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Abstract

In this paper the collective dynamics of N-coupled piecewise linear
(PWL) systems with different number of scrolls and coupled in a master-
slave sequence configuration is studied, i.e. a ring connection with uni-
directional links. Itinerary synchronization is proposed to detect syn-
chrony behavior with systems that can present generalized multistability.
Itinerary synchronization consists in analyzing the symbolic dynamics of
the systems by assigning different numbers to the regions where the scrolls
are generated. It is shown that in certain parameter regimes if the inner
connection between nodes is given by means of considering all the state
variables of the system, then itinerary synchronization occurs and the
coordinate motion is determined by the node with the smallest number
of scrolls. Thus the collective behavior in all the nodes of the network
is determined by the node with least scrolls in its attractor leading to
generalized multistability phenomena which can be detected via itinerary
synchronization. Results about attacks to the network are also presented,
for example, when the PWL system is attacked by removing a given link
to produce an open ring configuration. Depending on the inner connection
properties, the nodes present multistability or preservation in the number
of scrolls of the attractors.

keywords: Piecewise linear systems; chaos; dynamical networks, multiscroll
attractor.
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1 Introduction

Piecewise linear (PWL) systems are used to construct simple chaotic oscillators
capable of generating various multiscroll attractors in the phase space. These
systems contain a linear part plus a nonlinear element characterized by a switch-
ing law. One of the most studied PWL system is the so called Chua’s circuit,
whose nonlinear part (also named the Chua diode) generates two scroll attrac-
tors [1, 2]. Inspired by the Chua circuit, a great number of PWL systems have
been produced via various switching systems [3]. A review and summary of
different approaches to generate multiscroll attractors can be found in [4, 5, 6]
and references therein.

Synchronization phenomena in a pair of coupled PWL systems has also at-
tracted attention in the context of nonlinear dynamical systems theory and its
applications [7, 8].

In general, we say that a set of dynamical systems achieve synchronization
if they adjust their motion to approach a common trajectory (in some sense)
by means of interactions [9].

One way to study synchronization in a pair of PWL systems is to couple
them in a master-slave configuration [1, 10]. In [11] the dynamics mechanism
of the projective synchronization of Chua circuits with different scrolls is inves-
tigated. In [12], a master-slave system composed of PWL systems is considered
in which the slave system displays more scrolls in its attractor than the master
system. The main result is that the slave system synchronizes with the master
system by reducing its number of attractor scrolls, while the master preserves
its number of scrolls. A consequence is the emergence of multistability phenom-
ena. For instance, if the number of scrolls presented by the master system is less
than the number of scrolls presented by the slave system, then the slave system
can oscillate in multiple basins of attraction depending on its initial condition.
Conversely, when the system of [12] is adjusted so that the master system dis-
plays more scrolls than the slave system when uncoupled then the slave system
increases its number of attractor scrolls when coupled.

We study a system composed of an ensemble of master-slave systems coupled
in a ring configuration network; i.e., a dynamical network where each node is a
PWL-system with different number of scrolls in the attractors and connected in
a ring topology with directional links. In order to address this problem, we intro-
duce three concepts: 1) scroll-degree, which is defined as the number of scrolls
of an attractor in a given node; 2) a network of nearly identical nodes, i.e., a dy-
namical network composed of PWL systems with perhaps different scroll degree
but similar form and 3) itinerary synchronization based on symbolic dynamics.
A PWL system is defined by means of a partition of the space where linear
systems act, so this natural partition is useful for analyzing synchronization
between dynamical systems by using symbolic dynamics. Of course itinerary
synchronization does not imply complete synchronization, where trajectories
converge to a single one. In this paper we study the emergence of itinerary
synchronization, multistability and the preservation of the scroll number of a
network of nearly identical nodes.
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In real networks, there are common types of network attacks. There are
attacks where information is monitored, this attack is known as passive attack;
other attacks alter the information with intent to corrupt it or destroy the
network itself, this kind of attack is known as active attack. In this work,
link attacks are introduced to the ring topology in order to study the effect
of topology changes in the collective dynamics of the network. Such attacks
modify the topology by deleting a single link, transforming the structure to an
open chain of coupled systems which we call an open ring. We have formulated
two possible scenarios after the link attack: a) the first node in the chain has
the largest scroll-degree or, b) it has the smallest one. In both scenarios we
assume that the inner coupling matrix is the identity matrix i.e. the coupling
between any pair of nodes is throughout all its state variables.

We believe that a study of such collective phenomena in a network of PWL
systems contributes to a better understanding of the collective dynamics of a
network with non identical nodes. The general case is difficult to tackle. For
example, in [13], Sun et.al. studied the case in which nodes are nearly identical
in the sense that each node has a slight parametric mismatch. The authors
proposed an extension of the master stability functions in this type of dynamical
network. On the other hand, based on stability analysis with multiple Lyapunov
functions, Zhao et.al. established synchronization criteria for certain networks
of non-identical nodes with the same equilibria point [14]. The authors proposed
stability conditions in terms of inequalities involving matrix spectra which are,
computationally speaking, difficult to solve. To the best of our knowledge,
multistability and scroll-degree preservation have not been studied in the context
of dynamical networks. This is a problem with potential applications. For
example, a dynamical network of PWL system increases the complexity in its
behavior, so this can be used to generate a secure communications system, and
due to the simplicity, it could be easily implemented in an electronic device.

We have organized this paper as follows: In section 2 we introduce some
mathematical preliminaries. In section 3 the dynamics of N-coupled PWL sys-
tems in a ring topology network is analyzed. In section 4 some examples about
itinerary synchronization are studied and different forms of couplings are also
considered. Moreover, in this section we study the dynamics of a network when
some link attacks occur. Finally, in section 5 we consider open problems.

2 Mathematical Preliminaries

2.1 Piecewise linear dynamical systems

Let T : X → X , with X ⊂ Rn and n ∈ Z+, be a piecewise linear dynamical
system whose dynamics is given by a family of sub-systems of the form

Ẋ = AτX +Bτ , (1)

where X = (x1, . . . , xn)T ∈ Rn is the state vector, Aτ = {ατ
ij} ∈ Rn×n, with

ατ
ij ∈ R+, and Bτ = (βτ1, . . . ,βτn)T ∈ Rn are the linear operators and constant

3



real vectors of the τth-subsystems, respectively. The index τ ∈ I = {1, . . . , η} is
given by a rule that switches the activation of a sub-system in order to determine
the dynamics of the PWL system.

Note that the index τ generates the symbolic dynamics of activation of the
subsystems, so depending on the initial condition the itinerary is given. The
selection of the index τ can be given according to a predefined itinerary and
controlling by time; or assuming that τ takes its value according to the state
variable χ and a finite partition of the state-space P = {P1, . . . , Pr}, with
r ∈ Z+.

Definition 2.1. Let X be a subset of Rn and P = {P1, . . . , Pr} (r > 1) be a
finite partition of X , that is, X =

⋃

1≤i≤r Pi, and Pi ∩ Pj = ∅ for i &= j. Each
element of the set P is called an atom.

An easy way to generate a partition P is given by considering a vector
v ∈ Rn (with v &= 0) and a set of scalars δ1 < δ2 < · · · < δη such that
each Pi = {X ∈ Rn : δi ≤ vTX < δi+1}. The hyperplanes vTX = δi are
called the switching surfaces, with i = 1, . . . , η. Without loss of generality, we
assume that the hyperplanes vTX = δi (for i = 1, 2, . . . , η) are defined with
v = (1, 0, . . . , 0)T ∈ Rn.

In this paper we consider a piece-wise linear system (T,P), such that its
restriction to each atom Pi is T (X ∗

i ) = 0 for one X ∗
i ∈ Pi with i ∈ I, i.e.,

X ∗
i = −A−1

τ Bτ . We assume that the switching signal depends on the state
variable and is defined as follows:

Definition 2.2. Let I = {1, 2, . . . , η} be an index set that labels each element
of the family of the sub-systems (1). A pure-state dependent and piecewise
constant function κ : Rn → I = {1, . . . , η} of the form

κ(X ) =



















1, if X ∈ P1;
2, if X ∈ P2;
...

...
η, if X ∈ Pη;

(2)

is called a switching signal. Furthermore, if κ(X ) = τi ∈ I is the value
of the switching signal during the time interval t ∈ [ti, ti+1), then S(X0) =
{τ0, τ1, . . . , τm, . . .} stands for the itinerary generated by κ(X0) at X0 and,
S(i,X0) is the element τi ∈ S(X0) that occurs at time ti, this defines a set
∆t = {t0, t1, . . . , tm, . . .}.

Note that τ ’s changes only when the orbit φ(t,χ0) goes from one atom Pi

to another Pj , i &= j.

Definition 2.3. A η-PWL system is composed of two sets: A = {A1, . . . , Aη}
and B = {B1, B2, . . . , Bη}, with Aτ = {ατ

ij} ∈ Rn×n (ατ
ij ∈ R) and Bτ =

(βτ1, . . . ,βτn)T ∈ Rn; and a pure-feedback switching signal κ : Rn → I =
{1, 2, . . . , η} so that:

4



Ẋ =



















A1X +B1, if κ(X ) = 1;
A2X +B2, if κ(X ) = 2;

...
...

AηX +Bη, if κ(X ) = η.

(3)

We can rewrite (3) in a more compact form as:

Ẋ = Aκ(X )X +Bκ(X ). (4)

Definition 2.4. Two η1-PWL and η2-PWL systems are called quasi-symmetrical
if they are governed by the same linear operator A = Ai for all i but η1 &= η2.

In particular, we assume that the dimension n = 3 and that the eigenspectra
of linear operators Aτ ∈ R3×3 have the following features: a) at least one eigen-
value is a real number; and 2) at least two eigenvalues are complex numbers.
There is an approach to generate dynamical systems based on these linear dis-
sipative systems (sometimes called an unstable dissipative system (UDS) [15]).
In this paper we use a particular type of UDS called Type I :

Definition 2.5. A subsystem (Aτ , Bτ ) of the system (4) in R3 is said to be an
UDS of Type I if the eigenvalues of the linear operator Aτ denoted by λi satisfy:
∑3

i=1 λi < 0; such that λ1 is a negative real eigenvalue and; the other two λ2

and λ3 are complex conjugate eigenvalues with positive real part. The system
is an UDS of Type II if one λi is a positive real eigenvalue and; the other two
λi are complex conjugate eigenvalues with negative real part.

So, to each value κ(X ) = τ ∈ I, is associated an atom Pτ ⊂ Rn, con-
taining an equilibrium point χ∗

τ = −A−1Bτ which has a stable manifold Es =
Span{v̄j ∈ R3 : αj < 0} and an unstable manifold Eu = Span{v̄j ∈ R3 : αj >
0}, with v̄j an eigenvector of the linear operator A and λj = αj + iβj its corre-
sponding eigenvalue; i.e. it is a saddle equilibrium point. We are interested in
bounded flows which are generated by quasi-symmetrical η-PWL systems such
that for any initial condition X0 ∈ R3, the orbit φ(t,χ0) of the η-PWL system
(4) is trapped in a one-spiral trajectory in the atom Pτ called a scroll. The orbit
escapes from one atom to other due to the unstable manifold in each atom. In
this context, the system η-PWL (4) can display various multi-scroll attractors
as a result of a combination of several unstable one-spiral trajectories, while the
switching between regions is governed by the function (2).

Definition 2.6. The scroll-degree of a η-PWL system (4) based on UDS Type
I is the maximum number of scrolls that the PWL system can display in the
attractor.

In this work we consider the same linear operator A, so Aτ = A for all τ .
Example 1: In order to illustrate the generation of multiscroll attractors

using (4), we consider a quasi-symmetrical 10-PWL system defined in R3 with
state vector X = (x1, x2, x3)T and linear operator defined as follows
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Figure 1: Projection of the attractor generated by the quasi-symmetrical 10-
PWL(S) system onto the (x1, x2) plane. The dashed lines mark the division
between the atoms.

A =





0 1 0
0 0 1

−α31 −α32 −α33



 ; (5)

where α31 = 1.5,α32 = 1 and α33 = 1; the set of constants vectors

B = {B1 = (0, 0, 0)T , B2 = (0, 0, 0.9)T , B3 = (0, 0, 1.8)T , B4 = (0, 0, 2.7)T ,

B5 = (0, 0, 3.6)T , B6 = (0, 0, 4.5)T , B7 = (0, 0, 5.4)T , B8 = (0, 0, 6.3)T ,

B9 = (0, 0, 7.2)T , B10 = (0, 0, 8.1)T};

and the partition:

P = { P1 = {X ∈ R3 : x1 < 0.3}, P2 = {X ∈ {X ∈ R3 : 0.3 ≤ x1 < 0.9},
P3 = {X ∈ R3 : 0.9 ≤ x1 < 1.5}, P4 = {X ∈ R3 : 1.5 ≤ x1 < 2.1},
P5 = {X ∈ R3 : 2.1 ≤ x1 < 2.7}, P6 = {X ∈ R3 : 2.7 ≤ x1 < 3.3},
P7 = {X ∈ R3 : 3.3 ≤ x1 < 3.9}, P8 = {X ∈ R3 : 3.9 ≤ x1 < 4.5}

P9 = {X ∈ R3 : 4.5 ≤ x1 < 5.1}, P10 = {X ∈ R3 : x1 ≥ 5.1}}
(6)

The eigenvalues of A are λ1 = −1.20 and λ2,3 = 0.10± 1.11i. By Definition
2.4, the system is an UDS of Type I. The equilibrium points for this system are
at χ∗

1 = (0, 0, 0)T , χ∗
2 = (0.6, 0, 0)T , χ∗

3 = (1.2, 0, 0)T , χ∗
4 = (1.8, 0, 0)T , χ∗

5 =
(2.4, 0, 0)T , χ∗

6 = (3, 0, 0)T , χ∗
7 = (3.6, 0, 0)T , χ∗

8 = (4.2, 0, 0)T , χ∗
9 = (4.8, 0, 0)T

and χ∗
10 = (5.4, 0, 0)T . Figure (1) depicts the projection of the attractor gener-

ated by the quasi-symmetrical 10-PWL(S) system onto the (x1, x2) plane with
initial condition χ0 = (4.81,−0.38, 0.09)T . We solved this system (3) numeri-
cally Runge-Kutta with 2000 time iterations and step-size h = 0.01.
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2.2 Two coupled PWL systems

Consider two quasi-symmetrical η-PWL systems defined by (4), i.e they have
different scroll-degrees. We couple in a Master-Slave configuration given as
follows.

Ẋm = AXm +Bκm(Xm),

Ẋs = AXs +Bκs(Xs) + cΓ(Xm − Xs),
(7)

where Xm = (xm
1 , xm

2 , xm
3 )T and Xs = (xs

1, x
s
2, x

s
3)

T are the state vectors of
the master and slave systems, respectively. κi : R3 → Ii = {1, 2, . . . , ηi},
with i = m, s and ηm &= ηs, is the pure-state-feedback signal of the master
system (i = m) and slave system (i = s). The itineraries generated by τ ’s of the
master and slave systems are Sm(Xm0) = {τ0, τ1, . . .} and Ss(Xs0) = {τ ′0, τ

′
1, . . .},

respectively. The corresponding time sets are given by ∆tm = {t0, t1, . . .} and
∆ts = {t′0, t

′
1, . . .}. The constant matrix Γ = diag{r1, r2, r3} ∈ R3×3 is the inner

linking matrix where rl = 1 (for l = 1, 2, 3) if both master and slave systems are
linked through their l-th state variable, and rl = 0 otherwise, and 0 < c ∈ R is
the coupling strength.

There are several definitions of synchronization [16, 18], for instance, com-
plete synchronization is given as follows:

Definition 2.7. The master-slave system (4) is said to achieve complete synchro-
nization if

lim
t→∞

||φ(t,Xm0)− φ(t,Xs0)|| → 0. (8)

for Xm0 &= Xs0.

The symbol || · || denotes the Euclidean distance in R3. This mode of syn-
chronization is very strong. There are weaker and more generalized notions of
synchronization [17].

It has been reported in [12] that in the type of configuration given by (7) the
master system determines the scroll-degree in the slave system. In particular, if
ηm < ηs, then the master-slave system achieves complete synchronization and
different basins of attraction appear equal to ηs − ηm + 1. The trajectories
of the slave system depend on their initial condition. That is, the master-
slave configuration results in multiple basins of attraction for the slave. Such a
phenomena is called multistability [19]. On the other hand, if ηm > ηs, then the
slave system increases its scroll-degree till it matches the master’s scroll-degree.

In order to illustrate the dynamical behavior of the master-slave system,
consider two quasi-symmetrical η-PWL system with linear operator A and a set
of constant vectors B = {B1, B2, . . . , B10} defined in Example 1 (Eq. (5)).

Example 2: As a first example of a coupled pair of multiscroll chaotic
systems, suppose that the master’s scroll-degree is ηm = 3 and the slave’s scroll-
degree is ηs = 8, and both are connected with a coupling strength c and an inner
coupling matrix given by Γ = {0, 1, 0}. The pure-state-feedback signal for the
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Figure 2: a) Projection of the master system onto the plane (xm
1 , xm

2 ) with initial
condition χmo = (4.8, 0.48,−0.29)T ; b) The master itinerary Sm(χm0); c) Projection of
the slave system onto the plane (xs

1, x
s
2) with initial condition χso = (4.8, 0.48,−0.29)T ,

for coupling strength c = 0; d) The slave itinerary Ss(χs0).

master system κm : R3 → Im = {8, 9, 10} is

κm(X ) =







10, if X ∈ P10 = {X ∈ R3 : x1 ≥ 5.1};
9, if X ∈ P9 = {X ∈ R3 : 4.5 ≤ x1 < 5.1};
8, if X ∈ P8 = {X ∈ R3 : x1 < 4.5}.

(9)

And for the slave system the function κs : R3 → Is = {3, 4, . . . , 10} is

κs(X ) =















































10, if X ∈ P10 = {X ∈ R3 : x1 ≥ 5.1};
9, if X ∈ P9 = {X ∈ R3 : 4.5 ≤ x1 < 5.1};
8, if X ∈ P8 = {X ∈ R3 : 3.9 ≤ x1 < 4.5};
7, if X ∈ P7 = {X ∈ R3 : 3.3 ≤ x1 < 3.9};
6, if X ∈ P6 = {X ∈ R3 : 2.7 ≤ x1 < 3.3};
5, if X ∈ P5 = {X ∈ R3 : 2.1 ≤ x1 < 2.7};
4, if X ∈ P4 = {X ∈ R3 : 1.5 ≤ x1 < 2.1};
3, if X ∈ P3 = {X ∈ R3 : x1 < 1.5}.

(10)

8



Using Runge-Kutta with 200000 time iterations and a step-size of h = 0.01,
we solve numerically the system (7). Firstly, we analyze the particular case when
the coupling strength is c = 0, i.e., the systems are not coupled. Projections
of the attractors onto the planes (xm

1 , xm
2 ) and (xs

1, x
s
2) are given in Figures 2

a) and c), in both cases the master and slave systems start at the same initial
condition χm0 = χs0 = (4.8, 0.48,−0.29)T . This initial condition is indicated
with a black dot in figures. However master and slave systems oscillate in a
different way due to they have different scroll degree ηm = 3 and ηs = 8. The
elements of the index sets Im = {8, 9, 10} and Is = {3, 4, 5, 6, 7, 8, 9, 10} for the
master and slave systems, respectively, are indicated on the top of Figures 2 a)
and c).

Figures 2 b) and d) show the itineraries Sm(χm0) and Ss(χs0) of the master
and slave systems, respectively. Note that they are different because the systems
have different scroll-degree, even though they start at the same initial condition.
The itineraries Sm(χm0) and Ss(χs0) are given by the dynamics of the master
and slave systems and correspond to the activation of the systems in different
atoms of the partitions, i.e., the itinerary Sm(χm0) generated by κm : R3 → Im
only takes three values {8, 9, 10}, meanwhile the itinerary Ss(χs0) generated by
κs : R3 → Is takes eight values {3, 4, 5, 6, 7, 8, 9, 10}.

Now, we set the coupling strength c = 10 and used different initial conditions
for the slave system.

Figure 3 shows the projections of master-slave system given by (7) onto the
planes (xm

1 , xm
2 ) and (xs

1, x
s
2). Different initial conditions are used for the slave

system located at distinct atoms. For the master system the initial condition
is χmo = (4.8, 0.48,−0.29)T , see Figure 3 a). In specific we use different initial
conditions for the slave system χso1 = (1.01, 0.48,−0.29)T for Figure 3 c), χso2 =
(3.5, 0.48,−0.29)T for Figure 3 e) and χso3 = (5.3, 0.48,−0.29)T for Figure 3 g).
It is worth to observe that the slave system reduces its scroll-degree to three
and, depending on the initial condition, it evolves between distinct basins of
attraction, i.e., multistability appears. We plot in gray the trajectory of the
slave system when it is not coupled with the master system in order to compare
it when it is coupled, see Figure 3 c), e) and g).

Notice that the itinerary of the master system Sm(χm0) generated by κm :
R3 → Im = {8, 9, 10} remains, however the itinerary of the slave system
Sm(χm0) generated by κs : R3 → Is is determined by its initial condition,
for instance, the itinerary takes different values according to the atom where
the initial condition belongs χs0 ∈ Pi, for i = 3, . . . , 10. Now the itinerary of the
slave system is restricted to take a subset of the index set Is, i.e., Is(χs0) ⊂ Is
which will be called restricted index set. This is because the number of scrolls
that the slave system coupled with c = 10 displays less scrolls that when it is
not coupled. Thus the restricted index sets have different cardinality that is
determined by the initial condition χs0 ∈ Pi, for i = 3, . . . , 10. So for these
three initial conditions there are three different restricted index sets given as
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Figure 3: Projections of the master-slave system onto the (x1, x2) plane, for ηm = 3,
ηs = 8, Γ = {0, 1, 0} and coupling strength c = 10. a) Master system with initial
condition χmo = (4.8, 0.48,−0.29)T and b) its itinerary Sm(Xmo). c) Slave system
with χso1 = (1.01, 0.48,−0.29)T , and d) its itinerary Ss(Xso1). e) Slave system with
χso2 = (3.5, 0.48,−0.29)T and f) its itinerary Ss(Xso2). g) Slave system with χso3 =
(5.3, 0.48,−0.29)T and h) its itinerary Ss(Xso3).

follows:

κs : R
3 → Is(χs0) ⊂ Is =







Is(χs01) = {3, 4, 5, 6},
Is(χs02) = {5, 6, 7, 8, 9},
Is(χs03) = {7, 8, 9, 10}.

The cardinality of the index sets Im, Is(χs01), Is(χs02) and Is(χs03) are 3, 4, 5,
and 4, respectively.

There is a problem if we want to detect similar behaviour under the presence
of multistability. The inconvenience is resolved by means of defining a new
itinerary based on the trajectory of the systems instead of the dynamics. Then
a new partition needs to be defined in the basin of attractions of the systems
that can determine an itinerary of the flow of the master and slave systems.

Definition 2.8. Let IB = {#1, . . . ,#n} be an index set that labels each element
of a partition Pφ = {P ′

1, . . . , P
′
n} of the basin of attraction of a dynamical system
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with flow φ. A function κ : Rn → IB of the form

κ(φ(t,χ0)) =



















#1, if φ(t,χ0) ∈ P ′
1;

#2, if φ(t,χ0) ∈ P ′
2;

...
#n, if φ(t,χ0) ∈ P ′

n;

generates the itinerary of the trajectory. If κ(φ(χ0)) = si ∈ IB during the time
interval t ∈ [ti, ti+1), then Sφ(χ0) = {s0, s1, s2, . . .} stands for the itinerary of
the trajectory φ(χ0).

Remark 2.9. Notice that S(χ0) is the itinerary of the dynamics of the system
meanwhile Sφ(χ0) is the itinerary of the trajectory of the dynamical system.

In our setting in order to describe appropriately the flows of a master-
slave system via symbolic dynamics it is necessary to consider additional atoms
P0, Pη+1 at the ‘ends’ of the contiguous partition atoms to account for exits and
returns to P1 and Pη, respectively, to the partition P = {P1, . . . , Pη}. So we
code according to the partition Pφ = {P−n, . . . , P0, P1, . . . , Pη, Pη+1, . . . , PN}.
We obtain a symbolic trajectory by writing down the sequence of symbols cor-
responding to the successive partition elements visited by the trajectory during
a certain period of time.

For simplicity we generate a new partition Pφ= {P0, P1, P2, . . . , P10, P11}
because the flow φ(χ0) ⊂ Pφ and the index sets present the same cardinality.

The partition Pφ is given as follow:

Pφ = { P0 = {X ∈ {X ∈ R3 : x1 < −0.3},
P1 = {X ∈ R3 : −0.3 ≤ x1 < 0.3}, P2 = {X ∈ R3 : 0.3 ≤ x1 < 0.9},
P3 = {X ∈ R3 : 0.9 ≤ x1 < 1.5}, P4 = {X ∈ R3 : 1.5 ≤ x1 < 2.1},
P5 = {X ∈ R3 : 2.1 ≤ x1 < 2.7}, P6 = {X ∈ R3 : 2.7 ≤ x1 < 3.3},
P7 = {X ∈ R3 : 3.3 ≤ x1 < 3.9}, P8 = {X ∈ R3 : 3.9 ≤ x1 < 4.5},
P9 = {X ∈ R3 : 4.5 ≤ x1 < 5.1}, P10 = {X ∈ R3 : 5.1 ≤ x1 < 5.7},
P11 = {X ∈ R3 : 5.7 ≤ x1}}.

(11)
Thus Sφ

m(Xm0) = {s0, s1, . . . , sm, . . .} stands for the itinerary generated by the
trajectory of the master system φm(t,Xm0) at Xm0 and, Sφ

m(i,Xm0) is the ele-
ment si ∈ Sφ

m(X0) that occurs at time ti, so the set ∆φm
= {t0, t1, . . . , tm, . . .}

is generated. In a similar way, we can define the itinerary, Sφ
s (Xs0) and the set

∆φs
= {t′0, t

′
1, . . . , t

′
m, . . .} generated by the trajectory of the slave system. We

always assume that the initial conditions belong to their respectively basin of
attraction of the system.

Thereafter, the master index set Im and restricted index sets Is(χs01),
Is(χs02) and Is(χs03) have the same cardinality independently of the initial
conditions χs0 ∈ Pi, for i = 3, . . . , 10. Now for these three initial conditions
there are three different restricted index sets with the same cardinality given as
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Figure 4: Projections of the master-slave system onto the (x1, x2) plane, for ηm = 3,
ηs = 8, Γ = {0, 1, 0} and coupling strength c = 10. a) Master system with initial
condition χmo = (4.8, 0.48,−0.29)T and b) its itinerary Sm(Xmo). c) Slave system
with χso1 = (1.01, 0.48,−0.29)T , and d) its itinerary Ss(Xso1). e) Slave system with
χso2 = (3.5, 0.48,−0.29)T and f) its itinerary Ss(Xso2). g) Slave system with χso3 =
(5.3, 0.48,−0.29)T and h) its itinerary Ss(Xso3).

follows:

κs : R
3 → Is(χs0) ⊂ Is =







Is(χs01) = {2, 3, 4, 5, 6},
Is(χs02) = {5, 6, 7, 8, 9},
Is(χs03) = {7, 8, 9, 10, 11}.

(12)

And for the master index set:

κm : R3 → Im = {7, 8, 9, 10, 11}.

The cardinality of all of the index sets Im, Is(χs01), Is(χs02) and Is(χs03) is 5.
Figure 4 a) shows the projection of the master attractor onto the plane (xm

1 , xm
2 )

and the atoms of Pφ are marked. Figure 4 c), e) and g) shows the projection
of the slave attractor onto the plane (xs

1, x
s
2) for different initial conditions and

the atoms of Pφ are marked. In Figure 4 b) we show the itinerary of the master
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Figure 5: Difference between the itineraries of the master and the slave systems for
the initial conditions given in the example 2. The inner sub-figure shown a zoom of
the region market with the red square.

system Sφ
m(Xm0) and in Figures 4 d), 4 f) and 4 h) the itinerary of the slave

system by varying the initial condition. Notice that the itinerary of the tra-
jectory of the master system and the three itineraries of the trajectories of the
slave system for different initial conditions visit five different domains. Figure 5
shows three errors signals which were generated by the difference between the
master itinerary Sφ

m(i,χm0
) and slave itineraries for different initial conditions

Sφ
s (i,χs0), with χs0 = {χs01 ,χs02 ,χs03}. These signals show spikes that corre-

spond to when the trajectory goes from one atom to other. But it is possible
to estimate the error k which is given by a constant in the three cases: for
the initial condition χso1 = (1.01, 0.48,−0.29)T generates on average k1 = 5,
χso2 = (3.5, 0.48,−0.29)T generates k2 = 2 and χso3 = (5.3, 0.48,−0.29)T gen-
erates k3 = 0. These small peaks along the error signals show that we achieve
itinerary synchronization in practice. As in the inner sub-figure of the Figure
5 we can observe that differences due to atom transitions last a small time pe-
riod. It is possible to relabel the restricted index sets that correspond to error
k′s different to zero in order to obtain a error zero. For instance, we have two
specific cases that correspond to the restricted index sets Is(χs01) and Is(χs02 ),
they can relabel as Is(χs03 ).

In the context of synchronization and multistability, we propose the following
definition of synchronization based on the itinerary of trajectories in multiscroll
attractors:

Definition 2.10. The master-slave system (7) is said to achieve Itinerary Syn-
chronization if after relabeling the partition atoms

lim
i→∞

|Sφ
m(i,Xm0)− Sφ

s (i,Xs0)| = 0, (13)

for Xm0 &= Xs0.
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Figure 6: Projections of the master-slave system onto the (x1, x2) plane, for ηm = 3,
ηs = 8, Γ = {0, 1, 0} and coupling strength c = 10. a) Master system with initial
condition χmo = (4.8, 0.48,−0.29)T and b) its itinerary Sm(Xmo). c) Slave system
with χso1 = (1.01, 0.48,−0.29)T , and d) its itinerary Ss(Xso1) after it was relabeled.
e) Slave system with χso2 = (3.5, 0.48,−0.29)T and f) its itinerary Ss(Xso2) after it
was relabeled. . g) Slave system with χso3 = (5.3, 0.48,−0.29)T and h) its itinerary
Ss(Xso3) without being relabeled.

Remark 2.11. When the master-slave system (7) is given by identical systems,
i.e., with the same scroll-degree, then the coupled system (7) can present com-
plete synchronization, i.e., the systems are asymptotically identical. Hence the
trajectories of the master and slave visit the same atoms at the same time (with-
out relabelling) and so they have asymptotically the same itinerary, hence the
itinerary error is zero |Sφ

m(i,Xm0)− Sφ
s (i,Xs0)| = 0.

The definition of Itinerary Synchronization is meant to capture the idea that
knowing the itinerary of one sequence determines precisely the itinerary of the
other (after relabeling).

In Figure 6 b) we show the itinerary of the master system Sφ
m(Xm0) and

in Figures 6 d), 6 f) and 6 h) the itinerary of the slave system by vary-
ing the initial condition. Notice that the itinerary of the master system and
the three itineraries of the slave system after relabeling the atoms for differ-
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Figure 7: Difference between the itineraries of the master and the slave systems after
relabeling the visited atoms for the initial conditions given in the example 2.

ent initial conditions present approximately the same itinerary at the same
time intervals. Hence they achieve itinerary synchronization. Figure (7) shows
three errors signals which were generated by the difference between the mas-
ter itinerary and slave itineraries after relabeling the atoms for different ini-
tial conditions. These signals show spikes that correspond to when the trajec-
tory goes from one atom to other. Now the errors k in the three cases: for
the initial condition χso1 = (1.01, 0.48,−0.29)T generates on average k1 = 0,
χso2 = (3.5, 0.48,−0.29)T generates k2 = 0 and χso3 = (5.3, 0.48,−0.29)T gener-
ates k3 = 0. These small peaks along the error signals, and we achieve itinerary
synchronization in practice.

Example 3: Another example of coupled systems is given when the master
scroll degree is greater than the slave scroll degree, for example, suppose that
the master’s scroll-degree is ηm = 8 and the slave’s scroll-degree is ηs = 3.
Then, the pure-state-feedback signal for the master system is (10) and for the
slave system is (9). The inner coupling matrix is Γ = diag{1, 1, 1} and the
coupling strength is c = 10. Figure 8 a) and c) shows the projections of the
master and slave attractors given by (7) onto the (xm

1 , xm
2 ) and (xs

1, x
s
2) planes,

respectively, generated with initial condition χmo given above for the master
system and χso = (2.8, 0.48,−0.29)T for the slave system. Note that the slave
system increases its scroll-degree to ηm = 8. Figure 8 b) and d) shows the
master and slave itineraries, respectively. This result is given by the following
proposition 2.12.

Proposition (2.12). Consider a master-slave system composed of quasi-sym-
metrical η-PWL systems described by (7) and pure-state-feedback signals κm(X ),
and κs(X ) with Γ = diag{1, 1, 1}. If the master-slave system presents complete
synchronization this implies that the nodes present itinerary synchronization and
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Figure 8: Projections of the master (red color) and slave (blue color) attractors onto
the (x1, x2) plane with ηm = 8, ηs = 3, Γ = {1, 1, 1}, coupling strength c = 10; initial
conditions χso = (2.8, 0.48,−0.29)T and χmo = (4.8, 0.48,−0.29)T for the slave and
master systems, respectively.

the coupled pair of systems display the scroll-degree ηm of the master system.

Proof. The master slave system is given by

Ẋm = AXm +Bκm(Xm),

Ẋs = AXs +Bκs(Xs) + cΓ(Xm − Xs).
(14)

When the system presents complete synchronization this implies that |Xm −
Xs| = 0. Defining the error between the master and slave systems as e =
Xi − Xj = (ex1 , ex2 , ex3)T , where ex1 = xm1 − xs1, ex2 = xm2 − xs2 and ex3 =
xm3 − xs3. Thus the error system is given by

ė = Ae+Bκm(Xm) −Bκs(Xs) + cΓe.

For complete synchronization we have that error limt→∞e = 0 then limt→∞ ė =
0. So we have that Bκs(Xs) behaves in a similar manner to Bκm(Xm), that is,
Bκs(Xs) → Bκm(Xm).
The master-slave system displays itinerary synchronization.

2.3 Dynamical Networks

A dynamical network is composed of N coupled dynamical systems called nodes
[20]. Each node is labeled by an index i = 1, . . . , N and described by a first
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ordinary differential equation system of the form Ẋi(t) = fi(Xi(t)), where
xi(t) = (xi1(t), . . . , xin(t))T ∈ Rn is the state vector and, fi : Rn → Rn is
the vector field which describes the dynamical behavior of an i-th node when
it is not connected to the network. The coupling between neighboring nodes
is assumed to be linear such that the state equation of the entire network is
described by the following equations:

Ẋi(t) = fi(Xi(t)) + c
N
∑

j=1

∆ijΓ(Xj(t)− Xi(t)), i = 1, . . . , N, (15)

where c is the uniform coupling strength between the nodes and the inner link-
ing matrix Γ = diag{r1, . . . , rn} ∈ Rn×n is described in (7). The constant
matrix ∆ = {∆ij} ∈ RN×N is named the coupling matrix whose elements are
zero or one depending on which nodes are connected or not. Such matrix con-
tains the entire information about the network configuration topology and it
is constructed according to its link attributes. In specific, if nodes are coupled
with bidirectional links, then ∆ is a symmetric matrix with the following en-
tries: if there is a connection between node i and node j (with i &= j), then
∆ij = ∆ji = 1; otherwise ∆ij = ∆ji = 0.

On the other hand, if the nodes are connected with unidirectional links,
then ∆ becomes a non-symmetric matrix and its entries are defined as follows:
∆ij = 1 (with i &= j) indicates the presence of an edge directed from node j to
node i; and the entry ∆ij = 0 indicates that node j is not connected to node i.

For the dynamical network (15) with symmetrical coupling matrix, one of
the most studied collective phenomena is synchronization, which emerges when
the dynamical behavior between nodes are correlated in-time (See [20] and ref-
erences there in).

3 Ring topology network

We study the collective dynamics of N coupled quasi-symmetrical η-PWL sys-
tems which are connected by unidirectional links in a ring topology, i.e., a
network composed of an ensemble of master-slave systems coupled in a cascade
configuration topology. In this context, a system defined in the node i is a slave
system of a system defined in the node i− 1, and also plays the role of a master
system for a system defined in the node i + 1. Figure 9 (a) shows a network
with a ring topology and 9 (b) its corresponding coupling matrix ∆. A network
with such attributes is described by the following state equations:



























Ẋ1 = AX1 +Bκ1(X1) + cΓ(XN − X1),
Ẋ2 = AX2 +Bκ2(X2) + cΓ(X1 − X2),
Ẋ3 = AX3 +Bκ3(X3) + cΓ(X2 − X3),
...

...
ẊN = AXN +BκN (XN ) + cΓ(XN−1 − XN ),

(16)

17



(a)

∆ =













0 0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0













(b)

Figure 9: A network of N = 5 nodes coupled in a ring topology with uni-
directional links. a) The network topology and b) the coupling matrix.

where Xi, i = 1, 2, . . . , N , denotes the state vector of each node. Notice that the
system (16) is a dynamical network where each node differs only in the constant
vector Bκi(·). In this context, we propose the following definition of a network
of nearly identical nodes:

Definition 3.1. A network of nearly identical nodes is a network composed of
nodes with dynamics given by quasi-symmetrical η-PWL systems, i.e., Ai =
Aj = A, ηi &= ηj and κi(·) &= κj(·) ∀i, j = 1, 2, . . . , N whose state equation is
written as follows:

Ẋi = AXi +Bκi(Xi) + c

N
∑

j=1

∆ijΓ(Xj − Xi), i = 1, . . . , N. (17)

Note that (17) corresponds to a dynamical network with a configuration
topology given by the coupling matrix ∆ = {∆ij} ∈ RN×N . In particular, for a
ring topology (Figure 9), the equation (17) becomes the equation (16).

We now study the dynamics of a nearly identical network (17) assuming
that the coupling matrix corresponds to a network with a ring topology and
with unidirectional links. We analyze the conditions under which this nearly
identical network achieves itinerary synchronization. We then consider the case
in which the network (17) is attacked via link deletion.

3.1 Node’s dynamics

Since the dynamics of a single node is governed by an UDS system, we know
that the linear operator is diagonalizable i.e. exist a matrix Φ ∈ R3×3 such that
Λ = ΦAΦT with Λ = diag{λ1,λ2,λ3} and ΦΦT = I . By introducing the change
of variable z = ΦX , we rewrite the equation (17) as follows:

żi = Λzi + B̂κi(zi) + c

N
∑

q=1

∆iqΓziq, i = 1, . . . , N, (18)
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where B̂κi(zi) = ΦBκi(Xi) and ziq = zq − zi. The solution of (18) is:

zi(t) = eΛtzi(0) +

∫ t

0
eΛ(t−τ)B̂κi(zi)dτ + c

N
∑

q=1

∆iqΓ

∫ t

0
eΛ(t−τ)ziq(τ)dτ, (19)

where zi(0) is the initial condition of the i-th node in the new state variable.
Note that (19) is given by using the Peano-Baker series with eΛt as the state
transition matrix since Λ is a constant matrix.

The difference between the state vector of the i-th and j-th nodes is:

zi(t)− zj(t) = eΛtz0ij +

∫ t

0
eΛ(t−τ)B̂ijdτ + c

N
∑

q=1

Γ

∫ t

0
eΛ(t−τ)ẑqij(τ)dτ, (20)

where z0ij = zi(0) − zj(0), B̂ij = B̂κi(zi) − B̂κj(zj) and ẑqij(τ) = ∆iqziq(τ) −
∆jqzjq(τ). Then, by assuming that ||zi(0) − zj(0)|| ≤ δ0 for all i, j = 1, . . . , N
and using the triangle inequality we get:

||zi(t)− zj(t)|| ≤ ||eΛt||δ0 + I1(t) + I2(t), (21)

where

I1(t) =

∫ t

0
||eΛ(t−τ)B̂ij ||dτ, and I2(t) = c

N
∑

q=1

∫ t

0
Γ||eΛ(t−τ)ẑqij(τ)||dτ. (22)

Both integrals satisfy I1(0) = I2(0) = 0. Then, in a practical sense complete
synchronization is achieved if there exists a time instant T such that I1(t) ≤ ε1
and I2(t) ≤ ε2 for all t ≥ T and for all i, j = 1, . . . , N . In this case the error
bound is given by ε = ||eΛT ||δ0 + ε1 + ε2. Note that if the node trajectories
approach each other, then B̂ij = 0. Itinerary synchronization occurs since both
signals generate the same symbolic dynamics. The error bound depends mainly
on I2(t), and in particular, in the form of the inner coupling matrix Γ.

In a master-slave system, when the scroll-degree of the slave system is greater
than the scroll-degree of the master then multistability phenomenon appears and
complete synchronization implies itinerary synchronization as it was shown in
proposition 2.12. However the converse is not true, i.e., itinerary synchroniza-
tion does not imply complete synchronization if there is multistability (different
basins of attraction Ω1,Ω2, . . . ,Ωk, with 2 ≤ k ∈ Z). For example, when the
initial conditions of the slave system belong to different basins of attraction,
this leads to

lim
t→∞

|Sφ
m(i,χm0)− Sφ

s (i,χs0)| = k.

With k &= 0 and complete synchronization is lost but itinerary synchronization
persists after relabeling.
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Figure 10: Dynamics of a nearly identical network (17) with coupling strength c = 10
and Γ = diag{1, 1, 1}; the scroll-degree and initial condition for each node are given
in Table (1): a); c); e); g); i); The projections of the attractors onto the plane (x1, x2)
of the node 1,2,3,4 and 5 respectively (the gray line represent the projection of the
trajectory of the node without connection); and b); d); f); h); j) its itinerary.

4 Different inner coupling matrix Γ

4.1 Dynamics in a ring topology

We consider a ring network with five nodes, i.e., N = 5 nearly identical nod-
es described in (17) and coupled in a ring topology. We assume that each
node’s dynamic is described by the same linear operator A (i.e they are quasi-
symmetrical) and the set of constant vectors B = {B1, B2, . . . , B10} are those
given by (5). Further, for each node we select the scroll-degree (ηi) and its
corresponding initial condition according to Table (1).

The pure-state-feedback signal for the first node with scroll-degree η1 = 10
is given by (6); for the third and fourth nodes with scroll-degree η3 = 3 and
η4 = 8 are given by (9) and (10) respectively. For the second node with scroll
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Node’s label Scroll-degree Initial condition

1 10 (0.227,−0.216,−0.359)T

2 5 (3.014,−0.371,−0.271)T

3 3 (5.349,−0.424,−0.279)T

4 8 (1.402,−0.205,−0.316)T

5 6 (2.452,−0.266,−0.308)T

Table 1: The scroll-degree (ηi) and its corresponding initial condition for each
node in the nearly identical network coupled in a ring topology for Examples 4
and 5.

degree η2 = 5 the pure-state-feedback signal is given as follows:

κ5(X ) =























1, if X ∈ P10 = {X ∈ R3 : x1 ≥ 5.1};
2, if X ∈ P9 = {X ∈ R3 : 4.5 ≤ x1 < 5.1};
3, if X ∈ P8 = {X ∈ R3 : 3.9 ≤ x1 < 4.5};
4, if X ∈ P7 = {X ∈ R3 : 3.3 ≤ x1 < 3.9};
5, if X ∈ P6 = {X ∈ R3 : x1 < 3.3}.

(23)

And for the fifth node with scroll degree η5 = 6 is

κ6(x) =































1, if X ∈ P10 = {X ∈ R3 : x1 ≥ 5.1};
2, if X ∈ P9 = {X ∈ R3 : 4.5 ≤ x1 < 5.1};
3, if X ∈ P8 = {X ∈ R3 : 3.9 ≤ x1 < 4.5};
4, if X ∈ P7 = {X ∈ R3 : 3.3 ≤ x1 < 3.9};
5, if X ∈ P6 = {X ∈ R3 : 2.7 ≤ x1 < 3.3};
6, if X ∈ P5 = {X ∈ R3 : x1 < 2.7}.

(24)

Example 4: For the nearly identical network described above, we as-
sume that the coupling strength is c = 10 and the inner coupling matrix is
Γ = diag{1, 1, 1} ∈ R3. We solve numerically the nearly identical network
(17) with the scroll-degree and initial condition given in Table (1) and using
a Runge-Kutta method with 10000 time iterations and step size h = 0.01. In
the first column of the Figures 10 we shown the projections of the attractors
onto the plane (x1, x2) and in the right column we display its corresponding
itinerary, i.e., the time elapsed that the trajectory of each node spends in a
given atom. Note that independently of wherever the initial conditions are de-
fined, the trajectories of the nodes converge to the atoms 10, 9, 8 and 7 in a
attractor similar to the node with the smallest scroll-degree. For this config-
uration with the inner connection Γ = diag{1, 1, 1} the network achieves both
complete and itinerary synchronization. In the next example we show a case
in which complete synchronization is not achieved but the nodes are itinerary
synchronized.

Example 5: The dynamics of the network composed of N quasi-symmet-
rical η-PWL systems described above can display several behaviors depending
on the inner coupling matrix Γ. The collective dynamics is affected when we
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Figure 11: Dynamics of a nearly identical network (17) with coupling strength c = 10
and Γ = diag{1, 0, 0}; the scroll-degree and initial condition for each node are given
in Table (1): a); c); e); g); i); The projections of the attractors onto the plane (x1, x2)
of the node 1,2,3,4 and 5 respectively (the grey line represent the projection of the
trajectory of the node without connection); and b); d); f); h); j) its itinerary.

suppress some variable state in the inner connection. For example, in Fig-
ure 11 when we suppress two state variables from the inner coupling matrix
Γ = diag{1, 0, 0}, a deformation of the scroll attractor is achieved specially over
the node with the smallest node-degree (in this case, for the node with scroll-
degree 3). However the nodes still share the same itinerary. That is, we observe
that complete synchronization is not achieved, however, the trajectories visit
the same atoms during the same time intervals.

In the next subsection we consider the case in which this network is attacked
via link deletion.

4.2 Link attack in the ring topology

In this subsection we present numerical results for the case in which the network
is attacked by removing a preselected link. This attack transforms the network
topology from a ring configuration to a chain (open ring) configuration as we
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(a)

∆ =













0 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0













(b)

Figure 12: A network of N = 5 nodes coupled in a open ring topology with
directional links. (a) The network topology and (b) the coupling matrix.

illustrate in Figure 12; where we also shown the corresponding coupling matrix
that describes this network.

After the attack, the node painting in black in Figure 12 (a), which we call
the leader node, plays the role of the master system for the rest of the nodes.
The second node is the slave system for the leader node, but it is also the
master system for the third node, and so on. The idea is to explore if such a
node governs or not the collective dynamics of the rest of the nodes. In this
work we assume that the scroll-degree of the master node corresponds to the
largest or the smallest scroll-degree. Specifically we consider two examples: the
first node has scroll-degree ten or three.

4.2.1 Master system with maximum scroll-degree

Example 6: Figure 13 shows the projections onto the plane (x1, x2) of the
attractors generated in each node by the nearly identical network (17) with an
open ring configuration. For this example we assume that the first node has
scroll-degree η1 = 10, and the nodes are connected with coupling strength c = 10
and inner coupling matrix Γ = diag{1, 1, 1}. The node’s scroll-degree and its
corresponding initial condition are given in Table (1). All the nodes imitate the
dynamics of the master system and change their dynamics to attain the same
scroll-degree. In this context, the scroll-degree of the leader node dominates
and itinerary synchronization is achieved.

4.2.2 Master system with minimum scroll-degree

Example 7: Now we assume that after removing the link, the first node has
scroll-degree η1 = 3, and the rest of the nodes have the scroll-degree and initial
condition given in Table (1). As before, we select a coupling strength c = 10
and Γ = diag{1, 1, 1}. In Figure (14) we observe that all the nodes reduce
their scroll-degree to three i.e. the nodes adopt the scroll-degree of the first
node. Furthermore, the rest of the nodes achieve both complete and itinerary
synchronization for the set of given initial conditions.
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Figure 13: a), c), e), g), i): The projections of the attractors onto the plane (x1, x2) of
the nodes of a nearly identical network (17) in an attacked ring topology with coupling
strength c = 10, Γ = diag{1, 1, 1} and where the first node has scroll-degree ηi = 10.
b), d), f), h), j): The itinerary of each node.

5 Conclusions

We investigate the collective dynamics of a network composed of PWL-system
where the number of scroll-attractors in each node differs. We named such a type
of system a nearly-identical network and we used the term scroll-degree of a node
to denote the number of scroll attractors in an individual node. Furthermore, we
assumed that the network topology corresponds to a ring configuration such that
the entire system can be seen as an ensemble of master-slave systems connected
by directional links.

Our numerical results show that itinerary synchronization can be achieved
in this setting. Furthermore, we found that the node with the smallest scroll-
degree governs the collective itinerary of the network, i.e., the dominant node in
a ring configuration network is that with smallest scroll-degree. Additionally, we
introduced link attacks to the network and transformed the network topology to
a open ring configuration. We explored two possible scenarios after attack: the
first node has the a) the largest or b) the smallest scroll-degree. In both scenarios
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Figure 14: a), c), e), g), i): The projections of the attractors onto the plane (x1, x2) of
a nearly identical network (17) in a attacked ring topology with coupling strength c =
10, Γ = diag{1, 1, 1} and where the first node has scroll-degree ηi = 3. b), d), f), h), j):
The itinerary of each node.

we observed that scroll-degree of the leader node dominates. Furthermore, in
the above two scenarios, itinerary synchronization is achieved.
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[4] Yalçin, Müştak E.; Suykens, Johan A. K.; Vandewalle, Joos and Özoğuz,
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