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Notation

The symbols µm and λm will be used to represent the m-th real non-zero and the m-th
complex eigenvalues of the Laplacian matrix L, respectively. A complex number ◦, will
be decomposed as: ◦ = R◦+ jI◦, where j is the unit imaginary number, and R◦ and
I◦ representing the real and imaginary components of ◦. The symbol 1,n represents a
succession of positive integers up to n. In will represent an n-dimensional square identity
matrix, C+, C− and C0 will represent the right-half, left-half, and imaginary axis on the
complex plane. Scalars | ◦ | = (R2

◦+ I2
◦ )

1/2 and ∠◦ = arctan(I◦/R◦) are said to be the
magnitude and phase of ◦, respectively.

xi





Resumen
Se propone un protocolo de control proporcional-retardado para resolver el prob-

lema de consenso en un sistema multiagente con dinámica de integrador único. El en-
foque analítico da como resultado reglas de sintonización listas para usar. Suponemos
que el grafo dirigido que describe la red de agentes es fuertemente conexo. La principal
contribución del proyecto radica en que la sintonización está destinada a sistemas con
valores propios reales y complejos en la matriz Laplaciana, complementando el estado
del arte. El protocolo se demuestra y verifica mediante simulación numérica, así como
en la plataforma Robotarium.

Abstract

A proportional-retarded protocol is proposed to solve the consensus problem in a multi-
agent system with single integrator dynamics. The analytical approach results in ready to
use tuning rules. We assume that the directed graph that describes the agents network is
strongly connected. The main contribution is that the tuning is intended for systems with
real and complex eigenvalues in the network’s Laplacian graph, supplementing the cur-
rent state of the art. The protocol is demonstrated and verified via numerical simulation
as well as on the Robotarium platform.
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Chapter 1

Introduction and problem statement

This thesis proposes a proportional-retarded (PR) control protocol to solve the con-
sensus problem in a class of multi-agent systems (MAS) with single integrator dynamic
agents. We make extensive use of the theoretical framework developed by Reza Olfati-
Saber in his seminal work [18] for analysis of consensus algorithms for multi-agent net-
worked systems. Taking advantage of standard system decomposition techniques, an
appropriate factorization of the MAS at hand into individual sub-systems is presented
with which Lambert W functions are next incorporated ultimately resulting in analytical
tuning formulas for the proposed PR consensus protocol.

We also demonstrate how the aforementioned “ready to use” tuning rules can be
conveniently applied in real world problems without further considerations such as addi-
tional filtering of measurements. The main contribution of our project is that the proposed
tuning technique holds for systems with both real and complex eigenvalues associated
with the graph Laplacian of the network. To the best of our knowledge, this has not
been previously reported in the open literature and some advancements in this direc-
tion are presented only recently in [23, 25] considering either real or complex Laplacian
eigenvalues. The effectivity and efficiency of the proposed approach is demonstrated
via numerical simulations on various MAS strongly connected directed graphs, and fur-
ther tested via experiments on Robotarium, a robotic multi-agent testbed developed by
Georgia Institute of Technology.

In the rest of this chapter, we present i) a general background pertaining to MAS
research, ii) the framework used in this study to analyse MAS’s properties and perfor-
mance and iii) the problem under consideration in this thesis work. Finally, we shall
establish the usefulness of our investigation as a completion of the state of the art and
list the particular objectives we pursue.
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1.1 Background

A multi-agent system, or simply MAS, refers to a network of interacting, possible
mobile, physical entities that collectively perform a complex task beyond their individual
capabilities [6]. In nature, on the one hand, there are many phenomena that may be
understood as a MAS. Classical examples are bird flocks, fish schools, bat cauldrons and
social insects [8]. In these examples, we may observe collective behavior, e.g. swarming,
that emerges based only on local interactions among the members of the group and
without any particular supervision of a leader. Considering groups of engineered robotic
systems, on the other hand, the last few years have also witnessed multiple efforts to
reproduce the collective behavior observed in nature with the aim of rendering these
systems with improved features such as robustness, flexibility and resilience [6].

In certain cases, performing a task following a multi-agent-based approach can be
more preferable over single-agent-based approaches since in these cases, a MAS may
be more flexible and re-organize for the particular needs of the task. For example, a MAS
might operate in parallel and would finish the task even if some agents fail, thus improving
the overall efficiency and providing reliability. Further, each member of the MAS can be
structurally simple and cheap [9]. However, guaranteeing a stable operation of the MAS
poses unique challenges as we shall see in detail in this manuscript.

For MAS, the problem of consensus has been extensively studied due to its rele-
vance in a wide variety of fields. In the context of this project, consensus means reach-
ing an agreement in certain quantities of interest that depend on the particular system
under consideration. Hence, a consensus protocol may be understood as an interaction
rule that specifies how the information is exchanged among the agents and how these
agents use the information to ultimately reach an agreement [18]. Even though pioneer-
ing research on the "asynchronous asymptotic agreement problem" for distributed decision
making systems is known since the early eighties [3, 28, 29], it is broadly accepted in
the MAS community that the prevailing framework for consensus problems on networked
dynamic systems was developed by Olfati-Saber and Murray [19, 18, 20] in 2007. Since
then, a broad area of research has been developed in this direction studying various
facets of the subject while considering fixed and switching topologies, with or without
time delays, for first and second order dynamics, and with the main objective to achieve
fast consensus, which is also the focus of this work.

Fast consensus problems in MAS are concerned with having the individual agents
reach an agreement as quick as possible. Multiple strategies have been developed to
solve this task, some of them, by manipulating certain parameters of the system, tun-
ing the control protocol embedded in the agents and adjusting the communication links
between the agents [32, 17, 18].
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1.2 State of the art

The design of algorithms for fast consensus has received plenty of attention in re-
cent years. An early development was made by Lin Xiao and Stephen Boyd in [32]
where the authors described the consensus problem as a linear iteration problem. Gen-
eral conditions on a weighted matrix W associated with the topology of the network were
investigated for the system to converge to the average of the state values and guidelines
on how to choose W to make the convergence as fast as possible were provided. In [18],
Reza Olfati-Saber presented an influential theoretical framework for analysis of consen-
sus algorithms for multi-agent networked systems. There, a broad overview of key results
on theory and applications of consensus problems in networked systems were unified
in a general framework. Results included basic notions on control theoretic methods for
both convergence and performance analysis of distributed consensus protocols. In our
project, we heavily rely on this framework.

Several control strategies have also been developed for single integrator MAS sub-
jected to PR consensus protocols. In [14], Min Hyong Koh and Rifat Sipahi take a statisti-
cal approach to study fast consensus in a class of MAS with homogeneous delay. There,
agents’ convergence speed is linked with the topology of the network. Specifically, it is
reported that for relatively large delays, consensus can be accelerated up to an order of
magnitude reduction in settling time by properly removing some edges in the graph. Even
more interesting, by removing the edge that connects the agents with the largest differ-
ence between their initial state values, settling time is guaranteed to decrease whenever
delay is close to the MAS delay margin. In a latter work [17], Olfati-Saber demonstrated
that the algebraic connectivity, i.e. the second smallest eigenvalue of the Laplacian ma-
trix, of a regular network can be considerably increased by a factor of 1000 via random
rewiring. This phenomenon, known as phase transition in algebraic connectivity, is known
to produce the so-called ultrafast consensus in small-world networks.

Supporting the idea that delay can have a positive influence in systems perfor-
mance, Adrián Ramírez and Rifat Sipahi proposed in [22] a multiple-delay PR protocol to
achieve fast consensus in a large-scale MAS. There, the authors demonstrated that the
spectral abscissa of the consensus dynamics can be placed at a desired locus provided
that the underlying graph is undirected and strongly connected. Considering a single
integrator MAS, it is already reported in the literature that a PR consensus protocol can
be designed to achieve fast consensus, provided that the Laplacian matrix associated
with the network at hand has only real eigenvalues [18, 23]. Likewise, similar results
in this research direction have been obtained in the case of complex graph-Laplacian
eigenvalues [25]. Based on the above discussions, the main contribution of this project
is implementing a PR control protocol that solves the consensus problem as fast as pos-
sible when real and complex eigenvalues are present on the graph’s Laplacian matrix.
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1.3 Problem statement

This investigation is focused on reaching fast consensus in a MAS with n single
integrators, given by:

ẋi(t) = ui(t), i = 1,n (1.1)

where xi(t) is the state of the i-th agent and ui(t) is the corresponding control input. The
interconnection pattern among the agents is described by a directed graph G whose
graph Laplacian matrix is allowed to have a mix of real and complex eigenvalues. We
adopt the PR consensus protocol:

ui(t) = kp ∑
w∈Ni

[xw(t)− xi(t)]− kr ∑
w∈Ni

[xw(t−h)− xi(t−h)] , (1.2)

where kp and kr determine how strong the proportional and retarded control actions shall
be and h > 0 is an intentional delay induced in agent i. Here, the set Ni of neighboring
agents connected to i is determined by the directed graph G .

1.4 Objectives

As noted before, there is already research on single integrator MAS controlled by
PR protocols guaranteeing consensus reaching by carefully selecting particular graphs
or by restricting the Laplacian matrix eigenvalues to be real or complex conjugate. In
this thesis, we engage in the study of a more general class of system whose Laplacian
eigenvalues are allowed to be real and complex, thus complementing the state of the art.

The objective of this project is to develop analytical tuning formulas for the param-
eters (h,kp,kr) that solve the consensus problem for (1.1) controlled by (1.2) as fast as
possible based on its dominant roots. In order to achieve this goal, four main tasks are
to be completed:

• Factorization of the system. The system is factorized into several independent
sub-systems to make the stability analysis tractable.

• Tuning of the PR consensus protocol. A set of tuning rules is proposed to induce
convergence “around” the consensus state.

• Stability analysis of the MAS. Using the tuning rules obtained in the previous item,
we demonstrate that the proposed tuning is valid for the whole MAS.

• Simulation of the protocol and experimental validation on the Robotarium platform.
The consensus protocol is implemented to provide further insight about its perfor-
mance and limitations.
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Chapter 2

Preliminaries and problem re-formulation

This chapter briefly summarizes several tools and concepts that are relevant for this
thesis. We also restate the problem under consideration in this investigation in terms of
the aforementioned concepts while introducing a factorization procedure that facilitates
the analysis.

2.1 Basic concepts and definitions

In this section, we first review some basic concepts and notions from graph theory.
We then introduce the Lambert W function and the spectral abscissa function of a time-
delay system.

2.1.1 Graph theory

Graph theory has been quite useful to represent MAS and the relation between the
properties of the network’s graph and certain MAS attributes, such as stability and speed
of convergence [18], this much is known is firmly established in the literature. Here, we
enumerate several basic concepts of graph theory relevant throughout the project.

The fundamental requirement to study MAS is a way to describe the interactions
among the members of the group. To this end, we take from graph theory the notions of
vertices —also referred to as nodes— and edges —also known as links—. They can be
respectively represented as points in a plane and lines joining the points together, see
for instance Figure 2.1. The edges may or may not have a specific direction [2]. When
there is no particular direction, a graph denoted by G may defined by the two sets X ,E
as G = (X ,E) where X and E are the node and edge sets, respectively [2]. It is worthy
of mention that G may be represented in more than in a single way. For example, given
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Figure 2.1: A generic representation of a graph where the dots represent the vertices
and the straight lines represent the edges.

the sets X and E:
X = {x,y,z} E = {a,b,c,d},

any of the representations in Figure 2.2 for G = (X ,E) can be chosen. In other words,
the locations of the points and links do not represent any meaningful knowledge. Indeed,
the three graphs sketched in Figure 2.2 are isomorphic under a proper labeling of the
vertices.

Figure 2.2: Three generic graphs on three vertices.

Two vertices that are joined by an edge are said to be adjacent or neighbors. The
degree of a vertex counts the number of its neighbors [16]. When there is a particular
direction associated with the edges, it is necessary to represent the edge set E(G) as
a subset of the Cartesian product X ×X , where X is the vertex set. These objects are
called directed graphs, or simply digraph, and it’s common to depict them with arrowheads
in the edges, see Figure 2.3.

Having a matrix representation of the graph is fundamental to our project as ex-
plained next. The adjacency matrix A = [ai j] ∈ Rn×n provides a straightforward repre-
sentation of the graph structure. This matrix is such that a non-zero entry ai j indicates
the presence of an edge from vertex j to vertex i and a zero entry ai j implies there is no
edge connecting these two vertices [2]. To fix the ideas, consider the graph depicted in

6



Figure 2.3: A directed graph.

Figure 2.3, its adjacency matrix is:

A =


0 1 1 1
0 0 0 1
0 0 0 1
0 0 1 0

 ,
which contains the same information as that conveyed by Figure 2.3.

Another relevant matrix is the so-called graph Laplacian matrix L1. For a graph G ,
the entries of L are defined as [2]:

li j =

{
∑

n
k=1,k 6=i aik, j = i
−ai j, j 6= i

, (2.1)

where ai j is an entry of the adjacency matrix A . For the previous example, the Laplacian
matrix is:

L =


3 −1 −1 −1
0 1 0 −1
0 0 1 −1
0 0 −1 1

 .
Note that every row of L sums zero. Therefore, the Laplacian matrix always has a zero
eigenvalue corresponding to the right eigenvector [18]:

wr = (1,1, ...,1)T .

Because of this, the rank of L is always less or equal than n−1.

1The Laplacian matrix can also be defined as ∆(G)−A(G), where ∆(G) is the in-degree matrix, a diagonal
matrix that contains on the ∆ii entry the number of edges ending on the i vertex.
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A directed graph is called strongly connected if and only if any two nodes can be
connected by a path defined by the edges. It has been proven that the Laplacian of a
strongly connected digraph has an isolated eigenvalue at zero [18]. This will be partic-
ularly relevant when using graphs to represent MAS. A spanning tree is a subset of G ,
which contains all the vertices of G , each pair of them connected by exactly one path. It
is known that if a digraph G can generate a directed spanning tree, all but one Laplacian
eigenvalues have positive real parts. However, in directed graphs, the existence of a
directed spanning tree is a weaker condition than being strongly connected [26]. This
fact will prove useful in what follows.

2.1.2 Lambert W functions

In our research, we also use the Lambert W function [5] as means to provide ana-
lytical solutions to certain delay difference equations (DDEs). We say that a Lambert W
function is any function W : C→ C satisfying:

W (z)eW (z) = z, (2.2)

for all z ∈ C. The Lambert W function is complex valued and has an infinite number of
branches Wk, where k =−∞, ...,−1,0,1, ...,∞. The principal branch W0, see Figure 2.4, is
significant to the analysis of delayed equations since the system’s dominant root s0 can
be found with it [33] by using a series expansion or embedded functions in MATLAB®.

We illustrate the use of the Lambert W function with an example from [34] to solve
the following scalar system:

ẋ(t) = ax(t)+adx(t−h), t ≥ 0

x(t) = g(t), t ∈ [−h,0]
(2.3)

where a and ad are scalars, h is the time delay, x(t) represents the instantaneous state
of the system, g(t) is the “history” of the system, which may be defined in the space of
continuous functions C([−h,0],R). The solution is given by [1]:

x(t) =
∞

∑
k=−∞

eSktCI
k, where Sk =

1
h

Wk

(
adhe−ah

)
+a. (2.4)

Here, Wk is the k-th root of the Lambert W function and the CI
k coefficient is determined

numerically from the history function. In the next chapter, the principal branch W0 of the
Lambert W function becomes relevant to analyze the stability properties of the system.
In particular, we emphasize a characteristic of W0 stated in [12].

Remark 2.1.1. For any real number z ∈ [−1/e,∞), the principal branch is a real and increas-
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Figure 2.4: The real and imaginary parts of the principal branch W0(z) are depicted as
blue and red solid lines, respectively

ing function.

2.1.3 The spectral abscissa function

In general, DDEs are infinite dimensional [34]. This infinite dimensionality may lead
to an infinite number of characteristic roots. Since the stability of a delayed system may
be derived from the location, on the complex plane, of its rightmost characteristic roots,
a crucial task is then to determine where such roots are located. With this aim, we next
define the spectral abscissa α of a time delay system as in [25]:

α = max{Rs : s is a characteristic root of the delayed system, s 6= 0}, (2.5)

here, Rs is the real part of the characteristic root s.

2.2 Problem re-formulation

As mentioned in Chapter 1, we aim to analyze system (1.1) controlled by the PR
consensus protocol (1.2). Recalling that consensus means to reach an agreement re-
garding a certain quantity of interest, that may depend on the initial state of all agents.
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As in [25], we consider that the PR protocol solves the consensus problem if

lim
t→∞
‖xv(t)− xw(t)‖= 0,

for all v,w ∈ X . To begin with the re-formulation of the problem, we start by writing the
PR controlled MAS in matrix form as:

ẋ(t) = Ax(t)+Bx(t−h). (2.6)

Here, x is the column vector (x1 · · ·xn)
>. Additionally, the Laplacian matrix L defined as

in (2.1) allows the consensus protocol to be represented by matrices A and B when we
define them as A = −kpL and B = krL. As described in [15], a substitution of a sample
solution of the form x = est k (here, k ∈Cn×1) in the matrix representation (2.6) generates
the system’s characteristic function:

f (s) = det(sI−A− e−sh B). (2.7)

Then, the stability properties of (2.6) are given by the distribution of the roots of f (s) on
the complex plane C.

Since L has zero row sum, so does A+B [7]. Under the assumption that the graph
is strongly connected and that an agent can reach any other agent via a directed path,
we have that A+B has only one zero eigenvalue Therefore, the characteristic root at
s = 0 satisfies (2.7) for any delay h. This zero eigenvalue corresponds to the eigenvector
~1= (1, ...,1)T and an equilibrium of system (2.6) is a state in the form x= (x∗, ...,x∗) = x∗~1
where all nodes agree on a x∗ value, signifying the consensus nature of the PR-controlled
MAS [18]. For the remainder of this dissertation, the characteristic root at s = 0 will be
ignored and stability will be studied around its consensus state, independent of h.

Remark 2.2.1. The closed-loop dynamics (1.1)-(1.2), is stable around the consensus state if
its spectral abscissa α defined in (2.5) is strictly negative. Otherwise, the system is unstable
and consensus cannot be achieved.

It is worth mentioning that the stability conditions, as described in the above remark,
would not guarantee performance2 for the closed-loop dynamics. To investigate how fast
the agents reach consensus we employ the concept of γ-stability that will prove to be
directly associated with the time of consensus reaching. The dynamics is said to be
γ-stable when α =−γ , for a possitive real value of γ. In the literature, γ has been related
to the exponential decay rate of the agents’ states. This relation is given by the next
theorem, taken from [10]:

2Remark 2.4.1 is not specific regarding how long will the system take to settle in the consensus state. We
consider performance to be directly related with minimizing this settling time.
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Theorem 2.2.1. Consider the delayed scalar system:

ẋ(t) = ax(t)+ax(t−h),

suppose αo = max{Rs : s is a characteristic root} and x(φ, t) is the solution of the delayed
scalar system, which coincides with φ on [−h,0]. Then, for any α > αo , there is a constant
K = K(α)≥ 1 such that:

‖x(φ, t)‖ ≤ K eαt ‖φ‖h, t ≥ 0, where ‖φ‖h = sup
−r≤θ≤0

‖φ(θ)‖.

In particular, if αo < 0, then one can choose αo < α < 0 to obtain the fact that all solutions
approach zero exponentially as t→ ∞.

In what follows, we shall show how this result is pertinent to our case. For now, it
allows us to state the main objective of this thesis, namely, solve the consensus problem
as fast as possible, in a more formal way as the following problem:

Problem 2.2.1. Find analytical formulae to tune (h,kp,kr) that create the maximum exponen-
tial decay rate for γ based on the dominant roots of system (1.1) controlled by (1.2).

2.2.1 Factorization property

A change of variable facilitates γ-stability analysis. Introducing s→ (s− γ) on (2.7),
the real part of the characteristic roots is shifted by γ. The shifted characteristic function
reads:

f (γ,s) = det
(

sIn− γIn−A−Beγh e−sh
)
. (2.8)

In this sense, analyzing the stability transitions3 of (2.8) along the imaginary axis s = jω
is equivalent to analyzing γ-stability transitions of (2.7) along the shifted imaginary axis
s = jω− γ. In other words, stability of (2.8) implies the γ-stability of (2.7). The shifted
characteristic equation still poses challenges related to its infinite number of characteris-
tic roots and growing complexity, e.g. the number of agents is directly related to the size
of the matrices involved. Hence, a decomposition (2.8) is necessary to simplify the task.

Based on standard decomposition techniques [4], we next perform a factorization of
the shifted characteristic equation (2.8) where the resulting factors are associated with
a finite set of systems with reduced complexity. We shall show how these factors are
associated with a specific Laplacian eigenvalue. To this end, let us number and classify
the eigenvalues of the Laplacian matrix. Since we assumed a strongly connected digraph
and no looped edges that go back to the same vertex. This generates an associated

3Using a continuity argument, a characteristic root can migrate from left (right) to right (left) on the complex
plane only through the imaginary axis. In particular, a transition from stability to instability happens if the root
crossing from left to right of the imaginary axis corresponds to the rightmost root of the system at hand.
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Laplacian matrix L with zero row-sum. As discussed before, this results in a single zero
eigenvalue for L, which is associated with the consensus state. For connected edges
auw > 0 and u 6=w, the remaining Laplacian eigenvalues have positive real parts provided
that the digraph G has a directed spanning tree.

Given that the literature contemplates the case of only real or only complex eigen-
values, to our best knowledge, here we aim to account for the mixed case, and group
them into a set ρ = (ν,µ,λ) where:

ν = 0 µ = (µ1, . . . ,µn1) λ = (λ1, . . .λn2), . (2.9)

Here, the numbering of the eigenvalues is based on their real parts sorted increasingly.
Further, for a complex conjugate pair (λq,λq+1), we have Iλq > 0. In other words, within
a pair of complex conjugate eigenvalues, the element with positive imaginary part goes
first. In case Rλp = Rλq for two different pairs, then the numbering respects Iλp < Iλq .

Remark 2.2.2. Notice that the elements of a given tuple are not elements of the others and
therefore 1+n1 +n2 = n. In brief we can consider ρ = (ν,µ,λ) as an n-tuple composed of a
1-tuple, an n1-tuple and an n2-tuple.

Assuming that the shifted characteristic function f (γ,s) can indeed be factorized, let
us consider a general class of factors, namely:

fρ = ( fρ1, . . . , fρn), (2.10)

where each element is associated with one Laplacian eigenvalue. Then, the following
theorem holds.

Theorem 2.2.2. The shifted characteristic function f (γ,s) in (2.8) satisfies

f (γ,s) =
n

∏
m=1

fρm(γ,s), (2.11)

where the characteristic factor fρm(s,γ) is given by

fρm(γ,s) = s− γ+ρmkp−ρmkr eγh e−sh, (2.12)

and ρm ∈ C0∪C+ is an eigenvalue of the Laplacian matrix L.

Proof. Define the vectors with exponential elements y(γ, t) = eγt x(t) and y(γ, t − h) =
eγ(t−h) x(t− h). Then, differentiating y(γ, t) with respect to time and using these vectors
in the matrix representation (2.6) yields:

ẏ(γ, t) = (γIn +A)y(γ, t)+Beγhy(γ, t−h). (2.13)

12



Computing the characteristic function for this system we find it to match (2.8). Crucial
for this decomposition, the Schur’s theorem [11] guarantees the existence of a unitary
matrix U ∈ Rn×n, such that L = UTUH holds for the Laplacian matrix L, where T is an
upper triangular matrix whose diagonal entries are the eigenvalues of L and UH is the
conjugate transpose of U . Under this unitary transformation, and recalling that A =−kpL
and B = krL, we introduce the change of coordinates y(γ, t) =Uξ(γ, t), which transforms
system (2.13) into:

ξ̇(γ, t) =(γIn− kpT )ξ(γ, t)+ krT eγh
ξ(γ, t−h). (2.14)

The fact that the coefficient matrices in (2.14) are upper triangular implies that the stabil-
ity of system (2.13) can be studied through n equations with dynamics:

ξ̇ρm(γ, t) = (γ−ρmkp)ξm(γ, t)+ρmkr eγh
ξm(γ, t−h), m = 1,n. (2.15)

The characteristic equation of (2.15) is (2.12), which is a factor of f (γ,s) in (2.11). This
fully justifies our assumption about a general class of factors indicated in (2.10).

Since we already defined the tuple ρ = (ν,µ,λ), the characteristic factors can be
placed into one of three different classes given by the tuples fρ = ( fν, fµ, fλ), where

fν = fν1 fµ = ( fµ1, . . . , fµn1
) fλ = ( fλ1, . . . fλn2

), (2.16)

whose elements are defined as in (2.12) with ρm ∈ (ν,µ,λ). From Theorem 2.2.2, it is
clear that the elements of the above defined tuples are the characteristic factors of the
decoupled subsystems in (2.15). It is worthy of mention that using the tuples description
on (2.16), we have that (2.11) can be written in a more concise way as

f (s,γ) = fν1× fR× fC, (2.17)

where fν1 = s is associated with the zero eigenvalue and corresponds to the consensus
state of the network. On the other hand, the factors of the products fR = fµ1×·· ·× fµn1

and fC = fλ1 ×·· ·× fλn2
are quasipolynomials with respectively pure real and complex

coefficients.

2.2.2 Spectral abscissas of the characteristic factors

The shifted characteristic function f (s,γ) we are concerned with is now decomposed
into three main factors fν1 , fR and fC. At the same time, these three factors are prod-
ucts of characteristic functions related to individual eigenvalues. Our next result asso-
ciates the stability of the entire system with the individual spectral abscissas of the tuples
( fν, fµ, fλ)
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Corollary 2.2.1. Let αρm be the spectral abscissa of the mth system

ζ̇ρm(t) =−ρmkpζm(t)+ρmkrζm(t−h), m = 2,n. (2.18)

Then, if αρm < 0, system (2.6) is exponentially stable around the consensus state of the
network.

Proof. Note that (2.6) and (2.13) are equivalent with γ = 0. Since ζ̇ρm(t) ≡ ξ̇ρm(0, t), it
follows that (2.6) is exponentially stable if the spectral abscissas αρm associated with
ζ̇ρm(t), m = 1,n, are strictly negative. Equivalently,

α = max1≤m≤n{αρm}< 0.

On account of ρ1 = ν = 0, the case m = 1 can be ignored in the stability analysis. The
proof is completed by noticing that αρm < 0,m = 2,n ensures α < 0.

We must stress the importance of Corollary 2.2.1 since it guarantees that separately
analyzing the γ-stability of the individual subsystems in (2.18) is equivalent to analyzing
the γ-stability of the complete system (2.6). Keeping the symmetry of the presentation,
we let these subsystems form the n-tuple ζ̇ρ =

(
ζ̇ν, ζ̇µ, ζ̇λ

)
, where

ζ̇ν = ζ̇ν1 ζ̇µ =
(
ζ̇µ1, . . . , ζ̇µn1

)
ζ̇λ =

(
ζ̇λ1, . . . , ζ̇λn2

)
, (2.19)

whose elements come from (2.18) with ρm ∈ (ν,µ,λ). Since each system depends
on a unique Laplacian eigenvalue, we may now define the spectral abscissas αρ =

(αν,αµ,αλ), each one associated with a particular member of ζ̇ρ, where

αν = 0 αµ = (αµ1 , . . . ,αµn1
) αλ = (αλ1, . . . ,αλn2

). (2.20)

As we have established before, αν = 0 can be ignored in the stability analysis. Thus, for
γ > 0, if:

α = max(αµ,αλ)<−γ, (2.21)

then, the whole MAS (2.6) is γ-stable. Central to our project is to ensure the inequality
stated in (2.21) holds. Let us now define the sets:

Gµ =
{

gµ1 , . . . ,gµn1

}
, and Gλ =

{
gλ1, . . . ,gλn2

}
, (2.22)

where gµm1
=
(
ζ̇µm1

,αµm1
, fµm1

)
and gλm2

=
(
ζ̇λm2

,αλm2
, fλm2

)
. Then, every single element

of the G sets consist of a ζ̇�(t) system, its corresponding spectral abscissa α� and char-
acteristic factor f�.
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Definition 2.2.1. The set G� is said to be γ-stable if one of the following assertions hold:

a) The systems in ζ̇� are γ-stable.

b) The spectral abscissas in α� are smaller or equal to −γ.

c) The real part of the rightmost-root of the factors in f� are smaller or equal to −γ,

where � stands for either a µ or a λ eigenvalue.

It is worthy of mention that Definition 2.2.1 above states that the stability of G� im-
plies the stability of the subsystems within the set. Conversely, the stability of the sub-
systems constituting G� implies the stability of the set. The reader is referred to [27, p.
315], and the references therein, for a different definition of stability of a set. In what
follows, based on the above stated stability notion, we focus on finding conditions for the
G� sets to be stable in the sense of Definition 2.2.1 and based on the location of the
rightmost roots of the subsystems.
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Chapter 3

Fast consensus in MAS

In this chapter, the factorization proposed in Chapter 2 is used to investigate the
stability properties of Gλ, the set associated with complex Laplacian eigenvalues, in the
sense of Definition 2.2.1. In particular, we obtain a tuning technique based on the work
presented at [23, 25] that guarantees a stable placement of the system’s rightmost roots.
It is worthy of mention that the approach initially guarantees the γ-stability of the Gλ

set. The formulas, however, are also used in Gµ, the set associated with real Laplacian
eigenvalues, likewise, γ-stability in Gµ is guaranteed as further clarified below. With
this aim, both sets are contrasted against each other to determine which sub-system
dominates the overall MAS, ultimately resulting in a “re-design” of the parameters of the
consensus protocol, required in some particular cases.

3.1 Stability of the Gλ set

In this chapter we obtain tuning formulas for the parameters of the PR controller with
which γ-stability of the Gλ set is guaranteed. First, we present a methodology to place
the largest spectral abscissa within Gλ at any arbitrary position γd on the complex plane.
Then, we investigate how the Gµ set behaves under the aforementioned tuning rule. In
particular, we study how the stability of the set is affected.

Recall that the subsystems in Gλ depend only on complex conjugate Laplacian
eigenvalues. Such case is already reported in the literature. Here, we shall use the
analysis developed in Ramirez [25], adapted to the problem at hand. Our first objective
is to move the characteristic roots of a generic factor fλq as deep as possible into the
left-half complex plane using the shift γ. To do so, a maximum value for γ associated with
the q-th factor fλq , namely γ̄q, is to be found in terms of the proportional constant kp > 0
and further associated with the design parameters in the (h,kr) domain. We consider
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that fλq implicitly depends on four variables and we search for the maximum value of γ

such that the q-th factor satisfies

fλq(γ, jω) = 0, (3.1)

where fλq is taken from (2.12) with ρm = λq and s = jω. Using a continuity argument1,
we have that any pair (h,kr) satisfying (3.1) generates a characteristic root s = jω− γ for
the non-shifted characteristic equation. Our objectives here are threefold:

i) To find an analytical expression for the maximum γ̄q associated with (3.1).

ii) To determine whether the characteristic root s =−γ̄q + jω indeed corresponds to
the spectral abscissa of the system (2.18).

iii) To verify that the PR controller design based on the parameters of one factor do
not undesirably affect any other factor.

3.1.1 Local maxima of exponential decay rates

Let kp > 0, it is clear that the q-th factor in (3.1) cannot be solved for γ as a function
of the known parameters since it implicitly depends on ω, h, and kr. Consequently, a
maximum for γ cannot be explicitly expressed in terms of our design parameters (h,kr) for
a given frequency ω. However, following [24], we have the next theorem characterizing
the extrema points of γ in (h,kr) domain:

Theorem 3.1.1. Let kp ∈R+ and λq = |λq|e j∠λq ∈C+ with |λq|> 0 and ∠λq ∈ (−π/2,π/2)
be given 2. Then, the spectral abscissa function γ exhibits a local maximum in the (h,kr)

domain at:
γ

i
q = kp(Rλq− Iλq/χ

i
q). i = 1,2, . . . , (3.2)

where χi
q = sign(Iλq)(|∠λq|− iπ), subject to:

(h,kr) =

(
1

γi
q− kpRλq

,
−e−γi

qh∣∣λq
∣∣hcos(−iπ)

)
. (3.3)

Proof. Assume that γ exhibits a maximum, then ( fq,∂ fq/∂ω) = (0,0) must be satisfied.

1The continuity properties of the eigenvalues of a system with respect to its parameters indicate that a
transition from γ-stability to γ-instability can only occur if the spectral abscissa crosses the shifted imaginary axis
jω− γ, see [15].

2Since we are assuming G has a directed spanning tree, we restrict λ to the right-half complex plane.
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Collecting the real and the imaginary parts of the above condition yields:

kr eγh |λq|
(

cos(hω−∠λq)

sin(hω−∠λq)

)
=

(
kpRλq− γ

−kpIλq−ω

)
, (3.4)

hkr eγh |λq|
(

sin(hω−∠λq)

cos(hω−∠λq)

)
=

(
0
−1

)
. (3.5)

Eliminating h and kr from (3.4) and (3.5) leads to |λq|2(ω+ kpIλq) = 0, which holds if:

ω =−kpIλq, (3.6)

with |λq| 6= 0. Notice that (3.4) and (3.5) also imply that:

h = 1/(γ− kpRλq). (3.7)

Multiplying (3.7) by (3.6), defining χ = hω, and solving for γ yield:

γ = kp(Rλq− Iλq/χ). (3.8)

Moreover, from (3.5) we have that tan
(
hω−∠λq

)
= 0. Since χ = hω, (3.8) is true if:

χ = ∠λq± iπ, i = 1,2, . . . . (3.9)

Recall that kp > 0 and h > 0, then (3.2) follows from (3.8), denoting γ = γi
q and χ = χi

q
and noticing that the polarity of i in (3.9) must be the opposite of that of Iλq in order to
guarantee γi

q > 0. Finally, h in (3.3) is equivalent to (3.7), and kr in (3.3) is obtained from
(3.5).

From this theorem, we remark that a maximum decay rate γ̄q in the q-th factor is
achieved when γi

q is maximized. Clearly, γ̄q = γ1
q can be trivially proved from (3.2) by an-

alyzing the variation of γi
q with respect to χi

q. That is, dγi
q/dχi

q = kpIλqsign(Iλq)/(χ
i
q)

2 > 0.
Furthermore, the tuning for the h and kr parameters obtained in Theorem 3.1.1 is iden-
tical for a pair of complex conjugate Laplacian eigenvalues. This allow us to study only
the elements of Gλ that correspond to the odd eigenvalues, namely λq, q = 1,3, . . . ,n2,
on the first quadrant of C.

3.1.2 Tuning of the PR protocol for right-most pole placement

We next prove that γi
q in (3.2) is indeed associated with the real part of the rightmost

root of q-th factor fλq .

Theorem 3.1.2. Let λq = |λq|e j∠λq ∈C+ with |λq|> 0 and ∠λq ∈ (0,π/2) for q= 1,3, . . . ,n2
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and let γd > 0 be a desired exponential decay rate. Then, the spectral abscissa of the q-th
system ζ̇λq in (2.19) is placed at −γd by tuning the gains of the PR protocol as

(kp,h,kr) =

(
γdχi

q

Rλqχi
q− Iλq

,
1

γd− kpRλq

,
−e−γdh∣∣λq
∣∣hcos(−iπ)

)
, (3.10)

where χi
q = ∠λq− iπ and i = 1,2, . . . .

Proof. First we show that Theorem 3.1.1 can be used to prescribe a desired maximum γd .
To this end, solve kp from (3.2) and use γi

q = γd into the result and into (3.3). Therefore,
tuning formulas (3.10) allow us to attain a user-defined maximum γd . Next, we investigate
whether the real part of the rightmost root of the q-th factor is placed at the desired
position under (3.10). From Corollary 2.2.1, it is not difficult to see that the characteristic
equation of the q-th system is s+λqkp−λqkr e−sh = 0, equivalently,

h(s+λqkp)eh(s+λqkp) = λqhkr eλqhkp . (3.11)

Observe that h
(
s+λqkp

)
=W (λqhkr eλqhkp) when (2.2) and (3.11) are compared. Here,

W (�) denotes the Lambert W function we introduced in the preliminaries. Solving the
above equation for s yields:

s = h−1W
(
λqhkr eλqhkp

)
−λqkp. (3.12)

With (kp,h,kr) in (3.10) and λq = Rλq + jIλq , the system’s dominant root follows from
(3.12) using the principal branch of the Lambert W function as:

s0,q = h−1W0
(
−1e−1 )+h−1− γd + jω. (3.13)

The proof is completed by noticing that W0
(
−1e−1 )=−1, hence, αλq =−γd .

Notice that in the above proof, the designed characteristic root indeed adopts the
dominant position on the complex plane within the infinite spectrum of fλq . This means
that Theorem 3.1.2 guarantees the γd-stability of the q-th factor. We next study how
tuning (3.10) affects the stability of the remaining factors in Gλ.

3.1.3 Competing factors and stability interests in Gλ

Considering that the tuning (3.10) is implemented across every element fλ ∈Gλ, it is
possible that the spectral abscissa αλm2

arising from a factor fλm2
, m2 6= q may be larger.

That is, the design based on system q may give only sub-optimal results in another
system m2. In such cases, the spectral abscissa of the overall system will be governed
by αλm2

, not by αλq . Our next result is concerned with this issue:
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Theorem 3.1.3. Let γd > 0 be given. Then, the set Gλ is γd-stable by tuning the gains of the
PR protocol as:

(kp,h,kr) =

(
γdχi

1
χi

1Rλ1− Iλ1

,
Iλ1−χi

1Rλ1

γdIλ1

,
−e−γdh

|λ1|h(−1)i

)
, (3.14)

provided that the inequality

F i
1,m2

(G) = χ
i
1(Rλm2

−Rλ1)+ Iλ1(RW i
1,m2

+1)< 0, (3.15)

holds for m2 = 3,5, . . . ,n2− 1 and some fixed i ∈ Z+, where χi
1 = ∠λ1− iπ and RW i

1,m2
is

obtained from

W i
q,m2

= RW i
q,m2

+ jIW i
q,m2

=W0

(
−1e−1 λm2 e−χi

q(λm2−Rλq)/Iλq

|λq|cos(−iπ)

)
, (3.16)

with q = 1.

Proof. Consider two arbitrary rightmost roots s0,q and s0,m2 , where q 6= m2, associated
respectively with the q-th and m2-th subsystems of ζ̇λ ∈ Gλ with λq and λm2 on the first-
quadrant of C without loss of generality. Here, we have a total of (n2−1)/2 such eigen-
values, and q,m2 = 1,3, . . . ,n2. We introduce the identity

Sq,m2 = RSq,m2
+ jISq,m2

= s0,m2− s0,q, (3.17)

relating the rightmost roots. Then, if sign(RSq,m2
) = −1, we obtain that αλm2

≤ αλq. Ap-
plying Theorem 3.1.2 yields αλq =−γd . Further, the m2-th and q-th subsystems are both
γd-stable if and only if αλm2

≤ αλq = −γd holds provided that γd > 0. Using the principal
branch of the Lambert W function we have that (3.17) is given by

Sq,m2 = h−1W0
(
λm2hkr eλm2hkp

)
−λm2kp−h−1W0

(
λqhkr eλqhkp

)
+λqkp. (3.18)

With (h,kp,kr) in (3.10), the above can be rewritten as

Sq,m2 =
−γdq

χi
qRλq− Iλq

(
χ

i
q(Rλm2

−Rλq)+ jχi
q(Iλm2

− Iλq)+ Iλq(RW i
q,m2

+ jIW i
q,m2

+1)
)
,

(3.19)

where RW i
q,m2

and IW i
q,m2

are given by (3.16). Since χi
q < 0 and γdq,Rλq, Iλq > 0, then we

have that −γdq/(χ
i
qRλq− Iλq)> 0 holds. It follows from (3.19) that

sign(RSq,m2
) = sign

(
χ

i
q(Rλm2

−Rλq)+ Iλq(RW i
q,m2

+1)
)
= sign

(
F i

q,m2
(G)
)
. (3.20)
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Recognizing that sign
(
F i

q,m2
(G)
)

is influenced only by the topology of the graph-Laplacian
G we can conclude that the very structure of the network determines whether or not γd-
stability can be achieved by the proposed PR protocol within the Gλ set. Furthermore,
considering the numbering of the λ eigenvalues represented by (2.9), one can make
comparisons with respect to the first complex eigenvalue by setting q = 1 in F i

q,m2
(G) in

(3.20), which is (3.15). Thus, guaranteeing that χi
1(Rλm2

−Rλ1) < 0 for all m2 ∈ 1,n2.
Moreover, (3.14) follows from (3.10) with q = 1 and after some algebraic manipula-
tions. Finally, if (3.15) holds for some i ∈ Z+ fixed, and an odd m2 with m2 6= q, then
sign(RSq,m2

) =−1, ultimately guaranteeing the γd-stability of the Gλ set.

It is worthy of mention that the above theorem guarantees that max(αλ) = −γd .
The problem now is to determine how (h,kp,kr) in (3.14) organizes the set of spectral
abscissas αµ. More precisely, we are interested in finding whether the Gµ set is γd-stable
under this particular tuning. We also state the following remark.

Remark 3.1.1. Notice that if (3.15) is true for a given positive i, it would also be true for larger
i values. In the rest of this manuscript, we shall restrict ourselves to the case where i in (3.14)
is an odd number, which in turn imply that the ratio kr/kp is positive.

3.2 Stability of the Gµ set

In general, the Laplacian matrix L is allowed to have real and complex eigenvalues.
As stated above, the question we wish to address here is: Could Theorem 3.1.3 be
used to achieve γ-stability for Gλ and Gµ concurrently? To answer this question, in this
section we investigate how the tuning of the PR controller based on complex eigenvalues
influences the spectral abscissas associated with the factors within Gµ.

3.2.1 Contrasting the sets

We first show that the dominant spectral abscissa within the Gµ set is stable. We
then use this information to propose a re-design of the PR consensus protocol.

Theorem 3.2.1. Let (h,kp,kr) be given as in (3.14), then max(αµ) = αµ1 .

Proof. Consider an arbitrary factor fµq ∈Gµ associated with the real Laplacian eigenvalue
µq > 0. From Corollary 2.2.1, it is not difficult to see that fµq = s+ µqkp− µqkr e−sh. Let
the Laplace operator s and the quasipolynomial fµq be scaled by µqkp and 1/(µqkp),
respectively. We have that

fµq/(µqkp) = s+1− (kr/kp)e−sµqhkp . (3.21)
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Notice that the above transformation does not alter stability properties of the quasipoly-
nomial. Since the triplet (h,kp,kr) is fixed as per (3.14), it follows that the ratio kr/kp and
the product hkp are both constant. With this in mind, let us define a = kr/kp, b = µqhkp

and fb = fµq/(µqkp). Notice that b > 0 for every eigenvalue µq and as per Remark 3.1.1
a > 0. With these definitions, we obtain the non-dimensional representation of (3.21) as

fb = s+1−ae−sb . (3.22)

Using the principal branch of the Lambert W function, the rightmost root s0 of fb is readily
computed as

s0 = b−1W0
(
abeb )−1. (3.23)

We are interested on how the real part of s0 behaves with respect to b. We further scale
s0 by b and extract the real part of the result as

α(b) = Re
(
W0(c)

)
−b. (3.24)

where c = abeb. Since a > 0 and b > 0, we have that c > 0. Differentiating the above
with respect to b, we obtain

dα(b)
db

= Re
(

dW0(c)
dc

dc
db

)
−1 =

1+b
b

Re
(

W0(c)
1+W0(c)

)
−1. (3.25)

Let W0(c) = Rw + jIw, with which the above can be rewritten as

dα(b)
db

=
1+b

b
(1+Rw)Rw + I2

w
(1+Rw)2 + I2

w
−1. (3.26)

We are interested in the sign of the above equality; i.e.,

G(b) = sign
(
dα(b)/db

)
. (3.27)

Since W0(z) is real for any z >−1/e and c > 0, it follows that Iw = 0:

dα(b)
db

=
1+b

b
Rw

(1+Rw)
−1 (3.28)

Similarly, W0(z) > 0 for any z > 1, hence b(1+Rw) > 0. Moreover Rw = W0(c), then we
have that G(b) is determined by:

G(b) = sign
(
(1+b)Rw−b(1+Rw)

)
= sign

(
Rw−b

)
= sign

(
W0(c)−b

)
. (3.29)

Using the identity z =W0(zez), we have that:

G(b) = sign
(
W0(abeb)−W0(beb)

)
= sign(abeb−beb) = sign(a−1)< 0, (3.30)
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follows from the definition of kp and kr in (3.14). That is, the spectral abscissa monotoni-
cally decreases with b. The proof is completed by noticing that limb→0 α(b) = 0.

From Theorem 3.4, we know that αµ1 is the largest spectral abscissa in Gµ. There-
fore, it suffices to prove the γd-stability of αµ1 to guarantee the γd-stability of the whole
set Gµ. To begin with, observe from (3.30) that a−1 < 0, hence:

0 < a < 1,

or equivalently, kr < kp. Multiplying both sides of this inequality by a positive term
hµ1 e(hµ1kp) we have that hµ1kr e(hµ1kp) < hµ1kp e(hµ1kp) . Notice also from the above that
the following holds:

W0

(
hµ1kr e(hµ1kp)

)
<W0

(
hµ1kp e(hµ1kp)

)
,

where W0 is the principal branch of the Lambert W function. Using once more the identity
z =W0(zez) and rearranging the terms we obtain:

1
h

W0

(
hµ1kr e(hµ1kp)

)
−µ1kp < 0. (3.31)

This inequality will be useful to prove the next result:

Corollary 3.2.1. Let (h,kp,kr) be given as in (3.14), then the set Gµ is stable.

Proof. The factor fµ1 associated with the first eigenvalue of the Gµ group is readily ob-
tained as s+ µ1kp− µ1kr eγdh−sh = 0. Multiplying both sides of the above equation by
hehµ1kp , we have that:

(sh+hµ1kp)e(sh+hµ1kp) = hµ1kr ehµ1kp . (3.32)

It follows from the Lambert W function that

W (hµ1kr ehµ1kp) = sh+hµ1kp.

Solving the above equation for s and using the principal branch of the Lambert W func-
tion, we find that the spectral abscissa is given by

αµ1 = Re
{

1
h

W0

(
hµ1kr ehµ1kp

)
−µ1kp

}
. (3.33)

Since hµ1kr ehµ1kp > 0, we have that W0
(
hµ1kr ehµ1kp

)
is pure real, see Figure 2.4. The

proof is concluded by noticing from (3.31) that αµ1 < 0.
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3.2.2 Tuning of the PR protocol for γd-stability

At this point, the design of the PR controller is able to provide stability. Recall how-
ever that the main objective here is to achieve fast consensus, which is related with the
placement of the spectral abscissa of the overall system. On the one hand, as con-
cluded in the previous section, the position of αµ1 on the complex plane ensures the
stability of the Gµ set. On the other hand, to establish γd-stability of Gµ it is necessary
that αµ1 ≤ −γd . In other words, if γd +αµ1 ≤ 0 we have that Gλ and Gµ are both γd-
stable. Whenever the above condition does not hold, a re-design of the PR protocol
would guarantee γd-stability [13].

Corollary 3.2.2. Let γd > 0 be a desired exponential decay and let (kp,h,kr) be given as in
(3.14). If γd +αµ1 ≤ 0, then the MAS defined by (1.1) in closed-loop with (1.2) is γd-stable. If
γd +αµ1 > 0 then, tuning the gains of the PR protocol as

(k′p,h
′,k′r) =

(
− γd

αµ1

γdχi
1

χi
1Rλ1− Iλ1

, −
αµ1

γd

Iλ1−χi
1Rλ1

γdIλ1

,
−eγ2

d/αµ1h′

|λ1|h′(−1)i

)
, (3.34)

guarantees that (1.1)-(1.2) is γd-stable.

Proof. The first part of the proof, where γd +αµ1 ≤ 0, is trivial by noting that (kp,h,kr) are
tuned as per Theorem 3.1.3. For the second part of the proof, where γd +αµ1 > 0, we
first introduce the following change of variable:

γd −→−
(

γd

αµ1

)
γd.

Then, under the above shift, the set of parameters in (3.14) is mapped into (3.34). Notice
that this transformed parameters can be written in terms of (kp,h,kr) as follows:

(k′p,h
′,k′r) = (kp,h,kr)

∣∣∣∣γd −→ −
(

γd
αµ1

)
γd
. (3.35)

According to Corollary 3.2.1, this new set of parameters (k′p,h
′,k′r) will place the spectral

abscissa of (1.1)-(1.2) at a new position α′µ1
, namely:

α
′
µ1
=

1
h
−γd

αµ1
W0

(
αµ1

−γd
hµ1
−γd

αµ1
kr ehµ1kp

)
− −γd

αµ1
µ1kp.

Notice that this new placement for the spectral abscissa is also given in terms of the
former αµ1 in (3.33). Then, after some algebraic manipulations, the above reduces to

α
′
µ1
=− γd

αµ1

[
1
h

W0

(
hµ1kr ehµ1kp

)
−µ1kp

]
=− γd

αµ1

αµ1 =−γd.
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We conclude that the re-design process places the dominant spectral abscissa α′µ1
at

−γd , guaranteeing the γd-stability of the overall network.

Since we are substituting γd for an even larger value, the roots of the Gλ set will be
pushed further to the left on the complex plane and the spectral abscissa of Gλ is now
placed at −(γd/αµ1)γd , we obviate further analysis on it.
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Chapter 4

Simulation and experimental results

In this chapter, we test the tuning approach developed in Chapter 3 via simulations
and experiments. First, considering a network with six agents, a numerical simulation
is performed in MATLAB® using dde23 function. The goal here is to show how consen-
sus reaching can be accelerated by an appropriate tuning of the proposed distributed
PR protocol. Next, as a preliminary step to the experimental validation of our tuning ap-
proach, we make sure that the control algorithm studied here performs reasonably well
on Georgia Tech Robotarium simulator —a MAS simulator coded in MATLAB®—. Finally,
with the above simulation results, we implement the PR protocol (1.2) in the Robotarium
experimental platform demonstrating its validity in a real-world application.

4.1 Numerical results

The proposed methodology is tested first via a numerical example. Since the de-
velopments are analytic, the design technique must guarantee the exact placement of
the spectral abscissa. We study fast consensus in a network with six agents; here, the
communication infrastructure is described by the direct graph G depicted in Figure 4.1.
For simplicity, agents’ coupling strengths are taken to be homogeneous and binary; i.e,
the entries of the adjacency matrix are either 1 or 0. With G being connected, the graph
Laplacian matrix is defined as

L =



3 −1 0 −1 −1 0
0 3 −1 −1 0 −1
−1 0 2 0 0 −1
−1 −1 −1 5 −1 −1
−1 −1 −1 0 3 0
−1 0 0 0 0 1


, (4.1)
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Figure 4.1: Topology of the six-agent network (n = 6) described by a directed graph G .

which has a ν = 0 eigenvalue, and the rest of its eigenvalues are either complex or real,
namely,

λ = {2.8203− j0.9030,2.8203+ j0.9030} and µ = {2,4,5.3593}.

Having computed the Laplacian eigenvalues, with γd = 1.9251 , we find from Theo-
rem 3.1.3 the initial tuning

(kp,h,kr) =
(

0.6132, 5.113, 3.5033×10−6
)

for the parameters of the PR protocol (1.2). With these numerical values, the distribution
of the rightmost roots of the MAS are next computed using QPmR [30] as depicted
in Figure 4.2 (left panel). The characteristic roots associated with real and complex
eigenvalues are shown with dots and asterisks, respectively, whereas the root associated
with the zero eigenvalue is drawn with an ×marker. The dashed vertical line is placed at
−γd . From the figure, it is clear that the rightmost root associated with the real Laplacian
eigenvalues is dominant. In other words,

γd +αµ1 > 0,

and hence a re-design of the controller parameters is in order. Following Corollary 3.2.2
we obtain

(k′p,h
′,k′r) =

(
0.9654, 3.2484, 5.5152×10−6

)
,

with which the distribution of the rightmost roots of the MAS is re-computed as in Fig-

1It is worth mentioning that γd is chosen here to generate a realizable delay h in Robotarium, namely, a
multiple of the inherent delay fixed at a value of 0.033s.
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Figure 4.2: Six-agent network subject to the PR protocol (1.2). The characteristic roots
associated with real and complex eigenvalues are depicted with dots and asterisks, re-
spectively. Desired decay rate γd = 1.925. (Left panel) Spectrum distribution using The-
orem 3.1.3. (Right panel) Spectrum distribution using Corollary 3.2.2.

ure 4.2 (right panel). Notice that the dominant spectral abscissa αµ1 is placed at the
desired locus αµ1 = −γd as guaranteed by Corollary 3.2.2, ultimately establishing the
γd-stability of the overall MAS.

Figure 4.3 shows the time simulations in MATLAB® using the embedded function
dde23 for several desired decay rates; i.e.,

γd ∈ {1.925,10.415,35.03,48.17},

and considering the continuous initial function x(θ) = σ with θ∈ [−h,0] and σ∈Rn. From
the figure, one can conclude that increasing γd can be understood as a spectral shifting
that reduces the time needed for the agents to reach an agreement. To estimate the
converge rate we measure the settling time tset , defined by a 0.5% settling rule on the
total displacement

‖x‖=

[
n

∑
i=1

x2
i (t)

]1/2

, (4.2)

of all the agents. Table 4.1 summarizes the result. Clearly, as γd increases, tset de-
creases.

Table 4.1: Settling time based on a 0.5% rule
γd h kp kr tset

1.925 3.24 0.9654 5.5152×10−6 1.005
10.415 0.6004 5.2230 2.983×10−5 0.185
35.03 0.1785 17.5672 1.0036×10−4 0.0553
48.17 0.1298 24.1567 1.38×10−4 0.0402
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Figure 4.3: Trajectories of the agents based on time simulations for different desired
decay rates γd ∈ {1.925,10.415,35.03,48.17}.

4.2 Robotarium

Georgia Tech’s Robotarium [31] is a research project that provides remote access
to a swarm robotics research platform. Robotarium is focused on providing the means
to test algorithms on real hardware. Since the main focus of this thesis is to develop the
theory associated with fast consensus reaching, Robotarium provides a valuable tool to
demonstrate and test our findings. In addition, a virtual environment coded in MATLAB®

is also available with which preliminary testing of algorithms may be performed.

Robotarium agents are nonholonomic differential-drive robots and their dynamics
are modelled with an unicycle model:

~̇x =

 cos(θ) 0
sin(θ) 0

0 1

[ v
ω

]
,

where ~x = [x,y,θ]T represent the position and orientation of the robot, and v and ω are
the linear and angular velocities, respectively. In many applications is convenient to map
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Figure 4.4: Representation of a differential-drive robot.

the unicycle model to a single-integrator representation, as is the case of this research
project. For completeness, here we summarize the single-integrator mapping given in
[31]. Figure 4.4 represents a differential-drive robot and the parameters used to describe
its motion. Consider a full-state vector ~x = [x,y,θ]T and a global position vector ~xp =

[x,y]T . Next, a point perpendicular to the wheel axis at a distance l is defined as:

s(~x) =~xp + l
(

cos(θ)
sin(θ)

)
, l > 0.

Notice that [v,ω]T represents the unicycle control inputs of linear and angular veloci-
ties. Although the global position vector ~xp = [x,y]T is constrained by the nonholonomic
construction of the vehicle2, the velocity of the s(~x) point is not. Using a near-identity
diffeomorphism, the single-integrator dynamics of s(~x) are found, given unicycle velocity
control inputs. Thus, taking the time derivative of s(~x) yields:

ṡ(~x) = ~̇xp + lθ̇
[
−sin(θ)
cos(θ)

]
.

Substituting the unicycle dynamic model for~xp and θ gives:

ṡ(~x) = Rl(θ)

[
v
ω

]
where Rl(θ) =

[
cos(θ) −l sin(θ)
sin(θ) l cos(θ)

]
.

For l 6= 0, the input generated by our single-integrator-based algorithm can be approx-
imated as ṡ(~x) and mapped to an input for the differential-drive robot as:[

v
ω

]
= R−1

l (θ)ṡ(~x).

2In the case of unicycle differential-drive robots, this constrain means that the vehicle cannot move sideways.
This characteristic is not compatible with the single integrator dynamics so the mapping is positioned slightly
off-center to allow holonomic movement.
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4.2.1 Simulations

In what follows, we use the Robotarium simulator to test the PR consensus proto-
col (1.2). It is worth mentioning that consensus was successfully reached considering
the tuning formulas obtained in Corollary 3.2.2, however, a clear relation between larger
values of γd and shorter settling times was not found at first. Further inspection of the
results demonstrated that the physical constrains —given by the real capabilities of the
robots, coded within the simulator— did not allow for this relation to be measured. With
this in mind, a modification of the simulator was performed with which faster velocities on
the agent’s wheels were enabled3. This modification resulted in a correlation between
shorter settling times and larger values of γd , thus validating the proposed approach.
Additional clarity in the simulation results can be obtained by omitting the collision avoid-
ance barrier implemented in the original code. This allows agents to occupy the same
physical space, giving a clear picture of consensus reaching. Yet, the construction of the
agents4 force them to rotate around the consensus state indefinitely, as shown here or in
the url: https://www.youtube.com/watch?v=tahqQTlnfXE. This circular motion trans-
lates into oscillations in the total displacement of the agents as measured by (4.2). Nev-
ertheless, as this phenomena is unrelated to the protocol performance, is disregarded
when estimating settling times.

Small-scale network

Considering a PR network with six agents with an underlying graph as the one
shown in Figure 4.1, for several values of γd , Table 4.2 summarizes the delay values
h obtained with (3.14), the corresponding consensus settling times and the associated
total control efforts (TCE) defined as

TCE =
∫ tset

0
‖u‖dt, (4.3)

where ‖u‖=
[
∑

n
i=1 u2

i (t)
]1/2.

An increase in control effort is naturally associated with larger values of γd , as ex-
pected. An example of this simulation tests is presented in Figure 4.7. In the figure,
agents start in a predetermined rectangular formation and deploy the PR protocol to
eventually reach consensus autonomously as time increases.

3The maximum linear velocity of the simulated agents was increased from 0.2 m/s to 0.5 m/s. We consider
this modification to be reasonable since a nominal speed of 0.5 m/s could be feasibly implemented in this type
of systems without compromising the safety of the robots.

4Agents are built as two wheeled differential drive robots so their movement is not omnidirectional. If they get
close enough to the consensus point, their construction induces them to rotate around it
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Figure 4.5: Screenshots of the simulation for a six-agent PR network. Time elapses from
top to bottom and left to right: agents start in a rectangular formation to next deploy the
PR protocol reaching consensus in position about the center of the test bed.

Table 4.2: TCE and tset based on a 0.5% rule.
γd h(s) tset(s) TCE

0.9474 6.60 9.2070 22.4771
1.1843 5.28 5.4780 29.2651
1.8949 3.30 3.993 50.2183
3.7899 1.65 3.86 110.79
5.121 1.221 3.729 147.51

Scalability

Next, to investigate the effect of driving a larger number of agents, we simulate a
twenty-agent MAS subject to the PR protocol (1.2) and the tuning formulas in (3.14).
The MAS communication infrastructure is abstracted in the directed graph depicted in
Figure 4.6. Since the graph is connected, the Laplacian matrix has a ν = 0 eigenvalue
and the rest of eigenvalues are obtained as

λ ={1.426± j0.7751,1.7643± j1.3288,1.8084± j0.9039,

2.2036± j0.8919,2.50± j0.866,2.7363± j0.3214,3.1889± j0.1429},
µ ={0.7695,1,1.1881,2,3.7873},
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Figure 4.6: A representation of the directed graph that governs the MAS communication.

Choosing a desired value for γd = 1.5797, we first compute the initial parameters

(h,kp,kr) = (3.7120, 0.9189, 0.0005),

following Theorem 3.1.3. With the above, we find that

γd +αµ1 > 0

for this particular system, hence a re-design of the PR protocol is in order. After adjusting
the parameters (h,kp,kr) as per Corollary 3.2.2 we obtain that

(h′,k′p,k
′
r) = (1.65, 2.0672, 0.0011), (4.4)

and γd-stability is finally guaranteed as further verified by computing the spectrum dis-
tribution of the MAS at hand. The evolution of the system is obtained in the Robo-
tarium simulation environment disregarding collision avoidance barriers as discussed
above. The simulation resulted in a settling time tset = 7.953 s and a total control effort
TCE = 34.14, both in the same order of magnitude than those in the six-agent exam-
ples. It is worth mentioning that any additional computations are not needed whenever
the number of agents increases. In other words, the approach is scalable and the num-
ber of agents becomes irrelevant in the tuning process developed in this thesis.

4.2.2 Experiments

Finally, we test our developments on Georgia Tech Robotarium test bed considering
first a six-agent network.
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Small-scale network

For the actual Robotarium implementation, we make use of the previously studied
topology depicted in Figure 4.1. The individual agents are placed in a rectangular grid
at first and then, the proposed PR consensus algorithm is performed for γ = 29.58. For
this particular system we already know that the rightmost root associated with the real
Laplacian eigenvalues is dominant. After re-designing the controller parameters with
Corollary 3.2.2, we obtain

(k′p,h
′,k′r) = (14.834, 0.2114, 8.4747×10−5).

The result is illustrated in Figure 4.7 with four frames of the Robotarium execution,
showing the agents’ movements first from an arbitrary starting position, then to a pre-
defined rectangular grid and finally carrying out the consensus protocol. The full exper-
iment was captured in video and can be accessed at here or in the next url: https:

//youtu.be/821-tHmNdtk

Figure 4.7: Robotarium agents performing the consensus protocol. Time elapses from
top to bottom and left to right: Agents finding an arbitrary initial position. Getting to a fixed
rectangular formation. Performing the consensus protocol. Agents reaching consensus
in position.
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Chapter 5

Conclusions and future work

The thesis presents analytical formulas to tune the parameters (h,kp,kr) of a dis-
tributed PR consensus protocol for a class of single-integrator MAS with the main ob-
jective of creating a desired (maximum) exponential decay rate for the solutions of the
closed-loop system. The developments exposed throughout this manuscript revolves
around the idea of designing the dominant modes of the collective dynamics. These
dominant modes are further associated with fast consensus reaching as evidenced by
means of numerical and experimental data.

To our best knowledge, for the class of MAS studied here, an analytically-derived PR
tuning technique has not been proposed in previous research. In this sense, the ideas
developed in the present manuscript complement the state of the art. Moreover, since
the results are analytic, we believe that the tuning process is accessible enough, from
an algorithmic point of view, to be used as a ready-to-use tool. Although the results are
specialized for MAS with single-integrator agents, our developments could be utilized as
the baseline toward analyzing more complex problems, where inter-agent communica-
tion is described by directed graphs and characterized by complex conjugate and pure
real Laplacian eigenvalues.

Fast consensus has become an important measure of performance in MAS. How-
ever, in some situations, the realization of delay may be constrained by the very structure
of the system. In such cases, from a practical point of view, it would be more convenient
to choose an priory realizable delay value to then compute the corresponding attainable
decay rate γ and the corresponding set of gain values. The above observation was nec-
essary in the experimental stage of this work. More precisely, in the Robotarium platform,
a specific time lag is inherent to the communication of the agents’ state. Hence, tuning
of the PR protocol was performed with the intention of generating a realizable artificial
delay, which is a multiple of the communication lag.
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Questions about how scalability and different topologies impact fast consensus are
to be investigated in the future to further complement this research. In theory, it is al-
ways possible to extend the consensus protocol to an arbitrary number of agents. Yet, it
is a known fact that implementation becomes problematic as the number of agents grow.
Also, there is a considerable amount of research [21, 17, 14] on how fast consensus can
benefit from adequate graph topology selection. For this project, however, it would be
enough to generate strongly connected graphs in a random way to be our experimental
topology. In spite of the obtained analytical results, the nature of the analysis still requires
some computations. In Theorem 3.1.3, for example, it is necessary to check inequality
(3.15), which may be challenging in a large-scale setting. However, the inequality is usu-
ally validated at the first or second iteration, which sheds light into the possible existence
of a more general and accurate theory. On the other hand, at the end of Chapter 3, we
state the need of verifying whether αµ1 is smaller or equal to −γd . In case αµ1 > −γd , a
re-tuning process needs to be performed. We acknowledge that a simpler, more direct
procedure is desirable, which is left to future investigations.
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