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ABSTRACT
This paper focuses on the local stability analysis of nonlinear delay models of trans-
mission control protocol/active queue management (TCP/AQM) networks by using
a Proportional-Derivative (PD) controller as AQM strategy. More precisely, we de-
rive the complete set of PD controllers that exponentially stabilizes the correspond-
ing linear delay system. Nonlinear sufficient stability conditions for the local asymp-
totic stability of the equilibrium are derived by means of the Lyapunov-Krasovskii
functional approach. The robustness issue to uncertainty in the network parameters
is also addressed. The results are illustrated by means of some numerical examples.
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1. Introduction

During the last decades a lot of efforts have been focused to the analysis and design of
Active Queue Management (AQM) schemes for supporting end-to-end Transmission
Control Protocol (TCP) congestion control in networks. The fluid-flow delay model in-
troduced in (Hollot et al. 2002) for describing the behavior of TCP/AQM networks has
become a reference for investigating the qualitative properties of TCP/AQM networks
and developing control theoretic design and analysis for the AQM. Thus, based on such
a model, Proportional (P) and Proportional-Integral (PI) controllers were proposed
in (Hollot et al. 2002); Proportional Derivative (PD) control are introduced in (Sun
et al. 2004), (Kim 2006) and (Azadegan et al. 2013); H∞ controllers in (Quet and
Ozbay 2004); while (Yan et al. 2004) considers a variable structure control as AQM
scheme.Due to their simplicity and easy implementation, several works have
been devoted to compare and modify the P,PI and PD controllers for im-
proving stability, robustness, and performance properties, see the survey
papers (Ryu et al. 2003) and (Adams 2012).

Among these works, it is interesting to note the state-space feedback
formulation of the TCP/AQM control proposed in (Kim 2006), where it
is shown that a PD-type control structure in terms of the queue length
is the natural state feedback control to fully support TCP dynamics. The
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capabilities of the PD AQM control on regulating the queue length under
different network scenarios as well as comparisons with other AQM strate-
gies have been illustrated by simulations in (Azadegan et al. 2013) and
(Sun et al. 2004).

Leaving the advantages (increases of speed response) or drawbacks (steady-state er-
ror) of a PD control aside, it appears that its stability and robust stability properties
as AQM strategy have not been sufficiently investigated in the literature in counter-
part with the studies made for P and PI AQM controllers. For instance, for the
linearization of the delay model introduced by (Hollot et al. 2002), the
existing designs of PD AQM controllers are based on sufficient conditions
for closed-loop stability, whereas the designs are made by means of some
heuristic rules in (Sun et al. 2004), the minimization of a linear quadratic
cost function in (Kim 2006), and in terms of linear matrix inequalities
(Azadegan et al. 2013). Thus, the existing designs do not provide the set
of all stabilizing PD controllers. On the other hand, for P and PI AQM
controllers the complete characterization of the set of all stabilizing gain
values have been reported in (Michiels et al. 2006) and (Melchor-Aguilar
and Niculescu 2009), respectively, but, to the best of the authors’ knowl-
edge, there are no specific results for the problem of finding all stabilizing
PD controllers. Furthermore, one does not find a nonlinear stability analysis of the
delay model with a PD control as AQM scheme.

These lack on the stability analysis of PD AQM control motivate the current paper,
where we present linear and nonlinear stability analyses of a simplified version of the
model introduced in (Hollot et al. 2002). More precisely, for a given set of network pa-
rameters (round-trip time, number of TCP loads and link capacity), we firstly present
the complete characterization of the set of all PD controllers that exponentially stabi-
lize the linearized delay model. Some preliminary results in this direction were given
in (Puerto-Piña and Melchor-Aguilar 2016). Also, we investigate the geometric prop-
erties of the set of all PD stabilizing controllers with respect to variations on network
parameters of delay, TCP loads, and link capacity. Secondly, we perform a nonlinear
stability analysis and obtain a sufficient condition for local asymptotic stability along
with some estimates of the attraction region of the closed-loop equilibrium by using the
Lyapunov-Krasovskii functional approach. Finally, we investigate the robustness issue
of the PD control. We show that a new closed-loop equilibrium point exists when a PD
stabilizing control, designed for some nominal network parameters, is implemented in
a system with new different network parameters, and obtain an analytic expression for
such a new equilibrium. By using the linear stability analysis along with the geometric
properties of the set of all stabilizing PD controllers, as well as the nonlinear stability
analysis, we derive robust stability results for assuring the local asymptotic stability
of the whole family of equilibria point generated from uncertainty network parameters
of interval type.

The remaining part of the paper is organized as follows. Section 2 presents the math-
ematical model and PD AQM control. We show that the corresponding closed-loop
system is a neutral delay system and give a formal justification of the transformation
proposed in (Kim 2006) and (Azadegan et al. 2013) to convert the neutral delay system
in a retarded delay system. Additionally, we introduce a scaling transformation of time
and state to the model, which will help us to simplify the subsequent analysis. The
linear stability analysis is given in Section 3, and the nonlinear stability analysis in
Section 4. The robust stability analysis is presented in section 5. Numerical examples
illustrating the main results are given in Section 6, and concluding remarks in section
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7 end the paper.

2. Mathematical model and PD AQM controllers

We consider the dynamic delay model introduced in (Hollot et al. 2002) for describing
the behavior of TCP/AQM networks. Such a model is a simplified version of the
one developed in (Misra et al. 2000) by using fluid-flow and stochastic dif-
ferential equation analysis, which relates the average value of key network
variables of n homogeneous TCP-controlled sources and a single congested
router. This model is described by the following coupled non-linear differ-
ential equations including time-varying delays:

{
ẇ(t) = 1

τ(t) −
w(t)w(t−τ(t))
2τ(t−τ(t)) p(t− τ (t)),

q̇(t) = n(t)
τ(t)w(t)− c(t),

(1)

where w(t) denotes the average of TCP windows size (packets), q(t) is the average

queue length (packets), τ(t) = q(t)
c +τp is the round-trip time (secs) with τp represent-

ing the propagation delay, c(t) is the link capacity (packets/sec), n(t) is the number
of TCP sessions and p(·) is the probability of a packet marking which represents the
AQM control strategy and takes values only in [0, 1]. The queue length q(t) and
window-size w(t) are positive and bounded functions. i.e., q(t) ∈ [0, qmax] and
w(t) ∈ [0, wmax] .

By assuming that n(t) = n, τ(t) = τ and c(t) = c, the model (1) is approximated
by the following system:

{
ẇ(t) = 1

τ − w(t)w(t−τ)
2τ p(t− τ),

q̇(t) = n
τ w(t)− c.

(2)

For a desired equilibrium qd the unique equilibrium point (w0, q0, p0) of (2) is defined
by

w0 =
τc

n
, q0 = qd and p0 =

2

w2
0

.

Most works on analysis and design of AQM controllers are based on the linear version
of (2), and there are only a few works that address their nonlinearities, see (Hollot
and Chait 2002) and (Michiels et al. 2006), where a nonlinear stability analysis for a P
AQM controller is performed by means of the Lyapunov-Razumikhin and Lyapunov-
Krasovskii approaches, respectively. As it was motivated in (Hollot and Chait 2002)
and (Michiels et al. 2006), in order to address the nonlinearities of the system (2) it
is convenient to consider the following simplified system:

{
ẇ(t) = 1

τ − w2(t)
2τ p(t− τ),

q̇(t) = n
τ w(t)− c,

(3)

which is a good local approximation of the system (2) around the equilibrium point
when w0 # 1, see (Michiels et al. 2006) for a mathematical justification. Although the
condition w0 # 1 imposes a restriction on the network parameters for considering (3)
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as a good approximation of (2), it is satisfied for typical range of parameters arising
in practice as argued in (Hollot and Chait 2002) and (Michiels et al. 2006).

We here consider the simplified model (3) and a PD type control as AQM strategy,
and perform linear and nonlinear stability analyses of the corresponding closed-loop
systems. Thus, for a desired queue equilibrium point qd let us consider the following
PD-type controller:

p(t) = Kp (q(t)− qd) +Kdq̇ (t) + p0. (4)

In (Kim 2006) was shown that the natural state-feedback to fully support
the TCP dynamics is a PD control. The main reasoning on this is that
the windows size w(t) and queue length q(t) are the state variables of the
system (3) and, therefore, they need to be in a state feedback for com-
pletely controlling the TCP dynamics. Now, since the second equation of
(3) expresses the queue dynamic as a function of the windows size, then
it appears that q(t) may be used instead of w(t) thus leading to a PD-type
control structure. On the other hand, the use of a PD control overcomes
the implementation restriction of having a measure or estimation of w(t)
which is not accessible at the router’s side in real networks, see (Azadegan
et al. 2013) for discussions.

The closed-loop system (3)-(4) is

{
ẇ(t) = 1

τ − w2(t)
2τ [Kp (q(t− τ)− qd) +Kdq̇ (t− τ) + p0] ,

q̇(t) = n
τ w(t)− c.

(5)

The delay system (5) is of neutral type as involves the time derivative of past values
of q(t), see (Vyhlidal et al. 2004) for discussions when a PD-type feedback is applied
to a system in the presence of delays in the input signal. By following the approaches
presented in (Azadegan et al. 2013) and (Kim 2006), let us differentiate the second
equation of (5) and substitute the right-hand sides of the first and second equation of
(5) to obtain

q̈(t) =
n

τ2
− 1

2n
(q̇(t) + c)2 (Kp (q(t− τ)− qd) +Kdq̇(t− τ) + p0) , (6)

a delay system of the retarded type in the variable q(t), which is considered equivalent
to the neutral delay system (5) in (Azadegan et al. 2013) and (Kim 2006) for designing
the PD controller’s gains. The process of converting the coupled dynamics in (5) to
a single dynamic in (6) is a special system transformation only valid for particular
initial functions, as we demonstrate in the following subsection.

2.1. Transformation from neutral to retarded closed-loop systems

Let us start by revising the initial value problem for the neutral delay system (5)
and the retarded delay system (6). On one hand, in order to define a solution of the
neutral delay system (5) one needs to know an initial differentiable function defined
in the interval [−τ , 0] for q(t), and an initial value for w(t). Let C1 ([−τ , 0] ,R) be the
space of real-valued functions having a continuos derivative in (−τ , 0) , a right-hand
continuous derivative at −τ and a left-hand continuous derivative at 0. For an initial
function ϕq ∈ C1 ([−τ , 0] ,R) and value ϕw = ϕw(0), let q(t,ϕq,ϕw) and w(t,ϕq,ϕw)
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be the corresponding solutions of (5). On the other hand, in order to define a solution
of the retarded delay system (6) one needs to know an initial differentiable function
defined in the interval [−τ , 0] for q(t). Let ψ ∈ C1 ([−τ , 0] ,R) be such an initial function
satisfying

ψ = ϕq and ψ̇(0) =
n

τ
ϕw − c, (7)

and let q̄(t,ψ) be the corresponding solution of (6).

Lemma 1. q(t,ϕq,ϕw) = q̄(t,ψ).

Proof. Function q(t,ϕq,ϕw) clearly satisfies (6) for t ≥ 0. By definition ϕq coincides
with ψ. The second equation of (5) implies that

ϕ̇q(0) = q̇(0) =
n

τ
w(0)− c =

n

τ
ϕw − c = ψ̇(0).

Consider now the function q̄(t,ψ). Clearly, q̄(t,ψ) is differentiable for t ≥ 0. Let us
define the function

w(t) =
τ

n

( ·
q̄(t,ψ) + c

)
. (8)

Since q̄(t,ψ) is twice differentiable for t ≥ 0 then w(t) is differentiable for t ≥ 0. By
differentiating both sides of the equation (8) and substituting the right-hand side of
(6) one obtains that w(t) satisfies the first equation of (5) while that from (8) follows

that
·
q̄(t,ψ) satisfies the second equation of (5). Again, by definition ϕq coincides with

ψ and from (8) one obtains the initial function for w(t), that is,

ϕw = w(0) =
τ

n

(
ψ̇(0) + c

)
=
τ

n

(
ϕ̇q(0) + c

)
.

The Lemma 1 shows that under the restriction (7) on the initial functions, the
neutral delay system (5) is equivalent to the retarded system (6) as proposed by
(Kim 2006) and (Azadegan et al. 2013), but not properly justified.

Now, it makes sense to revise if the restriction (7) is satisfied in a real TCP/AQM
scenario.Recall that TCP consists of the slow start and congestion avoidance
phases and that the system (1), then the system (5), models the congestion
avoidance phase only. Thus, the initial conditions for (5) are determined by the slow
start phase of the TCP. In (Srikant 2012) is shown that the dynamics of the queue
length in the router are the same in both the slow start phase and the congestion

avoidance phase, i.e., the following equation holds: q̇ (t̄) = nw(t̄)
τ − c, where t̄ denotes

the time variable for the two phases of the TCP algorithm. Thus, it follows that the
restriction (7) on the initial functions is always satisfied.
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2.2. Scaling transformations

Consider the following scaling transformations:

t(New) =
t(Old)

τ
, and q̃(t(New)) =

q(t(Old))

n
, (9)

These transformations of time and state were proposed in (Michiels et al. 2006) in
order to simplify the stability analysis of P AQM controllers. We will also use and
exploit them in our stability investigation of PD AQM controllers. Thus, by applying
the transformation (9) to the retarded delay system (6) one obtains

··
q̃(t) = 1− 0.5

(
·
q̃(t) + w0

)2(
Kp (nq̃(t− 1)− qd) +

Kdn

τ

·
q̃(t− 1) + p0

)
. (10)

In the new coordinates the unique equilibrium of (10) is

q̃e =
qd
n
. (11)

Let y(t) = q̃(t)− q̃e. Then, we get the following nonlinear system:

ÿ(t) = 1− 0.5 (ẏ(t) + w0)
2
(
nKpy(t− 1) +

n

τ
Kdẏ(t− 1) + p0

)
(12)

which has trivial solution. In the following we will use the system (12) to investigate
the local asymptotic stability of the equilibrium of the system (3) in closed-loop with
the PD control (4).

3. Linear Stability Analysis

3.1. Complete stability region

Linearizing the system (12) around the zero solution we arrive at the following linear
delay system:

ÿ(t) = −2n

τc
ẏ(t)−

(
(τc)2

2n

)
Kpy(t− 1)−

(
τc2

2n

)
Kdẏ(t− 1). (13)

It is well known that the system (13) is exponentially stable if and only if its charac-
teristic function (quasipolynomial)

f(s) = s2 +
2n

τc
s+

τc2

2n
Kdse

−s +
(τc)2

2n
Kpe

−s,

has no zeros with non-negative real parts, see, e.g. (Gu et al. 2003). The following
result provides the complete characterization of the controller’s gains (Kp,Kd) for
which (13) is exponentially stable.

Proposition 2. Given network parameters (n, τ , c) , the linear system (13) is expo-
nentially stable if and only if the controller’s gains (Kp,Kd) belong to the stability
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Figure 1.: Stability region Γ(n,τ ,c)

region Γ(n,τ ,c), plotted in Fig. 1, whose boundary ∂Γ(n,τ ,c) in the controller’s gains
space (Kp,Kd) is defined by

∂Γ(n,τ ,c) = {(Kp(ω, n, τ , c),Kd(ω, n, τ , c)) : ω ∈ (0, ω̄)} ∪ (14)

{(Kp,Kd) : Kp = 0,Kd ∈ [Kd(0),Kd(ω̄)]} ,

where

Kp(ω, n, τ , c) =
2n

(τc)2

(
2n

τc
ω sin(ω) + ω2 cos(ω)

)
, (15)

Kd(ω, n, τ , c) =
2n

τc2

(
ω sin(ω)− 2n

τc
cos(ω)

)
, (16)

and ω̄ is the solution of the equation

− cτω

2n
= tan(ω), (17)

for ω ∈
(
π
2 ,π

)
.

Proof. The proof follows the same line of arguments used in the proof of Proposi-
tion 2 in (Puerto-Piña and Melchor-Aguilar 2016). Note that (17) is a transcendental
equation for which the solution ω̄ ∈

(
π
2 ,π

)
can be found numerically by plotting the

two functions − cτω
2n and tan(ω), see Fig. 2.
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Corollary 3. Given network parameters (n, τ , c) , the linear system (13) with Kd = 0
is exponentially stable if and only if

0 < Kp <
4n2

(τc)3
ω̃

sin(ω̃)
,

where ω̃ is the solution of the equation

tan(ω) =
2n

(τc)ω
, (18)

for ω ∈
(
0, π2

)
.

Proof. From the parametrization (15) follows that Kd(ω, n, τ , c) = 0 if and only if
the equation (18) holds. This transcendental equation has a unique solution ω̃ in the
interval

(
0, π2

)
, see Fig. 2. For this ω̃ we have that Kp(ω̃, n, τ , c) =

4n2

(τc)3
ω̃

sin(ω̃) . It follows

that a necessary and sufficient condition for exponential stability of (13), with Kd = 0,
is 0 < Kp < Kp(ω̃, n, τ , c) from which follows the result.

The result in Corollary 3 coincides with the result in Theorem 1 of (Michiels et
al. 2006), where necessary and sufficient conditions for exponential stability of P AQM
controllers are provided. Thus, the Proposition 2 generalizes the linear stability results
presented in (Michiels et al. 2006).

3.2. Geometric properties of the stability regions

We here present some properties of the boundary of the stability region Γ(n,τ ,c) that will
play an essential role in deriving robust stability results for PD controllers in section
5. To simplify the notation we define ρ = (n, τ , c). Then, Kp(ω, n, τ , c),Kd(ω, n, τ , c)
and Γ(n,τ ,c) are written as Kp(ω, ρ),Kd(ω, ρ) and Γρ, respectively.

Lemma 4. The continuos function Kd(ω, ρ) satisfies:

1) Kd(ω, ρ) < 0 for ω ∈ [0, ω̃) , Kd(ω, ρ) = 0 for ω = ω̃ and Kd(ω, ρ) > 0 for
ω ∈ (ω̃, ω̄].

2) Kd(ω, ρ) is strictly increasing of ω in the interval (0, ω̄) .

Proof.

1) From the proof of Corollary 3 follows that Kd(ω̃, ρ) = 0. Furthermore, it holds
that 2n

cτω > tan(ω) and cos(ω) > 0, ∀ω ∈ [0, ω̃) , that imply Kd(ω, ρ) < 0, ∀ω ∈
[0, ω̃) . On the other hand, it holds that 2n

cτω < tan(ω) and cos(ω) > 0 for
(
ω̃, π2

)

that in turn imply Kd(ω, ρ) > 0, ∀ω ∈
(
ω̃, π2

)
. For ω ∈

(
π
2 , ω̄

)
we have 2n

cτω >
tan(ω) and cos(ω) < 0 which implies that Kd(ω, ρ) > 0, ∀ω ∈

(
π
2 , ω̄

)
. Evidently,

Kd(
π
2 , ρ) > 0 which ends the proof of the statement.

2) We have d
dω (Kd(ω, ρ)) =

2n
τc2 (m(ω) + sin(ω)) , where

m(ω) = ω cos(ω) +
2n

τc
sin(ω). (19)

For ω = π
2 we have m(ω) = 2n

τc > 0. For ω '= π
2 , m(ω) can be rewritten as

8



m(ω) = 2n
τc cos(ω)

(
τcω
2n + tan(ω)

)
. When ω ∈

(
0, π2

)
we have cos(ω) > 0 and

tan(ω) > − τcω
2n , which imply that m(ω) > 0 for ω ∈

(
0, π2

)
. When ω ∈

(
π
2 , ω̄

)

we have cos(ω) < 0 and tan(ω) < − τcω
2n implying that m(ω) > 0 for ω ∈

(
π
2 , ω̄

)
.

Taking into account the above and the fact that sin(ω) > 0 for all ω ∈ (0, ω̄) one
arrives at the conclusion that d

dω (Kd(ω, ρ)) > 0 for ω ∈ (0, ω̄) as required.

Lemma 5. The continuos function Kp(ω, ρ) satisfies:

1) Kp(ω, ρ) > 0, ∀ω ∈ (0, ω̄) .
2) Kp(ω, ρ) has a unique local maximum at ωm ∈ (ω̃, ω̄) , where ωm is the solution

of the equation

n(ω) = tan (ω) , ∀ω ∈ (ω̃, ω̄) , (20)

where

n(ω) =

(
2n
τc + 2

)
ω(

ω2 − 2n
τc

) . (21)

Proof.

1) The statement follows by observing that Kp(ω, ρ) can be written as Kp(ω, ρ) =
2nω
(τc)2

m(ω), where m(ω) is given by (19). Since m(ω) > 0 for all ω ∈ (0, ω̄) then

Kp(ω, ρ) > 0, ∀ω ∈ (0, ω̄) .
2) We have

d

dω
(Kp(ω, ρ)) =

2n

(τc)2

((
2n

τc
+ 2

)
ω cos (ω) +

(
2n

τc
− ω2

)
sin (ω)

)

Since d
dω (Kp(ω, ρ)) '= 0 for ω2 = 2n

τc and cos(ω) = 0 then the above expression
can be rewritten as

d

dω
(Kp(ω, ρ)) =

2n

(τc)2

(
ω2 − 2n

τc

)
cos(ω) (n(ω)− tan(ω)) ,

where n(ω) is given by (21). It follows that d
dω (Kp(ω, ρ)) = 0 if and only if n(ω) =

tan(ω). The behavior of the function n(ω) is shown in Fig. 2. The transcendental
equation n(ω) = tan(ω) has an infinite number of solutions and we are interested
in those in the interval (0, ω̄) . Taking into account that w0 = τc

n ≥ 1 we have

that
√

2n
τc ≤

√
2 < π

2 and, therefore, there exists a solution ωm ∈
(√

2n
τc ,

π
2

)
of

n(ω) = tan(ω). Clearly, n(ω) > tan(ω) for ω ∈
(√

2n
τc ,ωm

)
while n(ω) < tan(ω)

for ω ∈
(
ωm, π2

)
and, therefore, d

dω (Kp(ω, ρ)) > 0 when ω ∈
(√

2n
τc ,ωm

)
and

d
dω (Kp(ω, ρ)) < 0 when ω ∈

(
ωm, π2

)
that implies Kp(ω, ρ) has a local maximum

at ωm.
Now, we show that in fact ωm ∈ (ω̃, ω̄). Clearly, ωm < ω̄ since ω̄ ∈

(
π
2 ,π

)
. To

show that ωm > ω̃ let us suppose that ωm ≤ ω̃. Because of tan(ω) is a strictly

9



increasing function of ω then tan(ωm) ≤ tan(ω̃). Since the inequalities

n(ωm) =

(
2n
τc + 2

)
ωm(

ω2
m − 2n

τc

) ≥ 2ωm

ω2
m

=
2

ωm
and

2n

(τc) ω̃
<

2

ω̃

hold, then

2

ωm
≤ n(ωm) = tan(ωm) ≤ tan(ω̃) =

2n

(τc) ω̃
<

2

ω̃
.

The inequality 2
ωm

< 2
ω̃ implies that ωm > ω̃ which contradicts the assumption

ωm ≤ ω̃ and proves the desired result.

Remark 1. The stability region Γρ is convex. In fact, from the parametriza-

tion (15)-(16) we have that Kp(ω, ρ) = 2n
(τc)2 sin(ω)

[
2n
τcω + τc2

2n ω cos(ω)Kd(ω, ρ)
]
.

Direct calculations show that Kp(ω, ρ) is unimodal w.r.t. Kd(ω, ρ), when
ω ∈ (0, ω̄) , which implies Γρ is convex.

Now, we derive some geometric properties of the boundary of the stability region
with respect to variations in the network parameters. Let us consider network param-
eters ρ = (n, τ , c) and ρ0 = (n0, τ0, c0) satisfying the following condition:

n ≥ n0, τ ≤ τ0 and c ≤ c0, (22)

Let ω̄0,ωm0 and ω̃0 be the solutions of the equations (17), (18), and (20) corresponding
to the parameters ρ0, respectively. Similarly, let ω̄,ωm and ω̃ be the solutions of the
equations (17), (18), and (20) corresponding to the parameters ρ, respectively.

Remark 2. For networks parameters ρ and ρ0 satisfying (22) the following inequali-
ties hold:

ω̃0 ≤ ω̃,ωm0 ≤ ωm and ω̄0 ≤ ω̄ (23)

The result can be validated by simple inspecting the plots of the functions involved in the
equations (17), (18), and (20) corresponding to the parameters ρ0 and ρ, respectively,
see Fig 2.

Lemma 6. Given parameters ρ and ρ0 satisfying (22) the following hold:

1) Kd(ω, ρ) ≤ Kd(ω, ρ0) ≤ 0, ∀ω ∈ [0, ω̃0] .
2) 0 < Kd(ω, ρ0) ≤ Kd(ω, ρ), ∀ω ∈ (ω̃0, ω̄0] .
3) 0 < Kp(ω, ρ0) ≤ Kp(ω, ρ), ∀ω ∈ (0, ω̄0) .

Proof.

1) From the Lemma 4 and ω̃0 ≤ ω̃ follow that Kd(ω, ρ0) ≤ 0 and Kd(ω, ρ) ≤ 0 for
all ω ∈ [0, ω̃0] . Taking into account that cos(ω) > 0 for ω ∈ [0, ω̃0] and

n0

τ0c0
≤ n

τc

10



Figure 2.: Numerical solution of (17), (18) and (20) for network parameters (n, τ , c)
and (n0, τ0, c0) satisfying (22)

we have

2n

τc2

(
ω sin (ω)− 2n

τc
cos(ω)

)
≤ 2n0

τ0c20

(
ω sin (ω)− 2n0

τ0c0
cos(ω)

)
≤ 0, ∀ω ∈ [0, ω̃0] ,

and then Kd(ω, ρ) ≤ Kd(ω, ρ0) ≤ 0, ∀ω ∈ [0, ω̃0] .
2) From the Lemma 4, ω̃0 ≤ ω̃ and ω̄0 ≤ ω̄ follow thatKd(ω, ρ0) > 0 andKd(ω, ρ) >

0 for all ω ∈ (ω̃0, ω̄0] . By using the inequality n0

τ0c0
≤ n

τc direct calculations lead
to

2n

τc2

(
ω sin (ω)− 2n

τc
cos(ω)

)
≥ 2n0

τ0c20

(
ω sin (ω)− 2n0

τ0c0
cos(ω)

)
> 0,ω ∈ (ω̃0, ω̄0] ,

and then Kd(ω, ρ) ≥ Kd(ω, ρ0) > 0, ∀ω ∈ (ω̃0, ω̄0] .
3) From the Lemma 5 we have that Kp(ω, ρ0) = 2n0ω

(τ0c0)
2m(ω, ρ0) and Kp(ω, ρ) =

2nω
(τc)2

m(ω, ρ), where m(ω, ρ0) and m(ω, ρ) are determined by (19) corresponding

to the parameters ρ0 and ρ, respectively. Also, from the Lemma 5 and the fact
that ω̄0 ≤ ω̄ one has that m(ω, ρ0) > 0 and m(ω, ρ) > 0 for all ω ∈ (0, ω̄0) . Since
sin(ω) > 0 for ω ∈ (0, ω̄0) and n0

τ0c0
≤ n

τc then it is easy to see that m(ω, ρ) ≥
m(ω, ρ0) from which follows that Kp(ω, ρ) ≥ Kp(ω, ρ0) for all ω ∈ (0, ω̄0) as
required.

11



Proposition 7. Given networks parameters ρ0 and ρ satisfying (22) the following
property holds:

Γρ0
⊆ Γρ.

Proof. Obviously, Γρ0
= Γρ when ρ0 = ρ. Note that in order to demonstrate the

non-trivial general result it suffices to prove that the stability region inclusion holds
for some parameters ρ1 = (n1, τ1, c1) satisfying (22), since we can use a continuation
procedure by redefining n1 = n0, τ1 = τ0 and c1 = c0. Without any loss of generality
we can assume that ω̃0 < ω̃ < ω1 and ωm0 < ωm < ω2 since one can choose parameters
ρ1 satisfying (22) such that these inequalities hold.

Let (Kp0,Kd0) ∈ Γρ0
. From the convexity of Γρ0

there exist ω1 ∈ (0,ωm0) and
ω2 ∈ (ωm0, ω̄0) such that

Kp0 = Kp(ω1, ρ0) = Kp(ω2, ρ0) and Kd(ω1, ρ0) < Kd0 < Kd(ω2, ρ0). (24)

Let us observe the point (Kp(ω1, ρ0),Kd(ω1, ρ0)) ∈ ∂Γρ0
. Based on the properties of

the functions Kp(ω1, ρ) and Kd(ω1, ρ) w.r.t. parameters variations we have to consider
the following two cases:

1) ω1 ∈ (0, ω̃0) . From the Lemma 6 we have

0 < Kp(ω1, ρ0) < Kp(ω1, ρ1) and Kd(ω1, ρ1) < Kd(ω1, ρ0) < 0.

These inequalities and the facts that Kd(ω, ρ1) is increasing for ω ∈ (0, ω̄0) and
Kp(ω, ρ1) is increasing for ω ∈ (0,ω1) ⊂ (0, ω̃0) imply there exists ω3 < ω1 such
that

Kp(ω1, ρ0) = Kp(ω3, ρ1) and Kd(ω3, ρ1) < Kd(ω1, ρ1)

2) ω1 ∈ (ω̃0,ωm0) . In this case, from the Lemma 6 we have that

0 < Kp(ω1, ρ0) < Kp(ω1, ρ1) and 0 < Kd(ω1, ρ0) < Kd(ω1, ρ1).

Since Kd(ω, ρ1) is increasing for ω ∈ (0, ω̄0) then there exists ω4 < ω1 such that
Kd(ω1, ρ0) = Kd(ω4, ρ1). On the other hand, since Kp(ω, ρ1) is increasing for
ω ∈ (0,ω1) then there exists ω5 < ω1 such that Kp(ω1, ρ0) = Kp(ω5, ρ1). The
continuity and increasing behavior of Kp(ω, ρ1) and Kd(ω, ρ1) in the interval
(0,ω1) imply that ω5 < ω4. Thus, we have that there exists ω5 < ω1 such that

Kp(ω1, ρ0) = Kp(ω5, ρ1) and Kd(ω5, ρ1) < Kd(ω1, ρ0).

From the above analysis in the two cases and the inequality (24) follow that there
exists ω

′

1 < ω1, where ω
′

1 is either ω3 or ω5 in each one of the cases, such that

Kp0 = Kp(ω
′

1, ρ1) and Kd(ω
′

1, ρ1) < Kd0. (25)

Now, let us observe the point (Kp(ω2, ρ0),Kd(ω2, ρ0)) ∈ ∂Γρ0
. From the Lemma 6 we

12



have

0 < Kp(ω2, ρ0) < Kp(ω2, ρ1) and 0 < Kd(ω2, ρ0) < Kd(ω2, ρ1).

From the above inequalities and the facts that Kp(ω, ρ1) is decreasing for ω ∈ (ω2, ω̄0) ,
because of ω2 > ωm, while Kd(ω, ρ1) is increasing for ω ∈ (ω2, ω̄0) follow that there
exists ω

′

2 > ω2 such that

Kp(ω2, ρ0) = Kp(ω
′

2, ρ1) and Kd(ω2, ρ1) < Kd(ω
′

2, ρ1).

It follows from (24) that

Kp(ω2, ρ0) = Kp(ω
′

2, ρ1) and Kd0 < Kd(ω
′

2, ρ1) (26)

From (25) and (26) one arrives at the conclusion

Kp0 = Kp(ω
′

2, ρ1) = Kp(ω
′

1, ρ1) and Kd(ω
′

1, ρ1) < Kd0 < Kd(ω
′

2, ρ1)

which implies that (Kp0,Kd0) ∈ Γρ1
and, therefore, Γρ0

⊂ Γρ1
as required.

4. Nonlinear Analysis

The nonlinear system (12) can be written as:

ÿ(t) = −0.5
(
ẏ2(t) + 2w0ẏ(t)

)
(K1y(t− 1) +K2ẏ(t− 1) + p0)

−0.5w2
0 (K1y(t− 1) +K2ẏ(t− 1)) , (27)

where K1 = nKp and K2 = n
τKd. In order to formulate a Lyapunov-Krasovskii func-

tional approach for the stability of the nonlinear system (27) we need to introduce a
little of terminology. As usual, for a solution y(t,ϕ), t ≥ 0, we define the natural state
of (27) by yt(ϕ)(θ) = y(t+ θ,ϕ), θ ∈ [−1, 0] . For simplicity of the notation one writes
yt(ϕ) instead of yt(ϕ)(θ). Now, in a Lyapunov-Krasovskii functional framework for (27)
one needs to define a functional (yt(ϕ), ẏt(ϕ)) → v (yt(ϕ), ẏt(ϕ)) ∈ R+. Since y(t,ϕ) is
continuously differentiable for all t ≥ −h then yt(ϕ) ∈ C1 ([−1, 0] ,R) for all t ≥ 0. As
a consequence, the Lyapunov functionals should be defined on the vector (ϕ, ϕ̇) which
belongs to C

(
[−1, 0] ,R2

)
, the Banach space of continuous functions mapping [−1, 0]

to R2 and equipped with the supremum norm ‖(ϕ, ϕ̇)‖ = supθ∈[−1,0] ‖(ϕ (θ) , ϕ̇ (θ))‖ .

Theorem 8. The zero solution of the system (27) is locally asymptotically stable if
Kp,Kd > 0 satisfy

Kp +
1

τ
Kd <

2n2

(τc)3
. (28)

The set

U :=
{
(ϕ, ϕ̇) : ‖(ϕ, ϕ̇)‖ < σ and v(ϕ, ϕ̇) < γ1σ

2
}
, (29)
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where γ1 = min
{

w2
0nKp

2 , 1
}

and σ = 2
w2

0n(Kp+
1
τ
Kd)

− w0 > 0, is an estimate of the

attraction region.

Proof. Let us consider the following Lyapunov-Krasovskii functional candidate:

v(ϕ, ϕ̇) =
w2
0K1

2
ϕ2(0)+ ϕ̇2 (0)+

w2
0K1

2

∫ 0

−1

∫ 0

θ
ϕ̇2 (ξ) dξdθ+

w2
0K2

2

∫ 0

−1
ϕ̇2 (ξ) dξ. (30)

Clearly, the functional (30) satisfies the following inequalities:

γ1 ‖(ϕ(0), ϕ̇ (0))‖2 ≤ v(ϕ, ϕ̇) ≤ γ2 ‖(ϕ, ϕ̇)‖
2 ,

with γ1 = min
{

w2
0K1

2 , 1
}

and γ2 = max
{

w2
0K1

2 , 1 + w2
0K1

4 + w2
0K2

2

}
. The time deriva-

tive of the functional (30) along the solutions of (27) is

d

dt
v(yt, ẏt) = w2

0K1ẏ(t) (y(t)− y(t− 1))− w2
0K2ẏ(t)ẏ(t− 1)

−ẏ2(t) (ẏ(t) + 2w0) (K1y(t− 1) +K2ẏ(t− 1) + p0)

+
w2
0

2
(K1 +K2) ẏ

2(t)− w2
0K1

2

∫ 0

−1
ẏ2(t+ θ)dθ − w2

0K2

2
ẏ2(t− 1).

Observing that

w2
0K1ẏ(t) (y(t)− y(t− 1)) = w2

0K1ẏ(t)

∫ 0

−1
ẏ(t+ θ)dθ

≤ w2
0K1

2

(
ẏ2(t) +

∫ 0

−1
ẏ2(t+ θ)dθ

)

and

−w2
0K2ẏ(t)ẏ(t− 1) ≤ w2

0K2

2

(
ẏ2(t) + ẏ2(t− 1)

)

we get the following upper bound for the time derivative:

d

dt
v(yt, ẏt) ≤ w2

0 (K1 +K2) ẏ
2(t)− ẏ2(t) (ẏ(t) + 2w0) (K1y(t− 1) +K2ẏ(t− 1) + p0) .

(31)

From ẏ(t) =
·
q̃(t) = w(t)− w0 and w(t) ≥ 0 we have ẏ(t) ≥ −w0 and, therefore,

ẏ(t) + 2w0 ≥ w0. (32)

The condition (28) is equivalent to K1 +K2 <
2
w3

0
from which follows that

σ = ς − w0 > 0, where ς =
2

w2
0 (K1 +K2)

,

If for some t ≥ 0 we have that (yt, ẏt) ∈ U , where U is given by (29), then ‖(yt, ẏt)‖ < σ.
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Since σ < ς then ‖(yt, ẏt)‖ < σ implies ‖(y(t− 1), ẏ(t− 1))‖ < ς. It follows that

K1y(t− 1) +K2ẏ(t− 1) + p0 > 0. (33)

From (32) and (33) we have

−ẏ2(t) (ẏ(t) + 2w0) (K1y(t− 1) +K2ẏ(t− 1) + p0)

≤ −w0ẏ
2(t) (K1y(t− 1) +K2ẏ(t− 1) + p0)

and using this in (31) we arrive at

d

dt
v(yt, ẏt) ≤ −η (yt, ẏt) , (34)

where

η (yt, ẏt) = w0ẏ
2(t) (K1 (y(t− 1)− w0) +K2 (ẏ(t− 1)− w0) + p0) ,

that holds when (yt, ẏt) ∈ U . Since ‖(y(t− 1), ẏ(t− 1))‖ < σ then y(t− 1)− w0 > −ς
and ẏ(t− 1)− w0 > −ς holds. From this follows

K1 (y(t− 1)− w0) +K2 (ẏ(t− 1)− w0) + p0 > 0, (35)

that implies η (yt, ẏt) ≥ 0. Now we will show that U is a positively invariant set with
respect to equation (27). Let an initial function (ϕ, ϕ̇) ∈ U . For this initial function we
have that ‖(ϕ, ϕ̇)‖ < σ and therefore d

dtv(yt, ẏt)
∣∣
t=0

≤ 0. Then, there exists t0 ∈ (0, 1)
(maybe sufficiently small) such that

v(yt, ẏt) ≤ v (ϕ, ϕ̇) for t ∈ [0, t0) .

From this and the inequalities γ1 ‖(y(t), ẏ (t))‖
2 ≤ v(yt, ẏt) and v (ϕ, ϕ̇) < γ1σ

2 follow
that ‖(y(t), ẏ (t))‖ < σ holds for all t ∈ [0, t0). Observing that for t ∈ [−h, 0] we have
‖(y(t), ẏ (t))‖ = ‖(ϕ(t), ϕ̇ (t))‖ ≤ ‖(ϕ, ϕ̇)‖ < σ then we conclude that

‖(yt, ẏt)‖ < σ for all t ∈ [0, t0) ,

which implies (yt, ẏt) ∈ U for all t ∈ [0, t0) . Let us suppose that (yt, ẏt) does not
belong to U for all t ≥ 0, then there exists a t1 ≥ t0 such that ‖(y(t), ẏ (t))‖ < σ for
all t ∈ [0, t1) and ‖(y(t1), ẏ(t1))‖ = σ. The continuity of d

dtv(yt, ẏt) implies that

d

dt
v(yt, ẏt)

∣∣∣∣
t=t1

≤ 0

and the inequalities

γ1 ‖(y(t1), ẏ (t1))‖
2 ≤ v(yt1 , ẏt1) ≤ v (ϕ, ϕ̇) < γ1σ

2

imply that ‖(y(t1), ẏ(t1))‖ < σ. The contradiction shows that (yt, ẏt) belongs to U for
all t ≥ 0 for any initial function (ϕ, ϕ̇) ∈ U and therefore the set U is a positively
invariant set with respect to (27). For an initial function (ϕ, ϕ̇) ∈ U we now show that
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the corresponding solution y(t) asymptotically converges to zero when t → ∞. Since
‖(y(t), ẏ (t))‖ < σ for all t ≥ 0 then y(t) and ẏ (t) are uniformly bounded for all t ≥ 0,
which implies η (yt, ẏt) is also uniformly bounded for all t ≥ 0. From (34) we have

∫ t

0
η (yξ, ẏξ) dξ ≤ v (ϕ, ϕ̇)− v(yt, ẏt).

Since v(yt, ẏt) is not increasing and bounded from below by zero then it converges as
t → ∞, and therefore

lim
t→∞

∫ t

0
η (yξ, ẏξ) dξ

exists and is finite. An application of the Barbalat’s lemma yields at limt→∞ η (yt, ẏt) =
0. The uniform continuity of the function η (yt, ẏt) implies that (yt, ẏt) converges to
the largest invariant set of (27) where η (yt, ẏt) = 0. Taking into account (35) follows
that η (yt, ẏt) = 0 if and only if ẏ2(t) = 0 for all t ≥ 0 implying y(t) ≡ a for all t ≥ 0,
where a is a constant. From the equation (27) follows that the only constant solution
is the trivial one. Hence, the set U is an estimate of the attraction region.

The estimate of the attraction region U can be complicated to compute since it
involves the Lyapunov functional v(ϕ, ϕ̇) given by (30). By using the lower and up-
per bounds for the functional v(ϕ, ϕ̇) one obtains a computational more convenient
estimate of the attraction region given by

V =

{
(ϕ, ϕ̇) : ‖(ϕ, ϕ̇)‖ <

√
γ1
γ2
σ

}
⊆ U . (36)

Remark 3. The functional (30) is generated from the one used in (Michiels et al.
2006) for the analysis of P controllers by adding an additional integral term. As a
consequence, if Kd = 0, i.e., when one considers a P controller, then the stability
condition (28) reduces to the one obtained in Theorem 2 of (Michiels et al. 2006).
Thus, the Theorem 8 generalizes for PD controllers the Theorem 2 in (Michiels et
al. 2006) stated for P controllers.

5. Robust stability analysis

In this section, we address the robust stability analysis of PD AQM controllers under
uncertain network parameters. To this aim, let us consider the nonlinear system (10)
for some nominal parameters (n0, τ0, c0), i.e., the system

··
q̃0(t) = 1− 0.5

(
·
q̃0(t) + w0

)2(
Kp (n0q̃0(t− 1)− qd) +

Kdn0

τ0

·
q̃0(t− 1) + p0

)
, (37)

where w0 = τ0c0
n0

and p0 = 2
w2

0
, whose unique equilibrium point is q∗0 = qd

n0
. Let us

assume that the controller’s gains Kp and Kd are designed such that the equilibrium
q∗0 is locally asymptotically stable and consider that such controller is implemented
in the system (10), but with new network parameters (n1, τ1, c1). This leads to the

16



following nonlinear system:

··
q̃1(t) = 1− 0.5

(
·
q̃1(t) + w1

)2(
Kp (n1q̃1(t− 1)− qd) +

Kdn1

τ1

·
q̃1(t− 1) + p0

)
, (38)

where w1 =
τ1c1
n1

. Direct calculations show that the unique equilibrium of (38) is

q∗1 =
1

n1Kp

(
2

w2
1

− 2

w2
0

)
+

1

n1
qd.

Note that with respect to the original system (6), in coordinate q(t), the corresponding
equilibrium q1 = n1q∗1 is

q1 =
1

Kp

(
2

w2
1

− 2

w2
0

)
+ qd. (39)

The expression (39) shows that a PD AQM control cannot regulate to the desired value,
for which is designed with nominal parameters, under uncertain network parameters,
since the corresponding closed-loop system has a new equilibrium, which is unique and
different to the desired one. If well is true that this characteristic of the PD control on
regulating under uncertain parameters is well-know, called as the steady-state error in
the classical control literature, we believe the expression (39) has not been reported
in the literature of PD AQM control. In this context, it appears desirable at least to
assure that the new equilibrium q1 is also locally asymptotically stable for the same
controller’s gainsKp andKd designed for local asymptotic stability of the desired value
qd. Based on this, let us consider that the network parameters (n, τ , c) are constants
satisfying the following interval type condition:

n ∈ [n1, n2] , τ ∈ [τ1, τ2] and c ∈ [c1, c2] . (40)

Given a desired value qd, we aim at determining some network parameters, say nr, τ r
and cr, satisfying the condition (40) and designing the gains Kp and Kd for guaran-
teeing the local asymptotic stability of the whole family of equilibria determined for
all values of the parameters (n, τ , c) satisfying (40), which is defined by

q1(Kp, n, τ , c) =
1

Kp

(
2

w2
− 2

w2
r

)
+ qd, (41)

where w = τc
n and wr =

τrcr
nr

.
The robust stability problem formulated above has a nice solution by observing that

any nonlinear system, determined by the network parameters satisfying (40), has the
same form when their equilibrium points are translated to the origin. To see this, let
us translate the equilibrium points q∗0 and q∗1 of the nonlinear systems (37) and (38) to
the origin. Thus, let y0(t) = q̃0(t)− q∗0 and y1(t) = q̃1(t)− q∗1. Then, direct calculations
derived from (37) and (38) yield at the following nonlinear systems:

ÿ0(t) = 1− 0.5 (ẏ0(t) + w0)
2
(
n0Kpy(t− 1) +

n0

τ0
Kdẏ(t− 1) + p0

)
(42)
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and

ÿ1(t) = 1− 0.5 (ẏ1(t) + w1)
2
(
n1Kpy(t− 1) +

n1

τ1
Kdẏ(t− 1) + p1

)
, (43)

having trivial solution. Clearly, the nonlinear systems (42) and (43) are in fact of the
same form of the nonlinear system (12), where (n, τ , c) = (n0, τ0, c0) for (42) while that
(n, τ , c) = (n1, τ1, c1) for (43). Thus, by applying the nonlinear stability conditions in
Theorem 8 we can derive the following robust stability result.

Proposition 9. The whole family of equilibria points defined by (41), where
(nr, τ r, cr) = (n1, τ2, c2) and (n, τ , c) are any parameters satisfying (40), is locally
asymptotically stable if Kp,Kd > 0 satisfy

Kp +
1

τ1
Kd <

2n2
r

(τ rcr)
. (44)

The sets

Ur =
{
(ϕ, ϕ̇) : ‖(ϕ, ϕ̇)‖ < σr and v(ϕ, ϕ̇) < γ1rσ

2
r

}
, (45)

and

Vr =

{
(ϕ, ϕ̇) : ‖(ϕ, ϕ̇)‖ <

√
γ1r
γ2r

σr

}
⊆ Ur, (46)

where γ1r = min
{

(τ1c1)
2Kp

2n2
, 1
}
, γ2r = min

{
w2

rnrKp

2 , 1 + w2
rnrKp

4 + wrcrKd

2

}
and σr =

2

w2
rnr

(
Kp+

1
τ1

Kd

) − wr > 0, are estimate of the robust attraction region.

Proof. Since for all (n, τ , c) satisfying (40) we have that

n3
1

(τ2c2)
3 ≤ n3

(τc)3
and

1

τ
Kd ≤ 1

τ1
Kd,

then by selecting nr = n1, τ r = τ2 and cr = c2 the result directly follows from Theorem
8. The set Ur given in (45) (Vr given by (46)) is the one contained in the whole family
of sets U given by (29) (V given by (36)), which is generated by all the parameters
(n, τ , c) satisfying (40). The expressions in (45) and (46) are directly obtained by
observing that σr ≤ σ, γ1r ≤ γ1 and γ2 ≤ γ2r.

By linearizing the nonlinear systems (42) and (43) one obtains systems of the
form of the linear delay system (13) with parameters (n, τ , c) = (n0, τ0, c0) and
(n, τ , c) = (n1, τ1, c1), respectively. Thus, by applying the linear stability conditions in
Proposition 2 and the geometric property in Proposition 7 we can derive the following
robust stability result.

Proposition 10. The whole family of equilibria points defined by (41), where
(nr, τ r, cr) = (n1, τ2, c2) and (n, τ , c) are any parameters satisfying (40), is locally
asymptotically stable if (Kp,Kd) ∈ Γ(nr,τr,cr).
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Proof. From Proposition 7 we have that Γ(n1,τ2,c2) ⊆ Γ(n,τ ,c) for all (n, τ , c) satisfying
(40). Then, the results follows directly from Proposition 2.

Remark 4. Since the expression (39) depends only on the proportional gain Kp and
not on the derivative gain Kd, then the above analysis is also valid for P AQM con-
trollers, i.e., a P AQM control also exhibits a new equilibrium point under uncertain
network parameters and the robust stability results provided in the Propositions 9 and
10 are also valid for P AQM controllers.

6. Simulations

In this section, we present some numerical simulations to illustrate the main results
of the paper. As a numerical illustration let us consider the case when qd = 175
packets and the network parameters (n, τ , c) are constants satisfying the interval type
condition (40), where n1 = 60 TCP flows, n2 = 100 TCP flows, τ1 = 0.200 s, τ2 = 0.246
s, c1 = 3500 packets/s and c2 = 3750 packets/s.

According with our results under this setup we firstly determine the parameters
(nr, τ r, cr) = (n1, τ2, c2) and then apply Propositions 9 and 10 to obtain the PD con-
troller’s gains which locally stabilize the whole family of equilibrium points determined
by (41). From the nonlinear robust stability condition (44) we get that if Kp,Kd > 0
and

Kp +
1

τ1
Kd = Kp + 5Kd <

2n2
r

(τ rcr)
3 = 9.1714× 10−6 (47)

then the whole family of equilibrium points will be asymptotically stable. On the
other hand, from the linear robust stability conditions in Proposition 10 we have that
if (Kp,Kd) ∈ Γ(nr,τr,cr) then the whole family of equilibrium points will be asymptoti-
cally stable. We compute the region Γ(nr,τr,cr) by means of the Proposition 2 and plot-
ted it along with the region generated by the nonlinear condition (47) in Fig. 3. As it
can be seen from Fig. 3, the stability region determined by the nonlinear condition (47)
is contained in the stability region Γ(nr,τr,cr) generated from the linear stability condi-
tions as expected. On the other hand, with the condition (47), the nonlin-
earities of the system are considered, and estimates of the attraction region
can be computed, as we will show below.Now, let us select two pairs of controllers
gains: PD1 = (Kp1,Kd1) =

(
5× 10−6, 0.5× 10−6

)
inside of the region generated by

the nonlinear stability condition (47) and PD2 = (Kp2,Kd2) =
(
8× 10−5, 3× 10−5

)

inside the stability region Γ(nr,τr,cr), see Fig. 3.
We illustrate the robust stability properties of these two PD controllers via

Matlab/Simulink simulations implemented on the nonlinear model. The scenario
for the simulations is the following: For t ∈ [0, 30] the network parameters are
(n, τ , c) = (60, 0.246, 3750) , for t ∈ (30, 60] the network parameters are (n, τ , c) =
(100, 0.200, 3500) and for t ∈ (60, 90] the network parameters are (n, τ , c) =
(80, 0.220, 3650). Under this scenario follows from (41) that for each PD controller
(PD1 and PD2) we have three equilibrium points which depend on the proportional
gains, see Table 1. As it can be seen in Table 1 the equilibirum points corresponding
to PD2 are smaller than the equilibirum points associated to PD1 since Kp2 > Kp1.
The responses of the controllers PD1 and PD2 are given in Figs 4 and 5 respectively.
As it can be seen, both controllers assure the asymptotic stability of the corresponding
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(n, τ , c) Kp1 Kp2

(60,0.246,3750) 175 175
(100,0.200,3500) 6646.2 579.4
(80,0.220,3650) 2453.1 317.4

Table 1.: Equilibirum points for PD1 and PD2

three equilibrium points as expected from the theoretical results.
Finally, let us compute the estimates of the attraction region associated to the

controller PD1. Direct calculations lead to the following estimates of the attraction
region:

Ur = {(ϕ, ϕ̇) : ‖(ϕ, ϕ̇)‖ < 18.80127 and v(ϕ, ϕ̇) < 4.3302}

and

Vr = {(ϕ, ϕ̇) : ‖(ϕ, ϕ̇)‖ < 1.97413} ⊆ Ur.

7. Conclusions

In this paper, we investigated the local stability of some classes of TCP/AQM delay
models by using a PD controller as AQM strategy. We showed that the correspond-
ing closed-loop delay system is of neutral type and provided a formal justification for
transforming it to a retarded delay one. The complete characterization of the set of
all stabilizing PD controllers for the linearization of the models is provided in coun-
terpart with the existing works that only give an estimate of this set. This now
allows the designers to select the controller gains for achieving some per-
formance specifications based on the exact stability region and not in an
estimate of it as occurring in the existing works. A nonlinear stability analysis
is performed by means of the Lyapunov-Krasovskii functional approach and simply-to-
check sufficient conditions for asymptotic stability of the closed-loop equilibrium point
along with estimates of the attraction region are obtained. The robustness issue,
of importance in the practical implementation of the controllers due to the
highly varying network parameters in real scenarios, is also addressed. We
showed that a new equilibrium point is generated when a PD stabilizing controller is
implemented in the system, but with new different network parameters and gave an
explicit formula for it. Robust linear and nonlinear stability conditions to design the
controller’s gains for assuring the local stability of the whole family of equilibria points
generated from uncertain network parameters of interval type are derived. Since in
the real application it is reasonable to have lower and upper bounds of
the network parameters, based on measurements, then our robust stability
contribution now allows the designers to choose the PD controller gains
to maintain the desired stability despite varying network conditions and
thus achieve a better performance. Finally, there are several directions for
extending this work. With the knowledge of the robust set of all stabiliz-
ing controllers and robust nonlinear conditions, the controller design for
satisfying some performance objectives it is an important issue to be ad-
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Figure 3.: Stability regions Γ(nr,τr,cr) and the nonlinear one determined by the (47).

Figure 4.: Response of q(t) for the PD1 controller.
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Figure 5.: Response of q(t) for the PD2 controller.

dressed. Extensions of this work to networks with multiple bottleneck links
and heterogeneous round-trip times also deserve further study.
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Birkhäuser.

C.V. Hollot and Y. Chait, “Nonlinear Stability Analysis for a Class of TCP/AQM
Networks,” in Proc. of the 40th IEEE Conference on Decision and Control, Orlando,
USA, 2001.

Hollot, C.V., Misra, V., Towsley, D., and Gong, W.B. (2002). Analysis and Design of
Controllers for AQM Routers Supporting TCP Flows. IEEE Trans. Autom. Control,
47(6), 945–959.

Kim, K.B. (2006). Design of Feedback Controls Supporting TCP Based on the State-
Space Approach. IEEE Trans. Autom. Control, 51(7), 1086–1099.

22



Li, Y., Ko, K.T., Chen, G., Sun, J., and Chan, S. (2004). Designing a Stable and Eective
PD-control AQM. In Control, Automation, Robotics and Vision Conference, 2004.
ICARCV 2004 8th, volume 1, 579–584. IEEE.

Melchor-Aguilar, D. and Niculescu, S.I. (2009). Computing Non-fragile PI Controllers
for DelayModels of TCP/AQM Networks. Int. J. Control, 82(12), 2249–2259.

Michiels, W., Melchor-Aguilar, D., and Niculescu, S.I. (2006). Stability Analysis of
Some Classes of TCP/AQM Networks. Int. J. Control, 79(9), 1136–1144.

Misra V., Gong W. B., and Towsley D. (2000). Fluid-based analysis of a net-
work of AQM routers supporting TCP flows with an application to RED. Proc.
ACM/SIGCOMM.

Puerto-Piña, A. and Melchor-Aguilar, D. (2016, b). Complete Stability Region of PD
Controllers for TCP/AQM Networks. In Decision and Control (CDC), 2016 IEEE
55th Conference on, 4382–4387. IEEE.
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