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Generalized Cornu-type Spirals and their Darboux parametric deformations
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We generalize the Fresnel integrals and introduce a class of planar spirals Fn, which contains the
Cornu spiral as the case F2. Their Darboux parametric deformations are also investigated. The F3

spiral and some of its Darboux deformed counterparts are graphically illustrated.
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I. INTRODUCTION

The purpose of this Letter is to introduce a class of spi-
rals which generalizes the Cornu spiral [1] and to study
their properties and supersymmetric deformations using
an approach [2] based on parametric Darboux transfor-
mations. Like in supersymmetric quantum mechanics,
the parameter is the constant of integration of the gen-
eral Riccati solution [3–7]. For this generalization, we
consider the following trigonometric functions

cos
� p
nz

n
�
, (1)

sin
� p
nz

n
�
, (2)

where p > 1 is an arbitrary positive constant, which can
be naturally chosen as p = ⇡. The spirals, Fn, are defined
through the Argand plane representation, Fn = Xn+iYn,
with Xn and Yn, as the following integrals

Cn(z) ⌘ Xn(z) =

Z z

0
cos

⇣
p

n
s
n
⌘
ds , (3)

Sn(z) ⌘ Yn(z) =

Z z

0
sin

⇣
p

n
s
n
⌘
ds , (4)

which we call the generalized Fresnel integrals and are
parametrized by the arclength of the spiral, s. In prin-
ciple, n can be any positive integer, but here we will
discard the cases n = 0, which is the logarithmic spiral,
and n = 1 since the spiral F1 is the circle. For the case
n = 2 and p = ⇡, C2(z) and S2(z) are the Fresnel in-
tegrals and the spiral F2 is the Cornu spiral that were
discussed in [2].
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We recall here that the planar curves are character-
ized by the relationship between the curvature and the
arc length known as the Cesàro formula, and by the same
token the Cornu spiral is defined as the curve whose cur-
vature increases linearly with arc length. This means
that the radius of curvature ⇢ times the arc length s is
constant at each point of the Cornu spiral. In the case
of the generalized Cornu spirals, the Cesàro equation has
the form ⇢(s) = s

1�n
/p, which for n = 2 and p = ⇡ re-

duces to the standard Cesàro equation for the common
Cornu spiral. For n = 1 one obtains the constant radius
of curvature of the circle, and for n = 0, the radius of
curvature is proportional to the arc length which yields
to the logarithmic spiral.
In this Letter, we consider the set of generalized spirals

Fn by means of the complex parameter which appears in
the general solution of the Riccati equation that corre-
sponds to the associated generalized Fresnel integrals. In
Section II, we show the reduction of the third order ordi-
nary di↵erential equation (ODE) satisfied by these inte-
grals as particular solutions to the corresponding Riccati
equation, whose general solution is obtained explicitly.
We then write the solution of the third order ODE based
on the general Riccati solution and present Argand plots
of this solution. In Section III, the similarity with super-
symmetric quantum mechanics is emphasized by means
of the factorization approach [3–7] which is applied to
the second order linear ODE that comes into play in the
reduction process of Section II.

II. THE Fn SPIRALS: THE THIRD AND
SECOND ORDER ODES AND THE RICCATI

EQUATION

The following linear third order ODE

zw000 � (n� 1)w00 + p
2
z
2n�1w0 = 0 (5)
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is satisfied by the generalized Fresnel integrals Cn(z) and
Sn(z), and so the general solution can be written as the
superposition

w(z) = ↵Cn(z) + �Sn(z) + w(0) . (6)

In addition, (5) can be reduced to the second order ODE

v
00 � (n� 1)

z
v
0 +

�
pz

n�1
�2

v = 0 (7)

by using w0(z) = v(z), with 0 = d
dz . Letting z

n = ⇣, we
obtain the simple harmonic oscillator equation

d
2
v

d⇣2
+
⇣
p

n

⌘2
v = 0 . (8)

Thus, the solution for (7) is

v(z) = c1 cos
⇣
p

n
z
n
⌘
+ c2 sin

⇣
p

n
z
n
⌘

, (9)

and by one integration, one obtains the solution (6).
On the other hand, using the logarithmic derivative

y(z) = v0(z)
v(z) , (7) becomes the Riccati equation

y
0 + y

2 =
n� 1

z
y � p

2
z
2n�2 (10)

with particular solution

yp(z) = ipz
n�1

. (11)

To construct the general solution of Riccati equa-
tion (10) using any particular solution yp, we write the
Bernoulli ansatz

yg(z) = yp(z) +
1

u(z)
, (12)

where u satisfies the linear equation

u
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✓
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z
� 2yp

◆
u = 1 . (13)

The solution of (13) is

u(z) =
� +

R z
0 µ(s)ds

µ(z)
, (14)

where µ(z) is the integrating factor

µ(z) = z
n�1

e
�2i p

n zn

, (15)

which gives the general Riccati solution in the form

yg(z) = yp(z) +
µ(z)

� +
R z
0 µ(s)ds

, (16)

and � arbitrary. Using (15) in (16) and redefining the

integration constant as � = i(✓+1)
2p provides the explicit

form of the general Riccati solution

yg(z) = ipz
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✓
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◆
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We then find a polar form of the general solution for (7)
using vg(z) = Re

R
yg(z)dz to obtain

vg(z) = R

⇣
e
�i p

n zn

+ ✓e
i p
n zn

⌘
, (18)

By one integration, assuming w(0) = 0 and using Euler’s
formula, the deformed solution of (5) is given by

wg(z;n) = R[(1 + ✓) Cn(z) + i(�1 + ✓)Sn(z)] (19)

and letting ✓ = a+ ib 6= 0, we obtain

wR(z;n) = R
⇥
(a+ 1) Cn(z)� bSn(z)

⇤
,

wI(z;n) = R
⇥
b Cn(z) + (a� 1)Sn(z)

⇤
.

(20)

Comparing (6) with (20), one can see that we managed
to replace the superposition constants ↵ and � by the
real and imaginary components of the parameter entering
the general Riccati solution. This replacement helps to
disentangle an underlying supersymmetric structure of
the solution expressed in this way as it will be shown in
the next section.
Argand plots of the generalized Fresnel spirals for n =

3 are shown in Fig. 1 based on di↵erent values of the
deformation parameter � = �b+i(a+1)

2⇡ . In the center,
when a = 1 and b = 0, we used the standard undeformed
spiral given by wR(z; 3) = C3(z) and wI(z; 3) = S3(z).
All figures, except the a = 1, b = 0 case, are scaled by
the factor R = 1/

p
a2 + b2.

To find the analytical expressions of the generalized
Fresnel integrals for n � 2, together with their foci cor-
responding to z ! ±1, we proceed as follows. First,
we let '(s) = p

ns
n, and we notice that d' = ds

⇢(s) , and

by inverting we find ⇢(') = n
1�n
n

p
1
n

'
1�n
n , thus (3) and (4)

become
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with the upper limit given by z
? = p

nz
n. These inte-

grals can now be found in closed form in terms of the
hypergeometric function, as they are
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The location of the foci of the generalized undeformed
spirals are obtained from (23) and (24) by letting z

? !
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±1. The focus in the first quadrant has the coordinates
given by

xFn
=

✓
n

p

◆ 1
n

�
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1 +
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whereas the second focus can be found in the second
quadrant at (�xFn

, yFn
) if n is odd and in the third

quadrant at (�xFn
, �yFn

) if n is even. Both foci lie on
the circle of radius
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.

Moreover, for n � 1, we use the expansion

�

✓
1

n

◆
⇡ n� � +

1

2

✓
�
2 +

⇡
2

6

◆
1

n
+O

✓
1

n2

◆
,

where � = 0.577 is the Euler-Mascheroni constant, and
the limit

�
n
1/n

�
n!1 = 1, to show that yF1 ! 0 and

xF1 ! 1. Consequently, at ever increasing n, these type
of spirals are stretched more and more along the [-1,1]
segment of the abscissa axis with the two foci at the end
points. Concerning the deformed spirals, the coordinates
of the foci are related to the undeformed foci through
(20)

x
d
Fn
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� b yFn

⇤
, (27)

y
d
Fn

= R
⇥
b xFn

+ (a� 1) yFn

⇤
, (28)

or in matrix form
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with cos � = a/

p
a2 + b2, sin � = b/

p
a2 + b2, and �3 the

Pauli z-spin-flip matrix showing the rotation part and
the flip part of the deformation.

To illustrate these results, we choose the odd case n =
3. Using the value of z? for n = 3 and p = ⇡, (23) and
(24) are
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with the following coordinates of the foci

xF3
= ±

p
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✓
3
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◆
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In Fig. 2, we show the graphs of the generalized Fresnel
integrals for n = 3 for the same values of parameters a

and b from Fig. 1. The location of the horizontal asymp-
totes are the foci for z > 0 for the center plot when
a = 1, b = 0 which corresponds to the standard spiral.

III. THE SUPERSYMMETRIC APPROACH

There are hidden supersymmetric features in the defor-
mations of these spirals generated by the complex Ric-
cati parameter. To reveal the supersymmetric aspects,
we resort on the factorization technique for ordinary dif-
ferential equations, which has been used by many authors
to solve quantum mechanical eigenvalue problems and in
the study of isospectral problems in the area of supersym-
metric quantum mechanics, for reviews see [5, 8]. Thus
we write equation (7) in the factorized form A

�
A

+
v = 0

using the factoring operators given by

A
+ = z

�n�1
2

d
dz + pz

n�1
2 tan pzn

n

A
� = d

dz z
�n�1

2 � pz
n�1
2 tan pzn

n .

(34)

To find out the explicit second-order linear ODE that
corresponds to the generalized deformed Cornu spirals,
we first write the general Riccati solution (17) in the
trigonometric form

yg(z) = �pz
n�1 tan

✓
pz

n

n
+ �

◆
, ✓ = Re

i�
, (35)

and like in supersymmetric quantum mechanics we
employ it in the supersymmetric partner equation
A

+
A

� eV = 0, i.e.,


z
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dz
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�n�1
2 yg(z)

� 
d
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z
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2 + z
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2 yg(z)
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(36)
We then obtain this equation as

eV 00 � n� 1

z

eV 0 +
h�
pz

n�1
�2

+�Darb(z;n,�)
i
eV = 0 ,

(37)
with the Darboux distortion, which depends parametri-
cally on the phase shift �, given by

�Darb(z;n,�) = �2
�
pz

n�1
�2

+ n2�1
4z2

�(n� 1)pzn�2 tan
⇣

pzn

n + �

⌘
(38)

�2
�
pz

n�1
�2

tan2
⇣

pzn

n + �

⌘
.

In Fig. 3, we display various cases of the parametric Dar-
boux distortions �Darb(z;�) of the deformed Cornu spi-
rals presented in Fig. 1. We notice the negative parabolic
envelope as given by the first term in (38) together with
the singularities due to the terms containing the tan-
gents for nonzero z. The singularities at the origin are
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due to the 1/z2 term except for the cases � = ⇡/2 and
3⇡/2 when the dominant contribution comes from the
cotangent terms. For these values of phase, the Darboux
distortion simplifies to

�Darb(z; 0,⇡) =
2
z2 � 2⇡2

z
4

h
1+ 1
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⇣
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The general solution to (37) can be found by letting
A

� eV = eUh, and first solving the homogenous equation
A

+ eU = 0 with solution

eUh(z;n,�) = b1 cos

✓
pz

n

n
+ �

◆
. (39)

We then obtain the general solution eV in the form

eV (z;n,�) = 1
4n z

n�1
2 sec

⇣
pzn

n + �

⌘

"
2n (b1z cos�+ 2b2)�
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e
i�
En�1

n

⇣
� 2ipzn

n

⌘
+ e

�i�
En�1

n
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where Em(⌧) is the generalized exponential integral func-

tion given by Em(⌧) =
R1
1

e�⌧s

sm ds.

IV. CONCLUSION

The spirals Fn, of which the particular case F2 is the
Cornu spiral, have been defined in this Letter, and their
parametric Darboux deformations generated through the
corresponding general Riccati solution have been studied
in detail, with focus on the odd case F3. Geometrically,
these deformations are generated by the two independent
shifts, a and b, along the two orthogonal axes of the plane
in which the spirals are plotted. These shifts determine
both the deformation of the rolls of the spirals and its
global rotation as seen in the plots. One can think of pos-
sible applications similar to those of the Cornu (clothoid)
spiral, such as higher-order optical di↵raction and tran-
sition curves in road and railway alignments.
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FIG. 1: The generalized F3 spiral for di↵erent values of the
parameters a and b.
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FIG. 2: Generalized Fresnel integrals for n = 3, for the same
values of the parameters a and b given in Fig. 1.
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