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Abstract

Type 1 Diabetes Mellitus (T1DM) remains as a severe public health problem

in a wide range of population, from children to adults. Recently, the number

of diabetics worldwide and morbility rates are increasing. Therefore, emerging

technologies as the artificial pancreas (AP) are directing their efforts to improve

treatments and to reduce long-term complications. In this work, a cross-age

control strategy is proposed to tackle the blood glucose regulation problem in

people with T1DM. The contribution of this paper is focused on the blood glu-

cose regulation in T1DM patients, at distinct ages, and it can be controlled

in face to physiological uncertain parameters. In other words, a robust model-

based controller is proposed via µ-synthesis technique by considering structured

uncertainties in physiological meaningful parameters. The proposed controller

exhibits the feasibility for blood glucose regulation in virtual diabetic children,

adolescents and adults. The relevance of these parameters lies in their high
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sensitivity to the solutions of a physiological mathematical model; that is, a

slight parametric variation can lead to a hyperglycemic scenario. Thus, it is

innovative to consider this uncertainties scheme in parameters that are directly

related to the glucose dynamics. The robust control algorithm was integrated

into the well-known Uva/Padova simulator for T1DM to show the technical vi-

ability of this methodology in the available three populations. The outcomes of

a control variability grid analysis show that 90.9% of virtual adults are in upper

B-zone and 9.09% in B-zone. Likewise for virtual adolescents, 90.9% fall in up-

per B-zone and 9.09% B-zone. Regarding children, 63.63% lie in upper B-zone,

27.27% B-zone and only 9.09% failure to deal with hypoglycemia. Furthermore,

the results are compared to the ones obtained from H∞ schemes previously

reported which also were implemented in the simulator. Despite being a theo-

retical approach, the results reveal that the proposed cross-age control scheme

could be a useful strategy in the development of real PA systems that lead to

future clinical trials in humans.

Keywords: Robust controller, Structured uncertainties, µ-synthesis, Type 1

Diabetes Mellitus, Blood glucose regulation.

1. Introduction

Diabetes Mellitus (DM) is a chronic disease that affects more than 422 mil-

lion adults worldwide. According to data reported by World Health Organiza-

tion (WHO) in 2012 there were 1.5 million deaths worldwide directly caused by

DM and it is one of the first-10 leading causes of dead both in men and women

[1]. Type 1 Diabetes Mellitus (T1DM) occurs when pancreas reacts in an auto-

immune way and it is no longer capable to produce enough insulin. Insulin is

a hormone that allows glucose uptake by cells and tissues. In the absence of

insulin, the blood blucose (BG) level can rise considerably, even fasting and

especially after a meal. This increased BG level is known as hyperglycemia that

can lead to serious damage in heart, blood vessels, eyes, kidneys and nerves.
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Patients with T1DM require of insulin injections to maintain BG into the phys-

iological range (70-120 mg/dL). The effectiveness of a therapy based on con-

tinuous insulin infusion was proved in the early 1990s, where the long-term

complications of T1DM were considerable diminished in continuous (also called

tight control) therapy in comparison with daily-injections therapy [2]. Since

then, the development of continuous subcutaneous insulin infusion (CSII) sys-

tems and continuous glucose monitoring (CGM) systems was the golden goal.

Both equipment are available in the market since the first decade of the 2000s,

and after that, the therapy based on CSII and CGM has been validated in many

clinical trials [3]. Such a therapy, also called open-loop sensor-augmented pump

(SAP), diminished the time on hyperglycemia but a disadvantage is that tight

control can increase the risk of hypoglycemia induced by insulin infusion. In

SAP, the adjustment of insulin dosage depends on off-line recommendation of

a physician, and this confronts the patient to make many decisions regarding

dosage adjustments throughout the day. To face these disadvantages, the in-

terest to develop a closed-loop therapy have been widely discussed for many

years. This therapy has been called the artificial pancreas (AP) system and in

addition to the CSII and the CGM systems, AP includes a closed-loop control

system to resolve the online automatic dosage of insulin infusion accordingly to

the current BG level.

From the point of view of automation science, the AP systems have led many

technical issues that must be resolved and many control approaches have been

proposed to address them. For example, Colmegna et al. proposed a linear

parameter-varying controller switches between operation modes that are related

to the hypoglycemic, hyperglycemic and glycemia scenarios [4]. These results

show a significant decrease in risk episodes. Galandaci et al. propose a mon-

itor which takes glucose readings and through pattern recognition technique,

the control law adapts for preventing hyperglycemic episodes in the presence of

disturbances as meal intake [5]. Kóvacs et al. use nonlinear control strategies in

order to track asymptotically the output of a mathematical model that describes

glucose-insulin interaction in T1DM [6]. An affine neural model is proposed in
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León et al. that is obtained from an on-line identifier which uses a recurrent

neural network. This scheme allows to synthesize an inverse optimal controller

to follow the dynamics of glucose absorption of a healthy person [7]. Ruiz et al.

develop a proposal based on H∞ techniques to obtain a robust controller for

blood glucose regulation. The results are good to solve a tracking problem and

this contribution shows how H∞ strategies are promising for T1DM problem [8].

Then, in 2009 Femat et al. identify the most significant frequency components

in the insulin release of a healthy pancreas. These components are incorporated

via transfer function in the design of a robust H∞ algorithm [9]. Significant ad-

vances have been made using a variety of control strategies as insulin feedback

for BG control [10], [11], [12], Model Predictive Control [13], [14], [15], robust

control schemes using safety mechanisms [16], learning control strategies [17]

and novel Bio-Inspired approaches [18].

Thus, sufficient theoretical evidence about the usefulness of the AP systems to

solve the full automation of insulin infusion has been accumulated in the last

years. In fact, clinical implementation of AP systems is now a reality and some

inpatient, transitional and outpatient trials have been reported recently [19].

For example, some trials combine the closed-loop AP therapy and open-loop

SAP therapy in short-time trials (48 hours) [20], or in long-time trials (two

months) [21]. The closed-loop glucose controllers of the AP systems tested in

outpatient, inpatient and transitional trials resolve the automation of the insulin

infusion for a specific set of patients who have met the inclusion and exclusion

criteria of that particular trial. Indeed, it is expected the robust µ–synthesis

achieve a better performance that H∞ when the feedback control is designed

for a given plant, such a fact can be verified is the control problem stands for,

as examples, a robot or an electromechanical system, a chemical or biochemical

reactor, even for distillation process. However, the biomedical systems involve

more complicated interactions and subsystems. The T1DM case is an illustra-

tive example where the plant response can change drastically as a consequence

of the cross-age. These changes can be attributable to hormonal and cellular

behaviors typical of cross-age from childhood to youth and adulthood. Hence,
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a unified control approach in the cross-age context is an open problem which

is addressed at this contribution. Nevertheless, from the automation point of

view, it could be of interest to seek for a general approach that could resolve the

control problem in a wider set of patients. With this in mind, in this work we

propose an approach to address such generalization focusing in one of the main

inclusion criteria of the clinical trials: the age of the patients. The approach is

based on a physiological model that describes the pharmacokinetics of glucose

and insulin in relevant organs of the human body [22]. Other similar models

also used in T1DM research are reported in [23], [24], [25]. Although the model

proposed by Sorensen considers nominal parameters, a deeper study revealed

that it has a subset of parameters highly sensitive to small changes which are

closely linked with the glucose dynamics [26]. A structured uncertainties ap-

proach is applied to the physiological model and it characterizes the sensitive

parameters reported in [26] in order to obtain a robust feedback controller via

µ-synthesis technique. To evaluate the performance of the proposed controller

as a cross-age strategy for the glucose regulation of T1DM patients, an in silico

experiment was designed. The µ-synthesis controller (called Kµ) was incorpo-

rated in the Uva/Padova simulator considering the virtual population available

in the academic version: 11 adults, 11 adolescents and 11 children [27], [28].

The Uva/Padova simulator also includes an insulin pump and a real continuous

glucose monitoring to simulate a behavior closer to reality. Furthermore, the

performance of the proposed controller was analyzed via a control variability

grid analysis (CVGA), and the results were compared with those corresponding

to robust control algorithms previoulsy reported [8], [9].

2. Preliminaries of µ-synthesis

2.1. Mathematical physiological modeling in T1DM

The compartmental technique has been used to model biological systems

as in [22]. The model proposed by Sorensen was created by performing mass

balance to describe the pharmacokinetics and pharmacodynamics interaction
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of glucose, insulin and glucagon in organs of the human body. These three

subsystems are coupled to form a complete system of 19 differential equations.

Many researchers agree that this model is a good approximation to glucose

metabolism since it includes several important physiological processes [29], [30],

[31], [32].

2.2. Background of µ-structured singular value

Modeling of systems that describe biological effects, as in T1DM, is not an

easy task. Mathematical models in this area contain physiological parameters

which do not have a fixed value. They can be within a region or be different

from person to person. A robust control design approach should then considers

this model dynamics as well as parameter variations. In other words, uncertain-

ties are always present and a system may have multiple sources of them. The

problem of glucose control in T1DM could be addressed in terms of the µ-SSV1

as follows. Consider that all the uncertainties are grouped into a single block

∆, and they can be taken out from the dynamics of the nominal plant P . Now

the complete system can be rearranged in a standard configuration described in

Figure 1. The aim for the generalized system is to find a stabilizing controller

K for the plant P with a defined structure of uncertainties ∆.

P

K

D

zw

yu

d v

Figure 1: Generalized framework of a robust control system where P is the model of the

nominal plant, ∆ is the block of all the uncertainties and K is a stabilizing controller. Input

signals: d is the uncertainty, input w is the reference and u is the control input. Output signals:

v is the uncertainty, z stands for error or controlled outputs and y groups the measured signals.

1Acronym for Structured Singular Value.
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The performance specifications of a robust system are generally based on the

minimization of z with respect to w in terms of some norm, such as H∞ norm,

with the assumption that both are energy bounded signals. The optimization

problem of finding a stabilizing controller K is achieved by minimizing the µ-

SSV over a frequency range. Minimization of the µ value allows us to ensure that

the robust stability and robust performance specifications are accomplished.

Let the plant P and controller K be integrated in a lower linear fractional trans-

formation (LLFT) renamed as M(P,K) as shown in Figure 2.

M

D

zw

vd

Figure 2: Generalized framework of a robust control system where M is the LLFT renamed

as M(P,K) and ∆ is the block of all the uncertainties.

The smallest size of uncertainty that makes (I−M(jw)∆(jw)) singular at some

frequency w describes how robustly stable the system is in dealing with such

∆. This measurement is the µ-SSV and the controller K is called robustly sta-

ble if µ-SSV remains small enough while the below singularity condition holds.

Therefore, the following definitions are appropriate.

Definition 2.1. Structured uncertainty [33].

Consider two different types of matrix, with both, repeated scalar and full

blocks. Let s and f be the number of repeated blocks and the number of

full blocks respectively. Positive integers r1, . . . , rs; m1, . . . ,mf are defined to

keep dimensions compatible as the i -th repeated scalar block is ri × ri and the

j -th full block is mj ×mj . Thus, the set ∆ ⊂ Cn×n can be defined as:

∆ = diag [δ1Ir1 , ..., δsIrs ,∆1, ...,∆f ]

δi ∈ C, ∆j ∈ Cmj×mj , (1)
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where
s∑

i=1

ri +

f∑

j=1

mj = n. (2)

This set is considered to be bounded and now written as

B∆ := {∆ : σ̄(∆) < 1,∆ ∈ ∆}, (3)

with σ̄(·) the largest singular value of a matrix.

Definition 2.2. The structured singular value [33].

For M ∈ Cn×n and for ∆ ∈ ∆, the structured singular value µ of M is the

number µ−1(M) that equals the smallest σ̄(∆) need to make (I−M∆) singular,

that is

µ−1 = min
∆∈∆

{σ̄(∆) : det(I −M∆) = 0}. (4)

Correspondingly, when M is an interconnected transfer matrix as in Figure 2,

the µ-SSV with respect to ∆ is defined as:

µ(M(s)) = sup
w∈R

µ(M(jw)). (5)

The system is said to be robustly stable if µ(M(s)) ≤ 1.

2.3. D-K iteration algorithm

The µ-SSV is a tool for the analysis of robust performance with a given

controller. However, finding the controller that minimizes the µ condition is not

an easy task because there is not a direct method to synthesize it. In order to

guarantee robust performance is required to find the controller K such that:

sup
w∈R

µ[M(P,K)(jw)] < 1. (6)

In other words, the objective is to solve K such that:

inf
K(s)

sup
w∈R

µ[M(P,K)(jw)]. (7)
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The D-K is an iterative method to find a stabilizing controller that involves the

solution of the next optimization problem:

inf
K(s)

sup
w∈R

inf
D∈D

σ̄[DM(P,K)D−1(jw)], (8)

whereD andD−1 match the structure of∆ and belong toD, the matrix set that

commutes with ∆. Now the requirement in (6) to find a stabilizing controller is

modified as:

sup
w∈R

inf
D∈D

σ̄[DM(P,K)D−1(jw)] < 1. (9)

The iterative method is to alternately minimize (8) for K and D. That is, re-

ducing K in the left hand-side of (9) while keeping D fixed, and then reducing D

while K is fixed. This procedure continues until requirement (9) is reached. The

D-K iteration method may result in high order µ-controllers however several

reduction techniques are available in [33] and [34].

3. Robust control design by µ-synthesis

The model of a biological dynamic system can be seen as a mathematical

approximation of reality. Usually, such a model is proposed with nominal val-

ues for all parameters. However, these parameters may change for some systems

and under certain conditions. In fact, small parametric variations can signifi-

cantly affect the closed-loop performance of a control system. Robust control

theory provide approaches where parameters can take values within a region,

there are uncertainties or there are external disturbances. Therefore, the ap-

proach is based upon the design of a robust control law that exhibits satisfactory

performance in blood glucose regulation despite parametric variations or uncer-

tainties. The sensitivity analysis carried out by Quiroz et al. showed that the

four metabolic parameters η3, η4, η5 and η6 are more sensitive to the solution

of the model of Sorensen [26]. Physiologically, η3 is related to the mediation of

the glucagon on the hepatic glucose production. While η4, η5, η6 are related

to the mediation of the glucose concentration on the hepatic glucose produc-

tion through the metabolic rate. These sensitive parameters are rewritten in a
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mathematical structured uncertainty form as:

η3 = η3 (1 + Pη3
δη3

) (10)

η4 = η4 (1 + Pη4
δη4

) (11)

η5 = η5 (1 + Pη5
δη5

) (12)

η6 = η6 (1 + Pη6
δη6

) (13)

where η3 . . . η6 are the nominal values. The terms Pη3
= Pη4

= Pη5
= Pη6

= 0.5

are the relative uncertainties and δη3
. . . δη6

are scalars satisfying |δη| ≤ 1. In

this way, the parameters are bounded within a region and they are summarized

in Table 1.

Parameter Maximum Nominal value Minimum

η3 0.195 0.390 0.585

η4 0.710 1.420 2.130

η5 0.705 1.410 2.115

η6 0.310 0.620 0.930

Table 1: Bounds of the most important sensitive parameters in the model proposed by

Sorensen [26].

Now, the structured uncertainties approach includes the δ terms in a diagonal

matrix ∆P as follows:

∆P =




δη3
0

δη4

δη5

0 δη6




(14)

The generalized scheme in Figure 3 is used to carry out the synthesis of a

robust controller via µ-synthesis technique. Therefore, a linear representation

of the diabetic patient is required. Thus, a linearization of the nonlinear model

described in [22] is performed to obtain linear P and Pm. In fact, the linear

fractional transformation P with ∆P integrates the T1DM model when the
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input is an exogenous insulin infusion and the output is blood glucose. In the

same way, Pm with ∆Pm
involves the plant when the input is a perturbation

due to carbohydrate intake. The balanced truncation method reduces the order

of plants P and Pm resulting as follows:

P =
8.977e−5s4 − 1.749e−4s3 − 3.861e−4s2 − 7.414e−5s− 1.050e−6

s5 + 0.313s4 + 0.039s3 + 2.063e−3s2 + 4.545e−5s+ 2.844e−7
, (15)

Pm =
−8.476e−4s4 + 7.552e−4s3 + 1.437e−4s2 + 6.331e−6s+ 6.76e−8

s5 + 0.313s4 + 0.039s3 + 2.063e−3s2 + 4.545e−5s+ 2.844e−7
. (16)

D

D

-

y

Kµ

Wu

u

z2

Md

P

P

Pm

Mm

Pm

Wm

d1

Wp z1

Wn d2

Figure 3: Generalized closed-loop structure for robust controller design. Here, W functions

are called weighted transfer functions. Md and Mm are upper LFT given by Md(P,∆P ) and

Mm(Pm,∆Pm), respectively.

The transfer function Wp is the performance weight such that its frequency con-

tent is captured to improve the performance of glycemic regulation. The meal

weight Wm includes the effect by carbohydrate intake, the specific description

of this weight can be found in [8] and [9]. The characterization of sensor noise
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is weighted by Wn. Then, the weight transfer functions are:

Wp =
0.8333s+ 0.01

s+ 0.001
, (17)

Wm =
1

3.5s+ 1.5
, (18)

Wn =
1

10000
. (19)

Furthermore, the Wu function is a weight to shape the control action. In the

contribution of Femat et al. a Wu is identified with experimental data in order

to capture the pattern of insulin delivery by a healthy pancreas [9]. This weight

transfer function is included to characterize the dynamics of a real pancreas.

Then Wu is as follows:

Wu =
2.38s3 − 2.05s2 + 4.71s− 4.09

s4 + 0.39s3 + 4.27s2 + 0.98s+ 4.3
. (20)

The generalized control plant G(s) is




z1

z2

y


 = G(s)




d1

d2

u


 , (21)

and it can be expressed mathematically as:




z1

z2

y


 =




WpMmWm 0 WpMd

0 0 Wu

−WmMm −Wn −Md







d1

d2

u


 . (22)

The instruction dksyn of Matlab R© from MathWorks Inc. synthesizes a robust

µ-controller for the generalized plant model via D-K iteration method. The

iteration summary is shown in Table 2.

A controller of order 46 is obtained in the second iteration with the minimum

gamma of 0.861 and peak µ-value of 0.808. It can be seen that for both values

they no longer decrease for the next iterations. Therefore, the optimal controller

that achieves the robust design specifications is the resulting in the second

iteration. Likewise, an order reduction by balanced truncation is carried out
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Iteration 1 2 3 4 5

Controller order 44 46 46 44 44

Gamma (γ) 11.266 0.861 0.871 0.880 0.881

Peak µ-value 0.790 0.808 0.812 0.816 0.816

Table 2: Summary of D-K iterations throughout µ-synthesis process provided by dksyn com-

mand by MatlabR©.

for the robust controller [34]. The Kµ controller of order 14 is as follows:

Kµ =
−4.399e4s13 − 8.189e5s12 − 3.027e6s11 − 6.989e6s10 − 1.355e7s9

s14 + 2401s13 + 5.073e4s12 + 2.837e5s11 + 8.443e5s10 + 1.717e6s9

−1.716e7s8 − 1.679e7s7 − 1.209e7s6 − 3.531e6s5 − 4.032e5s4

+2.570e6s8 + 2.872e6s7 + 2.311e6s6 + 1.136e6s5 + 2.901e5s4

−1.836e4s3 − 333.7s2 − 1.921s− 2.701e−3

+2.638e4s3 + 3.692e2s2 + 0.709s+ 3.666e−4
. (23)

This D − K iteration procedure performs robust stability and robust perfor-

mance analysis for the controllers synthesized in each iteration. That is, the

behavior of the µ-value is evaluated in the frequency domain to verify that it

remains below 1 to ensure that the closed-loop system remains robustly stable

for design specifications. In Figure 4 it can be verified that the µ-value is always

below 1 for frequencies from 10−2 to 101. Also, the robust performance analysis

is presented in Figure 5. Similarly, the µ value is less than 1 for all frequencies

in the analysis.

The global analysis carried out by Matlab R© provides a final robustness report

of the complete control system. Such report describes in detail that the control

system achieves robust performance for the modeled uncertainty degree of this

design. Likewise, it can remain robustly stable in up to 168% of the modeled

uncertainty.
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Figure 4: Robust stability analysis for the Kµ controller in the frequency domain. Solid red

line and the blue dashed line are the upper and lower bounds of the robust stability analysis

in terms of the µ value. Robust stability is guaranteed when such limits remain below 1 for

the entire frequency range of interest. If there is a µ value greater than 1 means that the

system gain can change and some modeled uncertainty can lead the system to unstable.
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Figure 5: Robust performance analysis for the Kµ controller in the frequency domain. Solid

red line and the blue dashed line are the upper and lower bounds of the robust performance

analysis in terms of the µ value. Robust performance is guaranteed when such limits remain

below 1 for the entire frequency range of interest. If there is a µ value greater than 1 means that

the system gain can change and some modeled uncertainty can lead the system to unstable.
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4. Simulation results

4.1. The Uva/Padova simulator of T1DM

Simulation environments are good tools for collecting useful data prior to

in vivo experimentation. In 2008 the Uva/Padova Simulator was approved by

the Food and Drug Administration (FDA) as a substitute to animal trials in

preclinical testing of control strategies in artificial pancreas studies [27]. In

2013 the Epsilon Group launches a new version of the T1DM simulator. This

release incorporates modifications to the glucose kinetics model in hypoglycemia,

secretion models and action of glucagon kinetics, the real dynamics of an insulin

pump, and a glucose sensor, among other improvements [28].

4.2. In silico implementation of the robust Kµ controller

In this work the Kµ controller (23) is integrated as the unique control law

for glucose regulation in the 2013 version of the Uva/Padova simulator. The

treatment of a diabetic patient should consider a strictly balanced diet; for this

reason, a meal protocol is proposed based on a realistic amount of carbohydrate

intake per day, measured in grams (gCH). The total intake for virtual adults

and adolescents is 175 gCH. Likewise, for children it is 90 gCH. It is considered

that these amounts are consumed in a total of 5 meals throughout the day as

summarized in Table 3.

Meal protocol (gCH) Breakfast Snack Meal Dinner Snack Total
❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳Population

Time (hrs)
7:00 12:00 15:00 19:00 23:00 One-day

Adults and adolescents 35 20 60 40 20 175 gCH

Children 20 5 35 25 5 90 gCH

Table 3: Proposed meal protocol for one-day of glycemic treatment.
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4.3. CGM data acquisition

The BG level increases after a meal intake and then glucose is transferred

to the interstitial fluid to be used as energy by cells. This physiological transfer

from BG to interstitial glucose (IG) lasts approximately 20 minutes to be read-

able by a subcutaneous sensor. That is, the IG is delayed to the BG and the

data provided by the glucose sensor have a characteristic uncertainty related to

each type of sensor. In this work, the 7-day sensor of DexcomTM Inc. is selected

in the Uva/Padova simulator for continuous glucose monitoring.

G
lu
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n
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n
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a
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o
n
(m

g
/
d
L
)

Time (hrs)

Blood glucose (BG)

Interstitial glucose (IG)

Virtual CGM sensor

7:00 12:00 15:00 19:00 23:00

100

150
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Figure 6: Blood glucose concentration of an averaged virtual adult with the meal protocol in

Table 3 and insulin infusion computed by the robust Kµ controller in a closed-loop approach.

Lines red and green are the glucose concentration on arterial and peripheral interstitial com-

partment of the physiological model, respectively. The blue line represents the blood glucose

measured by the virtual CGM.

Figure 6 presents the response of the Kµ controller in a closed-loop treatment

proved in the averaged model of diabetic adults and the meal protocol in Table

3. This graph displays the states of the system corresponding to BG and IG,

as well as the virtual CGM signal. In fact, it must be noted that the robust

control approach developed here takes the uncertain IG measurements provided

by the CGM as the only feedback signal.
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4.4. One meal scenario

As a first assay, the Uva/Padova simulator was configured for one meal

scenario. The virtual model of the averaged adults was chosen. The amount of

meal intake is 45 gCH and it is ingested at t = 0:00 hours. Similarly to the study

of control theory, this scenario allows us to analyze the system behavior against

a disturbance input given by carbohydrate intake. Therefore, the performance

of the Kµ controller is compared with the robust H∞ controllers proposed by

Ruiz et al. in [8] and Femat et al. in [9], strictly under the same conditions.

Reference has been set to a glycemic value of 115 mg/dL. The BG dynamics

under the three control algorithms is presented in Figure 7. The treatment
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Figure 7: Comparative framework for one meal scenario by using the robust H∞ controllers

reported by Ruiz et al. in [8] and Femat et al. in [9] and the proposed Kµ controller.

with Kµ controller provides a maximum value of glucose of 241 mg/dL after

1:48 hours, while the minimum is 78 mg/dL after 6:12 hours of meal intake. In

case of the H∞ controllers, they were not able to maintain safe levels in the

postprandial lapse, since the glucose falls below 50 mg/dL. This means a severe

hypoglycemia episode.

4.5. Five meals scenario: A comparative framework

A virtual scenario of five meals in a 24 hour was proposed to represent daily

life habits of meal ingestion. This includes three full meals and two snacks, as
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previously presented in Table 3. The total amount is 175 gCH for adults and

adolescents. For children this is much smaller, just 90 gCH.

4.5.1. Adults

As stated before, the performance of the Kµ controller is compared with

the robust H∞ controllers proposed by Ruiz et al. in [8] and Femat et al. in

[9], rigorously in the same environments. The complete results for adults are

presented separately for each controller in Figure 8. The left graph shows at the

top subfigure, the blood glucose dynamics during 24 hours of simulation for the

averaged adults model; while the bottom subfigure presents the insulin infusion

rate calculated by the controller. It is worth mentioning that the reference sig-

nal was identified as the glucose curve of a healthy patient. It can be clearly

seen that the three robust control algorithms are able to satisfactorily regulate

the blood glucose of the averaged adults model. However, the insulin infusion

calculated by Kµ controller is cleaner, without jumps or high value peaks. This

control law allowed a BG minimum of 115.3 mg/dL and maximum of 235.1

mg/dL exhibiting a more convenient performance. Regarding the control vari-

ability grid analysis (CVGA), it is a method to visualize the overall performance

of a control algorithm in a group of subjects. Thus, the plot is gridded in dif-

ferent color zones and each subject is represented by one data point. In this

Zones Control assessment

A-Zone (Single A zone) Accurate control

X: 110-90 and Y: 110-180 mg/dL

B-Zone (Scattered in 3 zones) Benign deviations in hypo/hyperglycemia

X: 90-70 and Y: 180-300 mg/dL

C-Zone (Only upper and lower) Over-correction in hypo/hyperglycemia

X: 70-50; 110-90 and Y: 300-400; 110-180 mg/dL

D-Zone (Only upper and lower) Failure to deal with hypo/hyperglycemia

X: 70-50; 90-70 and Y: 180-300; 300-400 mg/dL

E-Zone (Single E zone) Erroneous control

X: 70-50 mg/dL and Y: 300-400 mg/dL

Table 4: CVGA zones provides a simultaneous visual and numerical assessment of the overall

quality of glycemic regulation in the entire population of patients [35].
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manner, each virtual patient is plotted taking as X-Y coordinates the minimum

and the maximum of the glucose readings for the entire simulation time. The

quality of a control is measured by the area in which each diabetic is located.

In general, the sections are classified as in Table 4. A more detailed description

of this classification is found in [35]. In order to have a more relevant compar-

ative approach, the population of 10 adults and an averaged adult, that is, 11

virtual subjects are tested under the treatment of the three control algorithms.

Figure 8 (top) demonstrates the satisfactory performance of the Kµ controller

by maintaining 11 of 11 subjects in the green B-zones of benign deviations in

hypo/hyperglycemia. Strictly speaking, Kµ controller achieves 90.9% patients

in Upper-B and 9.09% in B-zone. In this order, the robust controller of [9] de-

velop 63.63% in Upper-B and 18.18% in B-zone (Figure 8 middle). Likewise, the

robust H∞ controller of [8] obtains 45.45% in Upper-B and 18.18% in B-zone

(Figure 8 bottom). Both controllers percentages are lower than the reached by

the Kµ controller for the task of glycemic regulation in the population of 11

virtual adults.

4.5.2. Adolescents

Same tests are carried out for the population of 10 adolescents and a aver-

aged adolescent, 11 virtual subjects in total. Now in Figure 9 the generalized

performance of the three algorithms is shown. The behavior of the H∞ con-

trollers of [8] and [9] is quite unfeasible since both fail to maintain glycemia.

Insulin overinfusion leads to scenarios below 50 mg/dL for the average adoles-

cent. Similarly, the CVGA analysis exhibits unsatisfactory results for glucose

regulation in the entire adolescents population because several patients drop in

unsafe areas, that is, Lower D and Lower C (Figure 9 middle and bottom). In

the case of the Kµ controller, an appropriate performance is maintained again,

as seen in Figure 9 (top). The BG bounds are 80.03 mg/dL minimum and 235.7

mg/dL maximum for the averaged model. The postprandial lapse does not rep-

resent any risk at all, since the BG does not remain long at the maximum. The

CVGA chart exposes 90.9% virtual subjects in Upper-B and 9.09% in B-zone.
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Figure 8: Results of the proposed cross-age strategy to control blood glucose in virtual adults.

Left : closed-loop performance of the proposed Kµ controller (top) and two robust controllers

reported previously (middle and bottom) in a five meals scenario. Right : CVGA performance

chart in one-day treatment proved in 11 virtual adults.
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Figure 9: Results of the proposed cross-age strategy to control blood glucose in virtual ado-

lescents. Left : closed-loop performance of the proposed Kµ controller (top) and two robust

controllers reported previously (middle and bottom) in a five meals scenario. Right : CVGA

performance chart in one-day treatment proved in 11 virtual adolescents.
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Figure 10: Results of the proposed cross-age strategy to control blood glucose in virtual

children. Left : closed-loop performance of the proposed Kµ controller (top) and two robust

controllers reported previously (middle and bottom) in a five meals scenario. Right : CVGA

performance chart in one-day treatment proved in 11 virtual children.
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4.5.3. Children

The virtual children population exhibits the most complex glucose-insulin

behavior. For this reason, a slight adaptation of the basal infusion was made in

all scenarios involving this population. Correspondingly in Figure 11 the results

of glucose regulation in children are presented. Both H∞ controllers of [9] and

[8] failed to deal with the glucose regulation in an averaged model of children.

The hypoglycemic lapses experienced under the treatment of [8] are evident

and prolonged. The CVGA analysis shows that only 2 of 11 children can be

in the green zone of benign deviations for both control algorithms (Figure 11

middle and bottom). On the other hand, the insulin administration of the Kµ

controller is smooth and more appropriate. In fact, Figure 11 (top) shows an

increased error in reference tracking due to the presence of high insulin sensi-

tivity in children. However, the overall performance is acceptable because the

maximum is 245 mg/dL and the minimum 78 mg/dL for the entire simulation

lapse. Additionally, 7 of 11 children are placed in Upper-B which means 63.63%

of glycemic effectiveness; 3 children fall in B-zone, this is 27.27% and only one

child in Lower D, which means a 9.09% failure to deal with hypo/hyperglycemia

as it was classified in Table 4.

4.6. 3-meal scenario

The glycemic control proposals reported in the literature which present re-

sults on the Uva/Padova simulator platform use a wide variety of combinations

for meal intake and multi-day meal plans to test these control schemes. In the

Meal protocol (gCH) Breakfast Meal Dinner Total
❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳Population

Time (hrs)
7:00 14:00 20:00 One-day

Adults 50 60 50 160 gCH

Adolescents 50 60 50 160 gCH

Table 5: One-day meal protocol for adolescents and adults reported in [4].

.
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work of Colmega et al. [4] a LPV controller approach with switching modes

is developed to deal with postprandial hyperglycemia excursions. Such con-

troller is tested in the complete 100 virtual adult cohort of the FDA-approved

Uva/Padova simulator under two different meal protocols in a 3-day scenario.

Protocol #1 consists of 3 meals with a high carbohydrate content and Protocol

#2 has prolonged fasting periods. In this section, the Kµ controller is tested

under Protocol #1 of [4] in a single-day treatment scenario for adolescents and

adults. The carbohydrate amounts intake and mealtime day are detailed in the

Table 5.
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Figure 11: Results of the proposed cross-age strategy to control blood glucose in virtual adults.

The blue arrows indicate the time the meal takes place. Left : closed-loop performance of the

Kµ controller for the three meals protocol proposed in [4]. Right : CVGA performance chart

in one-day treatment proved in 11 virtual adults.

The results of this section are presented in a similar way to those of the previ-

ous subsections. Although this new scenario has only 3 meals it can be seen in

Figure 11 that Kµ controller is able to successfully regulate the averaged adult

glucose in the postprandial period. In the performance for the 11 virtual adults,

the CVGA analysis reveals that the majority of virtual adults are located in the

Upper-B zone. In the experiments of the Kµ controller with the population of

virtual adolescents an acceptable behavior is exhibited since the averaged pa-

tient can be controlled within limits similar to adults, as presented in Figure

12. Although the meal intakes of this protocol are considerably high, the Kµ

24



G
l
u
c
o
s
e
(
m
g
/
d
L
)

I
n
s
u
l
i
n

(
m
U
/
m
i
n
)

Time (hrs)

Reference

Kµ controller

Insulin control for averaged adolescent

U
p
p
e
r
9
5
%

c
o
n
fi
d
e
n
c
e
b
o
u
n
d

(
m
g
/
d
L
)

Lower 95% confidence bound (mg/dL)

0:00

0:00

7:00

7:00

12:00

12:00

19:00

19:00

1

1

30

10
10

10 90

80

180

180

400
250

300

50

5070

Figure 12: Results of the proposed cross-age strategy to control blood glucose in virtual adoles-

cents. The blue arrows indicate the time the meal takes place. Left : closed-loop performance

of the Kµ controller for the three meals protocol proposed in [4]. Right : CVGA performance

chart in one-day treatment proved in 11 virtual adolescents.

controller can suitably supply insulin to avoid prolonged hyperglycemia lapses.

However, the CVGA chart for trials with 11 adolescents illustrates that 1 sub-

ject falls into the Lower-D area of failure to deal with hypoglycemia. This is

because the periods between meals are very long for this protocol #1. That is,

a well-planned diet for diabetic patients should include snacks intake or inter-

mediate meals to avoid prolonged fasting during daylight hours. In addition to

proposing a cross-age strategy for glycemic control, the efforts of this work are

also oriented to suggest more appropriate meal protocols for diabetic patients.

5. Conclusions

In this article, a cross-age strategy for the glucose regulation of T1DM pa-

tients is proposed. The aim is to contribute in enhancing a control scheme useful

towards the implementation of AP systems. Since the T1DM is an illustrative

example where the plant response can change drastically as a consequence of

the cross-age. That is, a consequence of the endocrine subsystem the blood glu-

cose metabolism changes dramatically due to hormone and cellular behaviors

while the subject evolves to the adulthood. A critical issue concerns adoles-

cence, where hormone change is dramatic. Thus, a unified control approach in
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the cross-age context is an open problem which is addressed here. The char-

acterization of the important sensitive parameters in the strategy of structured

uncertainties allows us to design a robust control algorithm by µ-synthesis. Al-

though the controller design is based on a mathematical physiological model,

the validation of results in Uva/Padova simulator involves completely different

models and scenarios. The underlying idea is to show feasibility of the approach

based on the µ-synthesis control. The averaged glucose level under control for

both the virtual adults and adolescents remain within the range of 80.03 mg/dL

and 235.7 mg/dL. These results include the postprandial period, which avoid

risk at all because the safe levels were robustly preserved. The CVGA charts

shows the viability of µ-synthesis technique to resolve the glycemic regulation

problem; this because the percentage of virtual adults and adolescents that ex-

hibited a satisfactory glycemic control is greater than 90%. Although glycemic

regulation for children is a more challenging research area, CVGA analysis pro-

vides encouraging results when the Kµ controller is tested and compared with

other robust control algorithms. It is noteworthy that the Kµ controller is a

low-order transfer function; thus its practical implementation could be simple

and portable. This is an advantage for its future integration as closed-loop con-

troller in AP systems.

The results presented here provide evidences about the feasibility of in silico

implementations of µ−syntesis control in AP systems. An interesting, but ex-

pected results, regards to the controller execution. As showed at the in silico

testing, the previous H∞ controllers achieve the control goal but the perfor-

mance is deteriorated. On contrary, the Kµ controller tracks the reference glu-

cose level with a lower effort. Finally, the methodology proposed here and the

theoretical results using virtual patients from a standardized T1DM patient sim-

ulator, establish the foundations for further biomedical investigation regarding

clinical validation of cross-age control schemes.
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[7] B. S. León, A. Y. Alańıs, E. N. Sanchez, F. Ornelas-Tellez, E. Ruiz-

Velázquez, Neural Inverse Optimal Control via Passivity for Subcutaneous

Blood Glucose Regulation in Type 1 Diabetes Mellitus Patients, Vol. 20,

2014, pp. 279–295. doi:10.1080/10798587.2014.891307.

[8] E. Ruiz-Velázquez, R. Femat, D. Campos-Delgado, Blood glucose control

for type 1 diabetes mellitus: A robust tracking H∞ problem, Control Engi-

neering Practice 12 (9) (2004) 1179–1195.

[9] R. Femat, E. Ruiz-Velázquez, G. Quiroz, Weighting Restriction for Intra-

venous Insulin Delivery on T1DM Patient via H∞ Control, IEEE Trans-

actions on Automation Science and Engineering 6 (2) (2009) 239 –247.

doi:10.1109/TASE.2008.2009089.

[10] W. Garcia-Gabin, E. Jacobsen, Multilevel model based glucose control for

Type-1 diabetes patients, in: 2013 35th Annual International Conference of

the IEEE Engineering in Medicine and Biology Society (EMBC), 2013, pp.

3917–3920. doi:10.1109/EMBC.2013.6610401.

[11] S. Hashimoto, C. Noguchi, E. Furutani, Postprandial blood glucose con-

trol in type 1 diabetes for carbohydrates with varying glycemic index

foods, in: 2014 36th Annual International Conference of the IEEE

Engineering in Medicine and Biology Society, 2014, pp. 4835–4838.

doi:10.1109/EMBC.2014.6944706.

[12] B. Liu, H. Ying, Analysis of the islets-based glucose control system involv-

ing the nonlinear glucose-insulin metabolism model, in: Information and

Automation, 2015 IEEE International Conference on, 2015, pp. 2373–2378.

doi:10.1109/ICInfA.2015.7279683.

28



[13] Y. Wang, H. Xie, X. Jiang, B. Liu, Intelligent Closed-Loop Insulin De-

livery Systems for ICU Patients, IEEE Journal of Biomedical and Health

Informatics 18 (1) (2014) 290–299. doi:10.1109/JBHI.2013.2269699.
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