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ABSTRACT

In this paper, we introduce a class of continuous time dynamical planar systems that is capable of generating attractors in the plane by means
of the use of hysteresis and at least two unstable foci. This class of systems shows stretching and folding behavior due to unstable equilibria
and hysteresis. Hysteresis is used to overwhelm the constraints on the behavior of planar systems. This class of systems is derived from
three-dimensional piecewise linear systems that have two manifolds, one stable and the other unstable, to generate heteroclinic chaos. Two
numerical examples are given accordingly to the developed theory.
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The hysteresis phenomenon occurs widely in physics, chemistry,
engineering, biology, economics, etc. For example, by plotting the
current through the coil against the magnetic field of said coil,
a hysteresis effect becomes visible. The dynamics projected onto
a plane of a class of three-dimensional piecewise linear (PWL)
systems is described by a class of planar systems based on hys-
teresis. The particular interest is to derive planar systems from
a class of three-dimensional PWL systems that have an unstable
saddle-focus in each subsystem.

I. INTRODUCTION

Chaos has been generated by continuous time three-
dimensional PWL systems; for instance, the Chua’s system is a
chaotic PWL system that was reported in the literature.1 PWL
systems have been widely used to introduce several systems, for
example, a generation of families of multiscroll attractors based
on a modification of the Chua diode by adding breakpoints to its
behavior.2 A generation of chaos with only one type of stability of
equilibria has been reported in Refs. 3 and 4. A characteristic is that

multiscroll attractors are generated by using only the saddle-focus
point that generates scrolls in the Chua’s system without including
the saddle point between the two scrolls. Chaotic attractors without
equilibria5–7 and deterministic Brownian motion8,9 have also been
studied by means of PWL systems in R3. Now, the interest is to
introduce a PWL system in R2 capable of generating multiscroll
attractors.

Systems involving PWL and based on the jerk equation and
other systems have also been used to generate chaos. An overview
of the breakthroughs on multiscroll chaotic attractor generation,
including theories, methods, and applications, is given in Ref. 10.
In Ref. 11, the authors introduced a generation of multiscroll attrac-
tors by means of the jerk equation and saturated function series and
in Ref. 12 via a hysteresis series switching approach. A generation
of multistable systems via dissipative systems with unstable dynam-
ics is reported in Refs. 13 and 14. Therefore, these systems have
a stable manifold responsible for system dissipation and another
unstable manifold responsible for unstable dynamics. These kinds
of systems have been used to present an approach to yield one-
directional, two-directional, and three-directional grid multiscroll
chaotic systems in R3 based on unstable dissipative systems via
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a third-order differential equation.15 The aforementioned systems
are some examples of the PWL system that let us know the great
potential of these systems. In this work, the derived systems in R2

present, in each domain of the PWL system, an unstable manifold
given by a focus equilibrium point that is responsible for the stretch-
ing of the flow, and the folding of trajectories is given by a hysteresis
function.

Different physical implementations of systems with chaotic
dynamics have allowed applications in different fields, such as
medicine,16 biology, and several problems in electrical engineering.17

Therefore, experimental prototypes of chaotic PWL systems have
allowed ascertaining the chaotic behavior and building applications
based on chaos. For example, in Ref. 18, an analog electronic imple-
mentation by means of operational amplifiers of a class of hybrid
dissipative systems in R3 is presented. Reference 19 introduces a
50-scroll chaotic attractor at 66 MHz by using field-programable
gate arrays (FPGAs). In Ref. 20, an experimental realization of a
chaotic secure communication system is presented via Arduino’s
open source integrated development environment. In Ref. 21, a
chaotic attractor is implemented by irregularly saturated nonlinear
functions with an optimized positive Lyapunov exponent. Hyper-
chaotic dynamic has also been implemented by using the PWL
system22–24 and applied to encryption schemes.25

A hysteretic system displays a different response in a subspace
of its phase space such that the magnitude of a resulting quantity is
different during increases in the magnitude of the cause than dur-
ing decreases. An analysis of two-dimensional PWL systems with
hysteresis coming from a reduction of symmetric 3D systems with
slow–fast dynamics is presented in Ref. 26 by considering hysteretic
systems having two real equilibria of saddle type. Generation of
multiscroll chaotic attractors from a given three-dimensional linear
system via a hysteresis series controller has been reported in Refs. 27
and 28. Some experimental implementation of a chaotic generator
via hysteresis has been proposed.29,30 In Ref. 31, an electronic chaos
generator was proposed consisting of two capacitors, some resistors,
one linear voltage-controlled current source (VCCS), and one PWL
hysteresis VCCS. From Ref. 32, they applied the point transforma-
tion method of Andronov to analyze different kinds of oscillations
that may occur in PWL systems with hysteresis.

There are two interesting trajectories that a dynamic system
with equilibrium points in its vector field can present: heterocyclic
orbits and homoclinic orbits. Recall that a path in the phase space
that joins two different equilibrium points is called a heteroclinic
orbit, and a path that starts and ends at the same point is called a
homoclinic orbit. The famous Shil’nikov theorems showed that the
existence of a homoclinic cycle or a heteroclinic cycle implies the
existence of a countable number of horseshoes in a neighborhood
of these cycles. Homoclinic and heteroclinic cycles can potentially
result in chaos in dynamical systems. Shil’nikov proved that the exis-
tence of some kind of heteroclinic orbits (homoclinic orbits) implies
that there are arbitrarily small perturbations of the vector field that
have p-heteroclinic orbits (p-homoclinic orbits) and are, therefore,
chaotic in a precise sense. The goal of many works has been to find
the homoclinic or heteroclinic cycles in well-known systems. For
example, in Ref. 33, homoclinic orbits and homoclinic chaos have
been shown in a PWL Rössler-like circuit by numerical simulations;
in Ref. 34, a numerical method is presented to demonstrate the

existence of homoclinic cycles or heteroclinic cycles in a PWL
double-scroll circuit. On the other hand, some chaotic systems have
been constructed to generate heteroclinic cycles to obtain hete-
roclinic chaos. In Ref. 35, sufficient conditions are given for the
existence of heteroclinic cycles for a class of three-dimensional
piecewise affine systems with a stable saddle-focus. Other chaotic
systems are36,37 based on PWL systems that generate heteroclinic
chaos.

Dissipative systems with unstable dynamics have been called
unstable dissipative systems (UDS) of type I or II,3,4 if they present a
stable manifold of dimension one or two, respectively. This class of
systems has been used to generate chaotic attractors based on hete-
roclinic orbits; therefore, heteroclinic chaos has been generated via
PWL systems in Refs. 7 and 38. The characteristic of these previ-
ous works is that the generation of chaos is possible by using only
one type of equilibria. Usually, the chaotic behavior of continuous
time dynamical systems has been checked by using the Lyapunov
exponents. The spectrum of Lyapunov exponents for continuous
time systems in R3 presents a negative, a zero, and a positive Lya-
punov exponent. Attractors with positive Lyapunov exponents are
called a strange attractor. The positive Lyapunov exponent indicates
exponential spreading within the attractor in the direction trans-
verse to the flow, and the negative exponent indicates exponential
contraction onto the attractor.

The topological horseshoe theory gives an approach to prove
chaotic behavior in a dynamical system. The existence of a horseshoe
in a dynamical system is a remarkable characteristic of chaos; due to
this, there is a sequence of basic topological operations that consist
of stretching and folding behavior. The former gives sensitivity to
initial conditions and the second behavior gives the attraction.

There is an extensive list of continuous time dynamical sys-
tems that exhibit stretching and folding behavior in the space or
greater dimensions, Rn with n ≥ 3. In this paper, we present a class
of continuous time dynamical planar systems that shows stretch-
ing and folding behavior. This behavior is possible due to hysteresis
being used to overwhelm the constraints on behavior of planar sys-
tems. The hysteresis phenomenon is characterized by its behavior
that presents a response due to its current state and its past states.
This allows having a different response for the same current state
generating what it is called a hysteresis cycle.

This paper is organized as follows: In Sec. II, we present
some definitions of PWL dynamical systems based on hysteresis.
Section III contains some known results of heteroclinic chaos via
PWL systems in R3. In Sec. IV, we introduce a planar PWL system
with two unstable foci and the generation of a double-scroll attrac-
tor. In Sec. V, an approach to derive PWL systems in R2 to generate
multiscroll attractors is presented. Finally, the conclusions are given
in Sec. VI.

II. PWL DYNAMICAL SYSTEM IN R2

Let T : X → X be a PWL system comprising two affine linear
transformations of R2 acting on two convex sets defined as follows:

Definition 1: Let X be a subset of R2 and D = {D1, D2} be
convex sets of X, such that X = D1 ∪ D2, D1 ∩ D2 = H %= ∅, and
Di − H %= ∅, with i = 1, 2.
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Particularly, the convex sets are defined as follows:

D1 = {(x, y) : x < d2 ∈ R} and

D2 = {(x, y) : x > d1 ∈ R}, with d1 < d2.

We start by considering a PWL system T such that the action
on each atom Di, i = 1, 2, is determined by hysteresis. The so-called
(delayed) relay is the simplest model of discontinuous hysteresis. A
hysteresis is given by the following expression:

fH(x) =

{

s1 while x ∈ D1,
s2 while x ∈ D2.

(1)

This hysteresis expression needs to be initialized for x0 ∈ H; in
our case, the initialization is given as follows:

fH(x0) =

{

s1 for x0 ∈ D1,
s2 for x0 ∈ D2 − H.

(2)

A PWL system driven by a hysteresis is given as follows:

ẋ =

{

A1x + B1 for fH(x) = s1,
A2x + B2 for fH(x) = s2,

(3)

where x is the state vector of the system; each Ai ∈ R2×2 is a non-
singular linear operator; each Bi ∈ R2 is a constant vector; and each
atom Di has an equilibrium point at x∗

i = −A−1
i Bi, with i = 1, 2. Our

study is restricted to the same linear transformation, A1 = A2, and
different vectors, B1 %= B2.

Definition 2: The affine linear system ẋ = Ax + B is said to
have an unstable focus at the equilibrium point x

∗ if the matrix
A ∈ R2×2 has two complex conjugate eigenvalues λ1,2 with a positive
real part.

Let {v1, v2} be a corresponding set of eigenvectors. Then, the
unstable subspace Eu of the affine linear system ẋ = Ax + B with an
unstable focus at x∗ is spanned by {v1, v2}.

The aim is to generate a PWL system based on two affine linear
systems (A, Bi), which have an unstable focus equilibrium point at
xi = −A−1Bi, with i = 1, 2. Notice that the system switches between
two unstable subspaces Eu

i . Therefore, the role of the hysteresis is
crucial in order to generate an attractor.

The class of PWL systems is given by (1)–(3) and by consider-
ing the following matrices and vectors:

A1 = A2 =

(

α −β
β α

)

, B1 =

(

b11

b12

)

, B2 =

(

b21

b22

)

. (4)

The idea is to determine a PWL system given by (1)–(3) from
a PWL system in R3 that generates heteroclinic chaos; therefore, the
approach is explained in Secs. III–VI.

III. HETEROCLINIC CHAOS

Consider the metric space X endowed with the Euclidean dis-
tance d. Let T : X → X, with X ⊂ R3, be a PWL dynamical system
whose dynamics is given by a family of sub-systems of the form

ẋ = Ax + f(x)B, (5)

where x = (x1, x2, x3)
T ∈ R3 is the state vector, A = {aij} ∈ R3×3 is

a nonsingular linear operator, B = (b1, b2, b3)
T is a constant vec-

tor, and f is a functional. The vector f(x)B is a constant vector in

each atom Pi of a finite partition P = {P1, . . . , Pη} (η > 1) of X,
that is, X =

⋃

1≤i≤ηPi and Pi ∩ Pj = ∅ for i %= j. Each atom con-
tains a saddle-focus equilibrium point, and then there is a stable
manifold and another unstable manifold. Therefore, the equilib-
ria are given by x∗

eqi
= (x∗

1eqi
, x∗

2eqi
, x∗

3eqi
)T = −f(x)A−1B ∈ Pi, with

i = 1, . . . , η. The switching surface between a pair of atoms, Pi

and Pj, is given by the intersection of the closure of them, i.e.,
SWij = cl(Pi) ∩ cl(Pj).

To induce oscillations of the flow around the equilibria x∗
eqi

, it
is necessary to assign a negative real eigenvalue λ1 = γ to matrix
A with the corresponding eigenvector v1 and a pair of complex
conjugate eigenvalues with a positive real part, λ2 = α + iβ and
λ3 = α − iβ , with the corresponding eigenvectors v2 and v3. Thus,
the stable and unstable manifolds are given by

Ws
x∗
eqi

= {x + x∗
eqi

∈ Pi : x ∈ span{v1}}

and

Wu
x∗
eqi

= {x + x∗
eqi

∈ Pi : x ∈ span{v2, v3}},

with i = 1, . . . , η. These sets generate the contraction and expansion
of the trajectories that are necessary for chaotic dynamics.

Assumption 1: The switching planes SWij = cl(Pi) ∩ cl(Pj)
pass through the intersection points cl(Wu

x
∗
eqi

) ∩ Ws
x
∗
eqj

%= ∅ and

cl(Wu
x
∗
eqj

) ∩ Ws
x
∗
eqi

%= ∅ of two adjacent atoms Pi and Pj, with

j = i + 1 and i = 1, 2, . . . , η − 1; cl(Wu
x
∗
eqi

) ∩ Ws
x
∗
eqj

∈ Pj, and cl(Wu
x
∗
eqj

)

∩ Ws
x
∗
eqi

∈ Pi.

Notice that Assumption 1 implies SWij ∩ Ws
x∗
eqi

%= ∅ and SWij ∩

Ws
x∗
eqj

%= ∅.

One of the most important and useful mathematical constructs
is the “∇ operator.” The dot product of ∇ and a vector field .F gives
a scalar, known as the divergence of .F, for each point in the space.
The volume rate of a flow through a source or sink is equal to the
divergence of the vector field, i.e., with the flow through a sink given
a negative sign in the divergence. A system that presents a negative
divergence is called dissipative.

Assumption 2: The divergence of the PWL system (5) consid-
ering the linear operator A defined above is ∇ = 2α + γ ; therefore,
the system is dissipative in each atom of the partition P if 2α < |γ |.

Definition 3: The PWL system (5) is said to be an Unstable
Dissipative System (UDS) if the system is dissipative with unsta-
ble dynamics determined by the eigenvalues of the linear operator
A as follows: a real eigenvalue λ1 = γ and a pair of complex
conjugate eigenvalues λ2 = α + iβ and λ3 = α − iβ, such that
∇ = 2α + γ < 0. If the stability index is one or two, then the UDS
is type I or II, respectively.

The manifolds are responsible for connecting the equilibria of
this class of dynamical systems. At least two equilibria are necessary
to generate a heteroclinic orbit; therefore, we start by considering
a partition with two atoms P = {P1, P2} and the constant vector
B ∈ R3, and the functional f is given by

f(x) =

{

κ1, x ∈ P1,
κ2, x ∈ P2,

(6)

with κ1, κ2 ∈ R.
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A switching surface SW will be a hyperplane oriented by its
positive normal. SW divides R3 into two connected components; if a
point x lies in the component pointed by the positive normal of SW,
we will write x > SW. Also, x < SW if it lies in the other compo-
nent but not in the plane SW. According to Assumption 1, the points
cl(Wu

x∗
eqi

) ∩ Ws
x∗
eqj

∈ Pj and cl(Wu
x∗
eqj

) ∩ Ws
x∗
eqi

∈ Pi belong to different

atoms but are in the same SW. Therefore, SW is split by two sets
SW− and SW+.

In the same spirit that in Ref. 39, the next proposition gives
the necessary and sufficient conditions to generate heteroclinic con-
nections between equilibria of a PWL dynamical system. Thus, the
emergence of a chaotic attractor in this type of systems is possible.

Proposition 3: The hyperbolic system given by (5) and (6) gen-
erates a pair of heteroclinic orbits if the system is UDS type I and the
switching plane is given according to Assumption 1.

Proof. Each trajectory with the initial condition x0 ∈ Ws
x∗
eq1

tends to the equilibrium point x∗
eq1

; therefore, ϕ(x0, t) → x∗
eq1

as
t → ∞. There is a set (s

1 ⊂ Ws
x∗
eq1

given by the points located

between the equilibrium point x∗
eq1

and the point cl(Ws
x∗
eq1

)

∩ cl(Wu
x∗
eq2

) so that each trajectory with the initial condition x0 ∈ (s
1

tends to the point cl(Ws
x∗
eq1

) ∩ cl(Wu
x∗
eq2

) in back time, i.e., ϕ(x0, t)

→ cl(Ws
x∗
eq1

) ∩ cl(Wu
x∗
eq2

) as t → −∞.

On the other hand, there is a set (u
2 ⊂ Wu

x∗
eq2

such that

each trajectory with initial condition x0 ∈ (u
2 converges to the

point cl(Ws
x∗
eq1

) ∩ cl(Wu
x∗
eq2

); i.e., if x0 ∈ (u
2 ⊂ Wu

x∗
eq2

, then ϕ(x0, t)

→ cl(Ws
x∗
eq1

) ∩ cl(Wu
x∗
eq2

) as t → ∞. The aforementioned statement

is true because of Assumption 1. Because all trajectories with the
initial condition x0 ∈ Wu

x∗
eq2

converge to the equilibrium point x∗
eq2

in back time, i.e., ϕ(x0, t) → x∗
eq2

as t → −∞, then (u
2 is defined as

the set comprising the points x0 ∈ Wu
x∗
eq2

such that ϕ(x0, t) → x∗
eq2

as

t → −∞ and ϕ(x0, t) → cl(Ws
x∗
eq1

) ∩ cl(Wu
x∗
eq2

) as t → ∞.

Therefore, the heteroclinic orbit HO21 from the equilibrium
point x∗

eq2
to the equilibrium point x∗

eq1
is given by the set (s

1 ∪ (u
2 .

Then, we could also express the heteroclinic orbit as

HO21 = {x ∈ ϕ(x0, t) : x0 ∈ (u
2 ∧ t ∈ (−∞, 0]}

∪ {x ∈ ϕ(x0, t) : x0 ∈ (s
1 ∧ t ∈ [0, ∞)}.

In a similar way, it is possible to identify two sets (s
2 ⊂ Ws

x∗
eq2

and (u
1 ⊂ Wu

x∗
eq1

, such that each trajectory with the initial condition

x0 ∈ (s
2 fulfills ϕ(x0, t) → cl(Ws

x∗
eq2

) ∩ cl(Wu
x∗
eq1

) as t → −∞. Also,

each trajectory with the initial condition x0 ∈ (u
1 fulfills ϕ(x0, t)

→ cl(Ws
x∗
eq2

) ∩ cl(Wu
x∗
eq1

) as t → ∞. Therefore, the heteroclinic orbit

HO12 from the equilibrium point x∗
eq1

to the equilibrium point x∗
eq2

is
given by the set (s

2 ∪ (u
1 . Then, we could also express the heteroclinic

orbit as

HO12 = {x ∈ ϕ(x0, t) : x0 ∈ (u
1 ∧ t ∈ (−∞, 0]}

∪ {x ∈ ϕ(x0, t) : x0 ∈ (s
2 ∧ t ∈ [0, ∞)}.

!

The aforementioned Proposition 3 warrants that there exist ini-
tial conditions x01, x02 ∈ SW, such that two solution curves ϕ(x01, t)
and ϕ(x02, t) of the hyperbolic system given by (5) and (6) fulfill that
ϕ(x01, t) → x∗

eq1
and ϕ(x02, t) → x∗

eq2
as t → ∞ and ϕ(x01, t) → x∗

eq2

and ϕ(x02, t) → x∗
eq1

as t → −∞; in particular, these initial condi-
tions correspond to the intersection points cl(Ws

x∗
eq1

) ∩ cl(Wu
x∗
eq2

) and

cl(Ws
x∗
eq2

) ∩ cl(Wu
x∗
eq1

).

The following proposition is a direct consequence of
Proposition 3.

Proposition 4: If the partition P contains more than two
atoms {P1, P2, . . . , Pk}, with 2 < k ∈ Z+, and each atom is a hyper-
bolic set defined as above. Furthermore, the atoms by pairs Pi and Pi+1

fulfill Proposition 3. Then, the system generates 2(k − 1) heteroclinic
orbits.

This Proposition 4 warrants multiple heteroclinic orbits to
generate multiscroll attractors under the below assumption.

Assumption 5: The oscillations around the equilibrium point
x∗

eqi
depend on parameters α and β, and we consider β/α ≥ 10.
The trajectory x(t) of the PWL system can be calculated by

xi(t) = eAtxi
0 in each atom Pi, where xi = x + x∗

eqi
and xi

0 is the initial
condition when the trajectory enters the atom Pi, i = 1, 2. Then,

xi(t) = QE(t)Q−1xi(0),

where Q is the invertible matrix defined by the eigenvectors of A;
therefore, E(t) is given by one of the following forms:

E(t) =





eγ t 0 0
0 eαt cos(βt) −eαt sin(βt)
0 eαt sin(βt) eαt cos(βt)



 (7)

or

E(t) =





eαt cos(βt) −eαt sin(βt) 0
eαt sin(βt) eαt cos(βt) 0

0 0 eγ t



 . (8)

The flow of the system ϕ(x0) is dissipative in each atom for all
initial conditions x0 ∈ Pi − Wu

xeqi
⊂ X.

As an example, we consider the system (5) and (6) that was
given in Ref. 39 with the switching surface and parameters α, β , γ ,
and κ as follows:

Example 1: A PWL system to generate heteroclinic chaos
by considering a partition with two atoms P = {P1, P2}, where
P1 = {x ∈ R3 : x < SW or x ∈ SW−} and P2 = {x ∈ R3 : x > SW or
x ∈ SW+}, with the switching plane SW = {x ∈ R3 : 2x1 − x3 = 0},
SW− = {x ∈ R3 : x3 ≥ 0} ∩ SW, and SW+ = {x ∈ R3 : x3 < 0} ∩
SW, and the parameters α = 0.2, β = 5, γ = −3, κ1 = −1, and
κ2 = 1.

The matrix of the linear operator A ∈ R3×3 and the constant
vector B ∈ R3 based on the eigenvalues are defined in Ref. 39 as
follows:

A =





α
3

+ 2γ
3

β 2γ
3

− 2α
3

− β

3
α 2β

3
γ

3
− α

3
−β 2α

3
+ γ

3



 , B =





− α
3

− 2γ
3

β

3
α
3

− γ

3



 , (9)
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whose eigenvectors are

v1 =





1
0
1
2



 , v2 =





0
−1
0



 , v3 =





−1
0
1



 . (10)

Therefore, the equilibria are at x∗
eq1

= (−1, 0, 0)T ∈ P1 and

x∗
eq2

= (1, 0, 0)T ∈ P2, and the stable and the unstable manifolds are
given by

Wu
x∗
eq1

= {x ∈ R
3 : x1 + x3 + 1 = 0},

Wu
x∗eq2

= {x ∈ R
3 : x1 + x3 − 1 = 0},

Ws
x∗
eq1

=

{

x ∈ R
3 :

x1 + 1

2
= x3; x2 = 0

}

,

and

Ws
x∗
eq2

=

{

x ∈ R
3 :

x1 − 1

2
= x3; x2 = 0

}

.

The intersection points are given by cl(Ws
x∗
eq2

) ∩ cl(Wu
x∗
eq1

)

= (− 1
3
, 0, − 2

3
)

T
, cl(Ws

x∗
eq1

) ∩ cl(Wu
x∗
eq2

) = ( 1
3
, 0, 2

3
)
T
.

The above defined system fulfills Proposition 3; therefore, it
presents a heteroclinic orbit [see Fig. 1(a)]. Then, heteroclinic chaos
emerges from this system; in particular, a double-scroll attractor
is generated as it is shown in Fig. 1(b), for the following initial
condition x0 = (0, 0, 0)T, and Fig. 2 shows projections of the double-
scroll attractor onto different planes: (a) (x1, x2), (b) (x1, x3), and
(c) (x2, x3).

FIG. 1. (a) Heteroclinic cycle, the blue and red trajectories belong to the atoms
P1 and P2, respectively. The heteroclinic orbit from x∗

eq1 to x∗
eq2 is comprised of

the blue spiral trajectory and the red straight trajectory. Another heteroclinic orbit
from x∗

eq2 to x
∗
eq1 is comprised of the red spiral trajectory and the blue straight tra-

jectory. (b) A double-scroll attractor that emerges from a heteroclinic orbit using

the following initial condition x0 = (0, 0, 0)T and the parametersα = 0.2,β = 5,
γ = −3, κ1 = −1, κ2 = 1 for the system defined by (5) and (6) with the switch-
ing surface SW = {x ∈ R3 : 2x1 − x3 = 0}. The equilibria, x∗

eq1 and x∗
eq2, are

marked in red dots, and the black dots correspond to the intersection of the blue
and red trajectories of (a).

FIG. 2. Projections of the double-scroll attractor on the planes: (a) (x1, x2), (b)

(x1, x3), and (c) (x2, x3). The initial condition is x0 = (0, 0, 0)T and the param-
eters α = 0.2,β = 5, γ = −3, κ1 = −1, κ2 = 1 for the system defined by (5)
and (6) with the switching surface SW = {x ∈ R3 : 2x1 − x3 = 0}.

IV. DERIVATION OF A CONTINUOUS TIME DYNAMIC
PLANAR SYSTEM WITH TWO UNSTABLE FOCI

In this section, we derive a PWL system in R2 by reducing the
affine linear system (5) to an uncoupled affine linear system, and the
linear transformation of coordinates is defined by

y = Q−1x,

ẏ = Q−1AQy + Q−1f(Qy)B, (11)

where y = (y1, y2, y3)
T ∈ R3 is the state vector of the uncou-

pled system. From (11), the linear operator A ∈ R3×3 can be
expressed as

A = QEQ−1, (12)

where Q = [v1 v2 v3]. Also, E is given by one of the following forms:

E =





γ 0 0
0 α −β
0 β α



 or E =





α −β 0
β α 0
0 0 γ



 ; (13)

thus, system (11) can be expressed as

ẏ = Ey + Q−1f(Qy)B. (14)

A continuous time dynamic planar system with two unsta-
ble foci is derived from (13), which is as follows. The matrices
A1, A2 ∈ R2×2 of the system (3) are defined from the Jordan canon-
ical form. Particularly, they are given by the Jordan block related to
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the complex eigenvalues λ2 = α + iβ and λ3 = α − iβ of A ∈ R3×3.
Then,

A1 = A2 =

(

α −β
β α

)

. (15)

The planar system (3) and the hysteresis are defined by (1) and (2).
Without loss of generality, the planar PWL system, for 0 < t ∈ R, is
given by

ẋ =

{

A1x + B1 while x ∈ D1,
A2x + B2 while x ∈ D2,

(16)

where x = (x, y)T is the state vector of the system and B1, B2 ∈ R2

are constant vectors. The equilibria of the system, x∗
1 = (x∗

1 , y∗
1)

T

∈ D1 and x∗
2 = (x∗

2 , y∗
2)

T ∈ D2, are determined by the components
of the equilibria given by y∗

eq1 and y∗
eq2 according to the Jordan block

related to the complex eigenvalues. For instance, if we consider the
first matrix E given by (13), then the equilibria x∗

1 and x∗
2 are given

by the second and third components, respectively. The borders of
the convex sets D1 and D2, where subsystems (A1, B1) and (A2, B2)
are acting, are given by two lines l1 and l2 that pass through the
equilibria x∗

1 and x∗
2 , respectively. These lines l1 and l2 are parallel

to the projected line given by the intersection of the plane QSW with
the unstable manifold, where QSW is the switching plane SW trans-
formed by Q. Finally, the vectors B1 and B2 are defined by −A1x

∗
1

and −A2x
∗
2 , respectively.

Proposition 6: If a PWL system is given by (5) according to
Proposition 3, then a continuous time dynamic planar system with
two unstable foci is determined by (16).

Proof. A dynamical system given by (5) that fulfills Proposition
3 can be transformed by (11) and expressed as an uncoupled system
(14). Then, the linear operator (15) of the planar system is given by
the Jordan block related to the complex eigenvalues λ2,3 = α ± β ,

A =

(

α −β
β α

)

.

The equilibria x∗
i of the planar system are determined by the

equilibria y∗
i of the uncoupled system, with i = 1, . . . , η. The com-

ponents of x∗
i are given by the form of the linear operator E. If E

is given by the first matrix of (13), the second and third compo-
nents of y∗

i conform to the components of x∗
i . In another case, the

first and second components of y∗
i conform to the components of

x∗
i . Therefore, the vectors Bi are given by −A−1

i x∗
i .

The borders li of the convex sets Di, where subsystems (A, Bi)
are acting, are given by the lines li that pass through the equilib-
ria x∗

i , and these lines li are parallel to the projected line given by
the intersection of the plane QSW with the unstable manifold, with
i = 1, . . . , η. !

As an example, now, we begin to determine the system (14) by
considering Example 1 as follows.

Example 2: Determine a planar PWL system (16) by consider-
ing the dynamical system of Example 1.

The first step is to get the uncoupled system given by (14).
Then, under the coordinate transformation given by (11), the matrix
Q to obtain an uncoupled system with two atoms in the partition

Py = {P1y, P2y} is given as follows:

Q =





1 0 −1
0 −1 0

1/2 0 1



 .

The switching plane QSW that generates the partition Py = {P1y

= {y ∈ R3 : y < QSW or y ∈ QSW−}, P2y = {y ∈ R3 : y > QSW or
y ∈ QSW+}} is

QSW = {y ∈ R
3 : y1 − 2y3 = 0}, (17)

with QSW−{y ∈ R3 : y1 + y3 ≥ 0} ∩ QSW ⊂ P1y and QSW+{y ∈
R3 : y1 + y3 < 0} ∩ QSW ⊂ P2y.

The matrix of the linear operator E ∈ R3×3 given by the
first matrix of (13), for the parameters α = 0.2, β = 5, γ = −3,
κ1 = −1, and κ2 = 1, and the constant vector Q−1f(Qy)B ∈ R3

based on the eigenvalues defined in39 are as follows:








2γ
3
β

3

− α
3









for y ∈ P1yand







− 2γ
3

− β

3
α
3






for y ∈ P2y. (18)

The functional f is given by

f(y) =

{

κ1, y ∈ P1y,
κ2, y ∈ P2y,

(19)

with κ1, κ2 ∈ R. Therefore, the equilibria are at y∗
eq1

= (−2/3, 0, 1/3)T

∈ P1y and y∗
eq2

= (2/3, 0, −1/3)T ∈ P2y, and the stable and the unsta-
ble manifolds are given by

Wu
y∗
eq1

= {y ∈ P1y ⊂ R
3 : y1 = −2/3}, (20)

Wu
y∗
eq2

= {y ∈ P2y ⊂ R
3 : y1 = 2/3}, (21)

Ws
y∗
eq1

= {y ∈ P1y ⊂ R
3 : y2 = 0, y3 = 1/3}, (22)

Ws
y∗
eq2

= {y ∈ P2y ⊂ R
3 : y2 = 0, y3 = −1/3}. (23)

The intersection points are given by cl(Ws
y∗
eq2

) ∩ cl(Wu
y∗
eq1

)

= (− 2
3
, 0, − 1

3
)

T
and cl(Ws

y∗
eq1

) ∩ cl(Wu
y∗
eq2

) = ( 2
3
, 0, 1

3
)
T
.

The above defined the uncoupled system given by (14) that
fulfills Proposition 3; therefore, it presents a heteroclinic orbit [see
Fig. 3(a)]. The heteroclinic chaos emerges from this system; in
particular, a double-scroll attractor is generated as it is shown in
Fig. 3(b), for the following initial condition y0 = (0, 0, 0)T, and Fig. 4
shows projections of the attractor onto different planes: (a) (y1, y2),
(b) (y1, y3), and (c) (y2, y3).

There are remarkable differences between the displayed pro-
jections of Figs. 2(a) and 2(c) and its corresponding projections of
Figs. 4(a) and 4(c). Figure 2(a) shows the shape of a double-scroll
projected onto the plane (x1, x2); meanwhile, Fig. 4(a) shows that
the shape of the double-scroll is lost. Figure 2(c) shows the shape of
a single-scroll projected onto the plane (x2, x3); meanwhile, Fig. 4(c)
shows the shape of a double-scroll projected onto the plane (y2, y3).

Chaos 30, 053114 (2020); doi: 10.1063/1.5144709 30, 053114-6

Published under license by AIP Publishing.

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

FIG. 3. (a) Heteroclinic cycle, the blue and red trajectories belong to the atoms
P1y and P2y , respectively. The heteroclinic orbit from y∗

eq1 to y∗
eq2 is comprised

of the blue spiral trajectory and the red straight trajectory. Another heteroclinic
orbit from y∗

eq2 to y∗
eq1 is comprised of the red spiral trajectory and the blue

straight trajectory. (b) A double-scroll attractor that emerges from an hetero-

clinic orbit using the following initial condition y0 = (0, 0, 0)T and the parame-
ters α = 0.2,β = 5, γ = −3, κ1 = −1, κ2 = 1 for the system defined by (14)
and (6) with the switching surface QSW = {y ∈ R3 : y1 − 2y3 = 0} .

The continuous time dynamic planar system with two unstable
foci is given by (15) and (16) by considering the following linear
operators:

A1 = A2 =

(

0.2 −5
5 0.2

)

. (24)

The equilibria of the system are at x∗
1 = (0, 1/3)T ∈ D1 and

x∗
2 = (0, −1/3)T ∈ D2, where the convex sets are defined as follows:

D1 = {(x, y) : −1/3 < y ∈ R} and D2 = {(x, y) : y < 1/3 ∈ R}.
(25)

FIG. 4. Projections of the double-scroll attractor on the planes: (a) (y1, y2), (b)

(y1, y3), and (c) (y2, y3). The initial condition y0 = (0, 0, 0)T and the parame-
ters α = 0.2,β = 5, γ = −3, κ1 = −1, κ2 = 1, for the system defined by (14)
and (6) with the switching surface QSW = {y ∈ R3 : y1 − 2y3 = 0}.

FIG. 5. A double-scroll attractor of the continuous time dynamic planar systems

with two unstable foci given by (16) and (24), for the initial condition x0 = (0, 0)T .

The borders, l1 = −1/3 and l2 = 1/3, of the convex sets D1 and
D2, pass through the equilibria x∗

1 and x∗
2 , respectively. These lines l1

and l2 are parallel to the line given by the intersection of the plane
QSW (17) and the unstable manifolds given by the planes (20) and
(21). Finally, the vectors B1 and B2 are defined by −A1x

∗
1 and −A2x

∗
2 ,

respectively,

B1 =

(

5/3
−1/15

)

and B2 =

(

−5/3
1/15

)

. (26)

We have defined a continuous time dynamic planar system
given by (16) and (24)–(26). This planar system presents two unsta-
ble foci and uses the hysteresis phenomenon to display a double-
scroll attractor. Figure 5 shows a double-scroll attractor for the
initial condition x0 = (0, 0)T. Notice that this attractor is equal to
the projection of the attractor of Fig. 4(c).

V. MULTISCROLL ATTRACTORS ON THE PLANE

An approach to generate a one-directional grid multiscroll
attractor via a PWL system based on UDS type I was given in38 by
defining a double-scroll attractor as follows:

• Consider the linear operator A,

A =





0 1 0
0 0 1

−α31 −α32 −α33



 , (27)

where α31, α32, and α33 satisfy the UDS type I conditions.
• Choose two equilibria on the x-axis: x∗

eq1
= (x∗

1eq1
, 0, 0)T and

x∗
eq2

= (x∗
1eq2

, 0, 0)T.

• Compute the stable and unstable manifolds Ws
x∗
eq1

, Wu
x∗
eq1

, Ws
x∗
eq2

,

and Wu
x∗
eq2

.
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• Find the intersection points between the stable and unstable
manifold Ws

x∗
eq1

∩ Wu
x∗
eq2

and Ws
x∗
eq2

∩ Wu
x∗
eq1

.

• Define the switching surface SW12 as the plane g1(x) = 0 that
passes through the intersection points Ws

x∗
eq1

∩ Ws
x∗
eq2

and Ws
x∗
eq2

∩ Wu
x∗
eq1

and the line: x1 = (x∗
1eq1

+ x∗
1eq2

)/2, x3 = 0.

• Define the partition P by considering P1 = {x ∈ R3 :
x < SW or x ∈ SW−} and P2 = {x ∈ R3 : x > SW or x ∈ SW+},
with the switching plane SW = SW− ∪ SW+, such that Ws

x∗
eq1

∩ Wu
x∗
eq2

∈ P1 and Ws
x∗
eq2

∩ Wu
x∗
eq1

∈ P2.

• Compute the constant vectors κiB = −Ax∗
eqi

, with i = 1, 2. The κi

values determine the functional f(x).

The above steps generate two heteroclinic orbits between the
equilibria x∗

eq1 and x∗
eq2, and then the system (5) fulfills Proposition 3.

Proposition 7: Given a partition P = {P1, P2} and the PWL
system (5) based on UDS-I that generates a heteroclinic loop accord-
ing to the above steps between equilibria x

∗
eq1 = (x∗

1eq1
, 0, 0)T and

x
∗
eq2 = (x∗

1eq1
+ d̂1, 0, 0)

T
, d̂1 ∈ R, with the linear operator defined

by (27), B = (0, 0, 1), and the switching surface given by the plane
g1(x) = 0. Then, multiple heteroclinic loops are generated between η
equilibria in the partition P = {P1, . . . , Pη}, 2 < η ∈ N, if the equi-

libria are given by x
∗
eqi = (x∗

1eq1
+ (i − 1)d̂1, 0, 0)

T
, with i = 1, . . . , η,

and switching surfaces are given by parallel planes gi(x) = 0 that pass
through the points ((x∗

1eqi
+ x∗

1eq(i+1)
)/2, 0, 0)T, with i = 1, . . . , η − 1.

Proof. The PWL system (5) is completely determined by the
linear operator A, the vectors κiB, the functional f(x), and the par-
tition P. Proposition 7 states A, B, and P, and then the functional
f(x) needs to be computed as follows.

We have A ∗ x∗
eq1 = (0, 0, −α31x∗

1eq1
)T = −f(x)B = (0, 0, −κ1)

T

for x ∈ P1 and A ∗ x∗
eq2 = (0, 0, −α31(x∗

1eq1
+ d̂1))

T
= −f(x)

B = (0, 0, −κ1 − d̂2)
T

for x ∈ P2, and then the functional f(x)

= κ1, if x ∈ P1, and f(x) = κ1 + d̂2, if x ∈ P2, with κ1 = α31x∗
1eq1

and

d̂2 = α31d̂1. Therefore, for a partition with η atoms, the functional is
given by

f(x) = κ1 + (i − 1)d̂2, if x ∈ Pi, with i = 1, . . . , η.

Now, the PWL system (5) is completely defined.
The heteroclinic loops between equilibria x∗

eqi, with i = 1,
. . . , η, are a consequence of the heteroclinic loop between equilibria

x∗
eq1 = (x∗

1eq1
, 0, 0)T and x∗

eq2 = (x∗
1eq1

+ d̂1, 0, 0)
T

because all the equi-

libria are given by x∗
eqi = (x∗

1eq1
+ (i − 1)d̂1, 0, 0)

T
, with i = 1, . . . , η,

and then they are equidistant. Also, switching surfaces are given
by parallel planes gi(x) = 0 and pass through equidistant points
((x∗

1eqi
+ x∗

1eq(i+1)
)/2, 0, 0)T, with i = 1, . . . , η − 1. Therefore, the pair

of equilibria x∗
eqi and x∗

eq(i+1) presents a heteroclinic loop as the pair
of equilibria x∗

eq1 and x∗
eq2. This completes the proof. !

The heteroclinic chaos is given in multiscroll attractors by
consider the PWL system (5) according to Proposition 7 and
Assumption 5.

Example 3: In order to illustrate the generation of multiscroll
attractors using (5), we consider a PWL system defined in R3 to gener-
ate a ten-scroll chaotic attractor with the state vector x = (x1, x2, x3)

T

and the linear operator defined by (27), where α31 = 1.5, α32 = 1, and
α33 = 1.

Thus, the eigenvalues are λ1 = −1882/1563, λ2 = 319/3126
+ 2503/2252i, and λ3 = 319/3126 − 2503/2252i, which satisfy
∑3

i=1 λi < 0 and Im(λ2)/Re(λ2) > 6. Im(λ2) and Re(λ2) denote the
imaginary part and real part of λ2, respectively.

Choose equilibria at x∗
eq1 = (0, 0, 0)T, x∗

eq2 = (0.6, 0, 0)T, x∗
eq3

= (1.2, 0, 0)T, x∗
eq4 = (1.8, 0, 0)T, x∗

eq5 = (2.4, 0, 0)T, x∗
eq6 = (3, 0, 0)T,

x∗
eq7 = (3.6, 0, 0)T, x∗

eq8 = (4.2, 0, 0)T, x∗
eq9 = (4.8, 0, 0)T, and x∗

eq10

= (5.4, 0, 0)T.

The unstable manifolds are given as follows:

Wu
x∗
eqi

= {x ∈ R
3 : 0.3646x1 − 0.0597x2 + 0.2927x3 − D′

i = 0},

with i = 1, . . . , 10, and D′
1 = 0, D′

2 = 0.2188, D′
3 = 0.4375,

D′
4 = 0.6563, D′

5 = 0.8750, D′
6 = 1.0938, D′

7 = 1.3125, D′
8 = 1.5313,

D′
9 = 1.7500, and D′

10 = 1.9688. The stable manifolds are given by

Ws
x∗
eqi

=

{

x ∈ R
3 :

x1 − x∗
1eqi

−0.4687
=

x2

0.5644
=

x3

−0.6796

}

,

with i = 1, . . . , 10. Therefore, the switching surfaces are given by

SWi(i+1) = {x ∈ R
3 : gi(x) = 0}, with i = 1, . . . , 9,

where gi(x) = 0.7369x1 + 0.0918x3 − D̂i, with D̂1 = 0.2211,

D̂2 = 0.6632, D̂3 = 1.1054, D̂4 = 1.5474, D̂5 = 1.9896, D̂6 = 2.4318,
D̂7 = 2.8739, D̂8 = 3.3160, and D̂9 = 3.7582. The sets SW−

i(i+1) and

SW+
i(i+1) are for x3 ≥ 0 and x3 < 0, respectively. The set of constant

vectors f(x)B = −Ax∗
eqi, with i = 1, . . . , 10, is given by

f(x)B = {κ1B = (0, 0, 0)T, κ2B = (0, 0, 0.9)T, κ3B = (0, 0, 1.8)T,

κ4B = (0, 0, 2.7)T, κ5B = (0, 0, 3.6)T, κ6B = (0, 0, 4.5)T, κ7B = (0, 0, 5.4)T,

κ8B = (0, 0, 6.3)T, κ9B = (0, 0, 7.2)T, κ10 = (0, 0, 8.1)T}

and the partition,
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P = {P1 = {x ∈ R3 : g1(x) < 0, or x ∈ SW−
12},

P2 = {x ∈ R3 : 0 < g1(x) & g2(x) < 0, or x ∈ SW+
12, or x ∈ SW−

23},

P3 = {x ∈ R3 : 0 < g2(x) & g3(x) < 0, or x ∈ SW+
23, or x ∈ SW−

34},

P4 = {x ∈ R3 : 0 < g3(x) & g4(x) < 0, or x ∈ SW+
34, or x ∈ SW−

45},

P5 = {x ∈ R3 : 0 < g4(x) & g5(x) < 0, or x ∈ SW+
45, or x ∈ SW−

56},

P6 = {x ∈ R3 : 0 < g5(x) & g6(x) < 0, or x ∈ SW+
56, or x ∈ SW−

67},

P7 = {x ∈ R3 : 0 < g6(x) & g7(x) < 0, or x ∈ SW+
67, or x ∈ SW−

78},

P8 = {x ∈ R3 : 0 < g7(x) & g8(x) < 0, or x ∈ SW+
78, or x ∈ SW−

89},

P9 = {x ∈ R3 : 0 < g8(x) & g9(x) < 0, or x ∈ SW+
89, or x ∈ SW−

9(10)},

P10 = {x ∈ R3 : 0 < g9(x), or x ∈ SW+
9(10)}}.

(28)

The eigenvalues of A are λ1 = −1.20 and λ2,3 = 0.10 ± 1.11i.
By Definition 3, the system is an UDS of Type I. Figure 6(a) shows
nine heteroclinic cycles between equilibria x∗

eqi and x∗
eqi+1, with

i = 1, . . . , 9, and Fig. 6(b) depicts the attractor for the initial con-
dition x0 = (0.07, 0.01, 0.09)T. Figure 7 shows the projections of the
attractor onto different planes: (a) (x1, x2) plane, (b) (x1, x3) plane,
and (c) (x2, x3) plane. We solved this system numerically by using
the fourth order Runge–Kutta method with 100 000 time iterations
and step-size h = 0.01.

The generalization of the idea from a double-scroll to a multi-
scroll attractor on the plane is easy if a multiscroll attractor in R3

is given. The following proposition warrants the aforementioned
comment:

Proposition 8: If there exists a PWL system (5), which
generates a multiscroll heteroclinic chaotic attractor according to
Proposition 7 and Assumption 5, then a continuous time dynamic
planar system driven by hysteresis with multiple unstable foci is
determined by

ẋ =



















A1x + B1 for fH(x) = 1,
A1x + B2 for fH(x) = 2,
...
A1x + Bη for fH(x) = η.

(29)

Also, the hysteresis is given by the following expression:

fH(x) =











1 while x ∈ D1,
...
η while x ∈ Dη .

(30)

The hysteresis is initialized as follows:

fH(x0) =



















1 for x0 ∈ D1,
2 for x0 ∈ D2 − H1,
...
η, for x0 ∈ D2 − Hη−1,

(31)

where Hi = Di ∩ Di+1, with i = 1, . . . , η − 1.

Proof. Because the system (5) fulfills UDS-I, then the eigenval-
ues of A1 are λ1 = −γ and λ2,3 = α ± iβ , with the corresponding
eigenvectors v1, v2, and v3. Therefore, the matrix Q = [v1 v2 v3]
exists, and the linear transformation y = Q−1x defines the uncou-
pled system (13). Then, the matrices A1 ∈ R2×2 are given by

A1 =

(

α −β
β α

)

.

The equilibria x∗
i = (x∗

i , y∗
i )

T are given by the last two components of
y∗

eqi = Q−1x∗
eqi, with i = 1, . . . , η; therefore, the vectors Bi ∈ R2 are

given by Bi = −A1x
∗
i . Also, the borders of the convex sets Di, with

i = 1, . . . , η, are given by the lines li that pass through the equilibria
x∗

i , and they are parallel to the generated line given by the intersec-
tion of the plane QSW12 with an unstable manifold, where QSW12 is
the switching plane SW12 transformed by Q. Therefore, the planar
system is completely determined. !

Example 4: Find the continuous time dynamic planar system
(29) driven by hysteresis with multiple unstable foci by considering the
PWL system of Example 3.

The uncoupled system is given by ẏ = Ey + Q−1f(Qy)B, where

E =





−1.2041 0 0
0 0.1020 −1.1115
0 1.1115 0.1020



 and

Q =





−0.4687 −0.0934 −0.5046
0.5644 −0.5703 0.0524

−0.6796 0 0.6393



 . (32)

The equilibria are at y∗
eq1 = (0, 0, 0)T, y∗

eq2 = (−0.5422, −0.5894,

−0.5763)T, y∗
eq3 = (−1.0843, −1.1788, −1.1527)T, y∗

eq4 = (−1.6265,

−1.7682, −1.7290)T, y∗
eq5 = (−2.1687, −2.3576, −2.3054)T, y∗

eq6

= (−2.7108, −2.9470, −2.8817)T, y∗
eq7 = (−3.2530, −3.5364, −3.

4581)T, y∗
eq8 = (−3.7952, −4.1258, −4.0344)T, y∗

eq9 = (−4.3373,

−4.7153, −4.6108)T, and y∗
eq10 = (−4.8795, −5.3047, −5.1871)T.
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FIG. 6. (a) Nine heteroclinic cycles between equilibria x∗
eqi and x

∗
eqi+1, with i = 1, . . . , 9. (b) Attractor generated by the quasi-symmetrical 10-PWL(S) system for the initial

condition x0 = (0.07, 0.01, 0.09)T .

The unstable and stable manifolds are given by Wu
y∗
eqi

= {y ∈ R3 : y1 = y∗
1eqi

} and Ws
y∗
eqi

=
{

y ∈ R3 : y2 = y∗
2eqi

, y3 = y∗
3eqi

}

,

with i = 1, . . . , 10, respectively. The switching surfaces QSW are
given by QSWi(i+1) = {y ∈ R3 : y1 + 0.1689y2 + 0.7679y3 − 2.4526

D̂i = 0}, with i = 1, . . . , 9, and D̂1 = 0.2211, D̂2 = 0.6632,
D̂3 = 1.1054, D̂4 = 1.5474, D̂5 = 1.9896, D̂6 = 2.4318, D̂7 = 2.8739,
D̂8 = 3.3160, and D̂9 = 3.7582.

The planar system (29) is easily defined by the uncoupled
system as follows. The linear operator A1 is given by

A1 =

(

0.1020 −1.1115
1.1115 0.1020

)

.

The equilibria x∗
i ∈ R2 is given by the second and third components

of y∗
eqi, and then the constant vectors Bi = −A1x

∗
i are computed as

follows:

B1 =

(

0
0

)

, B2 =

(

−0.5809
0.7144

)

, B3 =

(

−1.1618
1.4288

)

,

B4 =

(

−1.7426
2.1432

)

, B5 =

(

−2.3235
2.8575

)

, B6 =

(

−2.9044
3.5719

)

,

B7 =

(

−3.4853
4.2863

)

, B8 =

(

−4.0662
5.0007

)

, B9 =

(

−4.6470
5.7151

)

,

B10 =

(

−5.2279
6.4295

)

.

The border lines are parallel to the line given by the intersection
between the QSW12 and Wu

y∗
eq1

. Therefore, the border lines are given

by li(x) = 0.2198x + y + νi, with i = 1, . . . , 10, ν1 = 0, ν2 = 0.7064,
ν3 = 1.4127, ν4 = 2.1191, ν5 = 2.8255, ν6 = 3.5318, ν7 = 4.2382,
ν8 = 4.9446, ν9 = 5.6510, and ν10 = 6.3573. Then, the convex sets
are given as follows:

D1 = {x ∈ R2 : l2(x) > 0}, D2 = {x ∈ R2 : l1(x) < 0 & l3(x)
> 0}, D3 = {x ∈ R2 : l2(x) < 0 & l4(x) > 0}, D4 = {x ∈ R2 : l3(x)
< 0 & l5(x) > 0}, D5 = {x ∈ R2 : l4(x) < 0 & l6(x) > 0},
D6 = {x ∈ R2 : l5(x) < 0 & l7(x) > 0}, D7 = {x ∈ R2 : l6(x) < 0 &
l8(x) > 0}, D8 = {x ∈ R2 : l7(x) < 0 & l9(x) > 0}, D9 = {x ∈ R2 :
l8(x) < 0 & l10(x) > 0}, and D10 = {x ∈ R2 : l9(x) < 0}.
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FIG. 7. Projections of the attractor onto
different planes: (a) (x1, x2) plane, (b)
(x1, x3) plane, and (c) (x2, x3) plane. The

initial condition x0 = (0.07, 0.01, 0.09)T .

The above convex sets define the hysteresis given by (30), and
the initialization is given as follows:

fH(x0) =



























































1 for x0 ∈ D1,
2 for x0 ∈ D2 − H1,
3 for x0 ∈ D3 − H2,
4 for x0 ∈ D4 − H3,
5 for x0 ∈ D5 − H4,
6 for x0 ∈ D6 − H5,
7 for x0 ∈ D7 − H6,
8 for x0 ∈ D8 − H7,
9 for x0 ∈ D9 − H8,
10 for x0 ∈ D10 − H9,

(33)

where H1 = D1 ∩ D2, H2 = D2 ∩ D3, H3 = D3 ∩ D4, H4 = D4 ∩ D5,
H5 = D5 ∩ D6, H6 = D6 ∩ D7, H7 = D7 ∩ D8, H8 = D8 ∩ D9, and
H9 = D9 ∩ D10.

Figure 8 shows an attractor with ten scrolls, which is generated
by the PWL system (29). Red lines correspond to the border lines li,
with i = 1, . . . , 10. The initial condition is x0 = (−0.1428, 0.0057)T.

FIG. 8. A ten-scroll attractor given by the PWL system (16) with the initial

condition x0 = (−0.1428, 0.0057)T . Red lines correspond to the border lines li ,
with i = 1, . . . , 10.

VI. CONCLUSION

A class of continuous time PWL systems in R2 was derived
via PWL systems in R3 that generate heteroclinic chaos. This class
of continuous time dynamic planar systems presents self-excited
attractors with unstable foci. Numerical examples according to the
presented theory were given by introducing two systems, the former
generates a double-scroll self-excited attractor and the latter is about
the generation of a multiscroll self-excited attractor. The approach
to generate these kinds of attractors via planar systems and hysteresis
allows us to understand an easy generation mechanism and propose
new PWL systems in R2.

In this work, we consider only one type of hysteresis, the so-
called (delayed) relay, which is the simplest model of discontinuous
hysteresis. Now, the dynamics of the systems introduced can be
explored through different mathematical expressions of hysteresis.

The problem of designing a hysteresis two-dimensional PWL
system with two unstable foci was resolved. The derived hystere-
sis system captures in some sense the chaotic dynamics of the
three-dimensional models. Such dimensional reduction resembles
a projection regarding the flow of the three-dimensional system,
once putting the system in its Jordan canonical form. This work
allows us to ask the following question: is there a topological equiv-
alence between the three-dimensional systems and the hysteresis
systems with two unstable foci because this last one can mimic
the three-dimensional dynamics? However, the location of the new
equilibrium points is altered, becoming on the transition lines.

Furthermore, we believe that this work will help one to find the
relationship between the real and imaginary part of a complex eigen-
value λ = α + iβ . This is of great interest because heteroclinic chaos
always assumes α 2 β . Also, our future work is to compute the
basin of attraction of this class of PWL systems in order to estimate
the basin of attraction of a chaotic PWL system in R3.
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