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ABSTRACT: Tunable bioprinting materials are capable of creating a broad spectrum of 

physiological mimicking 3D models enabling in vitro studies that more accurately resemble in 

vivo conditions. Tailoring the material properties of the bioink such that it achieves both 

bioprintability and biomimicry remains a key challenge. Here we report the development of 

engineered composite hydrogels consisting of gelatin and alginate components. The composite 

gels are demonstrated as a cell-laden bioink to build 3D bioprinted in vitro breast tumor models. 

The initial mechanical characteristics of each composite hydrogel are correlated to cell 

proliferation rates and cell spheroid morphology spanning month long culture conditions. MDA-

MB-231 breast cancer cells show gel formulation-dependency on the rates and frequency of self-

assembly into multicellular tumor spheroids (MCTSs). Hydrogel compositions comprised of 

decreasing alginate concentrations, and increasing gelatin concentrations, result in gels that are 

mechanically soft and contain a greater number of cell-adhesion moieties driving the development 

of large MCTS; conversely gels containing increasing alginate, and decreasing gelatin 

concentrations are mechanically stiffer, with fewer cell-adhesion moieties present in the composite 

gels yielding smaller and less viable MCTS. These composite hydrogels can be used in the 

biofabrication of tunable in vitro systems that mimic both the mechanical and biochemical 

properties of the native tumor stroma. 

1. INTRODUCTION 

Hydrogels, hydrophilic polymeric materials capable of holding a large amount of water in their 

3D network, have been widely used in bioprinting due to their favorable printability, biomimicry, 
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and biocompatibility[1, 2]. Many hydrogel systems have been developed to create three 

dimensional cell microenvironment, such as alginate, gelatin, chitosan, hyaluronic acid, PEG 

derivatives, etc[3-6]. Alginate and gelatin are among the most commonly used hydrogel bioinks 

for extrusion-based printing to recreate solid tissue-like physiological models[7-11]. Gelatin 

denatured from collagen provides bioactive amino acid residues enabling cell adherence. It also 

features a reversible thermal-dynamic trait that allows it to form triple-helix structure when the 

temperature is lowered[12], which results in solidification of gelatin solution with significantly 

increased modulus and viscosity[13]. On the other hand, alginate is a bioinert polysaccharide that 

can be ionically crosslinked by divalent cations to provide matrix integrity at physiological 

temperature[14]. The concentration of alginate solutions can result in significantly different 

flowabilities as well as post-crosslinking matrix elasticity. Wei Sun’s group has studied the 

printability of different concentrations of alginate and gelatin as well as cell survival/viability 

following shear stress during extrusion bioprinting[11, 15]. It is noteworthy that the cells have the 

potential to recover from short-term membrane damage and continue to proliferate during 

extended periods of culture, where matrix elasticity and adherence potential can play prominent 

roles[16, 17]. The composite hydrogels comprised of alginate and gelatin have the potential to tune 

these post-printing mechanical and biological properties by varying the initial concentrations of 

the two components. The tunability of these hydrogels can eventually result in applications in 

various fields such as building disease models, tissue regeneration, and drug testing. 

One of these applications is recreating the tumor microenvironment (TME). The TME is a highly 

dynamic system, and cells respond to the homeostasis by regulating the extracellular matrix (ECM) 

properties such as local elasticity and cell-matrix adhesion potential[18-22]. During the onset of 

malignancy, cancer cells often aggregate and assemble into multicellular tumor spheroids 
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(MCTS)[23-25]. Recreating the TME, and facilitating the formation of MCTS in vitro, is 

challenging using conventional two-dimension (2D) cell culture techniques. Comparisons of 2D 

and 3D cultures of cancer cells demonstrate that the cells retain physiologically relevant 

morphologies, and aggregate into MCTS, which could result in increased drug resistance in 3D 

cultures[26-36]. Numerous methods including hanging drop, non-adhesive surface coating, rotary 

bioreactors, mold casting, and 3D bioprinting have recently been developed to engineer the 3D in 

vitro environment to promote MCTS generation[26, 27, 29, 37-45]. Amongst these approaches, 

3D bioprinting is advantageous as it features controllable reference locations for cells, the ability 

to use high cell densities, and reproducibility among samples. 

 

Figure 1. Schematic depicting the generation of the composite gels, bioprinting process, and 

subsequent generation of MCTS of breast cancer cells in bioprinted alginate/gelatin hydrogels. 

Despite both alginate and gelatin having been used in cancer studies, limited work has been done 

to relate the initial concentrations of each constituent while evaluating the final morphologies and 
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behaviors of cancer cells. In one of our previous publications, we experimentally established a 

protocol to print and develop MCTS using a fixed ratio of alginate and gelatin concentrations[46]. 

However, in-depth studies of printability, post-printing elasticity, cell adhesion potential, and their 

influences on promoting MCTS are still poorly understood. Here we present a quantitative 

approach to evaluate cell reorganization into MCTS within bioprintable hydrogel composites 

comprised of differing weight percent (w%) of alginate and gelatin creating bioinks with tunable 

mechanical and cell-adhesion characteristics (Figure 1). MDA-MB-231 breast cancer cells show 

markedly different responses towards MCTS formation dependent upon the initial elasticity and 

cell-adhesion potential of the bioink. This study provides insight into the design and optimization 

of bioinks to generate MCTS with controllable growth rates, frequencies, and size. 

2. MATERIALS AND METHODS 

2.1. Material Preparation. Hydrogel solutions were prepared similarly to previously published 

protocols[46, 47]. Briefly, sodium alginate (Protanal LF 10/60 FT, FMC BioPolymer) and gelatin 

(bovine skin type B, G9391, Sigma-Aldrich) powders were dissolved in Dulbecco’s phosphate 

buffered saline (DPBS, 1X, w/o Calcium, w/o Magnesium, sterile, pH 7.2 Gibco) using magnetic 

stirring at 60 °C for 1 hour; followed by continuous mixing for three hours at room temperature 

(RT). The final alginate concentrations in the precursors were 1, 3, or 5%; and gelatin 

concentrations were 5, 7, or 9% (referred to as AxGy for x% alginate and y% gelatin). All hydrogel 

solutions were stored at 4 °C and used within one week. A 100 mM CaCl2 alginate crosslinking 

solution was prepared by dissolving CaCl2 (Sigma-Aldrich) into sterile ultrapure water (MilliQ) 

and stored at 4 °C. 

2.2. Bioprintability Tests. The composite un-crosslinked hydrogels were heated to 37 ºC to 

melt the gelatin. Extrusion tests were performed using 3 cc cartridges with G27 conical nozzles 
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(EFD Nordson, USA) mounted onto a BioScaffolder 3.1 (GeSiM, Germany) bioprinter. Cuboid 

models (10 × 10 × 1.5 mm3) with a mesh size of 1 mm and layer thickness of 150 µm were printed 

with pressure ranging between 50 kPa to 300 kPa to determine the minimum pressure required for 

smooth extrusion. The precursor is considered “printable” if it exhibits sufficient yield stress to 

prevent its collapse as well as smooth extrusion out of the nozzle such that no corrugation appears. 

If the extruded filament spreads out after extrusion, it indicates the material has insufficient yield 

stress to support its weight. Contrarily, if the extrudate shows apparent “peaks and valleys” along 

it, or breaks within one filament, it is considered too brittle and non-printable. The time frame 

within which the precursor shows printability is referred to as its “printing window”. 

The quality of printed structures was quantified by measuring the width variation along each 

filament. Specifically, 10 points were randomly chosen along each filament where the width across 

that point was measured. We introduce the normalized roughness (RN) to quantify the smoothness 

of filaments, which is defined by the ratio of the standard derivation of widths to mean width: 

!" =
$%('()
'*

× 100% =
/∑ ('( − '*)2"

(34
5 − 1
'*

× 100%	 (1)
 

where '*  is the mean width of a filament, 5 = 10 is the data points collected, and '( is the width 

measured at each point. Smoother filaments (better quality) result in smaller RN (RN = 0 for perfectly 

smooth line), while corrugated, shark-skinned or discontinuous filaments result in larger RN. The 

RN numbers were measured for the filaments extruded at the earliest printable time for each 

composition of the precursor. 

2.3. Rheological Measurements. All rheological tests were performed using an MCR302 

rheometer (Anton Paar, Canada) with a Φ25 mm parallel measuring tool (PP25). An amplitude 

sweep was initially performed to measure the critical linear strain γc. AxGy precursors were sealed 
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 7 

under the measuring tool at 37 °C before the temperature was immediately decreased to RT and 

maintained at RT for 2 hours to simulate the gelling process. Next, the shear strain was ramped 

logarithmically from 0.01% to 100% at both 0.01Hz and 100 Hz. The region where both G’, G” 

maintain a plateau is considered the linear-viscoelastic region (LVER), and the strain over which 

G’ starts to decrease is the yield strain. γc was determined as 1/10 of the ultimate linear strain to 

ensure time sweeps were conducted within the material’s linear elastic regime. 

After the γc was obtained, isothermal time sweeps were conducted to study the gelation kinetics 

of the AxGy precursors. The precursor was loaded under the measuring tool, and the temperature 

was immediately decreased from 37 °C to RT. While the precursor underwent physical gelling, a 

sinusoidal strain of γc at 1 Hz was applied for a 2-hour period. G’, G” and |η*| were recorded at 

one-minute intervals to measure the property change during the gelling process. To quantitatively 

understand the gelation process, the G’-time curves were fitted into the exponential formula to find 

time constants: 

7(8) = 79 	:1 − ;
< =
>?@	 (2) 

where 79 and BC are theoretical final storage moduli and time constants. The goodness of fitting 

was realized by calculating the Degree of Freedom Adjusted R-Square (!DEF2 ) and Root Mean 

Squared Error (RMSE). Time constants were compared between different compositions. 

Another series of amplitude sweeps were implemented to further understand the yielding 

properties of AxGy at different time points during gelation. Similarly, AxGy precursors were 

loaded onto the rheometer and allowed to gel at RT. This time, the oscillatory strain was applied 

logarithmically from 10% to 1000% at an angular frequency of 1 Hz at 10, 20, 30, 45, 60, 90 and 

120 min following the initial gelling, and the G’ and G” were recorded. When yielding happens, 

G’ shows a decreased value and eventually crosses over G”, indicating the sample transits from 
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 8 

solid-dominant to liquid-dominant appearance. The stress at the yield strain was considered the 

yield stress BG. 

2.4. Relation between yield stress and minimum extrusion pressure. To relate the yield stress 

to the minimum extrusion pressure in printing tests, we plotted the minimum extrusion pressure 

versus yield stress at the different time of gelling for all AxGy samples. The boundary conditions 

were set at two extreme flow scenarios: the upper boundary assumes completely non-slippery at 

the wall of the nozzle (lubrication condition), while the lower bound assumes a perfectly smooth 

(slippery) wall of the nozzle. The upper bound was taken from the modified Cogswell’s 

equation[48]: 

HIJKLMNOO =
2BG
tan S

ln
!U
!4
	 (3) 

where HIJKLMNOO  is the minimum extrusion pressure, BG  is the material’s yield stress, S is the 

half-cone angle of the conical nozzle, and !U, !4 are the radius of the inlet and outlet of the nozzle. 

The power-law fluid model in Cogswell’s original work is replaced by the Herschel-Bulkley 

model. The flowrate is set to zero to obtain the minimum pressure to initiate flow.  

The lower bound was taken from the modified Snelling’s equation[49] or Basterfield’s 

equation[50]: 

HWXNOO(XK = 4BG ln
!U
!4
	 (4) 

HZDL=N[\(NOE = 2√3BG ln
!U
!4
	 (5) 

In both Snelling’s equation and Basterfield’s equation, the wall of the nozzle is assumed to be 

completely slippery such that no shear effects are taken into consideration. In both criteria, the 

material is assumed to be isotropic, the difference between the two is Snelling’s work used Tresca 

yield criterion while Basterfield’s work used Von Mises yield criterion to calculate the maximal 
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 9 

shear stress. The Tresca yield criterion is also known as maximum shear stress criterion and it is 

trivial to calculate (_[[ − _`` = 2BaDb), where _[[ and _`` are the principle stresses at the radial 

and tangential direction, while it can be conservative and overestimate the pressure required for 

lower boundary. On the other hand, Von Mises yield criterion uses the maximal distortion energy 

to judge whether a material yields, which is relatively more complicated but has been proved a 

more accurate description of yielding behaviors (BaDb = /4
2
c(Fc(F), where cde are the components 

in deviatoric stress tensor. One may note that the resultant formulae only differ by a coefficient 

that is close to each other (4 versus 2√3), which indicates a similar estimation using either of the 

yield criteria. 

For a given type of nozzle, all the three equations suggest a linear relation between the minimum 

extrusion pressure and material’s yield stress. The only difference is the coefficient, which is 

dependent on the material and the nozzle geometry. We assume a linear relation for AxGy 

precursors and Gauge 27 conical nozzle used in our tests: 

Hf = gBGh	 (6) 

where Hf and BGh are the estimated pressure and yield stress, and g is the slop coefficient. Linear 

regression was performed on collected pressure – yield stress data to find g. The goodness of fitting 

was realized by calculating the Degree of Freedom Adjusted R-Square (!DEF2 ). 

2.5. Cell Preparation. GFP transfected (nuclei label) MDA-MB-231 breast cancer cell lines 

were cultured at 5% CO2, 37 °C in DMEM medium (Gibco) at pH 7.2 supplemented with 10% 

fetal bovine serum (Wisent Bioproducts), 100 U/mL penicillin, 100 jg/mL streptomycin, and 0.25 

jg/mL, amphotericin B (Sigma), in T-150 flasks (Corning). Cells were harvested with trypsin-

EDTA (0.25%, 1×, Gibco) prior to bioprinting. 
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 10 

2.6. Model Fabrication. Precursor gels were first liquefied by warming to 37 °C to create 

homogeneous solutions. Upon usage, 1 mL of each type of precursor was loaded into a 3 cc 

cartridge; then, MDA-MB-231 cell suspension was injected into the precursor and mixed to make 

a final cell concentration of 1.0 × 106 cells/mL. The cell-laden precursors were kept at RT to allow 

gelation. When the printing window was reached, quadruplicate disk models (Φ5 × 1 mm3) per 

each type of precursor were printed using the pressures found in printability tests. For example, 

the cell-laden A3G7 precursor was printed after 20 min of gelation at RT with 70 kPa of extrusion 

pressure (refer to the Results section for more details). The disk model was made up of 5 concentric 

circle paths and 7 layers vertically. After printing, 100 mM CaCl2 solution was added to the disks 

to crosslink the alginate and incubated at RT for 8 min. The disk models were then rinsed with 

DPBS twice, transferred to agarose-coated Petri-dishes, and cultured at 37 °C with 5% CO2. 

2.7. Microindentation. Cell-free disk samples with different compositions were mold casted, 

crosslinked, and kept within an incubator at 37 °C for 24 hours. Samples were then indented while 

maintained at 37 °C. A spherical indenter probe (radius 500 μm, made of stainless steel) was 

mounted onto a load cell (S-256, Strain Measurement Instrument, USA) and connected to a micro-

manipulator (MP-285, Sutter Instrument Co., USA). Force-displacement data was acquired, and 

the unloading curve was extracted to calculate the apparent Young’s modulus. For soft biological 

materials, the adhesion between the sample and the indenter can require addition work to separate 

them. Hence, the JKR adhesive indentation model was used as a modified Hertzian model to 

account for the adhesive effects[51, 52]: 

k =
4
3
∙

mL
1 − n2

∙
op

!
− q8sop ∙

mL
1 − n2

∙ t	 (7) 
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v =
o2

!
− q

2so(1 − n2)t
mL

	 (8) 

where F is the load, Es is the effective elastic modulus (also the apparent Young’s modulus), ν 

is the Poisson ratio, R is the probe radius, a is the contact radius, γ is the surface tension of the 

sample, δ is the indentation depth (deduced by δ=D-∆F/Kc), D is the translational movement of 

the micro-manipulator between the maximal loading and detaching position on the unloading 

curve, and KC is the spring constant of load cell.  

For water-rich hydrogels, the surface tension of water can be used as an approximation of that 

of the hydrogel[53, 54], and thus γ is set to be 70.0mJ/m2. Note that when the surface tension is 

omitted (t = 0), formulae (7) and (8) reduce to the original Hertzian Model[51]. Due to the high 

water content, the hydrogels can also be regarded as incompressible materials (n = 0.5). For the 

convenience of data fitting, formulae (7) and (8) can be organized into one formula:for an 

incompressible material, 

1
! x
9!k
16 ∙ Λ{

	2p
− :

3st
2 @

	42
∙ x
9!k
16 ∙ Λ{

	4|
= (mL)

	2p ∙ v	 (9) 

where Λ = 1 + p~�Ä
Å

+ /2 ∙ p~�Ä
Å

+ Çp~�Ä
Å
É
2
. The left hand side of (9) is a function of force, and 

the right hand side is a function of indentation depth. The force-indentation data can be fitted into 

(9) to obtain the Young’s modulus Es. 

2.8. Confocal Microscopy. Confocal microscopy (Olympus IX83, Olympus Life Science) was 

used to observe cell morphology and formation of MCTS. At each observation position, a Z-stack 

scan (500 µm thickness) was implemented with 20 and 10 μm steps, at magnifications of ×4 and 

×10. MCTS volume was estimated using representative z-stack images from the center of each 

disk, 3D maximum filter was applied to the stacks, and the background noise was removed based 
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 12 

on “rolling ball” algorithm (50-500 pixels depending on MCTS size) using Fiji software[55-57]. 

Regions of interest containing MCTS were manually segmented using segmentation editor Fiji 

plugin. Finally, 3D object counter was used to calculate the volume of the individual MCTS[58]. 

We classified the MCTSs into three categories: small (15,000–200,000 µm3), medium (200,000–

700,000 µm3), and large (>700,000 µm3), which fit the sizes reported in the literature[59-61].  

For 3D reconstruction, unlabeled MDA-MD-231 MCTSs grown in A1G7 or A3G7 were stained 

with Hoesch 33342 (nucleus, Tocris Bioscience) and Alexa Fluor® 633 phalloidin (actin, 

ThermoFisher Scientific), respectively, following manufacturer's instructions. Confocal images 

were acquired with Nikon A1+ confocal microscope, a Z-stack scan (200 µm thickness) of 1µm 

step and a ×20 magnification was used. Brightness, contrast and channel split of each Z-stack were 

adjusted using Fiji software. For 3D modeling, each channel was loaded to open source application 

MorphoGraphX[62] in order to acquire top, front and full 3D views of MCTS in hydrogels. 

2D reconstruction was also performed by image projection with maximal intensity. The 

threshold was set to highlight fluorescent signals, and cell/spheroid number, area ratio as well as 

the fluorescent intensity was quantitatively analyzed with the built-in “Analyze Particle” function 

of Fiji. The relative fluorescent intensity and the area ratio were deduced by normalizing total 

fluorescent intensity/area ratio to those of Day 0. 

MCTSs viability was determined using calcein-AM (AAT Bioquest, Inc) and ethidium 

homodimer-1 (EthD-1, Biotium) assay. Calcein-AM is a cell-permeant component that enters the 

cells and is cleaved by esterases inside the living cells, producing an intense green fluorescence 

(excitation/emission ≈495/515 nm); while EthD-1 enters cells with damaged membranes and then 

bind to nucleic acids generating a bright red fluorescence in dead cells (excitation/emission 

≈495/635 nm)[63]. Unlabeled MDA-MD-231 cells were grown into A1G7 or A3G7 for 28 days; 
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 13 

each 7 days, samples were taken from cultures and incubated with calcein-AM/EthD-1 

(2µM/4µM) solution in DPBS at 37°C during 45 min, following by confocal imaging acquisition 

using a Z-stack scan (500 µm thickness) with 10 μm steps and ×4 magnification. Images were 

processed as 2D reconstruction above mentioned. The fluorescent intensity was normalized to Day 

0. 

2.9. Statistical Analysis. All test samples were triplicated unless stated otherwise. Data were 

plotted using Prism 7 (GraphPad Software Inc., USA). Data are presented as Mean ± SD. Where 

comparisons were made, One- and Two-ways ANOVA and Tukey’s and Bonferroni’s post-hoc 

test were used with P < 0.05 considered significant. Volume data were plotted as box plot graphs 

using OriginPro 9 software, with a box limit of 25th and 75th percentiles and a minimum-maximum 

whisker’s range.  

3. RESULTS 

3.1 Rheological Characterization. When the summation of alginate and gelatin concentrations 

remains the same, their gelation curves follow a similar pattern, viz., for any AxGy precursors, as 

long as (x + y) are the same, their gelation curves show a similar pattern and time constants (Figure 

S1). For instance, A1G9, A3G7, and A5G5 all have (x + y = 10), and their fitted G’-time curves 

give time constants of 24.35 min, 26.46 min, and 30. 77 min, respectively. This indicates that the 

precursors with the same total polymer concentration start to stabilize at almost the same time of 

gelling. For those with the same (x + y), the absolute values of their G’ and G” unexceptionally 

increase with gelatin concentrations (Figure S2). 

Moreover, increasing either the alginate or gelatin concentration increases the complex 

viscosity, which subsequently leads to a higher resistance to flow (Figure 2 (b), Figure S3 (d-f), 

Figure S4 (d-f), Table S1-S2) thus resulting in lower flow rates. 
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 14 

 

Figure 2. Gelation kinetics of AxGy hydrogel precursors. (a) shows storage modulus (G’) versus 

gelation time for different compositions. (b) shows complex viscosity (η*) versus gelation time 

for different compositions. 

The yield stress of AxGy increases during the gelation process (Figure S5). Surprisingly, even 

the softest precursor, A1G5, has a yield stress of 26.3 ± 8.5 Pa at 10 min of gelation in rheological 

tests, regardless of a liquid state in the actual printing test. This discrepancy can be attributed to 

the extensive time for heat dissipation of the precursors sealed in the cartridge versus a rapid 

thermal equilibrium in rheological tests (further discussed in the next section). 

3.2. Bioprintability of AxGy precursors. All the compositions of AxGy can be printed at 

different initial time points using the corresponding minimum pressures (Figure 3 (b)). In all of 

the AxGy hydrogel precursors, the printing window remains similar for samples with the same (x 

+ y) values (Figure 3 (b)). 
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Figure 3. Printability of hydrogel precursors. (a) CAD of printed mesh model (unit: mm). (b) 

shows printing windows of precursors with different alginate and gelatin concentrations. Each 

round panel inside the plot represents one type of AxGy precursors. The numbers on the perimeter 

of the panel represent the time of gelling (min) before the printing. The color bar indicates the 

minimum pressure required to extrude the material using a G27 conical nozzle at RT. (c-k) 

demonstrate cuboid mesh models printed of AxGy. The time of gelling, extrusion pressure, and 

normalized roughness are shown for each printed mesh. Scale bar is 1 mm. (l) scatter plot of 
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minimum extrusion pressure versus yield stress. The solid red line is the upper bound defined by 

equation (3), the solid green line and dashed green line are lower bounds defined by equation (4) 

and (5). Blue dashed line represents a linear regression, with the estimated equation and goodness 

of the fitting. (m) shows the geometric parameters of a Gauge 27 conical nozzle. (n) shows the 

explicit formulas of the boundary conditions. 

The minimum extrusion pressure is linearly related to the precursor’s yield stress. The applied 

pressure imposes a stress on the material, which needs to exceed the material’s yield stress to 

initiate flow. The pressure – yield stress data fitting gives a linear coefficient g = 34.816, such 

that: 

Hf = 34.816BGh	 (10) 

with !DEF2 = 0.85. All the AxGy precursors, at all the tested time of printing follow this linear 

trend when extruding through G27 conical nozzles. The fitted curve lies within the upper bound 

defined by eq. (3) (idealistically non-slippery wall), and the lower bound defined by eq. (4) and 

eq. (5) (idealistically slippery wall), suggesting the AxGy precursors are partially slipping at the 

wall of the G27 conical nozzles (Figure 3 (l)). Note the G27 nozzle has an outlet radius of 0.1 mm 

(dimensions shown in Figure 3 (m)), which satisfies most of our printing work. For other types of 

nozzles, the boundary conditions can be calculated similarly using eq. (3~5). 

All the precursors exhibit yield stresses even at 10 min of gelling in rheological tests when they 

are still in a liquid form in printing tests and cannot be printed. The yield stress values obtained 

before the earliest printable time are thus discarded in the data fitting process. One possible reason 

of the discrepancy is that in the rheological tests the temperature is immediately decreased from 

37 °C to RT such that the precursors undergo quenching processes, while in printing tests the 
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precursors anneal to RT leading to a discrepancy to the rheological results. Thus, the yield stresses 

obtained in rheological tests can be over-estimated values. 

The time constants separate the gelation process into a rapid gelling regime and a slow 

reinforcing regime. During the rapid gelling regime, one needs to rapidly increase extrusion 

pressure to successfully extrude the material, while in the slow reinforcing regime, fewer changes 

are needed regarding the required extrusion pressure. Noteworthy, the time constant for A1G5 is 

57.58 min, which happens before its earliest printable time (70 min). Thus, A1G5’s printability is 

maintained throughout the printing session (from 70 min to 120 min) without a noticeable increase 

in the required extrusion pressure. Similar behaviors are shown by A3G5 and A5G5. 

The meshes were printed at the earliest time in the printing window of a precursor using the 

minimal extrusion pressure possible. Before the printing window, the material is too fluid, and 

adjacent filaments fuse into each other. When using a pressure below the minimum required 

pressure, extrusion is unstable, and clogging within the nozzle frequently occurs. All of the printed 

examples shown in Figure 3 (c-k) exhibit post-printing stability, suggesting sufficient yield stress 

to support the structure. 

Most of the printed filaments show a normalized roughness of ~10%, while the worst is A1G5 

(~18.4%) and the best is A5G5 (~6.5%). Intriguingly, AxG5 series as the “slowest” gelation 

precursors, cover both the best and the worst printing qualities, which implies a low gelatin 

concentration may lead to unstable extrusion behaviors (further explained in the Discussion 

section). All the other AxGy precursors show similar normalized roughness numbers ranging from 

10.9% to 14.8%. The relatively small normalized roughness numbers exhibit a satisfying surface 

quality of the extruded structures. 
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3.3 Elasticity of crosslinked hydrogels. The Apparent Young’s modulus (Es) of the different 

formulations can be tuned between 5.46 to 22.88 kPa (Figure 4) dependent upon the w% alginate, 

(e.g., 1% alginate results in Es between 5.46 – 7.92 kPa; whereas 3% alginate has an Es between 

13.30 - 16.31 kPa; and 5% alginate results in an Es between 19.90 - 22.88 kPa). Among the samples 

with the same alginate concentration, gelatin does not play a noteworthy effect on Es as the gelatin 

within the composite exists in a liquid phase at 37°C. 

 

Figure 4. Apparent Young’s Modulus measured 24 hours after crosslinking by micro-indentation. 

Plotted with the concentrations of gelatin and alginate on vertical and horizontal axes, and color 

bar represents the values of apparent Young’s modulus. Asterisks (*) represent a significant 

difference between two groups, calculated by pooling all the data for the different gelatin 

concentrations, with P < 0.05, n=10. “ns” means non-significant difference. 

3.4 Generation of MCTS in hydrogels. In general, the softer hydrogels have higher chances to 

induce MCTS. All of the A1Gy samples induce MCTS formation starting on day 7 of culture and 

continue to grow in size until experiments were ceased on day 28. Among the A1Gy samples, 

A1G7 and A1G9 result in both larger and more rapid MCTS generation in comparison to A1G5 
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bioinks that contain fewer cell-adhesive gelatin molecules (Figure S6). MDA-MB-231 cells 

grown in A3Gy gels result in a less frequent formation of MCTS and smaller MCTS sizes on day 

7, with a decreasing trend in resulting MCTS after day 14 (Figure S7). In A5Gy samples, MDA-

MB-231 cells remained as single populations, with cell numbers decreasing more rapidly than 

those printed using A3Gy composite gels (Figure S8).  

 

Figure 5. Confocal images of bioprinted A1G7 and A3G7 disks and quantitative analysis of MCTS 

in a 28-day period. Row (a) and (b) show the morphological MCTS variation by time in A1G7 and 

A3G7, respectively. Magnification ×10. Images (c) shows the volume of each spheroid in a 

representative A1G7 sample during 28 days of culture, with categories of small (15,000–200,000 

µm3), medium (200,000–700,000 µm3), and large (>700,000 µm3) MCTS presented in black, red 
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and blue color. (d) shows the same data for A3G7, with the same thresholds in categorization. Box 

plot graphs were plotted using a box limit of 25th and 75th percentiles with a minimum-maximum 

whisker’s range. 

3.5 Development of MCTS. Among the hydrogels that induce MCTS, softer ones cause earlier 

onset of medium to large sized MCTS and higher total MCTS numbers. Here we perform 

qualitative comparisons of MCTS development in A1G7 (Figure S6 (b), Es = 7.92 ± 1.79 kPa) and 

A3G7 (Figure S7 (b), Es = 13.30 ± 1.29 kPa) hydrogels. A1G7 gels promote the formation of 

medium and large MCTS after 14 days of culture (Figure 5 (a, c)), while A3G7 produced medium 

MCTS after 14 days with large MCTS forming only at day 28 (Figure 5 (b, d)). The number of 

small and medium size MCTS/mm3 in A1G7 and A3G7 samples show significant differences, 

producing more MCTS in A1G7 compare with A3G7 after 7 days of culture (Figure S9 (a, b)). 

For large-size spheroids, A1G7 shows a significant higher quantity of MCTS that A3G7 after 14 

days of culture (Figure S9 (c)). The largest volume for MCTS found in A1G7 and A3G7 hydrogels 

are ≈ 3,971,137 µm3 and ≈ 2,017,647µm3, respectively, on day 28 of culture. 

To evaluate the status of MCTSs in A1G7 or A3G7, we perform viability test. Cells and MCTSs 

growing in A1G7 shows high proliferation rate (Figure 6 (a)) through time, while MCTSs in 

A3G7 keeps the same proliferation rate compared with day 0. The confocal images (Figure 6 (b, 

c)) confirm the previous results on MCTS sizes (Figure 5), where MDA-MB-231 cultured into 

A1G7 presents more and larger MCTS compared with A3G7. Regarding to MCTSs viability, both 

A1G7 and A3G7 cultures show high viability (Figure 6 (b, c)).   
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Figure 6. MDA-MB-231 cell viability during 28 days of culture within A1G7 or A3G7 hydrogels. 

(a) the viability of single cells as well as MCTS was determined each 7 days and normalized 

against day 0. Data presented as Mean ± SD, n≥3. Confocal images of live (green) and dead (red) 

MCTS in A1G7 (b) and A3G7 (c).  Magnification ×4, scale bar 500 µm.  

High magnification 3D reconstruction confirms the distribution, volumes, and morphologies of 

the MCTS formed in A1G7 and A3G7 at 21 days of culture (Figure 7), where A1G7 allows the 

production of large MCTS (Figure 7 (a, b)) compared with A3G7 (Figure 7 (c, d)).  

The modulus dependency of MCTS development can also be presented by the normalized 

fluorescent intensity and the surface area of 2D projected confocal images. The measured 

fluorescent intensities of A3Gy (Es range from 13.30 to 16.31 kPa) and A5Gy samples (Es range 

from 19.90 to 22.88 kPa) decrease by days of culture (Figure S10(a) triangles and circles, 

respectively), and are considerably lower than the A1Gy counterparts (Es range from 5.46 to 7.92 

kPa). MCTS growth in samples cultured in the A5Gy gels exhibits slightly lower (yet non-

significantly different) fluorescent intensities (0.3 times to Day 0) than that in A3Gy samples (0.5 

times to Day 0) (Figure S10(a), circles versus triangles). A similar trend can be observed via 

comparisons of the normalized surface area ratio (Figure S10 (b)). 

Page 21 of 32 AUTHOR SUBMITTED MANUSCRIPT - BF-101888.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Acc
ep

ted
 M

an
us

cri
pt



 22 

 

Figure 7. 3D reconstruction of MCTS showing the representative morphologies and sizes of 

MCTS formed in A1G7 (a, b) and A3G7 (c, d) hydrogels after 21 days of culture. A zoom in of 

the MCTS is presented in b) and d), displaying the actin organization in the spheroids. 

Magnification ×20, scale bar 50 µm. 

In A1Gy series, a higher gelatin portion results in a higher normalized fluorescent intensity and 

surface area. For example, in the A1G9 gels the intensity on Day 28 increases to 2.4 times than 

that on Day 0, while the same ratio for A1G5 is 1.5 times (Figure S10 (a), squares). This trend 

cannot be observed in A3Gy and A5Gy series, presumably due to the over-stiff network inhibiting 

MCTS development. 

Noticeably, the A3Gy and A5G5 samples see a short-term increase of normalized fluorescent 

intensity and surface area on Day 7 followed by a continuous decrease until Day 28 (Figure S10 

(a, b)), indicating the short-term studies of cell behavior is insufficient to describe the 

biocompatibility and bioactivity of the biomaterial in the long-term. 
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4. DISCUSSION 

Our results demonstrate the effect of bioink composition on both the bioprintability and 

formation of MDA-MB-231 MTCS. Printability of a material primarily depends on two aspects: 

the material’s intrinsic properties (such as modulus, yield stress, viscosity, thixotropic recovery et 

cetera) and the external conditions (such as applied pressure, nozzle geometry, cartridge size et 

cetera).[64-67] Soft materials with similar rheological properties are highly likely to achieve 

similar printability. In our experiments, AxGy with the same sum of (x + y) w/v% ratio values 

generally exhibits similar printing windows. In gelatin-rich composites, a small fraction of alginate 

is needed to achieve a similar printing window with alginate-rich, gelatin-less composites, and vice 

versa. This is due to the samples having the same water w/v% of their content and therefore exhibit 

similar rheological properties. Therefore, it provides the possibility to create hydrogels with 

similar printability but completely different mechanical/biological properties after crosslinking 

and during culturing (i.e., A1G7 vs. A3G5). 

Yield stress can influence the startup pressure required for extrusion as the applied stress should 

exceed the yield stress such that the material enters the plastic deformation regime, and 

macroscopically, starts to flow[68-70]. In our experiments, a linear relation was found between 

the minimum extrusion pressure and the material’s yield stress, which provides a general guide for 

bioprinting regardless of the formulation of material. As long as the yield stress is known, the 

minimum extrusion pressure can be estimated. When the pressure exceeds the minimum pressure, 

the additional stress exerted on the material leads to an increased flow rate. 

Another important contribution brought by yield stress is the post-extrusion structural stability. 

A material with yield stress can withstand its weight against gravity, while a liquid that has little 

Page 23 of 32 AUTHOR SUBMITTED MANUSCRIPT - BF-101888.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Acc
ep

ted
 M

an
us

cri
pt



 24 

to no yield stress collapses under gravity. The AxGy hydrogels gain sufficient yield stress as they 

physically gel at RT, such that the printed meshes retain their structures without spreading out. 

The AxG5 series is unique as the 5% gelatin tends to recover slowly after violent shear, which 

delays the printing window by ~10 min after the time constants. Actually, in AxG5 hydrogels, the 

alginate composite tends to manifestly influence the printing quality. When alginate concentration 

is high, the printed structure may “collapse” slower, which gives sufficient time for the 5% gelatin 

to rebuild the yield stress post-extrusion and thus resulting in lower RN. On the other hand, the 

alginate-less A1G5 has neither rapid recovery (due to low gelatin %) nor slowed flowing (due to 

low alginate %), and eventually results in higher RN. 

Factors such as material composition, matrix elasticity, cell concentration, and cancer cell type 

could affect the MCTS formation in 3D cultures[71]. With increased gelatin concentration, more 

adhesion sites are provided enhancing the potential for cell-matrix interactions. Consequently, 

cells printed in gels with greater gelatin concentration exhibit higher proliferation activities and 

therefore, develop into larger MCTS. Thus, the gelatin provides tunable biofunctionality to the 

hydrogel without noticeably altering the mechanical properties. 

Samples in the A3Gy and A5Gy series, except for A3G7, do not facilitate MCTS 

formation/growth due to their high modulus and a dense molecular network which can inhibit cell 

morphology and movement. In general, tumors have a higher Young’s modulus than normal tissue 

due to ECM crosslinking[72]. Since the migration, proliferation and MCTS formation inside of 

3D environments is related with the matrix elasticity, a stiffer material could negatively affect the 

cells ability to migrate and proliferate inhibiting the formation of, or resulting in reduced size 

MTCS[72, 73]. This could explain why the A1Gy hydrogels were better matrices for MCTS 

formation. It is well known that matrix elasticity plays a critical role in cancer cell viability, 
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formation and progression of tumors[71, 74, 75]. The effect of elasticity on cell function relies on 

the expression of proteins, such as integrins, and the downstream focal adhesion complex proteins, 

which are sensed and transduced into mechanical and biochemical signals in specific 

pathways[74]. The necrotic core occurs dependent upon MCTS size, which is correlated with cell 

function as well as drug penetration, and nutrient and oxygen transport. MCTSs with diameters 

ranging from 200 to 500 µm are large enough to develop chemical gradients, while MCTS >500 

µm develop a central secondary necrosis where the inner cells die by apoptosis or necrosis. MCTS 

with diameters <150 µm are frequently used for drug testing, and may be sufficient to exhibit 3D 

cell-cell and cell-matrix interactions but are not large enough to exhibit oxygen gradients with 

hypoxic regions or proliferation gradients [23, 59, 76]. Almost all MCTSs formed in A1G7 and 

A3G7 are smaller than 2.0x106 µm3 (≈150 µm); based on that, we think that oxygen and nutrients 

transport to the core of the MCTS is not limited or slightly limited (in larger MCTSs) but without 

negative effects on cells proliferation or necrotic core formation. The organization of actin stress 

fibers at the periphery of MCTS in both A1G7 and A3G7 could be correlated with the cell/MCTS 

proliferation and migration inside of the hydrogels[77-79].MDA-231 cancer cells encapsulated in 

PEGDA hydrogels with a Young’s modulus of 5 kPa promote the formation of larger MCTS, 

higher cell and sphere density compared with PEGDA of ≤ 2kPa and ≥25kPa, suggesting that cells 

prefer a material ranging in this elasticity[71]. Both A1Gy and A3G7 hydrogels promote the MCTS 

formation within 7 days of culture; however, A1G7 samples allow a greater quantity of medium 

and large MCTS size during culture compared to the A3G7 hydrogel samples. This could be due 

to matrix elasticity that affects the expression of mechanosensors and mechanotransduction 

complex proteins [71, 74, 75]. It is clear that more studies regarding molecular mechanisms must 
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be done in order to understand the complex biology behind of MCTS formation and cancer tumor 

progression. 

5. CONCLUSIONS 

Overall, the A1G7 and A1G9 samples have both high printability and biofunctionality, i.e., they 

reach their corresponding printing windows within 30 min and have been proven to have limited 

negative impacts on cell viability and proliferation. They also have minimal mechanical property 

changes over a considerably longer printing window and can provide enough adhesion sites for 

cells to attach, proliferate and aggregate. For all tested hydrogels, the minimum extrusion pressure 

during printing is linearly related to the material’s yield stress, which is determined by 

formulations of the material. The elasticity of the crosslinked gel is solely determined by alginate 

concentrations, while the biological functionality is tuned by gelatin concentrations. Cancer cells 

show elasticity and formulation dependence on the production of spheroids with different volumes. 

These hydrogels allow the biofabrication of cell models that can be used to create 3D disease 

models with high-throughput, low cost, and high reproducibility as a viable alternative to 2D cell 

cultures and small animal models. 
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