strictly increasing character renders the general-
ized saturation functions σIi invertible). Observe that, for
every i ∈ {1, . . . , n} and all (q,ϑ,φ) ∈ Rn×Rn×Rn, by (7c)
and the strictly increasing character of σIi, we have that
|ui(q,ϑ,φ)| ≤ |σPi(kPiq̄i + kDiϑi)| + |σIi(kIiφ)| < MPi +
MIi ≤ Ti. From this and (3), one sees that

Ti > |ui(q̄ + qd,ϑ, φ̄+ φ∗)| = |ui| = |τi| i = 1, . . . , n

∀(q̄,ϑ, φ̄) ∈ Rn × Rn × Rn (11)

Hence, under the consideration of the variable change (10),
the closed-loop dynamics adopts the (equivalent) form

H(q)q̈ + C(q, q̇)q̇ + F q̇ + g(q)

= − sP (KP q̄ +KDϑ) + s̄I(φ̄) + g(qd) (12a)

ϑ̇ = −Aϑ+Bq̇ (12b)
˙̄φ = − q̇ − εK−1

P sP (KP q̄) (12c)

where s̄I(φ̄) = sI(KI φ̄ + KIφ∗) − sI(KIφ∗). Observe
that, by item 8 of Lemma 1, the elements of s̄I(φ̄), i.e.
σ̄Ii(φ̄i) = σIi(kIiφ̄i + kIiφ∗i ) − σIi(kIiφ∗i ), i = 1, . . . , n,
turn out to be strictly increasing generalized saturations.

Proposition 1. Consider the closed-loop system in Eqs.
(12), under the satisfaction of Assumption 1 with α = 3
and inequalities (7). Thus, for any positive definite di-
agonal matrices KI , KP , KD, A and B such that in-
equalities (8) are satisfied, and any ε fulfilling inequality
(9), global asymptotic stability of the closed-loop triv-
ial solution (q̄,ϑ, φ̄)(t) ≡ (0n, 0n, 0n) is guaranteed with
|τi(t)| = |ui(t)| < Ti, i = 1, . . . , n, ∀t ≥ 0.

Proof. By (11), one sees that, along the system trajectories,
|τi(t)| = |ui(t)| < Ti, ∀t ≥ 0. This proves that, under the
proposed scheme, the input saturation values, Ti, are never
reached. Now, in order to carry out the stability analysis,
a scalar function V (q̄, q̇,ϑ, φ̄) is defined as follows4

V =
1

2
q̇TH(q)q̇ + εsTP (KP q̄)K

−1
P H(q)q̇ + U(q) − U(qd)

− gT (qd)q̄ +

∫ q̄

0n

sTP (KP r)dr+

∫ φ̄

0n

s̄TI (r)dr+
κ

2
ϑTB−1ϑ

where
∫ φ̄
0n

s̄TI (r)dr =
∑n

i=1

∫ φ̄i

0 σ̄Ii(ri)dri,
∫ q̄
0n

sTP (KP r)dr =
∑n

i=1

∫ q̄i
0 σPi(kPiri)dri, and recall that U represents the

gravitational potential energy. Note, by recalling Eqs. (2),
that the defined scalar function can be rewritten as

V =
1

2
q̇TH(q)q̇ + εsTP (KP q̄)K

−1
P H(q)q̇ + Uc

γ0(q̄)

+ γ0

∫ q̄

0n

sTP (KP r)dr +

∫ φ̄

0n

s̄TI (r)dr +
κ

2
ϑTB−1ϑ

where

Uc
γ0(q̄) =

∫ q̄

0n

[
g(r + qd) − g(qd) + (1 − γ0)sP (KP r)

]T
dr

=
n∑

i=1

∫ q̄i

0

[
ḡi(ri) − gi(qd) + (1 − γ0)σPi(kPiri)

]
dri

4 Note that, in the error variable space, q = q̄ + qd. Consequently
H(q) = H(q̄ + qd), C(q, q̇) = C(q̄ + qd, q̇) and g(q) = g(q̄ + qd).
However, for the sake of simplicity, H(q), C(q, q̇), and g(q) are
used throughout the paper. Moreover, the arguments of V and
its derivative along the system trajectories, V̇ , will be dropped
throughout the developments.

with
ḡ1(r1) = g1(r1 + qd1, qd2, . . . , qdn)
ḡ2(r2) = g2(q1, r2+ qd2, qd3, . . . , qdn)

...
ḡn(rn) = gn(q1, q2, . . . , qn−1, rn + qdn)

and γ0 is a constant satisfying

β0
ε2

ε21
< γ0< β0 (13)

(observe, from inequality (9) and the definition of β0, that
0 < β0ε2/ε21 < β0< 1). Under this consideration, Uc

γ0(q̄)
turns out to be lower-bounded by

W10(q̄) =
n∑

i=1

w10
i (q̄i) (14a)

where

w10
i (q̄i) !

⎧
⎪⎨

⎪⎩

kli
2
q̄2i if |q̄i| ≤ q̄∗i

kliq̄
∗
i

(
|q̄i| −

q̄∗i
2

)
if |q̄i| > q̄∗i

(14b)

with 0 < kli ≤ (1− γ0)kPi − kg and q̄∗i = [LPi − 2Bgi/(1−
γ0)]/kPi (note that by inequality (13) and the definition
of β0: 0 < (1 − γ0)kPi − kg and q̄∗i > 0); this is proven in
(Mendoza et al., 2015, Appendix 2). From this, Property
1 and item 5 of Lemma 1, we have

V ≥ µm

2
∥q̇∥2− εµM∥K−1

P sP (KP q̄)∥∥q̇∥+W10(q̄)

+ γ0

n∑

i=1

σ2
Pi(kPiq̄i)

2kPiσ′
PiM

+

∫ φ̄

0n

s̄TI (r)dr +
κ

2
ϑTB−1ϑ

≥ W11(q̄, q̇) +W10(q̄) +

∫ φ̄

0n

s̄TI (r)dr +
κ

2
ϑTB−1ϑ (15)

where
W11(q̄, q̇)

=
µm

2
∥q̇∥2− εµM∥K−1

P sP (KP q̄)∥∥q̇∥

+
γ0βP
2

∥K−1
P sP (KP q̄)∥2

=
1

2

(
∥K−1

P sP (KP q̄)∥
∥q̇∥

)T

Q11

(
∥K−1

P sP (KP q̄)∥
∥q̇∥

)

withQ11 =

(
γ0βP − εµM

− εµM µm

)
. By inequality (13),W11(q̄, q̇)

is positive definite (since with ε < εM ≤ ε1, in accordance
to inequality (9), any γ0 satisfying (13) renders Q11 posi-
tive definite) and note that W11(0n, q̇) → ∞ as ∥q̇∥ → ∞
while, from Eqs. (14) and items 6-7 of Lemma 1, it is clear
that W10 and the integral term in the right-hand side of
(15) are radially unbounded positive definite functions of
q̄ and φ̄ respectively. Thus, V (q̄, q̇,ϑ, φ̄) is concluded to be
positive definite and radially unbounded. Its upper right-
hand derivative along the system trajectories, V̇ = D+V
(Michel et al., 2008, §6.1A), is given by

V̇ = − q̇TF q̇ − q̇T sd(q̄,ϕ) − εsTP (KP q̄)K
−1
P F q̇

− εsTP (KP q̄)K
−1
P

[
g(q) + sP (KP q̄) − g(qd)

]

− εsTP (KP q̄)K
−1
P sd(q̄,ϑ) + εq̇T s′P (KP q̄)H(q)q̇

+ εq̇TC(q, q̇)K−1
P sP (KP q̄) − κϑTB−1Aϑ+ κϑT q̇

where H(q)q̈ and ˙̄φ have been replaced by their equivalent
expressions from the closed-loop dynamics in Eqs. (12),
Property 2.2 has been used and
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s′P (KP q̄) ! diag[D+σP1(kP1q̄1), . . . , D
+σPn(kPnq̄n)]

sd(q̄,ϑ) ! sP (KP q̄ +KDϑ)− sP (KP q̄)

The resulting expression can be rewritten as

V̇ = q̇T [κϑ− sd(q̄,ϑ)]− εsTP (KP q̄)K
−1
P F q̇ − q̇TF q̇

− εγ1s
T
P (KP q̄)K

−1
P KPK

−1
P sP (KP q̄)− εWγ1(q̄)

− εsTP (KP q̄)K
−1
P sd(q̄,ϑ) + εq̇T s′P (KP q̄)H(q)q̇

+ εq̇TC(q, q̇)K−1
P sP (KP q̄)− κϑTB−1Aϑ

where

Wγ1(q̄)

= sTP (KP q̄)K
−1
P

[
(1− γ1)sP (KP q̄) + g(q)− g(qd)

]

=
n∑

i=1

[
(1− γ1)

kPi
σ2
Pi(kPiq̄i) +

σPi(kPiq̄i)

kPi
[gi(q)− gi(qd)]

]

and γ1 is a constant satisfying

β0

[
max

{
ε

ε2
,
ε

ε3

(
ε4− ε3
ε4− ε

)}]
< γ1 < β0 (16)

(from inequality (9) and the definition of β0, one verifies,
after simple developments, that 0 < β0

[
max

{
ε/ε2 , ε(ε4−

ε3)/[ε3(ε4− ε)]
}]

< β0 < 1). Under this consideration,
Wγ1(q̄) turns out to be lower-bounded by

W20(q̄) =
n∑

i=1

w20
i (q̄i) (17a)

where

w20
i (q̄i) =

{
ciq̄

2
i if |q̄i| ≤ LPi/kPi

ϖi(q̄i) if |q̄i| > LPi/kPi
(17b)

with ϖi(q̄i) = di
kPi

(
|σPi(kPiq̄i)| − LPi

)
+ ci

(
LPi
kPi

)2
, di =

(1 − γ1)LPi − 2Bgi, ci = min
{
h, dikPi

LPi

}
and h = (1 −

γ1)kPm−kg (notice, from inequality (16) and the definition
of β0, that di > 0 and h > 0, hence ci > 0); this is proven in
(Mendoza et al., 2015, Appendix 3). From this, Properties
1, 2.1 and 3, items 2 of Lemma 1 and (b) of Definition 1,
and the positive definite character of KP , we have that

V̇ ≤ ∥q̇∥∥κϑ− sd(q̄,ϑ)∥+ εfM∥K−1
P sP (KP q̄)∥∥q̇∥

− fm∥q̇∥2 − εγ1kPm∥K−1
P sP (KP q̄)∥2 − εW20(q̄)

+ ε∥K−1
P sP (KP q̄)∥∥sd(q̄,ϑ)∥+ εµMσ

′
PM∥q̇∥2

+ εkCBP ∥q̇∥2 − κβd∥ϑ∥2

Let us note that by item 4 of Lemma 1, we have that ∥κϑ−
sd(q̄,ϑ)∥2 =

[
κϑ − sd(q̄,ϑ)

]T [
κϑ − sd(q̄,ϑ)

]
= κ2ϑTϑ −

2κϑT sd(q̄,ϑ) + sTd (q̄,ϑ)sd(q̄,ϑ) ≤ κ2∥ϑ∥2 − ∥sd(q̄,ϑ)∥2 ≤
κ2∥ϑ∥2, i.e. ∥κϑ−sd(q̄,ϑ)∥ ≤ κ∥ϑ∥, ∀(q̄,ϑ,φ) ∈ Rn×Rn×
Rn. From this and item 4 of Lemma 1, we get

V̇ ≤ κ∥q̇∥∥ϑ∥+ εfM∥K−1
P sP (KP q̄)∥∥q̇∥+ εµMσ

′
PM∥q̇∥2

− εγ1kPm∥K−1
P sP (KP q̄)∥2 + εκ∥K−1

P sP (KP q̄)∥∥ϑ∥
− fm∥q̇∥2 + εkCBP ∥q̇∥2 − κβd∥ϑ∥2 − εW20(q̄)

≤ −εW21(q̄,ϑ)− εW22(q̄, q̇,ϑ)− εW20(q̄)

where (arguments are dropped for simplicity)

W21 =
γ1kPm

2
∥K−1

P sP (KP q̄)∥2 +
κβd
2ε

∥ϑ∥2

− κ∥K−1
P sP (KP q̄)∥∥ϑ∥

=

(
∥K−1

P sP (KP q̄)∥
∥q̇∥

)T

Q21

(
∥K−1

P sP (KP q̄)∥
∥q̇∥

)

Q21 =

⎛

⎝
γ1kPm −κ

−κ κβd
ε

⎞

⎠ =

⎛

⎝
γ1kPm −κ

−κ κ2ε2
β0kPmε

⎞

⎠

and

W22 =
εγ1kPm

2
∥K−1

P sP (KP q̄)∥2 +
κβd
2

∥ϑ∥2

− εfM∥K−1
P sP (KP q̄)∥∥q̇∥ − κ∥q̇∥∥ϑ∥

+ (fm − εβM )∥q̇∥2

=
1

2

⎛

⎝
∥K−1

P sP (KP q̄)∥
∥q̇∥
∥ϑ∥

⎞

⎠
T

Q22

⎛

⎝
∥K−1

P sP (KP q̄)∥
∥q̇∥
∥ϑ∥

⎞

⎠

Q22 =

⎛

⎜⎝
εγ1kPm −εfM 0

−εfM 2(fm − εβM ) −κ
0 −κ κβd

⎞

⎟⎠

=

⎛

⎜⎜⎝

εγ1kPm Q22
12 0

Q22
12 2βM (ε4− ε) +

κ

βd
−κ

0 −κ κβd

⎞

⎟⎟⎠

with Q22
12 = −ε

√
2β0βMkPm

(
ε4−ε3
ε3

)
. By inequality (16),

W21(q̄,ϑ) and W22(q̄, q̇,ϑ) are positive definite (since with
ε < εM ≤ min{ε2, ε3} < ε4, in accordance to inequality
(9), any γ1 satisfying (16) renders Q21 and Q22 positive
definite), while from Eqs. (17), it is clear that W20 is a
positive definite function of q̄. Hence, V̇ (q̄, q̇,ϑ, φ̄) ≤ 0
with V̇ (q̄, q̇,ϑ, φ̄) = 0 ⇐⇒ (q̄, q̇,ϑ) = (0n, 0n, 0n).
Further, from the closed-loop dynamics in Eqs. (12), we
see that q̄(t) ≡ q̇(t) ≡ ϑ(t) ≡ 0n =⇒ q̈(t) ≡ 0n =⇒
s̄I(φ̄(t)) ≡0n =⇒ φ̄(t) ≡0n (at any (q̄, q̇,ϑ, φ̄) on Z ={
(w, x, y, z) ∈ Rn × Rn × Rn × Rn : w = x = y = 0n

}
with

φ̄ ̸= 0n, the resulting unbalanced force term s̄I(φ̄) acts on
the closed-loop dynamics forcing the system trajectories
to leave Z). Therefore, by the invariance theory (Michel
et al., 2008, §7.2) —more precisely by (Michel et al.,
2008, Corollary 7.2.1)—, the closed-loop trivial solution
(q̄,ϑ, φ̄)(t) ≡ (0n, 0n, 0n) is concluded to be globally
asymptotically stable, which completes the proof. ✷

5. EXPERIMENTAL RESULTS

In order to corroborate the efficiency of the proposed
output-feedback SPD-SI control scheme, real-time tests
were implemented using a 2-DOF direct-drive robot ma-
nipulator. The experimental setup is a 2-revolute-joint
robot arm located at the Instituto Tecnológico de la La-
guna, Mexico, previously used in (López-Araujo et al.,
2013). The robot actuators are direct-drive brushless ser-
vomotors operated in torque mode, i.e. they act as torque
sources and receive an analog voltage as a torque refer-
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ence signal. Joint positions are obtained using incremental
encoders on the motors. In order to get the encoder data
and generate reference voltages, the robot includes a mo-
tion control board based on a DSP 32-bit floating point
microprocessor. The control algorithm is executed at a 2.5
millisecond sampling period on a PC-host computer.

For the experimental manipulator, Properties 1–4 are
satisfied with µm = 0.088 kg·m2 , µM = 2.533 kg·m2 , kC =
0.1455 kg·m2 , fm = 0.175 kg·m2/s, fM = 2.288 kg·m2/s,
Bg1 = 40.29 Nm, Bg2 = 1.825 Nm and kg = 40.373
Nm/rad. The maximum allowed torques (input saturation
bounds) are T1 = 150 Nm and T2 = 15 Nm for the first
and second links respectively. From these data, one easily
corroborates that Assumption 1 is fulfilled with α = 3.

The saturation functions used for the implementation were
σPi(ς) = MPisat(ς/MPi) and

σIi(ς) =

{
ς ∀|ς| ≤ LIi

ρ(ς;LIi,MIi) ∀|ς| > LIi

where ρ(ς;L,M) = sign(ς)L+ (M − L) tanh
(
ς−sign(ς)L

M−L

)
,

i = 1, 2, for 0 < L < M . Note that σ′
PiM = σ′

IiM = 1,
∀i ∈ {1, 2}. The saturation function parameters were
selected in order to satisfy inequalities (7) as (all of them
expressed in Nm): MP 1 = 81, MP 2 = 7, MI1 = 48,
MI2 = 5 and LIi = 0.9MIi, i = 1, 2.

For comparison purposes, additional experimental tests
were implemented using the output-feedback version of
the bounded PID-type controller presented in (Su et al.,
2010) (choice made taking into account the analog nature
of the compared algorithms: globally stabilizing via output
feedback developed in a bounded-input context, and the
recent appearance of (Su et al., 2010)), i.e.

u = −KPTanh(q̄) − KDTanh(ϑ) − KITanh(φ) (18a)

ϑ̇c = −A[ϑc +Bq]
ϑ = ϑc +Bq

(18b)

φ̇c = Tanh(q̄)

φ = η2 q̄ + ηφc
(18c)

with η being a (sufficiently large) positive constant and

Tanh(x) =
(
tanhx1 , . . . , tanhxn

)T
for any x ∈ Rn. 5

For the sake of simplicity, this algorithm is subsequently
referred to as the S10 controller.

The experiments were run taking the desired joint po-

sitions as qd =
(
qd1 , qd2

)T
=
(
π/4,π/4

)T
[rad]. The

initial conditions were q(0) = q̇(0) = 02 and, for the
SPD-SI type algorithm proposed in this work, φc(0) was
taken so as to have φ(0) = 02 , while φc(0) = 02 was
taken for the S10 controller in view of the way how it

5 In place of Eqs. (18c), Su et al. (2010) define φ(t) = η2q̄(t) +

η
∫ t

0
Tanh

(
q̄(ς)
)
dς, which imposes the auxiliary variable initial con-

dition φ(0) = η2q̄(0) (or, equivalently, φc(0) = 0n in the context of
Eqs. (18c)). Instead, Eqs. (18c) —or their (equivalent) time represen-

tation φ(t) = φ(0)+η2
[
q̄(t)− q̄(0)

]
+η
∫ t

0
Tanh

(
q̄(ς)
)
dς— keeps the

required auxiliary dynamics while permitting any initial condition
for φ (or, equivalently, for φc in the context of Eqs. (18c)). This
proves to be more appropriate in the global stabilization framework
considered in (Su et al., 2010) (and what is generally expected from
an approach developed within such a framework).
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is presented in (Su et al., 2010) (recall Footnote 5). The
control parameters for the scheme proposed in this work
were selected —taking into account the tuning conditions
from inequalities (8) and (9)— so as to get fast responses.
As for the S10 algorithm, the control parameters were
tuned so as to get the best possible closed-loop responses
while adhering to the saturation-avoidance inequalities
and stability conditions (some of which had to be verified
numerically) presented in (Su et al., 2010). The result-
ing tuning values were: KP = diag[6000, 500] Nm/rad,
KD = diag[2, 2] Nms/rad, KI = diag[900, 1500] Nm/rad,
A = diag[60, 60] s−1 , B = diag[5, 5] s−1 and ε = 0.024 s−1

for the proposed SPD-SI scheme, andKP = diag[108, 11.5]
Nm, KD = diag[0.5, 0.1] Nm, KI = diag[40.5, 1.9] Nm,
A = diag[60, 40] s−1 , B = diag[70, 20] s−1 and η = 170
s/rad for the S10 controller.

Figs. 1 and 2 show the experimental results. Note that
the proposed SPD-SI controller achieved the regulation
objective —avoiding input saturation— with relatively low
overshoot. The S10 controller is also observed to achieve
the regulation objective preventing input saturation but
with a higher overshoot that could not be lowered down
under the tuning procedure presented in (Su et al., 2010).
Note further that the control objective has been achieved
with negligible effect (on the system trajectories) of the
imminent measurement noise. Restricted effect of noise
on the closed loop responses may be seen as a natural
consequence of the output-feedback nature of the proposed
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ence signal. Joint positions are obtained using incremental
encoders on the motors. In order to get the encoder data
and generate reference voltages, the robot includes a mo-
tion control board based on a DSP 32-bit floating point
microprocessor. The control algorithm is executed at a 2.5
millisecond sampling period on a PC-host computer.

For the experimental manipulator, Properties 1–4 are
satisfied with µm = 0.088 kg·m2 , µM = 2.533 kg·m2 , kC =
0.1455 kg·m2 , fm = 0.175 kg·m2/s, fM = 2.288 kg·m2/s,
Bg1 = 40.29 Nm, Bg2 = 1.825 Nm and kg = 40.373
Nm/rad. The maximum allowed torques (input saturation
bounds) are T1 = 150 Nm and T2 = 15 Nm for the first
and second links respectively. From these data, one easily
corroborates that Assumption 1 is fulfilled with α = 3.

The saturation functions used for the implementation were
σPi(ς) = MPisat(ς/MPi) and

σIi(ς) =

{
ς ∀|ς| ≤ LIi

ρ(ς;LIi,MIi) ∀|ς| > LIi

where ρ(ς;L,M) = sign(ς)L+ (M − L) tanh
(
ς−sign(ς)L

M−L

)
,

i = 1, 2, for 0 < L < M . Note that σ′
PiM = σ′

IiM = 1,
∀i ∈ {1, 2}. The saturation function parameters were
selected in order to satisfy inequalities (7) as (all of them
expressed in Nm): MP 1 = 81, MP 2 = 7, MI1 = 48,
MI2 = 5 and LIi = 0.9MIi, i = 1, 2.

For comparison purposes, additional experimental tests
were implemented using the output-feedback version of
the bounded PID-type controller presented in (Su et al.,
2010) (choice made taking into account the analog nature
of the compared algorithms: globally stabilizing via output
feedback developed in a bounded-input context, and the
recent appearance of (Su et al., 2010)), i.e.

u = −KPTanh(q̄) − KDTanh(ϑ) − KITanh(φ) (18a)

ϑ̇c = −A[ϑc +Bq]
ϑ = ϑc +Bq

(18b)

φ̇c = Tanh(q̄)

φ = η2 q̄ + ηφc
(18c)

with η being a (sufficiently large) positive constant and

Tanh(x) =
(
tanhx1 , . . . , tanhxn

)T
for any x ∈ Rn. 5

For the sake of simplicity, this algorithm is subsequently
referred to as the S10 controller.

The experiments were run taking the desired joint po-

sitions as qd =
(
qd1 , qd2

)T
=
(
π/4,π/4

)T
[rad]. The

initial conditions were q(0) = q̇(0) = 02 and, for the
SPD-SI type algorithm proposed in this work, φc(0) was
taken so as to have φ(0) = 02 , while φc(0) = 02 was
taken for the S10 controller in view of the way how it

5 In place of Eqs. (18c), Su et al. (2010) define φ(t) = η2q̄(t) +

η
∫ t

0
Tanh

(
q̄(ς)
)
dς, which imposes the auxiliary variable initial con-

dition φ(0) = η2q̄(0) (or, equivalently, φc(0) = 0n in the context of
Eqs. (18c)). Instead, Eqs. (18c) —or their (equivalent) time represen-

tation φ(t) = φ(0)+η2
[
q̄(t)− q̄(0)

]
+η
∫ t

0
Tanh

(
q̄(ς)
)
dς— keeps the

required auxiliary dynamics while permitting any initial condition
for φ (or, equivalently, for φc in the context of Eqs. (18c)). This
proves to be more appropriate in the global stabilization framework
considered in (Su et al., 2010) (and what is generally expected from
an approach developed within such a framework).
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is presented in (Su et al., 2010) (recall Footnote 5). The
control parameters for the scheme proposed in this work
were selected —taking into account the tuning conditions
from inequalities (8) and (9)— so as to get fast responses.
As for the S10 algorithm, the control parameters were
tuned so as to get the best possible closed-loop responses
while adhering to the saturation-avoidance inequalities
and stability conditions (some of which had to be verified
numerically) presented in (Su et al., 2010). The result-
ing tuning values were: KP = diag[6000, 500] Nm/rad,
KD = diag[2, 2] Nms/rad, KI = diag[900, 1500] Nm/rad,
A = diag[60, 60] s−1 , B = diag[5, 5] s−1 and ε = 0.024 s−1

for the proposed SPD-SI scheme, andKP = diag[108, 11.5]
Nm, KD = diag[0.5, 0.1] Nm, KI = diag[40.5, 1.9] Nm,
A = diag[60, 40] s−1 , B = diag[70, 20] s−1 and η = 170
s/rad for the S10 controller.

Figs. 1 and 2 show the experimental results. Note that
the proposed SPD-SI controller achieved the regulation
objective —avoiding input saturation— with relatively low
overshoot. The S10 controller is also observed to achieve
the regulation objective preventing input saturation but
with a higher overshoot that could not be lowered down
under the tuning procedure presented in (Su et al., 2010).
Note further that the control objective has been achieved
with negligible effect (on the system trajectories) of the
imminent measurement noise. Restricted effect of noise
on the closed loop responses may be seen as a natural
consequence of the output-feedback nature of the proposed
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Table 1. Performance index evaluations

perf. index SPD-SI S10

ts 1.15 s 1.68 s
t0 = ts, ∆ = 3.32 s 0.001 0.002

ISE
t0 = 0, ∆ = 5 s 0.224 0.533

approach since only position variables are considered in
the control algorithm, avoiding additional noise corruption
from speed measurements.

For further comparison, two performance indices were
evaluated for every tested controller: the stabilization
time, taken as ts = inf{t̄s ≥ 0 : ∥q̄(t)∥ ≤ 0.05∥q̄(0)∥ ∀t ≥
t̄s}, and the integral of the square of the position error

(ISE), i.e.
∫ t0+∆
t0

[∑2
i=1q̄

2
i (t)

]
dt. Table 1 shows the result-

ing values of such performance index evaluations, whence
one concludes that the SPD-SI algorithm has achieved
faster stabilization (shorter ts), lower steady-state error
(ISE with t0= ts and ∆ = 3.32 s) and lower ISE-valued
mean position error (deviation) during the whole test (ISE
with t0= 0 and ∆ = 5 s).

6. CONCLUSIONS

Global stabilization of robot manipulators with bounded
inputs through PID-type controllers had been achieved
with a considerable degree of complexity. Efforts on the
simplification of such type of algorithms conducted to sim-
ple SP-SI-SD and SPD-SI approaches. While an output-
feedback extension of the former could be developed, it was
not clear how to release the latter from velocity measure-
ments, which are not always available in practice. Such an
analytical challenge has been overcome in this work, by
contributing an output-feedback SPD-SI control scheme
constructed by means of generalized saturation functions.
The efficiency of the proposed scheme was corroborated
through experimental results on a 2-DOF manipulator.
Future work will focus on a generalization of the output-
feedback PID-type control structure offering multiple op-
tions on the saturating structure, thus widening the design
alternatives to improve the closed-loop performance.
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Appendix A

3. Let ψ, ς, η ∈ R. Since σ is nondecreasing, we have that
σ(ψ) ≥ σ(η) ⇐⇒ ψ ≥ η and σ(ψ) ≤ σ(η) ⇐⇒ ψ ≤
η. Let ψ = ς+η. Then σ(ς+η)−σ(η) ≥ 0 ⇐⇒ ς ≥ 0,
∀η ∈ R, and σ(ς + η)−σ(η) ≤ 0 ⇐⇒ ς ≤ 0, ∀η ∈ R,
whence it follows that ς[σ(ς+η)−σ(η)] ≥ 0, ∀ς, η ∈ R.

4. From Lipshitz-continuity of σ and item 2 of the
statement, we have |σ(kς + η) −ς(η)| ≤ σ′

Mk|ς|. By
multiplying both sides of this inequality by |σ(ς+η)−
ς(η)| and taking into account item 3 of the statement,
we get [σ(kς+η)−σ(η)]2≤ σ′

Mk
∣∣ς[σ(kς+η)−σ(η)]

∣∣ =
σ′
Mkς[σ(kς + η)−σ(η)], ∀ς, η ∈ R, while by the same

arguments we get σ′
Mkς[σ(kς + η)−σ(η)] = σ′

Mk|ς| ·
|σ(kς + η)−σ(η)| ≤ (σ′

Mkς)2, ∀ς, η ∈ R, whence one
concludes that [σ(kς+η)−σ(η)]2≤ σ′

Mkς[σ(kς+η)−
σ(η)] ≤ (σ′

Mkς)2, ∀ς, η ∈ R.

IFAC SYROCO 2015
August 26-28, 2015. Salvador, BA, Brazil

94


