
The following article appeared in Mathematical Problems in Engineering, 

Volume 2020, Article ID  2702653; and may be found at: 

10.1155/2020/2702653. 

This is an open access article distributed under the Creative Commons 

Attribution 4.0 International (CC BY 4.0) license. 

https://creativecommons.org/licenses/by/4.0/  



Research Article
Generation of Dynamical S-Boxes for Block Ciphers via Extended
Logistic Map

B. B. Cassal-Quiroga and E. Campos-Cantón
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In this work, we present a simple algorithm to design n× n-bits substitution boxes (S-boxes) based on chaotic time series of the
logistic map for di"erent carrying capacities.!e use of di"erent carrying capacities in the chaotic map leads to low computational
complexity, which is desirable to get high-speed communication systems. We generate a main sequence by means of two auxiliary
sequences with uniform distribution via the logistic map for di"erent carrying capacities. !e elements of the main sequence are
useful for generating the elements of an S-box. !e auxiliary sequences are generated by considering lag time chaotic series; this
helps to hide the chaotic map used. !e U-shape distribution of logistic chaotic map is also avoided, in contrast with common
chaos-based schemes without considering lag time chaotic series, and uncorrelated S-box elements are obtained. !e proposed
algorithm guarantees the generation of strong S-boxes that ful#ll the following criteria: bijection, nonlinearity, strict avalanche
criterion, output bits independence criterion, criterion of equiprobable input/output XOR distribution, and maximum expected
linear probability. Finally, an application premised on polyalphabetic ciphers principle is developed to obtain a uniform dis-
tribution of the plaintext via dynamical S-boxes.

1. Introduction

Nowadays, we are in the era of informatics, and due to a large
number of attacks, it is important to adequately protect the
information to be transmitted and avoid the possible misuse
of it.!e aforementioned comment motivates the generation
of di"erent approaches to have secure cryptographic systems.
In general, cryptosystems can be divided into two classes:
stream cipher and block cipher. A stream cipher takes one bit
and transforms it into one output bit. Meanwhile, a block
cipher takes m input bits and transforms them into m output
bits. !e core of this transformation in block ciphers is static
S-boxes. !e S-boxes give cryptosystems the confusion
property described by Shannon [1] and are used in con-
ventional block ciphers such as the Data Encryption Standard
(DES) and the Advanced Encryption Standard (AES). !e
security in these cryptographic systems depends mainly on
the properties of S-boxes used. A strong S-box ful#lls the

following criteria: bijection, nonlinearity, strict avalanche
criterion (SAC), and the output bit independence criterion
(BIC) [2]. If an S-box ful#lls the above criteria, then it is called
“good S-box.” Other desirable characteristics are being re-
sistant to linear and di"erential cryptanalysis attacks. !e
construction of cryptographically secure dynamic S-boxes is a
#eld of interest in the area of cryptography.

In recent years, many papers have been reported and
focus on studying cryptosystems based on chaos, see ref.
[3–16], this is, because of the relationships that exists be-
tween the chaotic system properties and the cryptosystem
properties. In ref. [17] the relationship between these
properties are given; for instance, confusion is related to
ergodicity, the di"usion property with sensitivity to initial
conditions and the deterministic dynamic with the deter-
ministic pseudorandomness. Taking advantage of the cha-
otic system’s properties, a strong and dynamic S-Box is
proposed that ful#lls the criteria of a good S-box.
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Regarding the generation of S-box based on chaos, some
algorithms have been developed using discrete dynamical
systems. For example, in ref. [3, 5, 8–10, 16], the generation
of substitution boxes was introduced through using only a
time series of a map or by combining two time series of
di"erent maps. In the same way, there are algorithms that
use continuous chaotic dynamical systems [4, 6, 11, 12].
Nevertheless, these algorithms do not guarantee that the
series used have a uniform distribution, in contrast with the
approach used in this work. !ere are also algorithms that
consider the mixing of time series of continuous and discrete
dynamical systems [7, 13], and in ref. [18] the algorithm is
built via time-delay series. Other types of encryption al-
gorithms consider so-called hidden attractors [15]. !e
advantage of using discrete chaotic dynamical systems is that
from one iteration to another, the elements of the time series
are uncorrelated. However, this does not happen if a con-
tinuous chaotic dynamical system is used, and the elements
of the time series are strongly correlated. !erefore, many
iterations are needed, and the calculation of the mutual
information between elements of the time series is necessary
to be able to say when they are uncorrelated, which implies a
higher computational cost.

In chaos-based encryption schemes, pseudorandom
sequences via chaotic maps are generally used as one-time
pad for encrypting messages. Since encryption schemes,
based on low dimensional chaotic map, have low compu-
tational complexity, they can be analyzed with low com-
putational cost using iteration and correlation functions
[19]. Time-delay chaotic series have complex behavior and
erase the trace of the mapping that generates them. In ref.
[20], the generation of pseudorandom series with good
statistical properties was proposed using lag time series from
the logistic map. Using this kind of lag time series, it is
possible to hide the map used to build them. Usually, the
chaotic maps used for cryptography have been normalized to
map the interval [0, 1] to itself, i.e., f: [0, 1]⟶ [0, 1]. Now, in
this work, we explore a di"erent carrying capacity tomap the
interval [0, 28] to itself, i.e., f: [0, 256]⟶ [0, 256], for this
case, the logistic map is known as the extended logistic map.
!is simple maneuver of using the extended logistic map
allows the generation algorithm to calculate dynamic
S-boxes faster than its standardized version.

In this paper, we present an algorithm to design n× n-
bits S-boxes based on a main sequence generated by mixing
two auxiliary sequences using lag time chaotic series. !ese
chaotic time series are computed with the logistic map
considering di"erent carrying capacities. Because of the
logistic map considers a carrying capacity parameter, it is
easy to adjust this parameter to map the interval [0, 28] to
itself, so each iteration generates a byte instead of a bit. !e
generation of a byte with each iteration helps with the
computational time to produce S-boxes because fewer it-
erations are needed. Notice that the generation of bytes can
be realized in a di"erent way, for example, by partitioning
the interval [0, 1] into 256 subintervals. So each subinterval
corresponds to a byte. !e di"erence between both ap-
proaches of byte generation is the computing program; then
we implement the approach based on the extended logistic

map. Two lag time chaotic series are mixed to favor a
uniform distribution in the main sequence that generates
S-boxes. In addition, the logistic map is hidden if the #rst
return map is plotted with the main sequence. Several
statistical tests are carried out to evaluate the performance of
these proposed S-boxes.!e results show that all the criteria
are met for a good S-box and with high immunity to resist
di"erential cryptanalysis and linear cryptanalysis.

!e rest of the work is organized as follows: in Section 2,
an algorithm for generating substitution boxes based on
binary sequences of the logistic map is presented. In Section
3, a dynamic analysis of the extended logistic map and the
proposed scheme to generate a dynamic S-box based on the
map are presented. In Section 4, the criteria for a “good”
n× n-bits S-box are described. In Section 5, the performance
analysis of the proposed algorithms are provided and
compared with other S-boxes reported in the literature. In
Section 6, an application to obtain a uniform distribution of
the plaintext via dynamical S-boxes is presented. Finally,
conclusions are drawn in Section 7.

2. Dynamical S-Boxes Based on CSPRNG

First, we consider an algorithm to generate dynamic S-boxes
based on a Cryptographically Secure Pseudo-Random
Number Generator (CSPRNG), which was proposed by
Garćıa-Mart́ınez and Campos-Cantón [20] and tested with
the suite of NIST. !e CSPRNG is based on two lag time
series generated with the logistic map, fL: I⟶ I, which is
de#ned as

fL α, xi( ) " αxi 1 − xi( ), (1)
where x is the state variable of the logistic map, and α is the
parameter of the system.

2.1. #e First Algorithm for S-Box Design via CSPRNG.
!e steps of the algorithm are simple as shown below:

Step 1. Select initial conditions x01 and x02 for CSPRNG
in order to generate the stream of bits s0, s1, s2, . . .

Step 2. Generate the block sequence of n-bits each,
C0" (s0, s1, . . ., sn− 1), C1" (sn, sn+1, . . ., s2n− 1), C2" (s2n,
s2n+1, . . ., s3n− 1), . . .

Step 3. Convert the blocks C0, C1, C2, . . . of n-bits to
integer numbers D0, D1, D2, . . ..
Step 4. Discard the repeated elements D’s to select 2n
di"erent values. !e rule to discard an element is as
follows: if Di"Dj with i< j then discard Dj.
Step 5. Create the S-Box with the 2n di"erent elements
of D’s.

Once the procedure is over, the proposed algorithm
returns a n × n-bits S-box with distinct 2n values. Note that
D0 is the #rst element of the S-box, but the second element
could be not D1 if D0"D1. However, enough 2n elements
have been generated to build the S-box. Each block C’s is
comprised by n-bits, sj, sj+1, . . ., sj+n− 1, which are related with
the functions fi, with i" 1, . . ., n.
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To exemplify the generation of dynamic S-boxes, con-
sider n" 8, this allows us to build a 8× 8 bits S-Box. !e
other parameters are set as follows: α1" 4, α2" − 2 and two
arbitrary initial conditions x01 and x02, then the S-Box ob-
tained is shown in Table 1 for x01" 0.8147, and x02" 0.9058.
!is proposed substitution box has the properties of con-
fusion and di"usion, which are of vital importance for the
block ciphers. In this case, the time needed to calculate an
S-box was 1.096 seconds.

3. Analysis of the Extended Logistic Map

In the context of mathematics, it is possible to consider the
logistic map at di"erent intervals, [0, κ], with 0< κ ∈ R, and
the parameter α positive and restricted to an interval such
that the orbit of an initial condition x0 ∈ [0, κ] does not
escape to in#nity. In this context, the logistic map for 1< κ is
called extended logistic map. For our interest, we consider
the extended logistic map as fLE(α, x): [0, 2n]⟶ [0, 2n], so
that it is de#ned as follows:

fLE(α, x) " αxi 2n − xi( ), n ∈ Z+, (2)
for the bifurcation parameter α ∈ [0, (4/2n)] and x0 ∈ [0, 2n].

Nevertheless, as it is explained in [21], mathematically, it
is possible to consider negative values. As mentioned above,
the extended logistic map is now studied with α in the
interval [− (2/2n), 0). !e dynamical system (2) has one or
two #xed points located at x∗1 " 0 and at x∗2 " 2nα − 1/α, for
α≠ 0.

For cryptographic purposes, the value of n" 8 is chosen
because a pixel, speci#cally, is represented by 8 bits (28
colors), and 1 byte" 8 bits. For α ∈ [− (2/28), (4/28)], the
orbits do not escape to in#nity for any initial conditions in
an appropriate interval determined by the value and sign of
the α parameter. Figure 1 shows the shape of the extended
logistic map for α" − 2/28 in blue triangles and for α" 4/28 in
black crosses. It can be seen that the system has one or two
#xed points depending on the value of α which are located at
x∗1 " 0 and x∗2 " (28α − 1)/α for α≠ 0.

!e stability of the #xed points is displayed in Figure 2
where a circle denotes a stable or attractive #xed point, while
a cross denotes that the #xed point is unstable or repulsive.
!e stability of these #xed points change according to the
parameter α, i.e., when |fLE′ (x∗1 )|< 1 and |fLE′ (x∗2 )|< 1; then
the #xed points x∗1 and x∗2 are stable, respectively, and they
are unstable when |fLE′ (x∗1 )|> 1 and |fLE′ (x∗2 )|> 1. !e case
of interest is the last, because the system presents complex
behavior; this is, both #xed points are repulsive, |fLE′ (x∗1 )| "
|28α|> 1 and |fLE′ (x∗2 )| " | − 28α − 2|> 1. !e x∗1 #xed point
is repulsive for − 2/28≤ α< − 1/28 or 1/28< α≤ 4/28. On the
other hand, the x∗2 #xed point is repulsive for − 2/28≤ α< 1/
28 but α≠ 0, or 3/28< α≤ 4/28. So the interesting values are
α ∈ [− 2/28, − 1/28]∪ [3/28, 4/28]; this is the condition to have
both repulsive #xed points.

!e dynamical system (2) bifurcates when |fLE′ (x∗1 )| " 1
and |fLE′ (x∗2 )| " 1, this happens for x∗1 when α"±1/28, and
for x∗2 the bifurcation values are given by α" 1/28 and 3/28. It
is possible to analyze the behavior of the system by means of
a bifurcation diagram, which is shown in Figure 3. !is

diagram shows orbit’s values as a function of α parameter
and the route to chaos are period-doubling bifurcations at
α" 3/28 and period-halving bifurcations at α" − 1/28. !ere
are intervals for the parameter α near to − 2/28 and 4/28
where the extended logistic map fLE(α, x) behaves
chaotically.

!ere are several approaches to demonstrate that a system is
chaotic; one of them is to prove that the dynamical system
ful#lls the de#nition given by Devaney [22] and another ap-
proach is based on the Lyapunov exponent [23, 24].We use this
last concept to prove chaos and the Lyapunov exponent of
Equation (2) is shown in Figure 4. !e graph of Lyapunov
exponents is symmetric with respect to α" 1/28≈ 0.0039, the
chaotic behavior of the extended logistic map appears for values
of the parameter α near − 2/28≈ − 0.0078 and 4/28≈ 0.0156.!e
local stability of the #xed points are in accordance with the
Lyapunov exponent values, for example, when α ∈ (− 1/
28≈ − 0.0039, 3/28≈ 0.0117), the orbits of the system converge at
a #xed point, and when the bifurcations occur, the orbits
converge at periodic orbits up to chaos appears.

!e aim is to use the extended logistic map to generate a
time series with uniform distribution and without evi-
dencing the mapping used. To achieve this, there is an
approach based on two chaotic time series of the extended
logistic map given in [20]. Following Lyapunov exponent
analysis, the values of α are arbitrarily selected within the
chaos region, so it is considered α" − 2/28 and 4/28.

!e extended logistic map for these parameter values is
invariant in di"erent intervals as follows:

f− 2/28: [− 128, 384]⟶ [− 128, 384],
f4/28: [0, 256]⟶ [0, 256].

(3)
It is worth mentioning that the time series generated with
both parameter values have a U-shape distribution.

3.1. S-Box Construction via Integer Chaotic Lag Time Series.
!e main idea of the proposed algorithm for the generation
of dynamic S-boxes is to mix two lag time series based on the
extended logistic map fLE: I⟶ I. !e interval I is deter-
mined by the parameter α. LetM1 andM2 be two time series
generated with the extended logistic map by means of the
following considerations: (i) given two arbitrary initial
conditions x01, x02, such that, x01≠ x02; (ii) two di"erent
bifurcation parameter values α1 and α2; and (iii) l-units of
memory for each time series x(i− kl− 1)1, . . ., x(i− k2)1, x(i− k1)1, xi1
and x(i− kl− 1′ )2, . . ., x(i− k2′)2, x(i− k1′)2, xi2. So the orbits have
uniform distribution independent of the U-shape distri-
bution of the extended logistic map. In order to illustrate the
algorithm, we have chosen the bifurcation parameter values
at α1" − 2/28 and α2" 4/28 for the time series M1 and M2,
respectively. !ese parameter values ensure that system (2)
has chaotic behavior in both cases; see Figure 4.

To guarantee that the generator presents good statistical
properties, it is necessary to generate time series with
uniform distribution and also it is desirable to eliminate the
extended logistic map shape in these new time series.!is is
achieved by means of the number of lags involved.
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Table 1: !e S-box generated by proposed algorithm.
64 46 150 174 220 26 233 224 148 170 143 247 225 212 90 124
44 204 59 61 43 121 129 2 109 164 103 249 16 237 27 35
216 184 81 213 161 169 89 199 140 38 239 48 163 193 21 147
222 217 70 196 195 192 234 41 47 15 14 42 98 190 186 36
242 51 60 87 24 104 189 55 118 111 231 120 8 226 7 141
85 9 73 101 3 197 12 66 82 110 65 25 165 176 80 181
125 31 218 74 68 52 149 95 182 19 112 5 136 79 214 34
158 50 188 137 28 191 155 84 105 126 92 179 162 152 200 0
171 142 240 203 88 160 32 202 99 18 100 97 145 53 194 93
245 119 185 20 235 123 134 139 128 116 173 76 17 132 209 135
83 168 57 56 223 30 91 4 22 122 102 221 208 131 71 86
39 114 252 10 172 201 177 77 94 246 54 175 183 108 156 45
219 210 40 130 113 153 13 166 58 23 253 215 238 33 198 248
229 227 96 206 107 144 67 254 115 167 244 106 180 157 255 241
207 243 228 187 49 78 251 37 62 1 205 117 29 178 75 236
11 250 146 6 151 69 138 133 72 232 211 127 159 63 154 230
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Figure 1: !e extended logistic map for di"erent α values: 4/28
(black crosses) and − 2/28 (blue triangles).
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Figure 2: Fixed points stability where an asterisk and a circle
denote repulsive and attracting #xed points, respectively. !e
extended logistic map have both repulsive #xed points at α ∈ [− 2/
28≈ − 0.0078, − 1/28≈ − 0.0039]∪ [3/28≈ 0.0117, 4/28≈ 0.0156].
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Figure 3: Bifurcation diagram for the extended logistic map given
by (2).!e bifurcations occur for x∗1 at α"±1/28≈±0.0039, and for
x∗2 , the bifurcations occur at α" 1/28≈ 0.0039 and at 3/28≈ 0.0117.
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Figure 4: Lyapunov exponent as a function of parameter α.
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For example, for the time series M2"m02, m12, m22, . . .,
if we consider two memory units and α2" 4/28, the elements
mi2 are given as follows:

mi2
" M2 x(i− k1)2, xi2( ) " x(i− k1)2 + xi2, mod 28, (4)

where k1" 5. Figure 5 shows the plot of m(n− 1)2 against mn2,
now many points are outside the curve of the extended
logistic map. But it is still possible to distinguish the shape of
the extended logistic map. !e number of iterations con-
sidered in the delay does not matter to observe the shape of
the extended logistic map and the points never spread
enough on the plane (m(n− 1)2, mn2), so it is necessary to
consider more memory units.

!erefore, we consider three memory units, the elements
mi2 of the time series M2 are given as follows:

mi2
" M2 x(i− k2)2, x(i− k1)2, xi2( )
" x(i− k2)2 + x(i− k1)2 + xi2, mod 28,

(5)
where k1" 10 and k2" 5. Now, there are too many points
outside the curve of the extended logistic map that look like a
cloud of points on the plane (m(n− 1)2,mn2); see Figure 6. Also
the shape of the extended logistic map almost disappears, so
three memory units are enough.!e problem of considering
more memory units has a computational price of infor-
mation storage. For this reason, two delays, k1, k2, and the
present state of the time series of the extended logistic map
are used. Also the lags must not be contiguous in order to
avoid regular patterns which directly a"ect the data
distribution.

As a summary, for two given orbits x01, x11, x21, . . ., and x02,
x12, x22, . . ., we consider di"erent delays, k2′" k2"10, k1′" 5 and
k1" 6, to generate both time seriesM1 andM2.!en, the series
M1 is conformed by the sum of two delay states x(i− 10)1, x(i− 5)1,
and the actual state xi1. In the same way forM2, x(i− 10)2, x(i− 6)2
and xi2. !e values of the time series are limited by the op-
eration mod 28, this guarantees that M1, M2 ∈ [0, 28) ⊂ R.
Explicitly M1(x(i− 101), x(i− 51), xi1) andM2(x(i− 10)2, x(i− 6)2, xi2)
are expressed in the following way:

mi1
" M1 x(i− 10)1, x(i− 5)1, xi1( )
" x(i− 10)1 + x(i− 5)1 + xi1, mod 28,

(6)
mi2

" M2 x(i− 10)2, x(i− 6)2, xi2( )
" x(i− 10)2 + x(i− 6)2 + xi2, mod 28.

(7)
Finally, these time series M1"m01, m11, m21, . . . and

M2"m02,m12,m22, . . . given by (6) and (7), respectively, are
mixed and the operation mod 28 is applied again, this
process generates a new time series Zi given as follows:

Zi " mi1
+ mi2

, mod 28. (8)
Note that Zi ∈ [0, 28) ⊂ R. Equations (2), (6)–(8) de#ne

a delayed map that hides the structure of the chaotic map
used.

For instance, the plot of the time series xn onto the plane
(xn− 1, xn) reveals the map used; see Figure 7(a), i.e., the
extended logistic map is shown. In contrast, the time series
zn does not reveal the extended logistic map onto the plane
(zn− 1, zn); see Figure 7(c). In addition, the delayed map has a
uniform probability distribution instead of a “U-shaped”
probability distribution [25] that the extended logistic map
has. Figures 7(b) and 7(d) show the probability distribution
of the time series xn and zn, respectively.!is is an important
characteristic that makes easier the construction of S-box
since all values have the same probability of occurrence in
contrast to the use of a single time series.

Because the elements of the time series Zi are real
numbers, they are discretized to obtain a time series that is
useful for cryptosystems. !e symbolic dynamics of Zi time
series is given by using the $oor function to obtain the series
si. So the elements of s are integer numbers, si(Zi) ∈ {0, 1, 2,
. . ., 28}; thus, the process for getting the integer number
series is as follows:

si " ⌊Zi⌋. (9)
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m(n–1)2
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100
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Figure 5: (m(n− 1)2, mn2) from the time series M2(x(i− k1)2, xi2)
considering two memory units.
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Figure 6: (m(n− 1)2, mn2) from the time series M2(x(i− k2)2, x(i− k1)2,
xi2) considering three memory units.
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A CSPRNG based on a discrete dynamical system is
given from equations (2) to (9).

3.2. #e Second Algorithm for S-Box Design via Extended
Logistic Map. In this subsection, we introduce an algorithm
to generate n× n S-boxes based on the extended logistic map.
!e algorithm steps are simple as shown below.

Step 1. Select initial conditions x01, x02, and use
equations (2) to (9) to generate the stream of byte
sequence s0, s1, s2, . . .

Step 2. Discard the repeated elements D’s to select 2n
di"erent values. !e rule to discard an element is as
follows: if si" sj with i< j then discard sj.
Step 3. Create the S-Box with the 2n di"erent elements
of si’s.

Once the procedure is #nished, the proposed algorithm
returns a n× n S-box with 2n di"erent values. Note that s0 is
the #rst element of the S-box, but the second element could
be not s1 if s0" s1. However, enough 2n elements have been
generated to build the S-box.

For example, if n" 8, x01" 191, x02" 209, α1" 4/28, and
α2" − 2/28, then the 8× 8 S-Box is obtained and shown in
Table 2. !is proposed substitution box has the confusion
and di"usion properties, which are vital for the block ci-
phers. In this case, the time needed to calculate an S-box is
0.014 seconds.

4. Criteria for a Good n×n S-Box

A compilation of six important and well-known criteria
reported in the literature to generate cryptographically good
S-boxes is presented. !ese criteria are bijection; nonline-
arity, strict avalanche criterion, independence criterion of
output bits, XOR distribution of equiprobable input/output,
and maximum expected linear probability.

4.1. Bijective Criterion. Let S(x) be an S-box, which is bi-
jective if and only if their Boolean functions fi satisfy the
following condition:

wt a1 · f1 ⊕ a2 · f2 ⊕ · · · ⊕ an · fn( ) " 2n− 1, (10)
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Figure 7: (a) !e extended logistic map given by xn against xn− 1; (b) “U-shaped” probability distribution of the extended logistic map;
(c) Delayed map given by zn against zn− 1; (d) Uniform probability distribution of the delayed map.
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where ai ∈ F , (a1, a2, . . ., an)≠ (0, 0, . . ., 0) and wt(·) is the
Hamming weight [2, 26], the corresponding S-box is
guaranteed to be bijective.

4.2. Nonlinearity Criterion

De!nition 1 (see [27]). !e nonlinearity of a Boolean
function f: Fn⟶ F is denoted by

Nf " min
l∈Aw,c(x)

dH(f, l), (11)
where Aw,c(x) is an a%ne function set and dH(f, l) is the
Hamming distance between f and l.

!e minimum distance between two Boolean functions
can be described by means of the Walsh spectrum [28]:

min
l∈Aw,c(x)

dH(f, l) " 2n− 1 1 − 2− n max
ω∈Fn

Ŝ(f)(ω)
∣∣∣∣∣ ∣∣∣∣∣( ), (12)

where the Walsh spectrum of f(x) is de#ned as follows:

Ŝ(f)(ω) " F̂f(w)
∣∣∣∣∣ ∣∣∣∣∣ " ∑

x∈Fn

(− 1)f(x)⊕x•ω, (13)
with ω ∈ Fn, and x •ω is the dot product between x and ω as

x •ω " x1 · ω1 ⊕ · · ·⊕ xn · ωn. (14)
4.3. Strict Avalanche Criterion (SAC). !is criterion was #rst
introduced byWebster and Tavares [29]. A Boolean function
f satis#es SAC if complementing any single input bit changes
the output bit with the probability of half. So, a Boolean
function f satis#es SAC, if and only if

∑
x∈Fn

f(x)⊕f x⊕ ei( ) " 2n− 1, ∀i: 1≤ i≤ n, (15)
where ei ∈ Fn such that wt(ei)" 1.

4.4. Output Bits Independence Criterion (BIC). Output Bit
Independence Criterion was also introduced byWebster and
Tavares [29]. It means that all the avalanche variables should

be pairwise independent for a given set of avalanche vectors
generated by complementing a single plaintext bit.

Adam and Tavares introduced another method to
measure the BIC, for Boolean functions, fi and fj (i≠ j) of two
output bits in a S-box, if fi⊕ fj is highly nonlinear and comes
as close as possible to satisfy SAC [2]. Additionally, fi⊕ fj can
be tested with a Dynamic Distance (DD). !e DD of a
function f can be de#ned as

DD(f) " max
d∈Fn

wt(d)"1

1
2
2n− 1 − ∑2n− 1

x"0
f(x)⊕f(x⊕ d)

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣.

(16)
If the value of DD is a small integer and close to zero, the

function f satis#es the SAC.

4.5. Criterion of Equiprobable Input/Output XOR
Distribution. Biham and Shamir [30] introduced di"erential
cryptanalysis which attacks S-boxes faster than brute-force
attack. It is desirable for an S-box to have di"erential uni-
formity. !is can be measured by the maximum expected
di"erential probability (MEDP). Di"erential probability for
a given map S can be calculated by measuring di"erential
resistance and is de#ned as follows:

DPf " maxΔx≠0,Δy # x ∈ Fn|S(x)⊕ S(x⊕Δx) " Δy{ }
2m( ), (17)

where 2n is the cardinality of all the possible input values (x),Δx and Δy are called input and output di"erences, re-
spectively, for the S. !us, the smaller value of DPf gives
better cryptographic property, i.e., better resistance to dif-
ferential cryptanalysis.

4.6. Maximum Expected Linear Probability. !e Maximum
Expected Linear Probability (MELP) is the maximum value
of the unbalance of an event. Two randomly selectedmasks a
and b are given, where a is used to calculate the mask of all
possible values of an input x, and b is used to calculate the
mask of the output values of the corresponding S-box. !e
parity of the input bits mask a is equal to the parity of the

Table 2: !e S-box generated by proposed algorithm.
8 195 2 130 142 128 75 60 40 248 178 117 225 34 169 212
85 3 244 222 122 246 110 206 181 95 131 89 18 81 104 37
16 151 118 239 228 199 154 149 5 236 42 14 220 45 237 47
1 240 254 9 41 243 64 135 229 53 21 103 73 173 6 214
78 97 98 31 230 59 231 241 189 120 235 234 87 226 249 217
51 137 233 204 207 105 24 213 114 48 183 187 17 201 132 245
106 170 172 140 58 148 200 57 164 202 92 30 180 113 68 152
36 156 134 29 232 141 115 82 205 223 193 102 251 174 46 76
192 32 123 136 147 33 247 70 49 129 72 211 88 7 255 126
168 66 138 83 71 61 112 171 127 167 165 23 12 186 26 56
108 175 65 133 198 27 54 111 124 4 84 39 13 96 44 52
143 162 216 93 91 100 190 194 15 210 43 69 107 203 50 221
161 185 79 209 11 94 101 0 22 159 224 166 182 63 35 238
150 67 252 25 10 90 208 77 121 176 116 119 163 144 177 99
86 38 191 158 62 139 74 218 157 160 197 80 19 55 125 28
179 184 153 188 215 145 155 20 196 109 219 146 242 250 253 227
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output bits the mask b. MELP of a given S-box can be
computed by the following equation:

LPf " max
a,b∈Fn\ 0{ }

2− n ∑
x∈Fn

(− 1)a·x+b·f(x) 2

. (18)
!e closer the MELP is to zero, the greater the resistance

against linear cryptanalysis.

5. Performance Analysis of theGenerated S-Box

In this section, we analyze the proposed S-boxes based on the
second algorithm with the six important cryptographic
criteria. Furthermore, our results are compared with results
reported in the literature using other approaches.

5.1. Bijective Criterion. !e computed value of proposed
S-box is the desired value of 2n− 1" 128, with n" 8, according
to formula (10), the bijective criterion is satis#ed. So, the
proposed S-box is one-to-one, surjective, and balanced.

5.2. Nonlinearity Criterion. Nonlinearity criterion ensures
that an S-box is not a linear function between input vectors
and output vectors. !e nonlinearity gives the degree of
dissimilarity between the Boolean function f and n-bit linear
function l. If the function has high minimum Hamming
distance is said to have high nonlinearity, i.e., by reducing
the Walsh spectrum in (12). An S-box contains n Boolean
functions and the nonlinearity of each Boolean function
must be calculated.!e nonlinearities of the proposed S-box
are 96, 104, 106, 102, 104, 102, 108, and 96. High nonlin-
earity ensures the strongest ability to resist powerful modern
attacks such as linear cryptanalysis.

5.3. Strict Avalanche Criterion (SAC). !e avalanche e"ect
indicates the randomness of an S-box when an input has a
change.!e generated S-box is given in Table 3. We obtain a
maximum SAC equal to 0.6094, the minimum is 0.4219, and
its average value 0.5059 is close to the desired value 0.5. With
these results, we conclude that the S-box generated by the
proposed method ful#lls the property of SAC.

5.4. Output Bits Independence Criterion (BIC). !e BIC
criterion guarantees that there is no statistic pattern or
dependency between output vectors. !e obtained BIC re-
sults are shown in Tables 4, 5, and 6.

!e mean value of BIC-nonlinearity is 103.50, the mean
value of BIC-SAC is 0.5050, and maximum value of DD is 12
which indicates that S-box satis#es the BIC criterion.

5.5. Criterion of Equiprobable Input/Output XOR
Distribution. !e equiprobable input/output XOR Distri-
bution analyzes the e"ect in particular di"erences of input
pairs of the resultant output pairs to discover the key bits.
!e idea is to #nd the high probability di"erence pairs for an
S-Box under attack. In Table 7, the maximal value of the

Table 3: SAC criterion result of the generated S-box.
0.4688 0.4688 0.4531 0.5313 0.4844 0.5156 0.4531 0.5469
0.4844 0.4688 0.5781 0.5938 0.5469 0.4688 0.5313 0.5469
0.5156 0.5156 0.5156 0.5000 0.5938 0.5469 0.5469 0.4688
0.4844 0.5625 0.5000 0.5000 0.4375 0.5000 0.5625 0.4688
0.5625 0.4844 0.5313 0.5313 0.4844 0.5156 0.4844 0.4375
0.5000 0.4844 0.5781 0.5313 0.4688 0.4688 0.5000 0.4531
0.5156 0.4688 0.5000 0.4531 0.5781 0.4688 0.5156 0.4219
0.4844 0.4531 0.6094 0.5625 0.5313 0.4531 0.4375 0.5469

Table 4: BIC-nonlinearity criterion result of the generated S-box.
0 106 106 108 106 104 102 102
106 0 102 104 100 106 106 106
106 102 0 100 106 102 104 102
108 104 100 0 104 104 104 100
106 100 106 104 0 104 104 96
104 106 102 104 104 0 104 102
102 106 104 104 104 104 0 104
102 106 102 100 96 102 104 0

Table 5: BIC-SAC criterion result of the generated S-box.
0 0.4785 0.5176 0.5098 0.5039 0.5195 0.5195 0.4707
0.4785 0 0.5000 0.4922 0.5195 0.5137 0.4941 0.5000
0.5176 0.5000 0 0.5469 0.5137 0.5020 0.4863 0.4980
0.5098 0.4922 0.5469 0 0.5098 0.5176 0.5137 0.4922
0.5039 0.5195 0.5137 0.5098 0 0.5176 0.4863 0.5156
0.5195 0.5137 0.5020 0.5176 0.5176 0 0.4785 0.4863
0.5195 0.4941 0.4863 0.5137 0.4863 0.4785 0 0.5371
0.4707 0.5000 0.4980 0.4922 0.5156 0.4863 0.5371 0

Table 6: !e DD of the generated S-box (BIC-SAC criterion).
0 0 4 4 8 12 2 2
0 0 4 4 4 2 6 2
4 4 0 6 2 4 2 0
4 4 6 0 4 10 4 8
8 4 2 4 0 4 4 12
12 2 4 10 4 0 8 6
2 6 2 4 4 8 0 2
2 2 0 8 12 6 2 0

Table 7: Equiprobable input/output XOR distribution approach
table for the generated S-box.
6 8 6 8 6 6 6 10 8 10 6 6 6 8 6 6
8 6 6 6 6 8 8 8 8 6 6 4 12 6 8 6
8 4 8 10 8 6 8 6 6 8 6 10 6 6 8 8
6 6 6 6 8 6 6 4 8 6 6 6 6 8 8 6
6 6 6 6 6 6 8 6 6 8 8 6 6 6 8 6
6 6 6 6 6 6 6 6 8 8 6 6 6 4 6 6
6 8 8 6 6 6 8 6 8 8 6 6 6 6 8 6
8 6 6 6 6 8 8 6 6 6 6 8 8 6 6 6
6 6 6 6 8 8 6 8 8 6 6 6 6 8 6 6
8 8 6 8 6 8 6 6 6 6 6 8 6 6 8 6
6 6 6 6 8 6 6 6 6 10 6 6 6 6 6 6
6 6 6 6 8 6 8 6 6 8 6 6 6 6 6 6
8 4 8 8 6 6 6 6 8 6 8 6 6 6 8 6
8 6 6 6 8 8 6 8 8 6 8 6 8 6 6 6
6 8 6 6 6 8 8 8 8 8 6 6 6 6 6 6
6 8 8 6 6 6 6 8 6 6 8 6 8 6 6 —
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generated S-box is 12, which indicates that the S-box is
resistant to di"erential cryptanalysis.

5.6.MELPCriterion. !is criterion is computed according to
equation (18) and the average value for the proposed S-Box is
0.0625, which indicates resistance against linear cryptanalysis.

5.7. Performance Comparation. A performance comparison
of our S-box and others’ good S-boxes that were reported in
the literature is presented in Table 8. !e proposed S-box
ful#lls the most important condition and bijection and
accomplishes good results to the rest of the test values ex-
pected [3, 4, 6, 8–11, 14, 31–42].

Comparing these S-boxes, we #nd that

(i) !e proposal ful#lls the expected value 128.
(ii) !e nonlinearity is 102.25, and our proposal has

similar value or above that approaches reported in
references [6, 9, 39].

(iii) !e mean value of SAC of our proposed algorithm is
0.5059. !is value is close to the ideal value, 0.5.

(iv) !e BIC-nonlinearity average is 103.42, and the
BIC-SAC average is 0.5066. Table 8 shows that all
the S-boxes have a good BIC property.

(v) !e value of the XOR distribution of equiprobable
input/output is 0.0469 which indicates resistance
against to di"erential attack.

(vi) !e maximum MELP is 0.0625 which is a good
value in comparison with that the S-boxes reported
in the literature.

!e computational time depends on the algorithm and
the computer used to simulate the algorithm. For example,
algorithms based on chaos need more steps for generating
one iteration if the chaotic systems are based on ordinary
di"erential equations (ODEs) instead of mappings. Refer-
ences [4, 6, 15, 36, 39] are based on ODEs which imply more
computational operations to solve the systems than refer-
ences [2, 3, 9, 10, 35, 38, 40] based on iterated maps. It would
be unfair to compare the computational time between these
algorithms that all of them generate good S-boxes.

Our two proposals are based on iterated logistic maps,
the #rst proposal maps the interval [0, 1] and second
proposal maps [0, 28]. One of the characteristics of the
second proposal (extended logistic map) is the use of fewer
iterations to generate S-boxes than the #rst proposal (logistic
map). Fewer iterations are possible because the extended
logistic map employs the interval [0, 28] instead of the lo-
gistic map [0, 1]. !e use of the interval [0, 28] allows to
generate S-boxes with less iteration that the original logistic
map. To scale the interval allows us to glimpse that the
algorithms reported in the literature can be scaled to operate
in the interval [0, 28] to generate less iterations to build good
S-boxes.

6. Dynamical Generation of S-Boxes and
its Application

!e Alberti cipher was one of the #rst polyalphabetic ciphers
where the principle is substitution, using multiple substi-
tution alphabets such that the output has a uniform dis-
tribution. Nowadays, the Alberti cipher is considering a
codi#cation instead of a cipher. Taking this idea of

Table 8: Comparison of our S-boxes and others S-boxes used in typical block ciphers.

Bijection
Nonlinearity SAC BIC

I/O XOR MELP
Min Max Avg Min Max Avg SAC Nonlinearity DD

Gray [31] 128 112 112 112 0.4375 0.5625 0.4998 0.5026 112 112 0.0156 0.0156
AES [32] 128 112 112 112 0.4531 0.5625 0.5049 0.5046 112 112 0.0156 0.0156
Skipjack [33] 123 100 108 105.12 0.3906 0.5938 0.5027 0.5003 104.03 109 0.0469 0.0549
APA [34] 128 112 112 112 0.4375 0.5625 0.5007 0.4997 112 112 0.0156 0.0156
Ref. [3] 128 102 108 105.25 0.4375 0.5781 0.5056 0.5019 103.78 108 0.0391 0.0977
Ref. [4] 128 104 110 106.25 0.4219 0.5938 0.5039 0.5059 103.35 108 0.0391 0.0791
Ref. [6] 128 90 108 103 0.3438 0.6094 0.4851 0.5018 103.78 108 0.0469 0.0665
Ref. [8] 128 98 107 103.25 0.3828 0.5938 0.5059 0.5033 104.21 108 0.0469 0.0665
Ref. [9] 128 96 106 102.50 0.3906 0.6719 0.5178 0.4790 102.64 106 0.2109 0.1077
Ref. [10] 128 106 108 106.75 0.4219 0.6250 0.5034 0.5015 103.78 108 0.0391 0.0706
Ref. [11] 128 104 108 105.75 0.4219 0.5938 0.4976 0.5013 104.50 108 0.0391 0.0625
Ref. [14] 128 106 108 107.25 0.4219 0.6094 0.5034 0.4980 105.28 108 0.0469 0.0706
Ref. [15] 128 106 108 106.75 0.3594 0.5781 0.4917 0.4998 104.14 108 0.0391 0.0706
Ref. [35] 128 112 112 112 0.4219 0.5469 0.5115 0.4982 108.71 112 0.0313 0.0479
Ref. [36] 128 102 108 106 0.4219 0.5938 0.5002 0.5016 104.42 108 0.0391 0.0881
Ref. [37] 128 106 108 106.75 0.4063 0.5938 0.4971 0.5008 102.92 106 0.0391 0.0791
Ref. [38] 129 103 109 104.87 0.3984 0.5703 0.4966 0.5044 102.96 109 0.0391 0.0706
Ref. [39] 128 96 106 103 0.3906 0.6250 0.5039 0.5010 100.35 106 0.5000 0.0881
Ref. [40] 128 110 112 110.50 0.4375 0.5625 0.4937 0.5033 103.85 106 0.0391 0.0625
Ref. [41] 128 106 108 106.75 0.4219 0.6250 0.5034 0.5015 103.78 108 0.0391 0.0706
Ref. [42] 128 106 108 106.75 0.4219 0.5781 0.5010 0.5005 104.07 108 0.0391 0.0706
Proposal 1 128 96 104 101.75 0.3906 0.5781 0.5012 0.5066 103.42 108 0.0391 0.0706
Proposal 2 128 96 108 102.25 0.4219 0.6094 0.5059 0.5050 103.50 108 0.0469 0.0625
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“polyalphabetic ciphers,” we present an application of dy-
namical S-boxes, where a particular intensity of a pixel is
substituted by di"erent intensities in the same round.
Usually, an S-box is used to substitute all the pixels of an
image of size p× q in the same way. !e idea of “poly-
alphabetic ciphers” is to use a dynamical S-box to achieve
uniform distribution in the encoded image.

Our encoded approach, to get a uniform distribution, is
given by applying dynamical S-box which changes in each
pixel row. !e codi#cation input is the grayscale Lenna
image (Figure 8(a)), and the process is to substitute pixels of
a row according to an S-box, but di"erent rows use di"erent
S-boxes.!e codi#cation output is shown in Figure 8(c), and
Figures 8(b) and 8(d) show the image histograms of plain
image of Lenna and encoded Lenna image, respectively.

Furthermore, in cryptography, a uniform distribution is
always desired; since this property was achieved by simple
substitution with the S-boxes, a good result is expected for a
full cryptographic algorithm based on these S-boxes.

It is well known that many ciphers have been successfully
analyzed with the help of statistical analysis and several
statistical attacks have been devised on them. !erefore, an
e"ective cipher should be robust against any statistical at-
tack, for instance, the information entropy, the correlation of
two adjacent pixels, Peak Signal to Noise Ratio (PSNR),

Uni#ed Average Changing Intensity (UACI), and others,
which it is not the purpose of this article.

It is important to point out that this substitution is a
simple and useful approach intended to catch a glimpse of
possible applications of dynamical S-boxes presented in this
assignment.

7. Concluding Remarks

In this work, simple algorithms to design n× n-bits sub-
stitution boxes are presented. !e algorithms are based on
two lag time chaotic series of the logistic map and the ex-
tended logistic map. In both approaches, two lag time series
are generated by considering di"erent carrying capacity
parameter values. !e mixing of these lag time series favors
two things: a uniform distribution, and the concealment of
the chaotic map used.

Two proposals were presented, the former generates bits
and the latter generates bytes. !e generation of bytes in-
stead of bits helps to generate S-boxes with less iterations.
Although, for this work, we use the extended logistic map, it
is possible to employ the logistic map or di"erent chaotic
maps to generate bytes.

To evaluate the performance of the proposed S-boxes,
several statistical tests were carried out. !e numerical
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Figure 8: (a)!e plain image of Lenna; (b) the grayscale histogram of plain Lenna image; (c) the encoded image of Lenna; (d) the grayscale
histogram of encoded image.
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analysis results for both proposed algorithms show that all
good S-box criteria were ful#lled with high immunity to
resist di"erential cryptanalysis and linear cryptanalysis. !e
number of operations is considerably reduced when we
generate bytes instead of bits. !e Lyapunov exponent, the
bifurcations, and the local stability of logistic map are
preserved in the extended logistic map. We contrast the
performance of our S-boxes with other S-boxes reported in
the literature and our results are in the average of good
S-boxes. Finally, a simple and useful S-box application
approach for coding that provides a uniform distribution
was presented.
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