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M. Pérez-Maldonado

Universidad Polit́ecnica de San Luis Potosı́,
Urbano Villalón No 500 Col. La Ladrillera C.P 78363 San Luis Potosı́, S.L.P., Mexico.

email: maximino.perez@upslp.edu.mx

Received 31 May 2020; accepted 7 July 2020

We analyze the two-dimensional motion of a rigid body due to a constant torque generated by a force acting on the body parallel to the
surface on which the body moves extending an old note of Ferris-Prabhu [Am. J. Phys.38, 1356-1357 (1970)] and supplement it with a short
discussion of the jerking properties.
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1. Introduction

While there are recent surprising applications of Fresnel in-
tegrals, such as to rat whiskers [1] and orange peel [2], it is
surely much less known that fifty years ago Ferris-Prabhu [3]
discussed a two-dimensional motion of a rigid body in classi-
cal Newtonian mechanics as an example in which Fresnel in-
tegrals occur beyond their usual context of near-field optical
diffraction generated by slits and apertures [4–8]. Since the
paper of Ferris-Prabhu is a very short note and has also some
ambiguous points, we provide here a more detailed analysis
of the kinematical quantities of this interesting motion sup-
ported by their plots adding also a discussion of its jerked
properties.

2. Motion with velocity whose cartesian com-
ponents are Fresnel integrals

Let us consider a small rigid and compact object of massM
and moment of inertiaI on a frictionless surface defined by
the cartesian coordinatesx andy with the origin placed at the
center of mass of the object. We assume the object is initially
at rest and apply at timet = 0 a constant force,F , along the
positivex direction at the point(x, y) = (0,−d), whered is

some distance on they axis smaller than the size of the object
in that direction. During the course of motion, the line of ap-
plication of the force is maintained at the distanced for any
instantaneous angleθ made by the force with thex axis,i.e.,
the force as a vector does not change in the rotating cartesian
system defined by the axesx′ andy′ bound to the body, see
Fig. 1.

We are interested in the trajectory of the center of mass
of the object under these conditions. Choosing the center
of mass as a reference point for the motion is theoretically
very convenient because this planar motion is a superposition
of translational and rotational motions and for the center of
mass the translational motion is due to Newton’s second law,
and the rotational motion is due to the torque equation in their
standard form.

The torque equation for the motion, as depicted in Fig. 1
is

τ = Iθ̈ = Fd , (1)

whereI is the moment of inertia of the body, and the dot
stands for the time derivative. DenotingK = Fd/I and us-
ing zero initial conditions, we find the polar angleθ(t) =
(K/2)t2. We now use this quadratic angle to write the carte-
sian components of acceleration provided by Newton’s sec-
ond law
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FIGURE 1. The planar motion of a rigid object considered in this paper at the initial moment and two subsequent instants.
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By one integration and assuming zero integration constants,
we find the cartesian components of the velocity, expressed
in terms of the Fresnel integrals,

C(τ) =
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FIGURE 2. The cartesian components of the velocity forK =
1, 2, 3 (red, green, and blue, respectively), and force and mass taken
as unity. The corresponding Argand plots (bottom left) and the
speedv(t) =

√
ẋ2 + ẏ2 (bottom right).
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Since both velocities are zero att = 0, it confirms that the
center of mass undergoes a planar movement as an instant
center of rotation. These components are plotted in Fig. 2 for
three values ofK, together with their renowned Argand plot
(the positive part of the clothoid/Cornu/Euler spiral [9]) and
the speedv(t) =

√
ẋ2 + ẏ2.

Integrating again with zero integration constants, the
cartesian components for the position are
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SinceF/M is an overall scaling factor, we proceed here
by assumingF/M = 1, which does not change the an-
alytical behavior of the solutions. We plot the displace-
ments (4) in Fig. 3 together with the radial displacement
r(t) =

√
x2 + y2. The plots show a linear behavior that

sets in at already moderate instants of time with some super-
posed ripples which are smaller and almost disappearing at
increasingK. This is easy to understand by using the large
argument expansion of the Fresnel integrals which we write
in the form

C(t)∼1
2
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πt
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FIGURE 3. Cartesian displacementsw1 ≡ x(t) (top left) andw2 ≡
y(t) for a rigid particle constrained to a plane under the action of a
constant force acting as described in the text forK = 1, 2, 3. The
position on the surface isr(t) =

√
x2 + y2, concerning to the ori-

gin at timet (middle left). The fluctuations in the direction of the
speed (black arrows) in the course of motion for the same values
of K (middle right and bottom). Both force and mass are taken as
unity.

for t À 1 and where the notation
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is introduced to emphasize the well-known sinc type ripples
in the plateau region of the Fresnel integrals considered as
switching functions. The linear rising in the amplitude of
the ripples in the large asymptotic Fresnel integrals (5) is
by far compensated by the natural damping of the sinc os-
cillations. In the case of the cartesian displacements (4), we
notice that the last oscillatory terms are bounded by their am-
plitude,1/K, and so their effect in the plots cannot be per-
ceived. In other words, the displacement plots are dominated
by the even functionst C and t S, which asymptotically in
the first quadrant are given by

t C(t) ∼ 1
2
t
(
1 + t sinc
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,
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2
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to which the diminishing effect of the factor
√

π/K should
be added. Using (6) in (4) for F/M = 1, one can see that the

graphs of the displacements are essentially the straight lines√
π/K t/2 with the superposed1 + t sinc and1 + t sinc∗

modulations quickly damping down.

3. Some jerk properties

We now point out some jerked properties of this kind of mo-
tion. The cartesian displacementsx andy present two cou-
pled jerks of the type

...
x = −K̃tÿ ,

...
y = K̃tẍ , (7)

whereK̃ = FK/M , as can be inferred from the derivatives
of (2), although the total acceleration is constant,a = F/M .
This is similar to the case of circular motion of arbitrary ra-
diusR and angular velocityω, where the cartesian jerks are
given by

...
x = −ωÿ ,
...
y = ωẍ , (8)

and the centripetal acceleration isac = ω2R.
It is interesting to find out the differential equation sat-

isfied by the jerks, whicha priory should be a third-order
one [10]. Writing the system (4) in the form

x(t) = tẋ− 1
K

ÿ ,

y(t) = tẏ +
1
K

ẍ− 1
K

, (9)

and using̈x from the second equation in the derivative of the
first one, we are led to the nonhomogeneous third-order linear
differential equation

...
w + K2t2ẇ −K2tw = Kt . (10)

This equation has the following linear independent solutions,

w1(t) = x(t) , w2(t) = y(t) , w3(t) =
√

π

K
t− 1

K
. (11)

The first two of them are jerked with intermingled jerks given
in (7) and are just the cartesian displacements given in (4)
and plotted in Fig. 3. The third linear independent solution is
a non jerked, degenerate solution since it is also a solution of
the simpler first-order linear equation

K2t2ẇ −K2tw = Kt . (12)

This solution is discarded because of the initial conditions of
the motion.

The importance of the third order differential equa-
tion resides in its usage as a (decoupled) definition of the
jerks which can be calculated from

...
w1 = K2t(w1 −

tẇ1) = −Kt sin(Kt2/2) and
...
w2 = K2t(w2 − tẇ2) =

Kt cos(Kt2/2), respectively.
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4. Conclusion

In the planar motion of a rigid body with cartesian veloc-
ity components expressed through the Fresnel integrals, the
speed tends quickly to a constant value affected by small sinc
ripples whose amplitudes are additionally damped by theK

parameter. Consequently, there is no surprise that also the
trajectory corresponds to a planar motion of almost uniform
velocity with only some small undulations. However, these
undulations are important as they reveal the jerked features
of the motion, that are determined by the third-order nonho-
mogeneous linear differential equation obtained in this paper.
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