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Resumen

El control distribuido de sistemas de múltiples robots ha sido estudiado amplia-
mente durante las pasadas décadas. Modelando las interacciones locales a través de
grafos, marcos teóricos han sido desarrollados para analizar y sintetizar movimientos
coordinados. En ellos, la principal inspiración del diseño de controladores distribuidos
son los comportamientos colectivos observados en insectos sociales, peces, aves y al-
gunos mamı́feros. Codificando reglas de interacción local, los controladores dirigen el
movimiento de los sistemas de múltiples robots hacia un comportamiento deseado tal
como sincronización, consenso o flocking.

En esta tesis diseñamos controladores distribuidos para dirigir sistemas de múltiples
robots con restricciones hacia comportamientos de consenso y flocking. La mayor
diferencia entre este trabajo y los reportados en la literatura recae en las restricciones
de comunicación y de movimiento consideradas en nuestros diseños. Estas restricciones
son intŕınsecas a los robots, como limitaciones en las entradas de control o los rangos
de comunicación, o al espacio de trabajo, como la presencia de obstáculos.

En el caṕıtulo 1 se motiva e introduce el estudio de movimientos colectivos en
sistemas de múltiples robots. Se discuten conceptos como controladores distribuidos
y comportamientos colectivos. Posteriormente, se definen los problemas de consenso y
flocking. También discutimos los resultados más recientes en ambos temas.

En el caṕıtulo 2 se revisan algunos conceptos básicos de teoŕıa de grafos y se discuten
brevemente algunas técnicas de control que permiten describir los modelos de dos tipos
de robots móviles como sistemas dinámicos de segundo orden. Posteriormente, se
describen los problemas de control de movimiento en los sistemas de múltiples robots
para los cuales se diseñan controladores distribuidos. También, se introduce el concepto
de grafo de proximidad.

El caṕıtulo 3 se enfoca en los problemas de consenso. Se diseñan controladores para
configuraciones sin ĺıder y ĺıder-seguidores en grafos dirigidos fijos y de proximidad
bidireccionales. Condiciones necesarias y suficientes son presentadas para garantizar
consenso bajo suposiciones leves sobre la conectividad del grafo dirigido. Para el caso
de grafos de proximidad bidireccionales, los controladores garantizan la preservación de
la conectividad, esto es, solo permiten la adición de enlaces conservando la conectividad
inicial del grafo de proximidad.

En el caṕıtulo 4 se estudian los problemas de flocking en grafos de proximidad
bidireccionales y dirigidos. Los controladores diseñados satisfacen restricciones het-
erogéneas en las entradas aún en presencia de obstáculos en el espacio de trabajo para
el primer caso. Por otro lado, para grafos dirigidos, se analiza el primer vector propio
izquierdo de la matriz Laplaciana asociada con el grafo. Una medida distribuida que
refleja la conectividad del grafo completo se construye con las entradas de dicho vector.
Luego, se explotan dichas propiedades en el diseño del controlador propuesto.

Por último, se dan algunos comentarios finales y se discuten algunas direcciones
futuras de investigación en el caṕıtulo 5.
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Abstract

The distributed control of multi-robot systems has been studied extensively in the
past few decades. Theoretical frameworks, where graphs model the local interactions
between robots, have been developed to analyze and synthesize coordinated motions.
There, collective behaviours observed in social insects, fishes, birds and mammals are
the main inspiration of the distributed controller designs. Encoding local interaction
rules, controllers steer the multi-robot system’s motion towards the desired behaviour,
such as synchronization, consensus or flocking.

In this thesis, we design distributed controllers to steer a constrained multi-robot
system into consensus and flocking. The main difference between our designs and
previous works are the communication and motion constraints contemplated for our
designs. Such limitations are intrinsic either to the mobile robots, like bounded inputs
and detection ranges or to the environment, like obstacles in the workspace.

Chapter 1 motivates and introduces the study of collective motions in multi-robot
systems. We discuss concepts like distributed controllers and collective behaviours in
multi-robot systems. Later, the consensus and flocking motion problems are defined.
In both cases, we discuss some of the latest published results in these topics.

In Chapter 2, we revise some basic concepts on graph theory and briefly discuss
control techniques to model two kinds of mobile robots, namely differential mobile
robots and quadcopters, as second-order dynamic systems. Then, we present the multi-
robot systems motion control problems to which we design distributed controllers.
Here, we also introduce the concept of proximity digraph.

Chapter 3 focuses on consensus problems. We design distributed controllers for
leaderless and leader-followers configurations in both fixed digraphs and bidirectional
proximity graphs. We derive necessary and sufficient stability conditions for consensus
over fixed digraphs with mild connectivity assumptions. As for bidirectional prox-
imity graphs, our designs are connectivity preservers, i.e. allow only edge additions
conserving the initial connectivity of the proximity graph.

In Chapter 4, we study flocking motion problems in bidirectional and directed
proximity graphs. For the first ones, the designed controllers satisfy heterogeneous
input constraints even in the presence of obstacles. On the other hand, for directed
proximity graphs, the first-left eigenvector of the matrix Laplacian associated with it
is analyzed. With its entries, we build a distributed connectivity measure that reflects
the overall network connectivity. We use its properties in our controller designs.

We give some final comments and future research directions in Chapter 5.
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1
Introduction

Almost a century has passed since the first appearance of the word robot in Karel
Čapek’s play R. U. R.: Rossum’s Universal Robot back in 1921 [1]. Derived from the
word robota, which means forced labour or slave worker in Slav languages, the term
robot was used to describe artificial human beings; magnificent workers deprived of
unnecessary qualities like feelings, creativity and capacity of feeling pain. Although
Čapek envisioned robots as human-shaped factory workers, it took decades to intro-
duce actual robots into industrial production processes, not artificial human beings
for sure, but mechanical arms developing repetitive tasks, and relegating humans from
dangerous environments, mainly in car assembling lines. This humanoid concept of
robots inspired many scientific and technological advances over the following years and
became a very active research field in its own right.

Robotics, is the engineering field that studies the science and technology of design-
ing, building and using robots [2–4]. This field has advanced by leaps and bounds
in recent years [5–7]. Back in 1961, the Unimate1 (Figure 1.1a), the most advanced
robotic arm at the time, with commands stored on a magnetic drum, it was used in
the car industry to automate metalworking and welding processes. Later, Shakey2

(Figure 1.1b) was the first mobile robot, build in 1966 and capable of performing task
that required planning, route-finding, and rearranging of simple objects. Now, at 2021,
Atlas3 is one of the most advanced humanoid robots; this amazing machine measures
1.5m height, weights 75kg, is equipped with stereo vision and its body takes advantage
of 3D printing technology to save space and weight (Figure 1.1c). Atlas its capable of
manipulate objects in the environment and travel on rough terrain. However, nowa-
days there is not a unified definition of what a robot is. In the literature, one can find
different definitions such as:

� (Oxford dictionary) A machine capable of carrying out a complex series of actions
automatically, especially one programmable by a computer [8].

� (Cambridge dictionary) A machine controlled by a computer that is used to

1www.robotics.org
2www.sri.com
3www.bostondynamics.com
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Chapter 1. Introduction

(a) Unimate. (b) Shaky. (c) Atlas.

Figure 1.1: Robotics advances: (a) The first industrial robot arm (1961); (b) The first
mobile robot (1966); (c) The most advanced humanoid robot (2021).

perform jobs automatically [9].

� (Random House Webster’s dictionary) A machine that looks something like a
human and does mechanical tasks [10].

A robotic system, as showed in Figure 1.2, is formed by actuators, sensors and a
control unit [2]. The essential component of a robot is the mechanical system endowed,
in general, with locomotion apparatuses like wheels, crawlers, mechanical legs, and the
like, along with a manipulator apparatus such as mechanical arms and effectors, among
others. This provides robots with the ability to exert an action over their environment.
In a robot, the actuator unit is what animates the mechanical components. Thus,
this system is in charge of motion control and deals with servomotors, drives and
transmissions. The ability to acquire data, either internal (with encoders, temperature
sensors, and others) or external (with proximity sensors, cameras, or communication
devices, to name a few), is entrusted to the sensor system. This unit includes all the
signals conditioning and information retrieval. Finally, the control system is in charge
of the connection between perception and action, i.e., it commands the execution of
actions according to the goals set by the given tasks and the collected information
through sensors.

1.1 Classification of robots

Robots can be classified concerning the environment in which they operate. Fixed
and mobile robots, is the most common classification. These two robot classes perform
tasks on very different working environments and require very distinct capabilities.

2



1.2. Interconnected robots

Figure 1.2: Robotic system interacting with the environment.

1.1.1 Fixed robots

Robots attached to a fixed platform on the ground are called fixed robots. This type
of robot relies on internal sensors to compute its position relative to the surroundings.
Most fixed robots are manipulators which consist of a sequence of rigid bodies (links)
interconnected through articulations (joints) with industrial applications like soldering,
painting, movement of parts and others [4, 11].

1.1.2 Mobile robots

Robotic systems equipped with motion mechanisms are called mobile robots. Most
implementations of mobile robots depends on their mechanism of motion: aquatic (un-
derwater exploration), terrestrial (vacuum cleaners and self-driving cars) and aerial
(aerial photography)[4, 11, 12]. This type of robot relies on its perception of the envi-
ronment to compute its position and deal with different unknown situations that might
change over time. Such environments might include fixed obstacles or unpredictable
entities like animals or humans.

1.2 Interconnected robots

1.2.1 Networked robots

A robotic system connected to a communication network, such as the Internet or a
local area network (LAN), is called a networked robot [11]. Either wired or wireless, the
network can be based on any data transport protocol. Applications of these systems
range from automation to exploration. There are two classes of networked robots4:
Teleoperated and autonomous. Teleoperated robots are supervised and managed by

4The IEEE technical committee on networked robots adopted this classification (www.ieee-ras.org).
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Chapter 1. Introduction

a human (the operator). In this class, the operator sends commands to be executed
by the robot. And, additionally, he might receive feedback through the network as
the internal states of the robot or the task status. Autonomous networked robots
use the network to send or receive information without external intervention. Here,
robots and sensors exchange data via the network, extending the effective sensing range
of robots and allowing them to communicate with each other over long distances to
coordinate their activities. Thus, sensing, data process and actuation need no longer
be collocated. This autonomy does not impede the existence of a monitoring system
that displays relevant information to the manager [13].

Applications of networked robots are vast. Some examples range from coordinated
industrial processes, like welding, remote manipulation or manufacturing, to military
implementations of coverage and reconnaissance with Unmanned Aerial or Ground
Vehicles (UAVs or UGVs) [14, 15]; Even in research areas, networked robots are help-
ful, like in undersea monitoring with Unmanned Underwater Vehicles (UUVs) [16, 17].
Nonetheless, networked robots pose several challenges for being successfully imple-
mented, especially those related to networks. Often, communication is noisy and have
fixed or variable time delays. Even channel congestions and network instability are fre-
quent issues. Therefore, a broad challenge in networked robots is to develop scientific
bases that couples communication, perception and control that allow their successful
implementations.

1.2.2 Network of robots

A network of robots refers to a group of networked robots connected by links through
which their share information and work together in a common task [11]. Both teleop-
erated or autonomous robots might form a network of robots. In a network of robots,
a member might be aware of the information of a distant teammate and consider it
for task planning. Therefore, to become a system with greater abilities than the sum
of its parts, a network of robots combines and complements robot capacities. Some
examples of these systems implementations are underwater manipulation and trans-
portation with UUVs [18], precision farming with a combination of UGVs and UAVs
[19, 20] and space exploration [21], to name a few.

1.2.3 Multi-robot systems

A multi-robot system consists of an autonomous mobile robots (agents5) group
with limited information sharing capabilities and computational resources. As a result
of implementing coordination laws, a multi-robot system provides several advantages
over single robotic systems, including robustness, flexibility and scalability [24]. a) Ro-
bustness is due to inherent redundancy by considering multiple robots with a common
objective with no predefined role for each one; Also, if a robot fails on performing a
given task, is damaged or completely lost, the remaining members compensate its role.

5Agent is anything that can be viewed as perceiving its environment through sensors and acting
upon the environment through effectors, e.g. a robotic system [22, 23].
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1.3. Control of multi-robot systems

b) Flexibility is because a multi-robot system can adapt to different tasks and envi-
ronments without any hardware specialization. c) Scalability is due to robots acting
based only on local rules and, if the team size increase, they maintain its functionality
without any interaction mechanism redefinition.

There are broadly two kinds of multi-robot systems: Homogeneous and heteroge-
neous. When robots in a multi-robot system have the same abilities, it is called a
homogeneous multi-robot system. Therefore, they are sometimes called robotic swarms
due to the homogeneity observed in nature, where groups of individuals such as ants,
bees, fish, and birds, solve complex tasks using the limited information that each in-
dividual perceives [25, 26]. These systems fit well when every robot has the same
goal and, although incapable of achieving it by itself, the cooperation between them
is enough to accomplish it. On the other hand, when robots in a multi-robot system
have different abilities, we call it a heterogeneous multi-robot system. This kind of sys-
tem aims to exploit robot differences and achieve goals impossible with a homogeneous
group, or at least do it more efficiently.

Recent implementations of multi-robot systems are many and for different tasks.
For homogeneous systems, location, navigation and predator-prey tasks with UGVs
or UAVs are just some examples [27–30]; They are even used to study and reproduce
natural processes as morphogenesis [31, 32] and segregation [33]. On the other hand,
heterogeneous multi-robot systems implementations focus on exploiting their proper-
ties. Combinations of UGVs and UAVs are often used to solve tasks like reconnaissance
and surveillance, urban search and rescue, mapping and detection [34–38].

Physical implementations of multi-robot systems, as the ones recently discussed,
most likely require robots to move from one place on their workspace to another. In
the following section, we discuss the general schemes to control multi-robot systems.
Then, we focus on the controller design approaches to coordinate their motion.

1.3 Control of multi-robot systems

Generally, there are three basic approaches to control multi-robot systems: Cen-
tralized, decentralized and distributed. a) The centralized approach assumes there
exists a sufficiently potent central unit to collect and process the information of every
robot. Then, it calculates and applies the individual control to every robot accordingly
to the desired reference. This approach, shown in Figure 1.3a, is an extension of the
single-system control scheme. b) The decentralized approach consists of controllers that
receive information from all robots but apply control actions to only a part of them.
This approach execute control laws designed in a centralized fashion. Figure 1.3b il-
lustrates this approach. c) The distributed approach consists of individual controllers
which use only the locally available information shared through an interconnection
structure of the overall system. Some of the local controllers might have references,
but in general, the control action for each system is based only on the information of its
neighbours established by the interconnection structure. This approach allows simpler
controller designs but, to achieve global objectives, requires more complex solutions
than the centralized and decentralized versions [39]. Figure 1.3c shows this approach.

5



Chapter 1. Introduction

(a) Centralized control approach. (b) Decentralized control approach.

(c) Distributed control approach.

Figure 1.3: Different approaches to multi-robot systems control.

1.3.1 Motion control

A fundamental problem in multi-robot systems is the design of controllers to make
the robots move as a group towards a common goal [24, 40]. A seemingly simple task
but, when motion constraints are considered, is more complex than it appears. In
this section, we present some of these motion limitations. Then, we discuss the two
distributed controller’s design approaches.

Motion constraints

To better deal with multi-robot systems in real-world applications, it is necessary
to consider their intrinsic motion and coordination constraints in the controller design
process. These limitations are attributed either to the robots or the environment
through which they navigate. Figure 1.4 shows the multi-robot system constraints
considered in this thesis. We discuss them in what follows.

On the one hand, robot attributed constraints are those rising from its physical
properties and capabilities. In this sense, the masses, sensing ranges and input con-
straints shown in Figure 1.4a-c are robot attributed. One or all of these constraints
usually appear in heterogeneous multi-robot system setups. Robots with different ca-
pabilities most likely will have different sizes and thus different masses, sensing ranges
and input constraints; Although, when these constraints are equal for every robot, then
the multi-robot system is homogeneous. On the other hand, obstacles in the workspace
is a constraint attributed to the environment (Figure 1.4d). For safety reasons, robots

6



1.3. Control of multi-robot systems

(a) Different masses. (b) Different ranges. (c) Input constraints. (d) Obstacles.

Figure 1.4: Examples of multi-robot systems constraints.

must avoid collisions with these objects. Therefore, they impose limitations on the pos-
sible trajectories that the multi-robot system can take. Combinations of these robots
and environmental constraints are present in real-world implementations of multi-robot
systems. Therefore, to achieve a desired coordinated motion, the controllers’ design
process must consider them.

Controller design approaches

In the design of controllers to solve the motion coordination problem, there are
two approaches: Structural and behavioural [31]. We describe both of them in what
follows.

The structural approach consists of each robot computing its proper position in a
predefined formation (or virtual structure) based on the location of the others. That
is, the controller calculates the robot’s position error with respect to the desired prede-
fined formation and generates an input vector steering it to its correct location within
the virtual structure [40, 41]. In this approach, there are three techniques: 1) The
unit-centre-referenced (Figure 1.5a), which builds the desired formation around the po-
sition centre of the whole group; 2) The leader-referenced (Figure 1.5b), which builds
the formation around the position of a leader who doesn’t follow any other robot; 3)
The neighbourhood-referenced (Figure 1.5c), which predefines desired distances between
each robot and its neighbours, resulting on the desired overall formation. Notice that
the unit-centre-referenced and leader-referenced approaches require access to global in-
formation, respectively the location of the centre and the position of the leader, which
impedes their use on a distributed scheme. The neighbourhood-referenced approach,
on the other hand, accepts distributed implementations. However, the structure needs
to be previously defined. This requirement precludes its use in a multi-robot system
where the information network changes over time since it requires a predefined forma-
tion for each possible network configuration.

On the other hand, the collective behaviours observed in nature inspire the be-
havioural approach, hence its name. Figure 1.6 show some of those so-called emergent
behaviours where nobody dictates the movement of every single individual nor the final
shape of the group. In the behavioural approach, the fulfilment of local rules triggers
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(a) Unit-center-referenced. (b) Leader-referenced (c) Neighbor-referenced

Figure 1.5: The structured approach to motion control of multi-robot systems [40].

(a) Schooling fish. (b) Flocking birds.

Figure 1.6: Collective behaviors in nature.

each robot’s motion, the same way as the emergent behaviours originate in nature.
That is, the controller of each robot encodes heuristic rules considering only the locally
collected information. As such, and because there is no predefined formation, network
configuration changes affect but do not impede the task achievement, as we will see
from our results. There are several examples of collective behaviours: Synchronization,
rendezvous, consensus and flocking.

In the following section, we define the control and controller design approaches used
in this thesis, discuss the desired coordinated motions to be induced in the multi-robot
system and review the up to date results in the topic.

1.4 Consensus and flocking motion control of multi-

robot systems

A natural approach for motion control of multi-robot systems is the distributed
approach, mainly because they are cheaper to implement. The distributed control
of multi-robot systems requires less powerful processors, sensors and communication
devices than their centralized and decentralized equivalents. However, the complex part
is their design, especially when contemplating both robot and environmental motion
constraints.

8
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As stated by Cortéz and Egerstedt in [24], to be practical, a distributed controller
design for multi-robot systems has to satisfy the following constraints: That is, it
must be: 1) Local, on information, because is the only available data; 2) Scalable, as
individual actions, dictated by the controller, cannot depend on team size; 3) Safe,
for robots, avoiding collisions between individuals and with their surroundings and;
4) Emergent, since desired global properties and behaviours should emerge from lo-
cal interactions. Due to physical and performance constraints is not easy to design
distributed controllers with all the above properties [24].

To achieve the distributed controller properties described above, we use the be-
havioural design approach. This design decision is due to the robot and environmental
physical constraints considered in this work. We mainly contemplate multi-robot sys-
tems where robots have limited sensing ranges and, because of this consideration, we
cannot predefine a virtual structure to steer robots into the desired formation. Also,
the neighbourhood within which robots collect information might change over time,
and we would need a virtual structure for each possible configuration. In contrast,
the behavioural design approach allows us to deal with time-varying neighbourhoods.
However, we carefully need to design the local interaction rules and embed them in
distributed controllers to steer a multi-robot system towards the desired coordinated
motion; This is the main topic of this thesis, widely discussed in the following chapters.

Information sharing is crucial in the design of distributed controllers for multi-robot
systems. If a robot is not sharing, receiving, or sensing data from others, the fulfil-
ment of a common objective cannot be guaranteed. Therefore, shared information is a
necessary condition for coordination [42]. The information flow, through the onboard
communication devices or sensors, between nodes describes the information network
of the multi-robot system. Robots with unlimited information sharing capabilities can
construct fixed networks, even with an all-to-all connection. Meanwhile, if they are
distance-limited, the proximity between robots determines the connection topology of
the information network with edges that might appear or disappear as robots approach
or move away from each other; In consequence, the distributed controller designs must
take into account the information network connection properties and, if necessary, must
guarantee them.

In this thesis, we limit our attention to consensus and flocking motions in multi-
robot systems. In the following sections, we define these motions and discuss the
most recent research on these topics. Our literature review focus on the investigations
that contemplate every, or some combinations, of the previously discussed motion
constraints.

1.4.1 Consensus on multi-robot systems

Consensus means to reach an agreement regarding a certain quantity of interest
that depends on the states of all group members [43]. The agreement must be a result
of interactions between agents via an information network. To achieve consensus there
must be a shared variable of interest, called information state, and an interaction rule
specifying how individuals share the information called consensus algorithm or protocol.
In the motion coordination of multi-robot systems, one or both, the robot’s position
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and velocity vectors define the information state. Meanwhile, the ability of the robots
to gather local information through their communication or sensing devices defines
the information network. Finally, the distributed controllers embed the consensus
algorithm.

Historically, consensus problems were studied in opinion formation [44]. Perhaps
the first study of consensus in physically constrained systems was carried out by Vicsek
in [45]. He observed a velocity alignment of moving particles implementing a nearest
position neighbours algorithms. Later, Jadbabaie provided a theoretical explanation
of this emergent behaviour [46]. Since then, there have been many reported studies
on consensus problems. A consistent framework in the topic was presented in [43] by
Olfati Saber. Surveys like [47–49] summarize the recent consensus problem researches
from a control systems perspective.

In this thesis, we contemplate two different setups for consensus in multi-robot
systems. First, we consider a group of robots where each has different inertias and
unlimited sensing ranges; Allowing us to assume the existence of fixed information
networks. The second one contemplates a similar setup but with limited sensing ranges.
Therefore, in this case, the information network is time-varying. The following state
of knowledge resumes the already reported researches related to both of these setups.

State of knowledge

For robots (agents) with different masses and unlimited sensing ranges, almost all
the results give sufficient conditions to achieve consensus; for either fixed or switch-
ing strongly connected networks [50, 51]. On the other hand, necessary and sufficient
conditions are presented in [52] for weakly connected fixed networks with communica-
tion time delays. Here, a leader defining the desired agreement position and velocity
vectors is contemplated. In contrast, we develop necessary and sufficient consensus
conditions for fixed networks with minimum connectivity requirements. Also, the de-
veloped controllers support configurations without a leader and with a leader moving
at a time-varying velocity.

On the other hand, when contemplating limited sensing ranges, studies often focus
on robots with unitary inertias, i.e., heterogeneous multi-robot systems. As the previ-
ously reported results, and ours, in fixed networks unveil, the network’s configuration
plays a fundamental role in achieving consensus. Not surprisingly, in this scenario,
connectivity preservation is a big concern 6. Works about it often design distributed
controllers generating unbounded control actions [54–57]. Other researchers provide
controller designs with bounded magnitude [58–62]. However, in most of the cases,
they only contemplate leaderless or leader-followers consensus configurations where
the leader moves at a constant velocity. In contrast, our distributed controller designs
are for heterogeneous multi-robot systems, where robots might have different inertias.
Additionally, we investigate and develop a controller for the leader-followers scenario
when the leader’s velocity is time-varying. All of our designs produce bounded control
efforts.

6See [53] for a survey on this topic
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1.4.2 Flocking motion on multi-robot systems

Flocking behaviour receives its name from the collective movement observed in
groups of starlings, seagulls and other birds. This term refers to the motion that
emerges from local interactions involving a large number of individuals. Although in-
spired by birds, the name is used to describe the coordinated motion of microorganisms,
insects, fish, mammals and groups of autonomous robots. In the case of multi-robot
systems, flocking means every robot must fulfil the three following rules: 1) collision
avoidance: attempt to avoid collisions with nearby flockmates; 2) velocity matching:
attempt to match nearby flockmates velocities; 3) flock centring: attempt to stay close
to nearby flock mates. These behavioral rules are also know as separation, alignment
and cohesion, and gave birth to the famous Reynolds’ Boids model [63].

Although a computer graphics animation originated the Boids model, it found its
way to the coordinated motion of multi-robot systems. From a control systems point
of view, a theoretical framework to study flocking motion in multi-robot systems was
developed by Olfati Saber back in 2007 [64]. Under this scheme, Olfati-Saber combines
the control systems and graph theories to analyze interconnected dynamic systems and
use the gradient-descendant approach to synthesize distributed controllers to drive the
particle-shaped robots to consistent flocking behaviour. Since then, many controller
designs and for different kinds of multi-robot system setups have been reported. A
recent survey overviews a collection of those results [65].

In this thesis, we contemplate three different scenarios for flocking in multi-robot
systems. The first one is for robots with homogeneously limited sensing ranges and
heterogeneous input constraints. Then, we extend our results to consider workspace
obstacles, which sets our second scenario. Finally, we drop out the input and environ-
mental constraints to contemplate robots with different sensing ranges. The following
state of knowledge resumes the already reported researches related to these setups.

State of knowledge

Up to date, year 2021, almost all existing works in flocking motion in multi-robot
systems with homogeneous limited sensing ranges do not contemplate input constraints
[66–68]. However, to be useful in real-world implementations, the distributed con-
troller designs must consider restrictions on their magnitudes [69]. Therefore, other
researchers designed bounded distributed controllers, but this is a mere result of imple-
menting bounded controller terms [70–76]. A few reported results provide distributed
controller designs with predefined magnitude bounds, see [77, 78]. A similar quantity
contemplates differences between the robots’ input limitations [79, 80]. Nonetheless,
the results in [77, 78] implement a model predictive scheme and require a discretiza-
tion of the robot’s motion dynamics. Also, they assume the dynamic network remains
connected between discrete steps. On the other hand, the results in [79, 80] only con-
template the position dynamics of the robots, do not guarantee inter-robot collision
avoidance and are fragile to single edge failures. In contrast, our designs do not re-
quire a discretization process, contemplate both robot’s position and velocity dynamics,
guarantee inter-robot collision avoidance and are more robust to edge failures, as they
consider the whole neighbourhood of each robot and not only one neighbour.
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Flocking motion in a workspace that includes obstacles has been studied ever since
the theoretical framework to study flocking was proposed. However, they usually do
not contemplate any predefined input bounds [64, 81, 82]. To the best of our knowledge,
just one work consider such a scenario. In [83], the distributed controller must fulfil
a predefined input bound, equal for all robots, but cannot ensure inter-robot collision
avoidance. In contrast, the magnitude of our designed controller always remains under
predefined individual input constraints, even in the presence of nearby obstacles and
inter-robot collision avoidance manoeuvres.

Every of the flocking motion researches cited in this section has as an essential
feature the information network’s connectivity preservation. As we discussed before,
without some basic network connectivity properties, no coordinated motion is achiev-
able. With this requirement, almost every distributed controller design aims to preserve
every edge in the initial information network, allowing only the addition of new ones
while the system evolves. Connectivity is a global property of the information net-
work. To grant robots the ability to decide which edges preserve and which not, we
need to provide them with a local sense of the overall information network configura-
tion. Some researchers use a distributed estimation of a connectivity measure called
algebraic connectivity ; See [84–89] for details on the estimation processes. With minor
changes, algebraic connectivity estimations are used in multi-robot systems with ho-
mogeneous and heterogeneous sensing capabilities. The gradient, with respect to the
robot’s position, of the algebraic connectivity points towards its increasing direction.
This property allows the controller designs based on the gradient-descent method, al-
lowing even obstacle avoidance features [90–93]. However, this is only the case for
multi-robot systems with homogeneous sensing habilities. The relation between the
edge weights and the gradient with respect to the robot’s position does not hold in the
heterogeneous case. In this situation and assuming the sensing range can be increased
or decreased as needed, in [89], an estimation of the real part of the algebraic connec-
tivity measure serves as an indicator of which edges to maintain and the distributed
controllers design modifies the sensing range to preserve them. On the other hand, a
new kind of connectivity measure is presented in [94]. It uses the first-left eigenvector
entries of the Laplacian matrix associated with the information network. This measure
indicates which edge should be maintained. A tension between connecting edges is
built with this measure is proposed as the distributed controller. In contrast, we study
the properties of the connectivity measure given in [94]. We also unveil its relation with
the distance-dependent edge weights. This property allows us to build a distributed
controller using the gradient-descent method to achieve flocking motion in multi-robot
systems with heterogeneous sensing constraints.

1.5 Problem description

The main objective of this thesis is the design of distributed controllers for a physi-
cally constrained heterogeneous multi-robot system to achieve coordinated motions like
consensus or flocking. We propose solutions for multi-robot systems with constraints
attributed to both robots and the environment. Regarding the robot attributed limi-
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tations, we contemplate limited sensing ranges and bounded actuator devices. Addi-
tionally, the inertia and the capacities of a robot might be different from others in the
group. On the other hand, environmental constraints are imposed by obstacles in the
workspace.

Notice that, for consensus behaviour, each robot aims to align its position and
velocity with those robots in the neighbourhood. Meanwhile, for flocking behaviour,
robots try to align their velocity vectors while avoiding the group’s fragmentation and
collision with other robots and obstacles. From the above description of the problem in
this thesis, we propose the following hypothesis: Distributed controllers encoding proper
interaction rules lead physically constrained heterogeneous multi-robot systems towards
desired collective behaviours such as consensus and flocking. In particular, we deal with
the following objectives. For consensus behaviour, our goal is to steer robots towards a
fixed position deviation with velocity alignment. We contemplate two scenarios, both
in multi-robot systems where the robot inertias might be different. The first one is for
fixed information networks. Our controller designs embed a local rule on each robot of
approaching towards the states of its neighbours. We provide necessary and sufficient
conditions to ensure consensus with minor network’s connectivity conditions. In the
second one, we contemplate robots with homogeneously limited sensing ranges. This
setup implies time-variant information networks. We use the previously described local
interaction rule again. However, to synthesize the distributed controller, we use the
gradient-descent method. With our proposal, we guarantee both consensus achieve-
ment and the information network’s connectivity preservation. For flocking behaviour,
our goal is to achieve a coordinated motion free of collisions between robots and with
the obstacles in the workspace. There are three setups for this behaviour; In all of
them, we implement the three rules of the Reynolds’ boids model (separation, align-
ment and cohesion) and use the gradient-descent method to synthesize the distributed
controller. The first one, for multi-robot systems with homogeneous sensing limitations
and heterogeneous input constraints. Our design allows robots with higher capabilities
to compensate for the coordination movements that their less adept neighbours can-
not. We extend this setup to contemplate obstacles in the workspace with the same
benefits; This is the second setup. As for the third setup, we consider a multi-robot
system with heterogeneous constraints in the sensing ranges, without input limitations
or obstacles. In our controller design, a distributed connectivity measure of the overall
networks configuration is used to choose the edges to preserve. The proposed con-
troller allows less restrictive network configurations than previously reported results.
Based on graph and control theory, we derive conditions over the network configuration
and controller properties and gains to guarantee the multi-robot systems achieves the
desired behaviour.

1.6 Document description

In Chapter 2, we give some basic concepts of graph theory, briefly describe some
control methods to model the motion of mobile robots as second-order systems and
define the consensus and flocking problems studied in this thesis. Chapter 3 discuss
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the consensus problems. We design distributed controllers for both fixed and proximity
graphs of multi-robot systems with different inertias. In Chapter 4, we tackle flocking
problems. We present distributed controllers for three different combinations of homo-
geneous and heterogeneous sensing range limitations, input constraints and obstacles
in the workspace. Lastly, we give some final comments about this thesis and future
work in Chapter 5.

1.7 Published results

The results presented in this thesis were, or plan to be, published in a few conference
proceedings or scientific magazines. Our reported results are:

� A distributed controller design for consensus motion in multi-robot systems with
a time-invariant network. The controller design was carried out for a multi-robot
system where robots posses different acceleration magnitudes and the information
network is directed. This result was presented as part of the Congreso Nacional de
Control Automático (AMCA) 2017 held in Monterrey, Nuevo León, México. And
it was published in its conference proceedings under the title Consenso con ĺıder
virtual en sistemas de múltiples agentes inerciales, reference [95]. The authors
are Eber J. Ávila-Mart́ınez and Juan G. Barajas-Ramı́rez.

� A distributed controller design for consensus motion in multi-robot systems with
a time-variant network. The controller design considers a multi-robot system
where robots posses different acceleration magnitudes and homogeneous informa-
tion sharing range limitations. This result was presented as part of the Second
Conference on Modeling, Identification and Control of Nonlinear Systems IFAC
MICNON 2018 held in Guadalajara, Jalisco, México. And it was published in
its conference proceedings under the title Distributed control for consensus on
leader-followers proximity graphs, reference [96]. The authors are Eber J. Ávila-
Mart́ınez and Juan G. Barajas-Ramı́rez.

� A distributed controller design for flocking motion in multi-agent systems with a
time-variant network. The controller design considers agents with heterogeneous
input constraints due to actuator limitations and homogeneous information shar-
ing range limits. This result was published in the Journal of the Franklin Institute
under the title Flocking motion in swarms with limited sensing radius and hetero-
geneous input constraints, reference [97]. The authors are Eber J. Ávila-Mart́ınez
and Juan G. Barajas-Ramı́rez.
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2
Preliminaries

Before we introduce the preliminaries and state the problems tackled in this thesis,
some basic notations are introduced.

We respectively denote with R and C, the set of real and complex numbers, while
R≥0 and R>0 are the sets of nonnegative and positive real numbers. Given a complex
number c ∈ C, Re (c) denotes its real part and Im (c) its imaginary part. The set of
n× 1 real vectors is denoted by Rn, while the set of m× n real matrices is denoted by
Rm×n. We let 1n ∈ Rn and 0n ∈ Rn denote the n-dimensional column vectors with all
its entries equal to 1 and 0, respectively. Likewise, In and Zn are the n × n identity
and zero matrices. The Kronecker product of A ∈ Rm×n and B ∈ Rp×q is defined as

A⊗B :=

 a11B · · · a1nB
...

. . .
...

am1B · · · amnB

 ∈ Rmp×nq (2.1)

and satisfies the following properties

cA⊗B = A⊗ cB (2.2a)

(A⊗B)T = AT ⊗BT (2.2b)

(A⊗B) (C ⊗D) = (AC)⊗ (BD) (2.2c)

A⊗B + A⊗ C = A⊗ (B + C) (2.2d)

(A⊗B)−1 = A−1 ⊗B−1 if and only if A and B are invertible, (2.2e)

where c ∈ R and matrices C and D are assumed to be compatible for matrix multipli-
cation.

Lemma 2.1 ([98]). For the block-defined matrix

Q =

[
A B
C D

]
∈ R(p+q)×(p+q),

with A ∈ Rp×p, B ∈ Rp×q, C ∈ Rq×p and D ∈ Rq×q, if C and D commute, i.e.
CD = DC, then

det (Q) = det (AD −BC) (2.3)
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Definition 2.1 (Diagonal dominant matrix [99]). A matrix E = [eij] ∈ RN×N is said
to be diagonally dominant if, for all i,

eii ≥
∑
j 6=i
|eij| , (2.4)

additionally, if the above inequalities are all strict, the matrix E is said to be strictly
diagonally dominant.

Lemma 2.2 ([100]). If a matrix A = [aij] ∈ RN×N is irreducible and diagonal dominant
such that aii >

∑
j 6=i |aij| for at least one i, then A is nonsingular. On the other hand,

if A is strictly diagonal dominant, then Re (λi) > 0, where λi is its i-th eigenvalue.

2.1 Graph theory

Graphs theory provides natural abstractions for network systems. In this section,
some basic concepts and useful previous results on graph theory are provided1.

A directed graph (in short, a digraph) of order N , is a pair D = (V, E), where
V = {1, . . . , N} is a set of elements called nodes (or vertices) and E ⊆ V × V is a set
of ordered pairs of nodes, called edges. For i, j ∈ V the ordered pair (i, j) ∈ E denotes
an edge that starts on node i and ends at node j. An edge in the graph portrays the
flow of information between nodes. In an edge (i, j) ∈ E, i is called a parent or an
in-neighbor of node j, and j is called a child or an out-neighbor of node i. The in- and
out-neighbor sets of node i are defined respectively as

N in
i := {j ∈ V : (j, i) ∈ E, j 6= i} and N out

i := {j ∈ V : (i, j) ∈ E, i 6= j} . (2.5)

For a node i, the in-degree din (i) and out-degree dout (i) are the number of in-neighbors
and out-neighbors of i, respectively. A node is balanced if its in-degree is equal to
its out-degree. A digraph is topologically balanced if all its nodes are balanced. An
example of a digraph is shown in Figure 2.1.

A complete digraph, denoted by K, is a digraph such that EK = V × V. A digraph
Da = (Va, Ea) is a subgraph of DA = (VA, EA) if Va ⊆ VA and Ea ⊆ EA. Additionally, if
Va = VA, then Da is called a spanning subgraph of DA.

An undirected graph (in short, a graph) of order N , is a pair G = (V, E) consisting
of a set of nodes (or vertices) V = {1, . . . , N} and a set of unordered pairs of nodes
E ⊆ V×V. A graph is a bidirectional digraph, in the sense that the edge (j, i) ∈ E any
time that (i, j) ∈ E . The neighborhood of vertex i is defined as

Ni := {j ∈ V : (i, j) ∈ E, j 6= i} . (2.6)

For graphs, if j ∈ Ni, it follows that i ∈ Nj, since the edge set of a graph consists on a
unordered vertex pair. The degree d (i) of vertex i is numbers of neighbors of i. Figure
2.1 illustrates an example of a graph.

1This section is mainly based on [42, 100–102]
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Figure 2.1: A digraph (left) and a graph (right).

2.1.1 Paths and connectivity

In a digraph D, a self-loop is an edge that starts and ends in the same node.
A simple digraph has no self-loops and no multiple edges between the same pair
of nodes. A directed path of length m from node i to j is a sequence of edges
(i, k1) , (k1, k2) , . . . , (km, j) with distinct nodes kl and l = 1, 2, . . . ,m. A directed path
is called simple if no node appear more than once in it, except possibly for the initial
and final node. A cycle is a simple path that starts and ends at the same node. A
node with in-degree 0 is called a source, and every node with out-degree 0 is called a
sink. If a vertex is simultaneously both, then is called isolated. A cycle in a digraph is
a simple path that starts and ends in the same node. A digraph is acyclic if it contains
no cycles.

A directed tree (sometimes called a rooted tree) is an acyclic digraph where every
node has exactly one parent, except for one called the root, which has no parent, and
the root has a directed path to every other node. A directed tree is called a spanning
tree of digraph D if is a spanning subgraph of it. Rooted trees are denoted by T .

Denote the set of all digraphs D of order N as DN . The following gives some
connectivity notions of digraph and define their respective sets:

1. D ∈ DN is weakly connected if there are no isolated vertices. The set of all weakly
connected digraphs is denoted by DN

W .

2. D ∈ DN is strongly connected if there exists a directed path connecting every
vertex pair. The set of all strongly connected digraphs is denoted by DN

S .

3. D ∈ DN contains a directed spanning tree if has a spanning subgraph that is a
directed tree. The set of all digraphs that contains a directed spanning tree is
denoted by DN

ST .

Denote the set of all graphs G of order N as GN . A graph G ∈ GN is connected
if there exists a path between any two vertices. The set of all connected graphs is
denoted by GN

C . If a graph is not connected, then is composed of multiple connected
components, that is, multiple connected subgraphs. A graph with E = V × V is called
fully connected and is denoted as K .
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2.1.2 Weighted digraphs

A weighted digraph is a triplet D := (V, E,W), where the pair (V, E) is a digraph
and W is the collection of strictly positive weights wij ∈ R>0 associated to every edge
(i, j) ∈ E. A digraph can be regarded as a weighted digraph by defining its set of
weights equal to 1, i.e. setting wij = 1 for all (i, j) ∈ E.

Paths and connectivity notions and definitions of in and out-neighbors of digraphs
remain equally valid for wighted digraphs. Although the notions of in- and out-degree
are generalized for weighted digraphs. In a weighted digraph, the in- and out-degree
of the i-th vertex are defined, respectively as

din (i) :=
∑
j∈N in

i

wji and dout (i) :=
∑

j∈N out
i

wij.

A weighted digraph is weight-balanced if din (i) = dout (i) for all i ∈ V. A weighted
digraph is undirected, also called a weighted graph, if wij = wji for all i, j ∈ V. We call
D (correspondingly G), a balanced digraph (balanced graph) if it is weight-balanced.

2.1.3 Algebraic Graph Theory

There is a close relation between graph theory and matrix theory, with both fields
benefiting from each other. Digraphs admit a representations in terms of matrices. In
what follows, these matrices will be examined.

For a digraph D ∈ DN , the adjacency matrix A (D) := [aij] ∈ RN×N is a nonneg-
ative matrix with rows and columns indexed by the vertices in V with its elements
defined as:

aij :=

{
wji if (j, i) ∈ E,
0 otherwise.

(2.7)

The Laplacian matrix of a digraph is a zero row sum nonnegative matrix L (D)
defined as L (D) := Din (D) − A (D) where Din (D) := diag ([din (1) , . . . , din (N)]) is
the matrix of vertex in-degrees2. In components, L (D) := [lij] ∈ RN×N is defined as

lij :=

{ −aij if i 6= j,∑
j∈N in

i
aij if i = j.

(2.8)

Both, adjacency and Laplacian matrices, are equally defined for weighted graphs
G ∈ GN . However, they have the particular property of being symmetric and balanced,
which is not necessary true for digraphs.

Adjacency matrix properties

In what follows, some correspondences between digraphs and adjacency matrices
are reviewed. Let A (D) be an adjacency matrix associated to a digraph D ∈ DN .
Then, the following statements describe properties of D that can be extracted from
A (D):

2The Laplacian matrix of a directed graph can be defined in other ways, see for instance [102]
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1. D is undirected, that is, a graph G, if and only if A (D) is symmetric;

2. D is weight-balanced if and only if A (D) 1N = A (D)T 1N ;

3. In a digraph without self-loops, the node i is a sink if and only if the i-th row-sum
of A (D) is zero;

4. In a digraph without self-loops, the node i is a source if and only if the i-th
column-sum of A (D) is zero;

Laplacian matrix properties

Consider a digraph D ∈ DN with its associated Laplacian matrix L (D), and a
vector z ∈ RN . Then, the following conditions are equivalent.

1. The digraph D ∈ DN
ST ;

2. rank (L (D)) = N − 1;

3. L (D) z = 0N implies that z1 = · · · = zN ;

4. L (D) has a simple zero eigenvalue with an associated eigenvector 1N .

Denote as λi ∈ C the i-th eigenvalue of its associated Laplacian matrix L (D). Some
key properties of the eigenvalues λi are enlisted:

1. The eigenvalues can be ordered as 0 = |λ1| ≤ |λ2| ≤ · · · ≤ |λN |;

2. The eigenvalues are such that Re (λi) ≥ 0, for all i ∈ V, if and only if D ∈ DN
ST ;

3. If D ∈ DN
S , then Re (λ2) > 0. If in addition D ∈ DN

B , then Re (λ2) > 0 if and
only if D ∈ DN

S ;

4. If the digraph is bidirectional, i.e. a graph G ∈ GN with Laplacian L (G), all its
eigenvalues are pure real, that is, λi ∈ R for all i ∈ V.

5. If the digraph is bidirectional, i.e. a graph G ∈ GN with Laplacian L (G), then
λ2 > 0 and is a nondecreasing function of the edge weights. This value is known
as Fielder’s algebraic connectivity or, simply, algebraic connectivity.

The Laplacian matrix also have some remarkable properties with respect to its
eigenvectors, they are enlisted below.

1. L (D) 1N = 0N , i.e. 1N is the right eigenvector associated to λ1 = 0;

2. If D ∈ DN
B then L (D)T 1N = 0TN , i.e. 1N is the left eigenvector associated to

λ1 = 0;

Some other important results on eigenvectors of Laplacian matrices are given below.
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Lemma 2.3 ([100]). If the digraph D ∈ DST , then, with proper permutation, L (D)
can be reduced to the Frobenius normal form [51]

L (D) =


L11 L12 · · · L1k

0 L22 · · · L2k
...

...
. . .

...
0 0 · · · Lkk


where Lii with i = 1, · · · , k − 1 are irreducible, each Lii has at least one row with
positive row sum, and Lkk is irreducible or a zero matrix of dimension one.

Lemma 2.4 (Lemma 2.28 [100]). For a digraph D ∈ DN with Laplacian L (D) there
exists a positive vector z ∈ R>0 such that zTL (D) = 0TN if and only if D is a disjoint
union of strongly connected subgraphs.

Lemma 2.5 (Lemma 2.29 [100]). Consider a digraph D ∈ DN
ST with Laplacian L (D).

Let a nonnegative vector z ∈ R≥0 such that zTL (D) = 0TN . Then zi = 0 for all vertices
i that do no have directed paths to all other vertices in D and zi > 0 otherwise.

With the lemmas described above, we can build the following ones that relates
the positiveness of the elements of a Laplacian’s left eigenvector with the topological
properties of a digraph.

Lemma 2.6. For a digraph D ∈ DN
W with Laplacian L (D), there exists a vector z ∈

R>0 such that zTL (D) = 0TN if and only if D ∈ DN
S .

Proof. For the first part, from lemma 2.4, D must be a disjoint union of strongly con-
nected graphs, however, since D is weakly connected, there can be only one component,
therefore, D ∈ DN

S .
For the second part, notice that a if D ∈ DN

S , then every vertex is a root of a
directed spanning tree, therefore, from lemma 2.5, there exists a vector z ∈ R>0 such
that zTL (D) = 0TN .

Lemma 2.7. Let D ∈ DN
ST with Laplacian L (D) and let a nonnegative vector z ∈ R>0

such that zTL (D) = 0TN . Then, there exists an entry zi = 0 if and only if D /∈ DN
S .

Proof. Let zi = 0 for some i. Since D ∈ DN
ST by Lemma 2.5 we know that i do not have

a directed path to all other vertices in D. Thus, there exists a vertex j 6= i such that
there is no path from i to j joining them. Therefore, from the definition os a strongly
connected digraph, we conclude D /∈ DN

S .
Let D /∈ DS. Since D ∈ DN

ST , then D ∈ DN
W , implying D is not a disjoint union

of strongly connected digraphs. Also, the eigenvalue zero of L (D) has multiplicity
one. Therefore, the matrix L (D) is 1-reducible and can be rewritten in the Frobenius
normal form, then satisfies 1) B1 is irreducible, and 2) one of B12, · · · , B1k is not equal
to the zero matrix [100]. Without lost of generality, assume P = IN . One can show
that B1 is nonsingular and any vector such that zTL (D) = 0TN must be in the form
z = [0, z2, · · · , zN ]T with zk > 0 for k = 2, · · · , N .
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Additionally, the first left eigenvector has some interesting properties with respect
to the matrix Laplacian shown in the following lemmas

Lemma 2.8. (Lemma 3 in [103]) Suppose D ∈ DS. Then, there is a positive eigenvec-
tor z = [z1, · · · , zN ]T ∈ RN of L(D) associated with the zero eigenvalue and ZL(D) +
LT (D)Z ≥ 0, where Z = diag(z1, · · · , zN).

The following lemma describes a generalization of Fielder’s algebraic connectivity .

Lemma 2.9. (Lemma 4 in [103]) For a digraph D ∈ DS with Laplacian matrix L(D),

define its generalized algebraic connectivity as α (L(D)) = min
zT x=0,x 6=0

xT (ZL(D)+LT (D)Z)x
2xTZx

,

where z and Z are defined as in Lemma 2.8. Then, α(L(D)) > 0. For balanced graphs,

a(L(D)) = λ2

(
L(D)+LT (D)

2

)
, where λ2

(
L(D)+LT (D)

2

)
denotes the smallest nonzero eigen-

value of L(D)+LT (D)
2

.

Although Lemmas 2.6 and 2.7 prove the existence and positiveness of z it is not
clear yet the exact form of its entries. The following proposition gives a way to compute
the value of each entry in function of the edge weights and the contained rooted trees
inside a strongly connected digraph.

Proposition 2.1 (from Lemma 2.1 in [104]). For a digraph D ∈ DN
S and vector z ∈ RN

such that zTL (D) = 0TN ,

zi =
∑

T∈Ti(D)

∏
(k,j)∈ET

ωkj ∀i ∈ VD (2.9)

where Ti (D) is the set of all directed spanning trees in D that are rooted at node i, and
ET is the set of edges in the tree T.

The matrix Laplacian also holds a remarkable relation with the number of spanning
trees in a graph. Let M [s] denote the submatrix of M obtained by deleting the row
and column indexed by s.

Theorem 2.1 (Theorem 13.2.1 in [101]). Let G be a graph with Laplacian matrix L.
If u is an arbitrary vertex of G , then det(L[u]) is equal to the number of spanning trees
of G .

It follows from Theorem 2.1 the maximum number of spanning trees in a graph.

Corollary 2.1 (Corollary 13.2.2 in [101]). The number of spanning trees of K ∈ GN

is NN−2.

2.2 Mobile robots dynamic models

There is a great variety of mobile robots that can make up a multi-robot system
[99]. In this section, we review the dynamic models of differential mobile robots and
quadrotors, and we discuss some control techniques allowing us to model the posi-
tion and velocity dynamics of a point of interest within them through a second-order
dynamic system.
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2.2.1 Differential mobile robot

Perhaps one of the most popular kinds of mobile robotic systems is the differential
mobile robot. This configuration is one of the simplest and cheapest to build; It consists
of two independent wheels coupled to DC motors and a caster wheel to keep the robot
statically balanced. Translation and rotation of this type of robot are due to wheel
angular velocity differences. To model the kinematics of these, we use the well-known
unicycle model. The point r = [rx, ry]

T ∈ R2, located at mid-distance of the actuated
wheels (see Figure 2.2), has the following dynamics

ṙx
ṙy
θ̇
ν̇
ω̇

 =


cos (θ) 0
sin (θ) 0

0 1
0 0
0 0


[
ν
ω

]
+


0 0
0 0
0 0
1
m

0
0 1

J


[
F
τ

]
. (2.10)

where θ its heading angle, ν its driving velocity, ω its steering velocity, m is the mass
of the robot and J its moment of inertia [11, 42]. The variables ν and ω are related to
physical kinematic variables as

ν =
ρ

2
(ωr + ωl) , ω =

ρ

l
(ωr − ωl)

where ωl and ωr are the angular velocities of the left-side and right-side wheel, respec-
tively, ρ is the radius of the wheels, and l is the distance between them. Therefore, ν
and ω serve as control variables. The way these variables relate to the actual inputs of
the robot is

ωr =
2ν + lω

2ρ
ωl =

2ν − lω
2ρ

.

These values serve as references to the wheels angular velocity controllers in the robot
(see, for example [28, 30]). Also, notice robot’s centre of mass accelerates when turning
if it is outside the wheels axis. This effect is not included in the model (2.10) as we
assume the centre of mass is in the wheel axis (see [105] for more details).

It has been shown that the differential mobile robots posses a non-holonomic re-
striction. That is, assuming the robot rolls without side slipping, the robot does not
experience any motion along the wheels axle, which is described by the following non-
holonomic constraint:

ṙx sin (θ)− ṙy cos (θ) = 0. (2.11)

This constraint prevents the robot from being stabilized through a continuous and static
state feedback controller, i.e. robot’s position and orientation cannot simultaneously
be stabilized [106]. Nonetheless, time-varying and discontinuous control strategies has
been proposed to deal with this issue [107–110].

Let x := [rx, ry, θ, ν, ω]T and µ := [F, τ ]T , be the robot’s state and input vector.
The equations of motion can be written as

ẋ = f(x) + g(x)µ (2.12)
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θ
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ry

rx
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Figure 2.2: Differential mobile robot with hand.

where the definitions of f and g can be inferred from (2.10). Now, define a point of
interest p = [px, py]

T within the robot that lies at a distance d along the line that is
normal to the wheel axis and intersects it at the center point of the robot r, as shown
in Figure 2.2. The point of interest might represent the position of an actuator or
sensor mounted on the differential mobile robot, and we aim to control its position.
The kinematics of this point of interest is holonomic for d 6= 0. From Figure 2.2, notice
that the position of h its given as[

px
py

]
=

[
rx
ry

]
+ d

[
cos (θ)
sin (θ)

]
. (2.13)

From equations (2.10) and (2.13) the dynamics of the point of interest is given by[
ṗx
ṗy

]
=

[
cos (θ) −d sin (θ)
sin (θ) d cos (θ)

] [
ν
ω

]
. (2.14)

Meanwhile, the second-order derivative is[
p̈x
p̈y

]
=

[
−νω sin (θ)− dω2 cos (θ)
νω cos (θ)− dω2 sin (θ)

]
+

[
1
m

cos (θ) − d
J

sin (θ)
1
m

sin (θ) d
J

cos (θ)

] [
F
τ

]
. (2.15)

Because

det

([
1
m

cos (θ) − d
J

sin (θ)
1
m

sin (θ) d
J

cos (θ)

])
=

d

mJ
6= 0,

system (2.10) with output (2.13) has a relative degree of two, therefore, it can be
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feedback linearized about the point of interest [111]. Define the map ψ : R5 7→ RN as:

χ = ψ (x) :=


rx + d cos (θ)
ry + d sin (θ)

ν cos (θ − dω sin (θ))
ν sin (θ) + dω cos (θ)

θ

 . (2.16)

This map defines a diffeomorphism whose inverse is given by

x = ψ−1 (χ) :=


χ1 − d cos (χ5)
χ2 − d sin (χ5)

χ5
1
2
χ3 cos (χ5) + 1

2
χ4 sin (χ5)

− 1
2d
χ3 sin (χ5) + 1

2d
χ4 cos (χ5)

 .
In transformed coordinates, (2.10) and (2.13), are given by[

χ̇1

χ̇2

]
=

[
χ3

χ4

]
[
χ̇3

χ̇4

]
=

[
−νω sin (θ)− dω2 cos (θ)
νω cos (θ − dω2 sin (θ))

]
+

[
1
m

cos (θ) − d
J

sin (θ)
1
m

sin (θ) d
J

cos (θ)

]
µ

χ̇5 = − 1

2d
χ3 sin (χ5) +

1

2d
χ4 cos (χ5) .

The output feedback linearizing controller is given by

µ =

[
1
m

cos (θ) − d
J

sin (θ)
1
m

sin (θ) d
J

cos (θ)

]−1(
u−

[
−νω sin (θ)− dω2 cos (θ)
νω cos (θ − dω2 sin (θ))

])
which gives [

χ̇1

χ̇2

]
=

[
χ3

χ4

]
[
χ̇3

χ̇4

]
= u

χ̇5 = − 1

2d
χ3 sin (χ5) +

1

2d
χ4 cos (χ5) .

The last equation corresponds to the unobservable and uncontrollable internal dynam-
ics of the systems. The zero dynamics is found by setting χ1 = · · · = χ4 = 0 to obtain
χ̇5 = 0. Since χ5 = θ and the vector [χ3, χ4]T is the velocity of the point of interest,
then it can be conclude that the angle will stop changing when the robot stops moving.

Notice that the position of the point of interest is p = [χ1, χ2], whose dynamics can
be described as a double-integrator systems in the following way

ṗ = v, v̇ = u, (2.17)

with u being the new control signal [42, 112].
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Figure 2.3: A quadrotor.

2.2.2 Quadrotor

A quadrotor, shown in Figure 2.3, is a Unmanned Air Vehicle (UAV) classified as
a type of multicopter [113]. Due to its simple structure, a quadrotor is easy-to-use
and features high reliability and low-cost maintenance. A drone has four propellers
providing it with the ability of Vertical Take-Off and Landing (VTOL). Therefore, it
has four control inputs which are the four propeller angular speeds. In what follows,
we present the quadrotor’s dynamic model.

Using the Euler-Lagrange approach (see [114] for the details), the quadrotor’s
dynamic model is obtained under the following assumptions: The drone is a rigid
body, its mass and moment of inertia are constant, the geometric centre and cen-
tre of gravity are the same and propellers with odd indices rotate counterclockwise
while propellers with even indices rotate clockwise. The model consists of the robot’s
position ξ = [x, y, z]T ∈ R3, respect to a fixed frame, and its rotation coordinates
η = [φ, θ, ψ]T ∈ R3, respect to its body frame, described by the following equations:

mξ̈ = R

 0
0
F

+

 0
0
−mg

 (2.18a)

J̃ η̈ = τ − C (η, η̇) η̇ (2.18b)

where m is the mass of the quadrotor, F is the force trust applied to its center of mass,
g the gravitational constant, τ = [τφ, τθ, τψ]T ∈ R3 is the vector torque generated by
the rotors, J̃ = JW with J the inertial symmetrical matrix and C(η, η̇) = JẆ is the
Coriolis term; The matrices R and W are defined as follows:

R =

 cψcθ −cθsψ sθ
cφsψ + cψsφsθ cφcψ − sφsψsθ −cθsφ
sφsψ − cφcψsθ cψsφ+ cφsψsθ cφcθ

 and W =

 1 0 −sθ
0 cφ cθsφ
0 −sφ cθcφ

 ,
where sλ = sin(λ) and cλ = cos(λ) with λ ∈ {φ, θ, ψ}. According to [114, 115], to
simplify equation (2.18b), let be

τ = J̃ τ̃ + C (η, η̇) η̇, (2.19)
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where τ̃ = [τ̃φ, τ̃θ, τ̃ψ]T is an auxiliary torque vector. The closed-loop system (2.18)-
(2.19) yields to the following dynamics:

mξ̈ =

 F sin(θ)
−F cos(θ) sin(φ)

F cos(θ) cos(φ)−mg

 (2.20a)

η̈ = τ̃ (2.20b)

The main thrust force F and the torques τ are related to the thrust forces fi, with
i ∈ {1, 2, 3, 4} generated by each motor in the following way

[
F
τ

]
=


1 1 1 1
−l l 0 0
1 0 −l l
− b
k
− b
k

b
k

b
k



f1

f2

f3

f4

 (2.21)

where l is the length of the quadrotor’s arms, b is the drag constant of the rigid body
and k is the thrust constant of every rotor-propeller array [114, 115].

Equation (2.20) shows the quadrotor’s dynamics admits a decomposition into two
hierarchical levels: Posture and orientation dynamics. We assume the rotational dy-
namics converges faster than the translational dynamics. Hence, we propose a cascade
controller. In the inner loop, we have orientation control. The outer loop is in charge
of posture control feeding on a generator of the desired trajectory ξd. Figure 2.4 shows
this control scheme which we describe in the following section.

Orientation control

Let ηd = [φd, θd, ψd]
T ∈ R3 be the twice differentiable desired trajectories for the

quadrotor’s orientation angles and define the angle errors as follows:

eφ := φ− φd, eθ := θ − θd, and eψ := ψ − ψd. (2.22)

Also,define the auxiliary torque vector elements from equation (2.19) as follows:

τ̃φ = φ̈d − κ1

(
φ̇− φ̇d

)
− κ2 (φ− φd)

τ̃θ = θ̈d − κ1

(
θ̇ − θ̇d

)
− κ2 (θ − θd) (2.23)

τ̃ψ = ψ̈d − κ1

(
ψ̇ − ψ̇d

)
− κ2 (ψ − ψd) .

Let e1 = [eφ, eθ, eψ]T ∈ R3 and e2 = [ėφ, ėθ, ėψ]T ∈ R3, then the error dynamics of the
closed-loop system (2.22)-(2.23) is:[

ė1

ė2

]
=

([
0 1
−κ1 −κ2

]
⊗ I3

)[
e1

e2

]
(2.24)

which is exponentially stable for κ2 > 0 and κ1 =
κ22
4

. A sufficiently large gain κ2 leads
the quadrotor’s orientation to the desired one as fast as needed [114, 115].

With this analysis, we establish that the quadrotor can follow desired orientation
angle trajectories. We exploit this property in the posture control scheme.
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Figure 2.4: Hierarchical control scheme.

Posture control

Given the previous analysis, we will use, whenever needed, the orientation angles
as control inputs for the translational coordinates, which describe the desired angle
trajectories defined in the previous section. Here, we establish a relation between ori-
entation angles and auxiliary control inputs to transform the quadrotor’s translational
dynamics into a second-order system.

We begin the posture controller design with the stabilization of the quadrotor’s
altitude. From equation (2.20) notice that

mz̈ = F cos(φ) cos(θ)−mg. (2.25)

We aim to a linearize the dynamics of this coordinate. Here, the control signal is
introduced through the total thrust F . Thus, let

F =
m(uz + g)

cos(φ) cos(θ)
. (2.26)

The closed-loop system (2.25)-(2.26) yields to z̈ = uz, where uz is the auxiliary control.
The y-coordinate is governed by the following dynamics:

mÿ = −F sin(φ) cos(θ). (2.27)

Substituting (2.26) in it, we have

mÿ = −m(uz + g) tan(φ). (2.28)

Following the same reasoning of the previous case, letting

φ = arctan

(
− uy
uz + g

)
(2.29)

yields us to ÿ = uy, where uy is the auxiliary control. Finally, the x-coordinate dynam-
ics is

mẍ = F sin(θ). (2.30)

Substituting (2.26) in (2.30) and solving for θ we obtain

θ = arctan

(
ux cos(φ)

uz + g

)
(2.31)
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where ux is another auxiliary control signal. Thus, the x-coordinate dynamics is ẍ = ux.
In conclusion, letting the angles from equations (2.29) and (2.31) define their cor-

responding desired values in equation (2.23), we obtain a hierarchical controller that
allows describing the posture dynamics as a second-order system; That is:

ṗ = v, v̇ = u (2.32)

where p = [x, y, z]T ∈ R3 and u = [ux, uy, uz]
T ∈ R3.

2.3 Multi-robot systems control problems

In the previous section, we discussed a way to model the translational dynamics of
a mobile robot through a second-order dynamic system. From now on, we state the
thesis control problems for the second-order systems.

Consider a multi-robot system consisting of N robots with the i-th mobile robot
dynamics given by

ṗi = vi, v̇i = ui, i ∈ I := {1, 2, . . . , N} , (2.33)

where pi, vi, ui ∈ Rn (with n = 1, 2 or 3) are its position, velocity and control input,
respectively. For each robot, there is an individual input constraint given by

‖ui‖ ≤ ûi, i ∈ I. (2.34)

where ûi ∈ R>0 is the input constraint of the ith robot. Restriction (2.34) indicates that
different robots can move at different speeds. Therefore, some robots might achieve
their motion objectives faster than others. Additionally, for each robot, there is a
maximum reliable communication/detection distance range ri ∈ R>0. Therefore, the
relative position between robots determines if a network edge exists among them, which
results on a dynamic network topology where edges appear or disappear as robots
navigate through the environment. This type of dynamic network topology is known
as a proximity graph which we describe later in this section.

Usually, multi-robot systems require to travel through the environment following
the desired path or to reach an arrival point of interest in a leader-followers scheme. In
this case, a leader describing the desired trajectory is identified, and the other robots
must follow it. The leader can be either virtual or a member of the group. Virtual
leaders are not physical robots, but their motion is transmitted to some members of the
group. In this thesis, leaders are always virtual. We consider only one virtual leader
with the following dynamics

ṗ0 = v0, v̇0 = f (t, p0, v0) , (2.35)

where p0, v0 ∈ Rn (with n = 1, 2 or 3) are the position and velocity of the leader,
respectively, and a velocity vector field f : R>0 × Rn × Rn 7→ Rn with function f
being measurable and locally essentially bounded functions, i.e. a solution v0(t) exists
and is unique. We assume that there is only a subset I0 ⊂ I of robots in the multi-
robot systems having access to the information from the leader, i.e. if i ∈ I0, then
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the ith robot has a connection with the virtual leader and access to its information
(position and velocity). Those robots are called informed members on the group. With
this assumption, it is no needed that every robot have dedicated equipment to receive
leader’s information, allowing a simplest/cheaper design of them.

Notice that the robots in (2.33) have access only to the information collected from
within its neighbourhood and from the leader in case it is an informed robot. Therefore,
since the only kind of information available to it is local, any controller design for the
input vector ui for all i ∈ I is a distributed approach. Moreover, since the robots in the
neighbourhood might change as robots move through the environment, the distributed
controller designs must handle network switches while driving the multi-robot system
to the control objective.

Before we present the control objectives, the concept of proximity digraphs, which
serves as a way to model dynamic networks, is introduced.

2.3.1 Proximity digraphs

A proximity digraph is a state-dependent digraph3 in which the relative position
between robots determines the existence of an edge [102]. More precisely, it is a digraph

D ∈ DN that its determine by the configuration p =
[
pT1 , p

T
2 , . . . , p

T
N

]T ∈ RnN of a
multi-robot system. That is, we call D (p) := (V, E (p)) a proximity digraph with
V = I as the set of nodes (robots) and E (p) as the set of edges of D (p). However, the
how relative position between pair of robots dictates the existence of an edge among
them needs to be determinate 4. In general terms, we consider an indicator function
σij (pij) : Rn 7→ {0, 1}, where pij = pi − pj. That is, E (p) is a set that depends on the
multi-robot system configuration defined as:

E (p) := {(i, j) ∈ V × V : σij (pij) = 1 for all i, j ∈ V, j 6= i} . (2.36)

For a configuration p, an edge (j, i) ∈ E (p) indicates the ith robot receives (or sense)
information from the jth robot. The set of in- and out-neighbours are then defined as

N in
i (p) := {j ∈ V : (j, i) ∈ E (p) , j 6= i} (2.37)

N out
i (p) := {j ∈ V : (i, j) ∈ E (p) , i 6= j} . (2.38)

For a case in which σij (pij) ⇐⇒ σji (pji), the underlying information network
can be modeled by means of a proximity undirected graph G (p) := (V, E (p)). In such
scenario, the neighborhood of the i-th robot is

Ni (p) := {j ∈ V : (i, j) ∈ E (p) , i 6= j} = N in
i (p) = N out

i (p) . (2.39)

Notice that every member of the multi-robot system have access only to local informa-
tion, i.e. the data collected within its neighborhood N in

i (p), and any controller design
has to be build from that information.

3A state-dependent digraph is a mapping between the state space of a networked system and the
set of all its possible network configurations. See [102] for more details.

4In section 3.2 we show how is done in this thesis.
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Figure 2.5: A multi-robot system with limited communication/sensing ranges (left)
and its induced proximity digraph (right).

Group fragmentation is a phenomenon in multi-robot systems with proximity net-
works, where the group of robots splits into two or more components [64]. As a con-
sequence of this phenomenon, the global desired behaviour for the entire multi-robot
system is hindered. If the neighbourhood of the ith robot is empty, no information
can be used by the controller to direct the robot towards a path that allows solving
the global task. Therefore, it is necessary to preserve the connectivity property of the
proximity information network. A kind of distributed controller that address the con-
nectivity preservation issue from an initial time t0 to a final time tf , with 0 ≤ t0 < tf
is defined as follows.

Definition 2.2 (Strong connectivity preserving distributed controller). A controller ui
for the multi-robot system (2.33) is a strong connectivity preserving distributed con-
troller if it uses only the locally available information and, for the closed loop system,
the proximity digraph D (p) is strongly connected for all t ∈ [t0, tf ). If the informa-
tion network is bidirectional, the distributed controller ui is simply called connectivity
preserving.

The main objective in this thesis is the design distributed controllers that drives the
multi-robot system (2.33) into a coordinated motion through a behavioral approach.
We focus on two collective behaviors: Consensus and flocking. In the following subsec-
tions, both behaviors are defined for multi-robot systems described by (2.33), as well
as the corresponding control design problem.
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2.3.2 Consensus

In the context of multi-robot systems in the form of (2.33), the information state
is defined by the position and velocity of every robot. Therefore, the agreement to be
reached must be described in terms of these values.

There are in general two different configurations for consensus behavior: leaderless
and leader-followers. The leaderless configuration consists on the alignment of positions
and velocities of every robot in (2.33), without any specification of the value at which
such alignment must occur. This consensus behavior is defined as follows:

Definition 2.3 (Leaderless consensus behavior). We say that a multi-robot system
(2.33) asymptotically reach consensus in position with zero velocity if

lim
t→∞
‖pij‖ = ∆ij, lim

t→∞
‖vij‖ = 0 for all i ∈ I. (2.40)

where vij = vi − vj and ∆ij ≥ 0 denotes the desired position deviation between the ith
and jth robot.

On the other hand, for the leader-followers configuration there is a specific value to
which the information state of the robots must align. The leader-followers consensus
it is defined as follows:

Definition 2.4 (Leader-followers consensus behavior). We say that a multi-robot sys-
tem (2.33) asymptotically reaches a consensus with a leader in position with identical
velocity if

lim
t→∞
‖pi0‖ = ∆i0, lim

t→∞
‖vi0‖ = 0, for all i ∈ I. (2.41)

where pi0 = pi − p0, vi0 = vi − v0, and ∆i0 ≥ 0 denotes the desired position deviation
between the ith robot and the virtual leader.

The consensus problem consists in the design of a protocol (controller) to drive the
multi-robot system into the desired behaviour. Both leaderless and leader-followers
consensus problems are described as follows:

Problem 2.1 (Leaderless (leader-followers) consensus problem). Design a distributed
controller ui for all i ∈ I, such that (2.33) reaches a leaderless (leader-followers) con-
sensus behavior.

2.3.3 Flocking problem

Flocking in multi-robot systems, with dynamics (2.33), consists on the motion of
every robot following a cohesive group motion. In terms of the boids model, the
members of the group satisfy the heuristic rules: flock centering, collision avoidance
and velocity matching. These rules, can be translated to control objectives as we show
in this section.

We call a leaderless flocking motion to a flocking behavior in which there is no
desired path to follow, that is:
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Chapter 2. Preliminaries

Definition 2.5 (Leaderless flocking motion). We say that a multi-robot system (2.33)
is on leaderless flocking motion over a time interval [t0, tf ) if the following properties
are satisfied:

1. The group is cohesive: There exists a constant ρ ∈ R>0 such that ‖pij‖ ≤ ρ
for all i, j ∈ I with i 6= j;

2. Inter-robot collisions are avoided: The distance between robots is never
zero;

3. Inter-robot velocity mismatches are bounded: There exists a constant
υ ∈ R>0 such that ‖vij‖ ≤ υ for all i, j ∈ I;

Additionally, the leaderless flocking motion is called rigid if it results on a fixed con-
figuration where the inter-robot distances remain constant and every robot moves with
the same velocity vector.

For the case where there exists a virtual leader, the Definition 2.5 is modified to be:

Definition 2.6 (Leader-followers flocking motion). A multi-robot system (2.33) is on
leader-followers flocking motion, with a leader given by (2.35), over a time interval
[t0, tf ) if the properties (1) and (2) of Definition 2.5 are satisfied and, additionally:

1. Robot-leader position tracking errors are bounded: There exists a con-
stant ρ0 ∈ R>0 such that ‖pi0‖ ≤ ρ0 for all i ∈ I;

2. Robot-leader velocity mismatches are bounded: There exists a constant
υ0 ∈ R>0 such that ‖vi0‖ ≤ υ0 for all i ∈ I.

Additionally, as before, leader-followers flocking motion is called rigid if the inter-robot
distances and the leader-followers deviation are fixed, and every robot moves with the
same velocity vector as the leader.

Both leaderless and leader-followers flocking motion describes properties of the en-
tire group that must be enforced through the controllers (protocols) that is designed
such that the flocking motion arise from local interplays. Therefore, the flocking motion
problems are defined as follows.

Problem 2.2 (Leaderless (leader-followers) flocking motion problem). Design a con-
troller distributed ui for all i ∈ I such that the multi-robot system (2.33) achieves a
leaderless (leader-followers) flocking motion.

In the following Chapters, solutions to Problems 2.1 and 2.2, and some of their
variants, are designed under a distributed behavioral approach.
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3
Consensus Problems

In this chapter, we first explore the case of fixed digraphs and design distributed
controllers for consensus. Then, we build on top of them to extend these results to
information networks modelled through proximity digraphs.

Consider a multi-robot system consisting of N mobile robots described by the fol-
lowing second-order dynamics

ṗi = vi, miv̇i = ui i ∈ I := {1, · · · , N} , (3.1)

where pi, vi, ui ∈ Rn (with n = 1, 2 or 3) are position, velocity and input vector of the
i-th robot with mi ∈ R>0 as its mass. Robot’s dynamics (3.1) is often called an inertial
agent [50, 116]. This model captures heterogeneity in the network through the scaling
factors mi to represent different robots.

To design the controllers ui, we impose the following conditions. It must depends
continuously on the relative state deviation among the current robot and its neighbors;
if informed, also its deviation from the virtual leader. Considering such restrictions,
the following general form is used as controller:

ui =
∑
j∈N in

i

gij (pij, vij) + gi0 (pi0, vi0) , i ∈ I, (3.2)

where pij := pi−pj and vij := vi−vj are the deviations in position and velocity between
the ith robot and its neighbour j, while pi0 := pi−p0 and vi0 := vi−v0 are the position
and velocity deviations between the ith robot and the virtual leader. The functions
gij : Rn × Rn 7→ Rn, with gik (pik, vik) = 0n for all k /∈ N in

i , and gi0 : Rn × Rn 7→ Rn,
with gk0 (pk0, vk0) = 0n for all k /∈ I0 ⊂ I and I0 the set of informed robots, are all
continuous.

For the multi-robot system (3.1), the specific functions gij and gi0 in the distributed
controller (3.2) are presented in the following Sections.

3.1 Consensus problem over fixed digraphs

Consider a fixed information network; Figure 3.1, on page 38, shows an example of
it. That is, every robot has a fixed set of robots with which it can exchange information.
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Chapter 3. Consensus Problems

Denote as D the fixed digraph that represent the information network of the multi-
robot system (3.1). Next, we present the design of distributed controllers for leaderless
and leader-followers consensus problems.

3.1.1 Leaderless consensus

For this configuration, the informed robots set I0 is an empty set since there is no
leader. From Definition 2.3, an intuitive approach is to have gi0 (pi0, vi0) = 0n and:

ui =
∑
j∈N in

i

gij (pij, vij) = −κ1

∑
j∈N in

i

aij (pij − δij)− κ2

∑
j∈N in

i

aijvij, i ∈ I, (3.3)

where δi ∈ Rn (with n = 1, 2 or 3) is called the desired position of the ith robot
and δij = δi − δj is the distance between the desired positions of robots i and j (we
assume that these vectors exist). Additionally, ‖δij‖ = ∆ij ≥ 0 is the magnitude of the
distance between them. The values aij ∈ R≥0 are the scalar and constant ijth entry of
the adjacency matrix A (D). And κ1, κ2 ∈ R>0 are constant gains to be designed.

Applying (3.3) to (3.1) we have:

ṗi = vi (3.4a)

miv̇i = −κ1

∑
j∈N in

i

aij (pij − δij)− κ2

∑
j∈N in

i

aijvij, i ∈ I. (3.4b)

To analyze the closed-loop system (3.4), first define the ith robot’s errors to the
desired position and velocities as

p̃i := pi − δi and ṽi := vi − δ̇i for all i ∈ I. (3.5)

where δ̇i = 0n, since δi is constant. Notice then that if, for all i ∈ I, error p̃i approach
to the zero vector, then ‖pij‖ approximates to ∆ij. Therefore, we must show that the
error trajectories approach asymptotically to zero.

The error dynamics are:

˙̃pi = ṽi, (3.6a)

mi
˙̃vi = −κ1

∑
j∈N in

i

aij p̃ij − κ2

∑
j∈N in

i

aij ṽij, i ∈ I, (3.6b)

where the fact that p̃ij = pij − δij and ṽij = vij − δ̇ij was used. This error dynamics
description is written in terms of the digraph’s adjacency matrix entries. An equivalent
description, which uses the entries of the Laplacian matrix, defined in (2.8), and which
will be useful in demonstrating the stability of the error trajectories, is

˙̃pi = ṽi, (3.7a)

mi
˙̃vi = −κ1

N∑
j=1

lij p̃j − κ2

N∑
j=1

lij ṽj, i ∈ I, (3.7b)
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3.1. Consensus problem over fixed digraphs

where lij it’s the ij-th entry of the Laplacian matrix L (D). Now, define the vectors

p̃ := [p̃1, · · · , p̃N ]T ∈ RnN and ṽ := [ṽ1, · · · , ṽN ]T ∈ RnN . These vectors collect the
error states of every member in the multi-robot system. With these new vectors, and
using the Kronecker product (described in section 2), we can rewrite the closed-loop
error dynamics (3.7) in a matrix form as

˙̃p = ṽ, (3.8a)

(M ⊗ In) ˙̃v = −κ1 (L (D)⊗ In) p̃− κ2 (L (D)⊗ In) ṽ, i ∈ I, (3.8b)

where M = diag (m1, · · · ,mN) ∈ RN×N . Notice that M is an invertible matrix, with its

inverse given by M−1 = diag
(

1
m1
, · · · , 1

mN

)
, therefore, (M ⊗ In) its also an invertible

matrix. Then, using the properties of the Kronecker product, equation (3.8) can be
rewritten as

ẋ = (Θ⊗ In)x, (3.9)

where x =
[
p̃T , ṽT

]T ∈ R2nN and

Θ =

[
ZN IN
−κ1Ξ −κ2Ξ

]
∈ R2nN×2nN

with Ξ = [ξij] = M−1L (D) ∈ RN×N and ZN ∈ RN×N . Notice that

ξii =
1

mi

∑
j∈N in

i

aij, ξij = −aij
mi

, ∀i ∈ I and j 6= i.

Therefore, Ξ has the same zero-row sum property of L (D) and, hence, it has a unique
zero eigenvalue. The following Lemma generalizes Lemma 4.1 in [42]. There, instead
of Ξ, the matrix Laplacian L (D) was considered with the gain κ1 = 1. This lemma
gives a relation between the zero eigenvalues of Θ and the solutions of (3.9).

Lemma 3.1. The closed-loop system (3.1)-(3.3) achieves consensus asymptotically if
and only if Θ has exactly two zero eigenvalues and all other eigenvalues have negative
real parts. Specifically,∥∥∥∥∥vi −

N∑
j=1

γjvj(t0)

∥∥∥∥∥→ 0 and

∥∥∥∥∥pi −
N∑
i=1

γjpj(t0)−
N∑
i=1

γjvj(t0)t

∥∥∥∥∥→ 0 as t→∞,

where γ ∈ RN
>0 is such that of γTΞ = 0TN satisfying γT1N = 1.

Proof. (Sufficiency) We first show that if Θ has an eigenvalue 0 of multiplicity two and
all the others have negative real-part, then consensus is reached. Let q ∈ R2N be a unit
right eigenvector associated to the zero eigenvalue, that is Θq = 02N . From equation

(3.9) we have that q =
[
1TN ,0

T
N

]T
, which is unique. Since there cannot be other right

eigenvector associated to the 0 eigenvalue, matrix Θ cannot be diagonal. Therefore,
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Chapter 3. Consensus Problems

there exists a nonsingular matrix Q ∈ R2N×2N , such that Q−1ΘQ = J , where J is the
Jordan canonical form associated to Θ. Thus, one has

Θ = QJQ−1

= [ξ1, · · · , ξ2N ]

 0 1 Z1×(2N−n)

0 0 Z1×(2N−n)

Z(2N−n)×1 Z(2N−n)×1 J ′


 ζT1

...
ζT2N

 (3.10)

where ξi and ζi, with i = 1, · · · , 2N are respectively the right and left generalized
eigenvectors of Θ, and J ′ ∈ R(2n−n)×(2N−n) is the upper diagonal Jordan block matrix
associated with the nonzero eigenvalues µi,j for i = 2, · · · , N and j = 1, 2.

Without lost of generality, choose ξ1 =
[
1TN ,0

T
N

]T
as the right eigenvector and

ξ2 =
[
0TN ,1

T
N

]T
as the generalized right eigenvector of matrix Θ associated to the zero

eigenvalue. Notice that Θ has exactly two zero eigenvalues, therefore, Ξ has a simple
zero eigenvalue, which implies that there exists a positive vector γ such that γTΞ = 0TN
and 1TNγ = 1. It can be verified that ξ1 =

[
γT ,0TN

]T
and ξ2 =

[
0TN , γ

T
]T

are a left
eigenvector, and generalized left eigenvector of Θ associated to the zero eigenvalues,
respectively, where ζT1 ξ1 = 1 and ζT2 ξ2 = 1. Since µij for i = 2, · · · , N and j = 1, 2 have
negative real parts, and in view of the Kronecker product properties (2.2), therefore,

exp(Θ⊗In)t = exp(Q⊗In)(Jt⊗In)(Q−1⊗In)

=
(
Q expJtQ−1

)
⊗ In

=

Q
 1 t Z1×(2N−2)

0 1 Z1×(2N−2)

Z1×(2N−2) Z1×(2N−2) J ′t

Q−1

⊗ In. (3.11)

Notice that, since J ′ contains all the eigenvalues with negative real part, for a large t,
the matrix exp(J ′t)→ Z(2N−2)×(2N−2); Thus

lim
t→∞

exp(Θ⊗In)t =

 1Nγ
T t1Nγ

T Z1×(2N−2)

ZN×N 1Nγ
T Z1×(2N−2)

Z1×(2N−2) Z1×(2N−2) Z(2N−2)×(2N−2)

⊗ In.
From the previous expression, notice that

lim
t→∞

∥∥∥∥∥
[
p(t)
v(t)

]
− IN ⊗

[ ∑N
i=1 γjpj(t0)−∑N

i=1 γjvj(t0)t∑N
j=1 γjvj(t0)

]∥∥∥∥∥ =

lim
t→∞

∥∥∥∥∥exp(Θ⊗In)t

[
p(t0)
v(t0)

]
− IN ⊗

[ ∑N
i=1 γjpj(t0)−∑N

i=1 γjvj(t0)t∑N
j=1 γjvj(t0)

]∥∥∥∥∥
= lim

t→∞

∥∥∥∥([ 1Nγ
T t1Nγ

T

ZN×N 1Nγ
T

]
⊗ In

)[
p(t0)
v(t0)

]
−IN ⊗

[ ∑N
i=1 γjpj(t0)−∑N

i=1 γjvj(t0)t∑N
j=1 γjvj(t0)

]∥∥∥∥∥ = 0,
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3.1. Consensus problem over fixed digraphs

which indicates that the (3.3) is a solution to the leaderless consensus Problem 2.1.

(Necessity) If the condition that Θ has exactly one zero eigenvalue of multiplicity
two, and every other eigenvalue has positive real part, is not satisfied, then lim

t→∞
expΘt

has a rank grater than two, which contradicts the assumption of that the leaderless
consensus is reached.

The eigenvalues of Θ are extremely important for the stability analysis of (3.9).
Therefore, denote as µij, with i = 1, · · · , N and j = 1, 2, and λi, with i = 1, · · · , N ,
the eigenvalues of Θ and Ξ, respectively. The eigenvalues of Θ can be found by solving
the characteristic equation det (µI2N −Θ) = 0. Notice that Θ fulfills the property
(2.3), therefore

det (µI2N −Θ) = det

(
µIN −IN
κ1Ξ µIN + κ2Ξ

)
= det

(
µ2IN + (κ2µ+ κ1) Ξ

)
=

N∏
i=1

(
µ2 + (κ2µ+ κ1)λi

)
= 0 (3.12)

Hence, the eigenvalues of Θ can be calculated as

µi,1 =
−κ2λi +

√
κ2

2λ
2
i − 4κ1λi

2
,

µi,2 =
−κ2λi −

√
κ2

2λ
2
i − 4κ1λi

2
.

(3.13)

From (3.13), it can be seen that Θ has a zero eigenvalue of algebraic multiplicity 2a if
and only if Ξ has an eigenvalue zero of algebraic multiplicity a.

With the following result we give conditions over the distributed controller gains κ1

and κ2, and the static digraph D such that the consensus behavior is asymptotically
achieved by the heterogeneous multi-robot system (3.1).

Theorem 3.1. The closed-loop system (3.1)-(3.3) achieves consensus asymptotically
if and only if D ∈ DST and

κ2
2

κ1

> max
2≤i≤N

{
Im (λi)

2

Re (λi)
(
Re (λi)

2 + Im (λi)
2)
}

(3.14)

where λi with i = 2, · · · , N are the non-zero eigenvalues of Ξ. Specifically,∥∥∥∥∥vi −
N∑
j=1

γjvj(t0)

∥∥∥∥∥→ 0 and

∥∥∥∥∥pi −
N∑
j=1

γj (pj(t0) + vj(t0)t)

∥∥∥∥∥→ 0 as t→∞,

where γ ∈ RN
>0 is such that of γTΞ = 0TN satisfying γT1N = 1.
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Figure 3.1: Multi-robot system’s information network.

Proof. From the discussion on Laplacian matrix properties in Section (2.1.3) we know
that L (D) has exactly one zero eigenvalue, therefore, Ξ has a zero eigenvalue of mul-
tiplicity two. From Lemma 3.1, we only need to prove that Re (µi,j) < 0 for all
i = 2, · · · , N and j = 1, 2 if and only if (3.14) holds and Re (λi) > 0 for all i = 2, · · · , N .

Let
√
κ2

2λ
2
i − 4κ1λi = a + bi, where a, b ∈ R and i =

√
−1. From (3.13), we have

that Re (µi,j) < 0 if and only if a < κ2Re (λi) for all i = 2, · · · , N . Then, its sufficient
to prove that (3.14) holds if and only if a2 < κ2

2Re (λi)
2. Notice that

κ2
2λ

2
i − 4κ1λi = (a+ bi)2 .

Separating real and imaginary parts we obtain

a2 − b2 = κ2

(
Re (λi)

2 − Im (λi)
2)− 4κ1Re (λi)

2ab = κ2
2Re (λi) Im (λi)− 4κ1Im (λi) .

After some algebraic manipulations, we have

a4 −
[
κ2

2

(
Re (λi)

2 − Im (λi)
2)− 4κ1Re (λi)

]
a2 − Im (λi)

2 [κ2
2Re (λi)− 2κ1

]2
= 0,

from which it is easy to observe that a2 < κ2
2Re (λi)

2 if and only if (3.14) holds.

In Theorem 3.1 necessary and sufficient conditions are given for the distributed
controller (3.3) being a solution to the leaderless consensus problem. In it, we give
a relationship between the gains in (3.3), and the real and imaginary parts of the
eigenvalues of the Laplacian matrix associated to the directed information network.

Example 3.1. Consider the closed-loop system (3.1)-(3.3),consisting of N = 6 robots
moving on a (x, y)-plane (i.e. n = 2). The mass for each robot is mi = i, thus
M = diag (1, 2, 3, 4, 5, 6). Suppose the information network is modeled by the digraph
shown in Figure 3.1, with edge weights aij = 1 if and only if (j, i) ∈ E. For simplicity,
suppose we want the group to move jointly sharing the same position and velocity
vectors, that is ∆ij = ∆̇ij = 0. Robots cannot share the same location, however,
recall that pi is the position of a point of interest in the robot. Since we consider the
motion of the multi-robot system is over a plane, both differential mobile robots and

38



3.1. Consensus problem over fixed digraphs

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
time

0

2

4

6

8

10

x-
ax

is

p[1]
1

p[1]
2

p[1]
3

p[1]
4

p[1]
5

p[1]
6

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
time

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.25

x-
ax

is

v[1]
1

v[1]
2

v[1]
3

v[1]
4

v[1]
5

v[1]
6

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
time

1

0

1

2

3

4

5

6

7

y-
ax

is

p[2]
1

p[2]
2

p[2]
3

p[2]
4

p[2]
5

p[2]
6

(a)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
time

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

y-
ax

is

v[2]
1

v[2]
2

v[2]
3

v[2]
4

v[2]
5

v[2]
6

(b)

Figure 3.2: Closed-loop system (3.1)-(3.3) of Example 3.1.

drones can be consider here; this is in a case where, for the differential mobile robots,
the point of interest is on different heights.

The nonzero eigenvalues of Ξ are λ2,3 = 0.267 ± 0.084i, λ4 = 0.5, λ5 = 0.666 and
λ6 = 3.082. These values define the 12 eigenvalues of Θ through the relation (3.13).
To ensure every eigenvalue of Θ has negative real-part, the control gains must fulfill

inequality (3.14), that is
κ22
κ1
> 0.338. The Figure 3.2 shows the state trajectories for

controller gains κ1 = 4 and κ2 = 3. The trajectories reach a consensus on position and
velocity vectors, as desired.

3.1.2 Leader-followers configuration

Consider there is a virtual leader with dynamics described by equations

ṗ0 = v0, v̇0 = f (t, p0, v0) , (3.15)

where p0, v0 ∈ Rn are respectively the position and velocity of the leader with a velocity
vector field f : R>0 × Rn × Rn 7→ Rn, where f is measurable and locally essentially
bounded functions, i.e. a solution v0(t) exists and is unique. Every robot will continue
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Chapter 3. Consensus Problems

to use the gij functions defined in (3.3). Additionally, each informed robot (i.e. ∈ I0)
will implements functions gi0 in (3.2) to be design.

Virtual leader without acceleration

Consider the virtual leader moves at a constant velocity v0, that is, the vector field
in (3.15) is f (p0, v0, t) ≡ 0n. Notice that, if v0(t0) = 0n the leader describes a fixed
position to which the multi-robot system must arrive, meanwhile, if v0(t0) = v∗0, with
vector v∗0 ∈ Rn constant, the leader describes a trajectory that starts at p0(t0) and
moves with a constant velocity.

Since the objective is to steer informed robots to the leader’s state trajectories, we
propose to use an error state feedback

gi0 (pi0, vi0) = −hi (κ1 (pi0 − δi0) + κ2 (vi0)) , i ∈ I (3.16)

where pi0 = pi−p0 and vi0 = vi−v0 are respectively the position and velocity deviation
between the ith robot and the leader; hi ∈ R>0 for all i ∈ I0, with hi = 0 otherwise;
and the constant vector δi0 = δi − δ0 ∈ Rn, with ‖δi0‖ = ∆i0 is the desired position
deviation between the i-th robot and the leader. Therefore, the distributed controller
(3.2) takes the following form

ui = −κ1

∑
j∈N in

i

aij (pij − δij)− κ2

∑
j∈N in

i

aij

(
vij − δ̇ij

)
− hi

(
κ1 (pi0 − δi0) + κ2

(
vi0 − δ̇i0

))
, i ∈ I, (3.17)

where δij = δi−δj. Notice that if i /∈ I0 then only the neighborhood information is used,
while if i ∈ I0 the leader’s data is also used in the informed robots. The closed-loop
system (3.1)-(3.17) is

ṗi =vi, (3.18a)

miv̇i =− κ1

∑
j∈N in

i

aij (pij − δij)− κ2

∑
j∈N in

i

aijvij (3.18b)

− hi (κ1 (pi0 − δi0) + κ2vi0) , i ∈ I,

Define the error states as follows

p̃i := pi − (p0 + δi0), and ṽi := vi − v0, for all i ∈ I. (3.19)

The error dynamics is

˙̃pi = ṽi, (3.20a)

mi
˙̃vi = −κ1

∑
j∈N in

i

aij p̃ij − κ2

∑
j∈N in

i

aij ṽij − hi (κ1p̃i0 + κ2ṽi0) , i ∈ I. (3.20b)
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Figure 3.3: Multi-robot system’s information network examples with a virtual leader.

An equivalent description in terms of the Laplacian matrix L (D) entries is

˙̃pi = ṽi, (3.21a)

mi
˙̃vi = −κ1

N∑
j=1

lij p̃j − κ2

N∑
j=1

lij ṽj − hi (κ1p̃i0 + κ2ṽi0) , i ∈ I. (3.21b)

Define the vectors p̃ :=
[
p̃T1 , · · · , p̃TN

]T ∈ RnN and ṽ :=
[
ṽT1 , · · · , ṽTN

]T ∈ RnN , and let

L̂ (D) = L (D) + H with H = diag (h1, · · · , hN). By using the Kronecker product,
equation (3.21) can be written in a matrix form as

˙̃x =
(

Θ̂⊗ In
)
x̃ (3.22)

where x̃ =
[
p̃T , ṽT

]T ∈ R2nN and

Θ̂ =

[
ZN IN
−κ1Ξ̂ −κ2Ξ̂

]
with Ξ̂ = M−1L̂ (D) ∈ RN×N .

Now, if Θ̂ is Hurwitz, then we can ensure the error states approach to zero. We
have the following definition:

Definition 3.1. Call DN+1 an extended digraph if the virtual leader is considered as
the N + 1 member of the multi-robot system. Additionally denote as A (DN+1) and
L (DN+1) to its corresponding Adjacency and Laplacian matrices.

Consider the information networks shown in Figure 3.3. Notice the extended di-
graph in Figure 3.3(b) doesn’t contain any spanning tree, while in Figure 3.3(a), the
leader (node 0) is the root of the only spanning tree contained in the extended digraph.

Lemma 3.2 (Extracted from Theorem 3.8 in [42]). Matrix L̂ (D) is invertible if and
only if the extended digraph DN+1 ∈ DN+1

ST with the leader as the root. Additionally,

for all the eigenvalues λi of L̂ (D), Re (λi) > 0 with i = 1, · · · , N .
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Proof. Let L (DN+1) be the Laplacian matrix associated to it. Notice that the matrix

L (DN+1) =

[
LN×(N+1)

Z1×(N+1)

]
has zero row sum. Therefore, by the Laplacian matrices

properties (see Section 2.1.3), rank (L (DN+1)) = N . Thus, if DN+1 ∈ DST then
rank

(
LN×(N+1)

)
= N , since the last row of L (DN+1) has all its entries equal to zero.

Observe that LN×(N+1) = [L∗, h], with L∗ = [l∗ij] ∈ RN×N defined as l∗ij = aij, for

i 6= j, l∗ii =
∑N+1

j=1,j 6=i aij and h =
[
a1(N+1), · · · , aN(N+1)

]T ∈ RN . Since LN×(N+1) has
N + 1 columns and zero row sum, we have that its last column depends on the first
N ones, where h = −L∗1N . Therefore, rank (L∗) = rank ([L∗, h]) = N if and only if
DN+1 ∈ DN

ST . Moreover, since rank (L∗) has full rank, then is invertible. Finally, it
can be seen that L∗ = L̂ (D) has full rank and, hence, is invertible.

In addition, since DN+1 ∈ DN+1
ST then L (DN+1) has a eigenvalue equal to zero,

while the rest have positive real parts. Hence, there exists a matrix P such that
L (DN+1) = PΛ+P−1, with Λ+ = diag (λ1, · · · , λN+1). Without lost of generality, the
eigenvalues can be ordered as λ1 ≥ . . . ≥ λN > λN+1 = 0. Since L̂ (D) has full rank
it must contains all nonzero eigenvalues of L (DN+1) implying that every eigenvalue of
L̂ (D) has positive real part.

The conditions on κ1 and κ2 such that Θ̂ is Hurwitz are given in the following result:

Theorem 3.2. The closed-loop system (3.1)-(3.17) achieves leader-followers consensus
asymptotically, for a virtual leader (3.15) with f (p0, v0, t) ≡ 0n, if and only if Θ̂ is
Hurwitz and

κ2
2

κ1

> max
1≤i≤N

{
Im (λi)

2

Re (λi)
(
Re (λi)

2 + Im (λi)
2)
}

(3.23)

Proof. Notice that the solutions of the error dynamic system (3.22) are

x̃(t) = exp
(

Θ̂t⊗ In
)
x̃(0) =

(
exp

(
Θ̂t
)
⊗ In

)
x̃(0),

where x̃(0) is the initial conditions vector. The distributed controller (3.17) is a solu-
tion to the leader-followers consensus problem, is equivalent to demonstrate that Θ is
Hurwitz. From Lemma 3.2 and the fact that M is a positive definite matrix, is clear
that all the eigenvalues of Ξ̂ = M−1L̂ (D) have positive real part. The eigenvalues
of Θ̂ and Ξ̂ are such that (3.13) is satisfied. Therefore, to have Re (µi,j) < 0, for all
i = 1, · · · , N and j = 1, 2, the gains κ1 and κ2 need to satisfy the condition (3.23) to
which we arrive following the same proof of Theorem 3.1.

Example 3.2. Consider the multi-robot system (3.1) consisting of N = 6 robots moving
in a plane (n = 2) with masses such that the matrix M = diag (1, 2, 3, 4, 5, 6). Apply
controller (3.17) with h1 = 1 and hi = 0 for i = 2, · · · , 6 and let the information
network be the one shown in Figure 3.3a.

The nonzero eigenvalues of Θ are µi,j = {0.667, 0.5, 4.062, 0.027, 0.263± 0.077i}.
Let κ1 = 1, condition (3.23) implies that κ2 > 0.299. The Figure 3.4 shows the
position and velocity error norms which approach to zero and, therefore, the consensus
behavior with the virtual leader is reached.
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Figure 3.4: Closed-loop system (3.1)-(3.17) of Example 3.2.

Virtual leader with acceleration

Now, consider that the vector field of (3.15) is not equivalent to zero. Then, the
velocity of the virtual leader might change over time. One might think the controller
(3.17) solves this problem set. The following example shows that’s not the case.

Example 3.3. Consider the same multi-robot system set described in the Example 3.2
and let f(t, p0, v0) = [− cos(t),− sin(t)]T in (3.15) be the velocity vector field of the
virtual leader. With this vector field, the virtual leader’s position trajectory describes a
unit circle in the xy-plane. Recall we are applying controller (3.17) with suitable gains
κ1 = κ2 = 1; Example 3.2 shows the effectiveness of (3.17) for a leader moving at a
constant speed. The Figure 3.5 shows the position and velocity error norm trajecto-
ries. Notice that the state errors, although remain bounded, does’t approach to zero as
required.

The previous example shows that the distributed controller (3.17) is not suitable
for the case of a leader with acceleration, since the main objective in Example 3.3 is
to drive the error vector norms to zero. Hence, a new solution must be design. Before
we create the new one, consider the following assumption.

Assumption 3.1. Each robot share their acceleration v̇i with its neighbors. Addition-
ally, if informed, the robot also have access to leader’s velocity vector field.

Notice that the Assumption 3.1 is equivalent to robots sharing their input vectors.
In practical implementations, as the controllers are calculated in a distributed fashion,
input vectors are available on each robot to be shared with its neighbors through the
information network.

A modified version of the general form of a distributed controller (3.2), considering
Assumption 3.1, is

ui =
∑
j∈N in

i

gij (pij, vij, v̇j) + gi0 (pi0, vi0, v̇0) , i ∈ I, (3.24)

where gij : Rn × Rn × Rn 7→ Rn, with gik (pik, vik, v̇k) = 0n for all k /∈ N in
i , and

gi0 : Rn × Rn × Rn 7→ Rn, with gk0 (pk0, vk0, v̇0) = 0n for all k /∈ I0, are continuous
functions.
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Figure 3.5: Closed-loop system (3.1)-(3.17) of Example 3.3.

As the i-th robot’s position still must approach to the desired deviation with respect
to its neighbors, we use the terms in equation (3.3) as a basis in the design of gij
functions. However, we add to the i-th robot’s input vector the weighted acceleration
of its neighbors, with the objective of, once the position and velocity of neighboring
robots reach the desired deviation, accelerate the i-th robot with the same input vector
as its neighbors. Then, the gij functions take the form

∑
j∈N in

i

gij (pij, vij, v̇j) := −κ1

ηi

∑
j∈N in

i

aij (pij − δij)−
κ2

ηi

∑
j∈N in

i

aijvij +
1

ηi

∑
j∈N in

i

aij v̇j (3.25)

where ηi = 1
mi

(
hi +

∑
j∈N in

i
aij

)
. The functions in (3.25) are well defined for extended

digraphs DN+1 ∈ DN+1
ST with a spanning tree with the leader as the root, since ηi 6= 0 for

all i ∈ I. Analogously, the functions gi0 in the informed robot’s controllers are similar
to those described in equation (3.16) but this time include leader’s velocity vector field.

gi0 (pi0, vi0, v̇0) := −hi
ηi

(κ1 (pi0 − δi0) + κ2vi0 − v̇0) (3.26)

where v̇0 = f(t, p0, v0). That is, informed robots must also approach to their desired
position deviation with respect to the leader, and to accelerate with the same velocity
vector field.

The closed loop system (3.1)-(3.24), with the terms defined in (3.25) and (3.26),
takes the following form.

ṗi =vi, (3.27a)

miv̇i =− κ1

ηi

∑
j∈N in

i

aij (pij − δij)−
κ2

ηi

∑
j∈N in

i

aij (vij) +
1

ηi

∑
j∈N in

i

aij v̇j

− hi
ηi

(κ1 (pi0 − δi0) + κ2vi0 − v̇0) , i ∈ I, (3.27b)

Define the error vectors as in equation (3.5), the error dynamics can be described
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3.2. Consensus problems over proximity graphs

in a matrix form, and in terms of the Laplacian matrix L (D), as

˙̃p = ṽ, (3.28a)(
L̂ (D)⊗ In

)
˙̃v = −κ1

(
L̂ (D)⊗ In

)
p̃− κ2

(
L̂ (D)⊗ In

)
ṽ, i ∈ I, (3.28b)

where L̂ (D) = L (D) +H with H = diag (h1, · · · , hN).

Theorem 3.3. The closed-loop system (3.1)-(3.24) achieves leader-followers consensus
asymptotically, with a virtual leader (3.15), if and only if the extended digraph DN+1 ∈
DN+1
ST with the virtual leader as the root of a directed spanning tree. Moreover, if

additionally κ2 ≥ 2
√
κ1, the errors approach to zero exponentially.

Proof. Since DN+1 ∈ DN+1
ST with the virtual leader as the root of a directed spanning

tree, from Lemma 3.2, we know that matrix L̂ (D)⊗In is invertible. Therefore, equation
(3.28) can be rewritten as

˙̃p = ṽ, (3.29)

˙̃v = −κ1 (IN ⊗ In) p̃− κ2 (IN ⊗ In) ṽ, i ∈ I. (3.30)

The system (3.29) can be written, with x̃ =
[
p̃T , ṽT

]T
, like a linear system as

˙̃x =
(

Ξ̃⊗ In
)
, where Ξ̃ =

[
ZN IN
−κ1IN −κ2IN

]
.

As before, an spectral analysis of matrix Ξ̃ shows that its eigenvalues are

µij =
−κ2 ±

√
κ2

2 − 4κ1

2
, i = 1, · · · , N j = 1, 2.

Notice that for every κ1, κ2 > 0, the eigenvalues of Ξ̃ have negative real part. Moreover,
if and only if κ2 ≥ 2

√
κ1 the eigenvalues of Ξ̃ are such that Im (µij) = 0. Therefore,

the convergence is exponential.

Example 3.4. Consider the multi-robot system set defined in Example 3.2 with n = 1
and implementing the distributed controller (3.24), with the terms defined in (3.25) and
(3.26). Then, from Theorem 3.3, for any κ1, κ2 > 0 the leader-followers consensus is
reached. The Figure 3.6 shows the trajectories of the multi-robot system (3.1) where
the velocity vector field of the virtual leader is f (t, p0, v0) = − sin (t).

3.2 Consensus problems over proximity graphs

We design distributed controllers for the leaderless and leader-followers consensus
behavior over proximity graphs1. Here, we consider each member of the multi-robot
system (3.1) has a limited communication/sensing radius r, equal for ever robot. Then,

1Proximity digraphs were described in Section 2.3.1
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Figure 3.6: Multi-robot system (3.1) implementing controller (3.24).

the information network is bidirectional, since i ∈ N in
j always that j ∈ N in

i , and will
be described by means of a graph G (p).

Our first element of design is not the shape of the controller it self, but the process
of addition/deletion of edges in the overall proximity graph from a local process. This
is, each robot has embedded a rule on the addition/deletion of robots from its neigh-
borhood set, which modifies the global topology of the information network. Consider
the following hysteresis process.

Definition 3.2 (Neighborhood hysteresis process.). For every robot in (3.1) with a
neighborhood Ni (p), let ε ∈ (0, r) and Ni (p)t0 := {j ∈ V : ‖pij‖ < r} at t = t0. We say
the ith robot’s neighborhood has an hysteresis process when at any time instant t > t0
and j ∈ V:

� (Neighbor addition) if at time t, ‖pij‖ ≤ r−ε and j /∈ Ni (p)t−, then j is appended
to the neighborhood, i.e. Ni (p) = Ni (p)t− ∪ {j};

� (Neighbor removal) if at time t, ‖pij‖ > r and j ∈ Ni (p)t−, then j is removed
from the neighborhood, i.e. Ni (p) = Ni (p)t− \ {j}.

The neighborhood hysteresis process indicates that, for the i-th robot at any time
instant t ≥ t0, even when a nearby robot j is closed enough to be available for infor-
mation exchange, i.e. r− ε < ‖pij‖ < r, it will not be considered as part of Ni (p) and
not will be used to determine the control actions. On the other hand, it will remain
as part of Ni (p) until ‖pij‖ ≥ r. Notice that, if a robot j is appended to (removed
from) the i-th robot’s neighborhood, then the edge (i, j) is also appended to (removed
from) the set E (p). It also prevents fast creation/deletion of network edges due to
inter-robot distances near the sensing radius. The hysteresis process from Definition
3.2 is illustrated in Figure 3.7.
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Figure 3.7: Neighborhood hysteresis process.

3.2.1 Leaderless configuration

Our controller design must preserve the connectivity of the proximity network, since
the reachability of the consensus state is subject to the topological properties of the
proximity graph. Assuming the proximity graph is connected at an initial time t0, i.e.
G (p)t0 , the function gij must drive the ith robot into a position trajectory such that
the distance with its neighbor j, i.e. ‖pij‖ for j ∈ Ni, approaches to zero, and remain
bounded by r for all t ∈ [t0, tf ). If this objective is accomplished by every member of the
multi-robot system, then controllers ui, for i = 1, · · · , N , are connectivity preservers
and distributed. To achieve this objective, functions gij are divided into two parts:
The first part reduces the inter-robot distances toward zero while maintaining them
bounded by r, and the second part forces the velocity error between i and j towards
zero.

For the first part, let s = ‖pij‖ be the distance between a pair of connected robots,
with (j, i) ∈ G (p) for j 6= i. Consider an Artificial Potential Function (APF) ψ (s) :

[0, r] 7→ R>0 with partial derivative ϕ (s) = ∂ψ(s)
∂s

. Define ψ (s) with the following
properties:

(i) ψ (s)→ ψ̂ as s→ r;

(ii) ϕ (s) > 0 for all s ∈ (0, r);

(iii) lim
s→0

(
ϕ(s)
s

)
is nonzero and bounded.

Condition (i) states that the APF is bounded by a constant value ψ̂. Meanwhile,
condition (ii) stipulates that the potential is an increasing function of their relative
distance. Finally, condition (iii) requires APF’s partial derivative be nonnegative and
bounded as pair of robots distance approaches to zero. By taking APF’s gradient, i.e.
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Figure 3.8: Artificial potential function in equation (3.31).

∇piψ (‖pij‖) = ϕ (‖pij‖) pij
‖pij‖ , a vector force pointing towards its minimum value. That

is, as inter-robot distances approach to r, the APF’s gradient will force them together,
hence, to the desired inter-robot distance. An example of this kind of APF, shown in
Figure 3.8, is:

ψ (‖pij‖) :=
ψ̂ ‖pij‖2

ψ̂ (r − ‖pij‖) + ‖pij‖2
. (3.31)

For the second part of gij, consider the deviation state between robot’s i velocity
an its j-th neighbor. This error is used as a feedback to approach neighboring robots
velocity to zero deviation, and will be multiplied by the information network edge
weight aij.

Using the above described terms, the distributed controller is

ui = −
∑

j∈Ni(p)

∇piψ (‖pij‖)−
∑

j∈Ni(p)

aijvij, i ∈ I, (3.32)

where aij is the constant weight of the corresponding edge (j, i) ∈ E (p). This con-
troller is implemented along with the neighborhood hysteresis process that defines the
neighborhood Ni (p) of the i-th robot.

Notice that the desired coordinated behavior is related to the internal configura-
tion (inter-robot positions), rather than with the global frame. To analyze the motion
dynamics of the closed loop system (3.1)-(3.32), a mobile coordinate system is neces-
sary. Consider the center of mass (COM) of the multi-robot system (3.1) and denote
its position and velocity as

p̄ :=

∑N
i=1mipi∑N
k=1mk

, and v̄ :=

∑N
i=1mivi∑N
k=1mk

. (3.33)

Define the errors in position and velocity of the i-th robot with respect to the COM
as

p̃i := pi − p̄, and ṽi := vi − v̄, i ∈ I. (3.34)
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From this definition observe that pij = p̃ij and ṽij = vij. Hence, inter-robot dis-
tances in the mobile coordinated system are the same as in the global frame, i.e.
‖p̃ij‖ = ‖pij‖. In consequence, the proximity network can be defined trough the vector

p̃ =
[
p̃T1 , · · · , p̃TN

]T ∈ RnN , i.e. the proximity graph has the property G (p̃) = G (p).
Similarly, the APFs in (3.32) can be written in terms of p̃i, since ψ (‖pij‖) = ψ (‖p̃ij‖),
with its gradient ∇piψ (‖pij‖) = ∇p̃iψ (‖p̃ij‖). Therefore, the distributed controller can
be rewritten in the following form

ui = −
∑

j∈Ni(p̃)

∇p̃iψ (‖p̃ij‖)−
∑

j∈Ni(p̃)

aij ṽij, i ∈ I, (3.35)

The dynamical analysis of the closed loop system (3.1)-(3.35) will be done through
the total sum of potential an kinetic energy of the multi-robot system in the error

coordinates. Define x =
[
p̃T , ṽT

]T ∈ R2nN , with ṽ = [ṽT1 , . . . , ṽ
T
N ]T ∈ RnN , and the

total energy of the multi-robot system as follows.

V (x) :=
1

2

N∑
i=1

 ∑
j∈Ni(p̃)

ψ (‖p̃ij‖) +miṽ
T
i ṽi

 . (3.36)

Notice that, the energy at an initial instant t0 is bounded by the value V̄ (x(t0)) with

V (x(t0)) ≤ V̄ (x(t0)) =
N(N − 1)

2
ψ (r − ε) +

1

2

N∑
i=1

(
miṽ

T
i (t0)ṽi(t0)

)
. (3.37)

We also, define the following set of position and velocities

Ω :=
{
x ∈ R2nN : V̄ (x) < ψ̂

}
(3.38)

which are bounded by the maximum value of the APF used in the controller.

Theorem 3.4. Consider the heterogeneous multi-robot system (3.1). Suppose the ini-
tial proximity graph G (p) is connected and x(t0) ∈ Ω, then the distributed controller
(3.32), for all t ∈ [t0,∞), is:

(i) Connectivity preserving, and;

(ii) A solution to the leaderless consensus problem

Proof. First, notice that the closed loop system (3.1)-(3.32) can be rewritten in terms
of error states as

˙̃pi = ṽi,

mi
˙̃vi = −

∑
j∈Ni(p̃)

∇p̃iψ (‖p̃ij‖)−
∑

j∈Ni(p̃)

aij ṽij, i ∈ I,

Proof of part (i): Notice that the change of G (p) over time can be interpreted as
switching among a set of different fixed network topologies. Assume that G (p) switches
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to a different topology at every time instant tk with k = 1, 2, · · · , and remains fixed
over the time interval [tk−1, tk). Taking the time derivative of (3.36) over time interval
[tk−1, tk) yields

V̇ (x(t)) =
N∑
i=1

1

2

∑
j∈Ni(p̃)

ψ̇ (‖p̃ij‖) +miṽ
T
i

˙̃vi

 .

Since

1

2

N∑
i=1

∑
j∈Ni(p̃)

ψ̇ (‖p̃ij‖) =
N∑
i=1

ṽTi
∑

j∈Ni(p̃)

∇p̃iψ (‖p̃ij‖)

miṽ
T
i

˙̃vi = ṽTi ui,

we have

V̇ (x(t)) =
N∑
i=1

ṽTi

 ∑
j∈Ni(p̃)

∇p̃iψ (‖p̃ij‖)−
∑

j∈Ni(p̃)

∇p̃iψ (‖p̃ij‖)−
∑

j∈Ni(p̃)

aij ṽij


= −

N∑
i=1

ṽTi
∑

j∈Ni(p̃)

aij ṽij

= −ṽT (L (G (p̃))⊗ In) ṽ.

Recall that G (p̃) is connected for all t ∈ [t0, t1), hence L (G (p̃)) has a unique zero
eigenvalue, and every other eigenvalue has positive real part, then

− ṽT (L (G (p̃))⊗ In) ṽ ≤ 0 (3.39)

This implies that V (x(t)) ≤ V (x(t0)) ≤ V̄ (x(t0)) for all t ∈ (t0, t1]. Since x(t0) ∈ Ω,
then V (x(t)) ≤ V̄ (x(t0)) < ψ̂. The latter implies that there are no neighboring robots
whose distance tends to r for all t ∈ (t0, t1]. Since no edges are lost before t1, new edges
must have been added to the proximity graph on that switching instant. Without lost
of generality, assume there are 0 < q1 ≤ (N−1)(N−2)

2
new edges on the network at t1,

thus V (x(t1)) ≤ V (x(t0)) + q1ψ (r − ε) ≤ V̄ (x(t0)). Taking time derivative of V (x(t))
for t ∈ [t1, t2) will result on expression (3.39). Once more, there are no distances
between neighboring robots that tends to r, hence new edges must have been added at
t2. The same happens for all switching instant tk, with k = 1, 2, · · · , and time intervals
[tk−1, tk). Finally, since G (p̃) is connected at t0, and no edges are lost from E (p̃(t0))
for all t ∈ [t0,∞), then G (p̃) remains connected for all t ∈ [t0,∞). Hence, controller
(3.32) is connectivity preserving.

Proof of part (ii): Assume there are qk new edges added to E (p̃) at switching

instant tk. Clearly, 0 < qk ≤ (N−1)(N−2)
2

thus, from equation (3.39), we have that
V (x(t1)) ≤ V (x(t0)) + (q1 + · · ·+ qk)ψ (r − ε) ≤ V̄ (x(t0)). Therefore the number
of switching instants is finite, which implies that G (p̃) eventually gets fixed. The
remaining analysis is restricted for time interval [tk,∞).
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To show (3.32) is a solution to the leaderless consensus problem, we will use the
LaSalle’s invariance principle. Notice, from the previous analysis, that the distance
between neighboring robots is no longer than ψ−1

(
V̄ (x(t0))

)
. Then, the set

Γ =
{

ˆ̃p ∈ DG , ṽ ∈ RnN : V
(

ˆ̃p, ṽ
)
≤ V̄ (x(t0))

}
, (3.40)

is positive invariant, where

DG =
{

ˆ̃p ∈ RnN2

: ‖p̃ij‖ ∈
[
0, ψ−1

(
V̄ (x(t0))

)]
, ∀ (j, i) ∈ E (p̃)

}
and ˆ̃p :=

[
p̃T11, · · · , p̃T1N , · · · , p̃TN1, · · · , p̃TNN

]T
. Its clear that, since V (x(t0)) ≤ V̄ (x(t0)),

then the vector x(t0) ∈ Γ. Now, we will show that Γ is compact. Notice that, since G (p̃)
is connected for all t ∈ [tk,∞), the maximum distance between a pair of robots i, j ∈ V
is, at most, ‖p̃ij‖ ≤ r (N − 1), then ˆ̃p is bounded on every of its entries. Similarly, since

V (x(t)) ≤ V̄ (x(t0)), then miṽ
T
i ṽi ≤ 2V̄ (x(t0)), in consequence, ‖ṽi‖ ≤

√
2V̄ (x(t0))

mi
for

all i ∈ V. Therefore, Γ is closed and bounded, hence compact. Finally, from LaSalle’s
invariance principle we know that, since the initial conditions lie in Γ, all trajectories
will converge to the largest invariant set inside the region

S =
{

ˆ̃p ∈ DG , ṽ ∈ RnN : V̇ (x(t)) = 0
}
. (3.41)

From equation (3.39) notice that V̇ (x(t)) = 0 if and only if ṽi = · · · = ṽN , which
implies that ‖vij‖ = 0. Additionally, in steady state ˙̃vi = 0n, this means that, from the
definition of distributed controller (3.32), the following expression holds

ui = −
∑

j∈Ni(p̃)

∇p̃iψ (‖p̃ij‖) = 0n, i ∈ I.

Notice that ∇p̃iψ (‖p̃ij‖) = ϕ (‖p̃ij‖) p̃ij
‖p̃ij‖ . From the definition of ψ (·), we know that

ϕ(‖p̃ij‖)
‖p̃ij‖ is nonzero and bounded, hence the position deviation must be zero, that is
p̃ij = 0n.

Example 3.5. Consider an heterogeneous multi-robot system with dynamics (3.1) con-
sisting of N = 15 mobile robots in a plane (n = 2). The mass and communica-
tion/sensing radios of the mobile robots are, respectively, mi = i and r = 5 for all
i = 1, · · · , N . As for the distributed controller (3.32), consider an APF described
by equation (3.31) with a maximum value ψ̂ = 100. For the neighborhood hysteresis
process, let ε = 1. As for initial conditions, we randomly choose them from boxes
[0, 10]× [0, 10] for positions and [0, 1]× [0, 1] for velocities. Before the numerical sim-
ulation is initialized, we verify that G (p) is connected and V (x(t0)) ≤ V̄ (x(t0)), if not,
new initial conditions are choose.

In Figure 3.9 the proximity graph G (p(t0)) as well as the state trajectories of the
multi-robot system are drawn. In the initial states chart, robots are located at arrow
tails, the arrows itself represent the robot velocity vectors, meanwhile, dotted lines sym-
bolize the existence of a proximity network edge among pair of robots. The trajectories
and final states chart, shows how robots approach to a position consensus in the (x, y)-
plain. Position and velocity vector elements are also drawn. The velocity trajectories
chart shows how the multi-robot system finally reach a velocity consensus.
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Chapter 3. Consensus Problems

Figure 3.9: Leaderless consensus of the closed-loop system (3.1)-(3.32).

3.2.2 Leader-followers configuration

Consider a virtual leader with dynamics described by equation (3.15) with I0 ⊂ I
the set of informed robots.

Leader with constant velocity

For this part, we assume the virtual leader, with dynamics (3.15), has its velocity
vector field f (p0, v0, t) ≡ 0n. Consider the general form of a distributed controller
given by equation (3.2). In what follows, the design process for the functions in (3.2)
is described.

For the leader-followers configuration let the gij functions in (3.2) be defined as in
(3.32). Then, it only remains to design the gi0 functions. To include the robot-leader
position and velocity state errors in the gi0 functions as to

gi0 := −hi (pi0 + vi0) , i ∈ I, (3.42)

where hi ∈ R>0 if i ∈ I0, with hi = 0 otherwise. Then, the distributed controller is
defined as

ui = −
∑

j∈Ni(p)

∇piψ (‖pij‖)−
∑

j∈Ni(p)

aijvij − hi (pi0 + vi0) , i ∈ I. (3.43)

Define the state errors between the i-th robot and the virtual leader as

p̃i := pi − p0 and ṽi := vi − v0, i ∈ I. (3.44)

Notice that, in this case, the leader states play the role of the COM defined in the
previous section as the mobile coordinate system.

52



3.2. Consensus problems over proximity graphs

Again, the dynamic analysis of the closed loop system (3.1)-(3.43) is analyzed
through the total sum of potential and kinetic energy in error coordinates. Define

x =
[
p̃T , ṽT

]T ∈ R2nN and the total energy as follows.

V (x) :=
1

2

N∑
i=1

 ∑
j∈Ni(p̃)

ψ (‖p̃ij‖) + hip̃
T
i p̃i +miṽ

T
i ṽi

 , (3.45)

which is bounded for any initial conditions as

V (x(t0)) ≤ V̄ (x(t0)) =
N(N − 1)

2
ψ (r − ε) +

1

2

N∑
i=1

(
hip̃

T
i (t0)p̃i(t0) +miṽ

T
i (t0)ṽi(t0)

)
.

Notice that we can relate the states of the multi-robot system to the maximum
value of the APF with the set defined in equation (3.38).

Theorem 3.5. Consider the heterogeneous multi-robot system (3.1) and a virtual
leader (3.15) with f (p0, v0, t) ≡ 0n. Suppose the initial proximity graph G (p) is con-
nected and x(t0) ∈ Ω, then the distributed controller (3.43), for all t ∈ [t0,∞), is:

(i) Connectivity preserving, and;

(ii) A solution to the leader-followers consensus problem

Proof. Notice that the closed loop system (3.1)-(3.43), in error states, is

˙̃pi = ṽi,

mi
˙̃vi = −

∑
j∈Ni(p̃)

∇p̃iψ (‖p̃ij‖)−
∑

j∈Ni(p̃)

aij ṽij − hi (p̃i + ṽi) , i ∈ I,

where (3.43) has been written in error states.
Proof of part (i): This part can be proven following the same steps as in its equiv-

alent in Theorem 3.4. We only must notice that the time derivative of energy func-
tion V (x(t)) in the time interval [tk−1, tk) between switching instants tk−1 and tk for
k = 1, 2, · · · , is

V̇ (x(t)) =
N∑
i=1

1

2

∑
j∈Ni(p̃)

ψ̇ (‖p̃ij‖) + hip̃
T
i

˙̃pi +miṽ
T
i

˙̃vi


= −ṽT

(
L̂ (G (p̃))⊗ In

)
ṽ, (3.46)

where L̂ (G (p̃)) = L (G (p̃)) + H with H = diag (h1, · · · , hN). Consider the virtual
leader as an additional member of the multi-robot system and denote as GN+1 (p̃) its
corresponding proximity graph. Then, from lemma 3.2 we know the matrix L̂ (G (p̃))
has all its eigenvalues with positive real part. Then, the inequality V̇ (x(t)) ≤ 0 holds.
Therefore, V (x(t)) ≤ V̄ (x(t0)) < ψ̂, implying every edge in G (p̃(t0)) is maintained.
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Since only new edges are appended to E (p̃) at switching instants tk, then G (p̃) is
connected. Hence, controller (3.43) is connectivity preserving.

Proof of part (ii): As in theorem 3.4, we can use the LaSalle’s invariance principle.
Considering the set Γ, defined in equation (3.40), it can be seen that is a positively

invariant set. Since ‖p̃ij‖ ≤ r (N − 1) and ‖p̃i‖ ≤
√

2V̄ (x(t0))
hi

for i ∈ I0, and ‖ṽi‖ ≤√
2V̄ (x(t0))

mi
, then Γ is compact. As such, and since the initial conditions start in Γ, the

trajectories converge to the larges set inside region S, defined in (3.41). From equation
(3.46) we can se that

V̇ (x(t)) = −ṽT
(
L̂ (G (p̃))⊗ In

)
ṽ = 0

which implies that ṽ1 = · · · = ṽN and ṽi = 0n for informed robots, i.e. for all i such
that hi > 0. In consequence, v1 = · · · = vN = v0. Also, in steady state, where ˙̃vi = 0n,
this means that distributed controller (3.43) is such that

ui = −
∑

j∈Ni(p̃)

∇p̃iψ (‖p̃ij‖)− hip̃i = 0n, i ∈ I.

For uninformed robots, i.e. hi = 0, this implies that ϕ (‖p̃ij‖) p̃ij
‖p̃ij‖ = 0n. From APF’s

definition, this means that p̃ij = 0n for all i ∈ I\I0 and j ∈ Ni (p̃). For informed robots,
the last means that, in steady state, the distance from the leader is zero, i.e. p̃i = 0n.
Hence p1 = · · · = pN = p0. That is, the distributed controller is a solution to the leader
followers consensus problem.

Example 3.6. Consider the same heterogeneous multi-robot system described in Ex-
ample 3.5 and apply the distributed controller (3.43) with the APF described in it.

Figure 3.10 illustrate the numerical simulation of this example. Again, the initial
proximity graph is shown, where the leader’s robot position is marked with an asterisk,
dotted lines to another robot positions imply that those robots are informed. The state
trajectories of the multi-robot system, and the leader, is also portrait. Additionally, the
position and velocity vector entries are drawn, showing that every robot asymptotically
approach to the leader’s states, hence, reach a leader-followers consensus motion.

Leader with time-varying velocity

Once more, consider the Assumption 3.1. This design is based in the general form
(3.24). Consider the following gij functions

gij := −∇piψ (‖pij‖)− aijvij + aij ˙̃vj. (3.47)

Notice that this functions is similar as in section 3.2.1 but it adds the acceleration of
the j-th robot. For informed robots and functions gi0, we take a similar version of
(3.42) as

gi0 := −hi
(
pi0 + vi0 − ˙̃v0

)
(3.48)
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3.2. Consensus problems over proximity graphs

Figure 3.10: Leader-followers consensus of the closed-loop system (3.1)-(3.43).

that adds the leader’s acceleration to the controller.
Using the functions defined above, we build the following controller

ui = − 1

ηi

∑
j∈Ni(p)

∇piψ (‖pij‖)−
1

ηi

∑
j∈Ni(p)

aijvij +
1

ηi

∑
j∈Ni(p)

aij v̇j

− hi
ηi

(pi0 + vi0 − v̇0) , i ∈ I, (3.49)

where we added the term ηi = 1
mi

(
hi +

∑
j∈Ni(p)

aij

)
. notice that, if G (p) is connected,

then ηi is always positive for all i ∈ I.

Consider the error states defined in equation (3.44). Also, define x =
[
p̃T , ṽT

]T ∈
R2nN and the following collective energy function

V (x(t)) =
1

2

N∑
i=1

 ∑
j∈Ni(p̃)

ψ (‖p̃ij‖) + hip̃
T
i p̃i + ṽT

(
L̂ (G (p̃))⊗ In

)
ṽ

 (3.50)

which is bounded for initial conditions as

V (x(t0)) ≤ V̄ (x(t0)) =
N(N − 1)

2
ψ (r − ε) +

1

2

N∑
i=1

(
hip̃

T
i (t0)p̃i(t0)

)
+

ṽT (t0)
(
L̂ (G (p̃))⊗ In

)
ṽ(t0).

Once more, we can relate the states of the multi-robot system with the maximum value
of the APF through the set defined in (3.38).

55



Chapter 3. Consensus Problems

Theorem 3.6. Consider the heterogeneous multi-robot system (3.1) and a virtual
leader with dynamics (3.15). Suppose the initial proximity graph G (p) is connected
and x(t0) ∈ Ω, then the distributed controller (3.49), for all t ∈ [t0,∞), is:

(i) Connectivity preserving, and;

(ii) A solution to the leader-followers consensus problem

Proof. First, notice that the error dynamics is

˙̃pi = ṽi, mi
˙̃vi = ui −mif (t, p0, v0) , i ∈ I (3.51)

and the distributed controller (3.49) can be rewritten in error states as

ui = − 1

ηi

∑
j∈Ni(p̃)

∇p̃iψ (‖p̃ij‖)−
1

ηi

∑
j∈Ni(p̃)

aij ṽij +
1

ηi

∑
j∈Ni(p̃)

aij v̇j

− hi
ηi

(p̃i + ṽi − v̇0) , i ∈ I. (3.52)

After some manipulations is possible to show that, the closed loop system (3.51)-(3.52),
results on

˙̃pi = ṽi∑
j∈Ni(p̃)

aij ˙̃vij + hi ˙̃vi =
∑

j∈Ni(p̃)

∇p̃iψ (‖p̃ij‖)−
∑

j∈Ni(p̃)

aij ṽij − hi (p̃i + ṽi) .

Rewriting the last equation in a matrix form

˙̃p = ṽ(
L̂ (G (p̃))⊗ In

)
˙̃v =

(
L̂ (G (p̃))⊗ In

)
p̃−

(
L̂ (G (p̃))⊗ In

)
ṽ.

with L̂ (G (p̃)) = L (G (p̃)) +H with H = diag (h1, · · · , hN).
Proof of part (i): Taking the time derivative of the energy function (3.50) we obtain

V̇ (x(t)) =
1

2

N∑
i=1

∑
j∈Ni(p̃)

ψ̇ (‖p̃ij‖) +
N∑
i=1

hip̃
T
i

˙̃pi + ṽT
(
L̂ (G (p̃))⊗ In

)
˙̃v,

from where can be shown that

V̇ (x(t)) = −ṽT
(
L̂ (G (p̃))⊗ In

)
ṽ ≤ 0 (3.53)

Following the same reasoning as in Theorems 3.4 and 3.5, in view of inequality
(3.53) we can conclude that no edges are lost in t ∈ [t0,∞). Therefore, the distributed
controller (3.49) is connectivity preserving.

Proof of part (ii): Consider the set Γ defined in equation (3.40). From the proof
of part (i) it can be seen that Γ is positively invariant. Once more, we aim to use
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3.2. Consensus problems over proximity graphs

Figure 3.11: Leader-followers consensus of the closed-loop system (2.33)-(3.49).

here the LaSalle’s invariance principle, hence, we must show Γ is compact. Notice that
‖p̃ij‖ ≤ r (N − 1), since G (p̃) is connected. On the other hand, since I0 is not empty,

and H has at least one positive diagonal entry, the matrix L̂ (G (p̃)) = L (G (p̃))+H has

all its eigenvalues with positive real part. From the expression ṽT
(
L̂ (G (p̃))⊗ In

)
ṽ ≤

2V̄ (x(0)) we can conclude that ‖ṽ‖ ≤
√

2V̄ (x(0))
|λN | , where λN is the eigenvalue with the

largest magnitude. Hence, Γ is a compact set. Therefore, as the initial conditions lie
in Γ, then the trajectories of x(t) will converge to the largest invariant inside region S
defined in (3.41). The rest of this proof is carried out following the same reasoning in
Theorem 3.5.

Example 3.7. Once more, consider the same heterogeneous multi-robot system de-
scribed in Example 3.5 and apply the distributed controller (3.49). For this case, let
the APF’s maximum value ψ̂ = 1000 and ε = 1. Also, let the position and velocity
initial values be chosen, respectively, from boxes [0, 10]× [0, 10] and [0, 1]× [0, 1]. Sim-
ilarly to the Example 3.5, initial configurations and energy values are verified to meet
the graph connectedness and energy conditions.

Figure 3.11 shows a virtual leader with a velocity vector field defined by f(t, p0, v0) =
[−5 sin (t) ,− cos (t)]T . Hence, the described position trajectory of the leader is a circle.
Clearly, even when the leader’s velocity is time varying, the robots manage to approach
state errors to zero, reaching to a consensus behavior.
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4
Flocking Problems

We design solutions to the leaderless and leader-followers flocking motion problems,
described in Chapter 2, for a multi-robot system with combinations of three different
kinds of restrictions: 1) Limited communication/sensing radius, 2) input constraints
and 3) environmental obstacles.

Consider a multi-robot system consisting of N mobile robots described by the fol-
lowing second-order dynamics

ṗi = vi, v̇i = ui, i ∈ I := {1, 2, . . . , N} , (4.1)

where pi, vi, ui ∈ Rn (with n = 1, 2 or 3) are position, velocity and input vector of the
i-th robot. Each robot has a limited communication/detection range ri, therefore, we
model the information network with a proximity digraph D (p).

The controller of each robot ui uses only local information and group fragmenta-
tion is avoided. In the case of environmental obstacles, locally gathered from robots
nearby obstacles is used to build the controller. Meanwhile, in case of having a virtual
leader, the controller ui of the informed robots also use its important information in
the controller design. In general, we have

ui =
∑

j∈N in
i (p)

gij (pij, vij) +
∑

k∈N ob
i (p)

hik(pik, vik) + gi0 (pi0, vi0) , i ∈ I, (4.2)

where gij : Rn × Rn 7→ Rn, hik : Rn × Rn 7→ Rn, with N ob
i (p) the set of robots nearby

obstacles, and gi0 : Rn × Rn 7→ Rn, with gk0 (pk0, vk0) = 0n for k /∈ I0, continuous
functions to be designed.

4.1 Bidirectional proximity graphs

Consider the multi-robot system (4.1) with a limited communication/sensing radius
r and a heterogeneous input constraint given by

‖ui‖ ≤ ûi, i ∈ I. (4.3)
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Notice that the constraints on each controller may be different, and the underlying prox-
imity graph G (p) is bidirectional. For this setup, we first consider that the workspace of
the multi-robot system does not contain obstacles. We design distributed controllers
for leaderless and leader-followers schemes. We then modify our designs to include
obstacle avoidance manoeuvres.

4.1.1 Leaderless configuration

First of all, we have I0 = ∅ and gi0 (pi0, vi0) ≡ 0n for all i ∈ I. Then, we must only
design the gij functions with the information from within Ni(p) with the neighborhood
hysteresis process described in Definition 3.2.

From the leaderless flocking motion described in Definition 2.5, we have that the

multi-robot system’s configuration p =
[
pT1 , · · · , pTN

]T ∈ RnN must be cohesive, avoid
inter-robot collisions, keep inter-robot velocity differences bounded and also connec-
tivity preserving. To achieve the required configuration, we propose the following
distributed controller:

ui = −
∑

j∈Ni(p)

∇piψij (‖pij‖)−
∑

j∈Ni(p)

ϑij (‖pij‖ , vij) , i ∈ I. (4.4)

Notice we split functions gij, in equation (4.2), into two terms. We explain them in
what follows.

For the first term in (4.4), consider a distance-dependent APF ψij (‖pij‖) : [0, r] 7→
R≥0 with partial derivative given by ϕij (‖pij‖) =

∂ψij(‖pij‖)
∂‖pij‖ . This APF has the following

properties:

(i) For s ∈ [0, r], 0 ≤ ψij (s) ≤ ψ̂ij with ψ̂ij = maxs∈[0,r] {ψij (s)} and ψij (dij) = 0
for some dij ∈ (0, r];

(ii) For s ∈ [0, dij) ϕij (0) ≤ ϕij (s) < 0, and 0 < ϕij (s) ≤ ϕij (r) for s ∈ (dij, r],
where dij ∈ (0, r] is the unique value such that ϕij (dij) = 0. Also, |ϕij (s)| ≤
ϕ̂ij = maxs∈[0,r] {|ϕij (s)|}.

By condition (i) ψij (‖pij‖) is a positive function of ‖pij‖. Due to condition (ii) the
APF decreases for ‖pij‖ ∈ [0, dij), increases for ‖pij‖ ∈ [0, dij), and has only one
minimum value at dij for the whole interval [0, r]. Here, dij is a desired distance
between connected robots. Taking the gradient of the APF, i.e. ∇piψij (‖pij‖) =
ϕij (‖pij‖) pij

‖pij‖ , a vector force pointing towards the minimum value of ψij (‖pij‖) is

obtained. That is, when the inter-robot distance ‖pij‖ approaches to zero, it will force
them apart, meanwhile, if ‖pij‖ approaches to r, then will force them together. For
simplicity of presentation, in the APF’s definition, we consider robots to be punctual.
Therefore, an inter-robot collision occurs when ‖pij‖ = 0. To account for each robot’s
volume, we can define a minimum safe distance ď ∈ R>0 such that the ith robot fits in
a ball of radius ď and centred in pi, for all i ∈ I; Hence collisions occur when ‖pij‖ = ď.
Then, in the APF’s definition, instead of s ∈ [0, r], we set s ∈

[
ď, r
]
, and the analysis

done in the following sections is still valid.

59



Chapter 4. Flocking Problems

For the second term consider a distance-dependent odd function ϑij (‖pij‖ , vij) :

R≥0 × Rn 7→ C defined by elements and bounded, with C :=
{
y ∈ Rn : ‖y‖ ≤ ϑ̂ij

}
,

where ϑ̂ij is the biggest norm of any vector in its image.
The closed-loop system (4.1)-(4.4) generates a configuration p that changes over

time; decreasing or increasing the relative distance between neighboring robots. In
consequence, the proximity graph G (p) is also time-variant, where edges may appear
or disappear as the system evolves. Moreover, since the controller (4.4) relies on the
information collected within Ni (p), the appearance or disappearance of a neighbor
changes it. To deal with the effects that a dynamic graph has in (4.4), we use again
the neighborhood hysteresis process from Definition 3.2.

To deal with the heterogeneous input constraints condition notice that the ith
controller is bounded as follows

‖ui‖ ≤
∑

j∈Ni(p)

(
ϕ̂ij + ϑ̂ij

)
, i ∈ I, (4.5)

where ϕ̂ij and ϑ̂ij are the bounds of the previously described terms. Such values
correspond to a configuration where, for all j ∈ Ni (p), the distance ‖pij‖ = r and the

velocity deviations among neighboring robots is such that ‖ϑij (r, vij)‖ = ϑ̂ij. From
(4.5), conditions such that each robot satisfy its particular input constraint (4.3) can
be determine.

Remark 4.1. The leaderless flocking motion problem was previously addressed in [78,
117]. A discrete distributed controller under homogeneous input constraints condition
that requires predictions of the i-th robot neighbor states was provided. However, the
proximity graph is assumed to remains connected within the time period where control
actions are calculated. In contrast, the controller (4.4), along with the neighborhood
hysteresis process, do not need state predictions and does not require any assumption
about the proximity graph between the calculation of control actions.

To analyze the motion dynamics of the closed-loop system (4.1)-(4.4), a mobile
coordinate system is necessary. The position and velocity of the weighted center of
mass (WCOM) for the swarm are denoted as

p̄ :=

∑N
i=1 ωipi∑N
k=1 ωk

and v̄ :=

∑N
i=1 ωivi∑N
k=1 ωk

(4.6)

where ωi ∈ R>0 is the constant influence that the i-th robot exerts over the WCOM
of the multi-robot system. Notice that if ωi = 1 for all i ∈ I, the WCOM position
and velocity are the average position and velocity of the members of the multi-robot
system. On the other hand, if the robot is an inertial agent, then ωi = mi and equation
(4.6) is the WCOM of the multi-robot system, as in equation (3.33).

the position and velocity errors of the i-th robot with respect to the WCOM are

p̃i := pi − p̄, and ṽi := vi − v̄, i ∈ I. (4.7)
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Notice that p̃ij = pij, ṽij = vij an that the inter-robot distances norms are the same
as in the global frame, i.e. ‖p̃ij‖ = ‖pij‖. In consequence, the proximity graph can be

defined through the vector p̃ =
[
p̃T1 , · · · , p̃TN

]T ∈ RnN , as G (p̃) = G (p). Similarly, the
controller (4.4) can be rewritten in error variables as

ui = −
∑

j∈Ni(p̃)

∇p̃iψij (‖p̃ij‖)−
∑

j∈Ni(p̃)

ϑij (‖p̃ij‖ , ṽij) , i ∈ I. (4.8)

Another key issue on the analysis of the motion dynamics of the closed-loop system
(4.1)-(4.4) is a way to quantify the deviation of the actual multi-robot system position
and velocity from the desired configurations. Define the following collective energy of
the multi-robot system as

V (p̃, ṽ) :=
1

2

N∑
i=1

ωi

 ∑
j∈Ni(p̃)

ψij (‖p̃ij‖) + ‖ṽi‖2

 . (4.9)

This function adds the potential and the kinetic energies of each robot in the mobile
coordinated system. Here, the potential energy is introduced by the controller (4.4)
through the APFs of every pair of connected robots.

Since G (p) is a state-dependent graph, then it might change over time. Then,
suppose G (p) switches on time instants tk with k = 1, 2, . . ., and remains fixed over the
time interval [tk−1, tk). At the time instant tk, edges might be added to, or deleted from,
E (p). The following lemma, studies the collective energy (4.9) for the time interval in
which G (p) remains fixed.

Lemma 4.1. Consider the closed-loop system (4.1)-(4.4) and a time interval [tk−1, tk)
in which the proximity graph remains fixed, i.e. G (p) = G for all t ∈ [tk−1, tk). Denote
as V (p̃, ṽ)tk−1

the collective energy at time instant tk−1. Let the therms in (4.4) be such
that

∇piψij (‖pij‖) = κij (‖pij‖)∇piψ (‖pij‖) and ϑij (‖pij‖ , vij) = κij (‖pij‖)ϑ (vij) ,
(4.10)

where κij (‖pij‖) ∈ R>0 for all ‖pij‖ ∈ [0, r], and meet the following condition

ωiκij (s) = ωjκji (s) , s ∈ [0, r] , (4.11)

for all i, j ∈ V, with j 6= i. Then, the collective energy (4.9) doesn’t increase in the
time interval [tk−1, tk), i.e. V (p̃, ṽ)t ≤ V (p̃, ṽ)tk−1

for all t ∈ [tk−1, tk).

Proof. First, notice that the error dynamics is given by

˙̃pi = ṽi, ˙̃vi = ui, i ∈ I,

where, for the distributed controller rewritten in error terms (4.8) along with properties
(4.10) and (4.11), the acceleration of the WCOM is ˙̄v = 0n. Now, taking time derivative
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of (4.9) we obtain

V̇ (p̃, ṽ)t = −1

2

N∑
i=1

ωi

 ∑
j∈Ni(p̃)

ψ̇ij (‖p̃ij‖) + 2ṽTi ˙̃vi


= −1

2

N∑
i=1

ωi

 ∑
j∈Ni(p̃)

ṽTij∇p̃iψij (‖p̃ij‖) + 2ṽTi ui

 .

Introducing the distributed controller (4.8) along with properties (4.10) and (4.11), it
can be shown that

V̇ (p̃, ṽ)t = −1

2

N∑
i=1

ωi
∑

j∈Ni(p̃)

ṽTijϑij (‖p̃ij‖ , ṽij) ≤ 0. (4.12)

Hence, for all t ∈ [tk−1, tk), the collective energy is such that V (p̃, ṽ)t ≤ V (p̃, ṽ)tk−1
.

Remark 4.2. Condition (4.10) states that the terms in (4.4) can be decomposed as a
distance-dependent gain κij (‖pij‖) multiplying common functions ψ (‖pij‖) and ϑ (vij)
of artificial potential gradient and velocity consensus, respectively. This is the difference
in the controller (4.4) when its applied to the i-th and j-th robot, since κij (‖pij‖) and
κij (‖pji‖) might be different. On the other hand, if the gains κij (‖pij‖) are considered
as distance-dependent edge weights, then, the property (4.11) is called a detail balance
condition, where ωi are the detail balance parameters [118].

The Lemma 4.1 shows that the collective energy doesn’t increase over the time
intervals where the proximity graph is fixed. Notice that, if (4.9) remains constant,
then the multi-robot system attains fixed inter-robot distances and the error between
each robot an the WCOM velocity is constant. On the other hand, if (4.9) decreases,
the the inter-robot distances approaches to the desired values dij described in the APF
definition and/or the velocity of every robot approaches to the speed of the WCOM.

As we discussed before, when the proximity graph is initially connected, one way to
preserve that property is to prevent the loss of edges, but allowing the creation of new
ones. Notice that, given an initial proximity graph G (p)t0 , there exists a finite number

of possibly new edges that can be created; this is, there are only N(N−1)
2
−
∣∣E (p)t0

∣∣
possible new edges.

Define the following value:

V̄ := V (p̃, ṽ)t0 +
1

2

N∑
i=1

ωi
∑

j∈Ni(p)
∗
t0

ψij (r − ε) , (4.13)

where Ni (p)∗t0 :=
{
j : (i, j) ∈ EK \ E (p)t0

}
. The artificial potential ψij (r − ε) is pro-

vided by an edge (i, j) that doesn’t belongs to E (p)t0 but is added to E (p) at some
time instant t > 0. Equation (4.13) resume the collective energy of the swarm due
to its initial states, plus the potential energy contributed by all the remaining edges
such that the proximity graph is complete. Notice that, Lemma 4.1 states that the
collective energy doesn’t increase as the system evolves, hence (4.13) is the maximum
possible energy the closed loop system (4.1)-(4.4) can have.
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Theorem 4.1. Consider the closed-loop system (4.1)-(4.4) along with the neighborhood
hysteresis process1. Suppose the terms in (4.4) meet conditions (4.10) and (4.11). If
the proximity graph G (p)t0 is connected; the initial collective energy is such that

V̄ < V̂ := min
i,j∈V

{
ωiψ̂ij + ωjψ̂ji

2

}
; (4.14)

and ∑
j∈Ni(p̃)

κij (‖pij‖) ≤
ûi

ϕ̂ + ϑ̂
(4.15)

where ϕ̂ := maxs∈[0,r] {|ϕ (s)|} and ϑ̂ is the value such that ‖ϑ (x)‖ ≤ ϑ̂ for all x ∈ Rn.
Then, the following statements simultaneously hold for all t ≥ t0:

(i) The proximity graph remains connected;

(ii) The multi-robot system is on leaderless flocking motion and asymptotically reaches
a rigid configuration and;

(iii) Every robot’s control effort satisfy its own input restriction.

Proof. Proof of (i): Suppose G (p) switches every time instant tk with k = 1, 2, · · · , and
remains fixed over the time interval [tk−1, tk). The following analysis is done for k = 1
and then will be extended for any switching time instant tk.

Given that the proximity graph doesn’t change for all t ∈ [t0, t1), from Lemma
4.1, the collective energy doesn’t increase, i.e. V (p̃, ṽ) ≤ V (p̃, ṽ)t0 < V̂ . Notice

that V̂ is the minimum of every potential energy that a couple of robots i, j ∈ V
contribute to (4.9) when their distance is ‖pij‖ = r. Therefore, since V (p̃, ṽ) < V̂
there are no distances between neighboring robots bigger than the sensing range r for
all t ∈ [t0, t1); Hence, no edges where lost over the time interval [t0, t1). Then, new
edges mus have been added at the time instant t1. Without lost of generality, assume
0 < e1 ≤ (N−1)(N−2)

2
edges where added to E (p) at t1. Thus, the energy at instant t1 is

V (p̃, ṽ)t1 ≤ V (p̃, ṽ)t0 +
1

2

N∑
i=1

ωi
∑

j∈N †i (p)(t0,t1)

ψij (r − ε) , (4.16)

where N †i (p)(t0,t1) :=
{
j : (i, j) ∈ E (p)t1 \ E (p)t0

}
. From equations (4.13) and (4.14),

notice that the collective energy at t1 is such that V (p̃, ṽ)t1 ≤ V̄ < V̂ . Again, since
G (p) doesn’t change over the time interval [t1, t2), by Lemma 4.1, the energy is non-
increasing for all t ∈ [t1, t2). This is, there are no distance among neighboring robots
bigger than the sensing range r for all t ∈ [t1, t2). Thus, edges were added to E (p) at
t2. Following the same reasoning for every time instant tk, we can conclude that there
are no edges lost from E (p) at any switching instant. Thus, since the proximity graph
is connected and no edges where lost, then G (p) remains connected for all t ≥ 0.

1The neighborhood hysteresis process is described in Definition 3.2
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Proof of (ii): For the closed-loop system (4.1)-(4.4) to be in leaderless flocking
motion, it must satisfy the properties described in Definition 2.5. We show them
separately.

(The group is cohesive) We already show that G (p) remains connected for all t ≥ 0.
Therefore, the maximum distance among any pair of robots is bounded such that
‖pij‖ ≤ ρ = (N − 1)r for all i, j ∈ V and t ≥ 0. Hence, the group is cohesive.

(Inter-robot collisions are avoided) Notice that, if for any pair of connected robots
‖pij‖ → 0, then V (p̃, ṽ)→ V̂ , since ψij (‖pij‖)→ ψ̂ij as ‖pij‖ → 0. However, in proof

of (ii), we already show that V (p̃, ṽ) ≤ V (p̃, ṽ)t0 < V̂ for all t ≥ 0, therefore, there are
no inter-robot distances approaching to zero. Hence, inter-robot collisions are avoided.

(Inter-robot velocity mismatches are bounded) Since V (p̃, ṽ) ≤ V̄ for all t ≥ 0,

from equation (4.9) we obtain ‖ṽi‖ ≤
√

2V̄
ωi

for all i ∈ I. Now, notice that ‖vij‖ =

‖ṽij‖ ≤
√

2V̄
(√

ωi+
√
ωj√

ωiωj

)
. Hence, taking υ = maxi,j∈V

{√
2V̄
(√

ωi+
√
ωj√

ωiωj

)}
, we conclude

that the inter-robot velocity mismatches are bounded
To show the closed-loop system (4.1)-(4.4) asymptotically reach a rigid configura-

tion we use the Lasalle’s invariance principle. Therefore, consider the following set

Ω :=
{
p̃, ṽ ∈ RnN : V (p̃, ṽ) ≤ V̄

}
. (4.17)

From the proof of (i), we can conclude that Ω is positively invariant. It remains only

to show Ω compactness. We already demonstrate that ‖ṽi‖ ≤
√

2V̄
ωi

for all i ∈ I, after

some algebraic manipulations we obtain ‖ṽ‖ ≤
√

2V̄
∑N

i=1
1
ωi

. On the other hand,

from equations (4.6) and (4.7), and the fact that G (p) is connected for all t ≥ 0, the

position error vector is such that ‖p̃‖ ≤ r(N−1)∑N
i=1 ωi

√∑N
i=1

(∑N
k 6=i ωk

)2

. Therefore, Ω is

closed and bounded, hence compact. Before we continue, notice that the number of
edges added to E (p) is finite, since (N−1)(N−2)

2
is the maximum number of possible new

edges appended to it. Therefore, we restrict our analysis to the time interval [tk,∞).
From LaSalle’s invariance principle, all trajectories of the closed-loop system (4.1)-

(4.4) will approach to the largest invariant set inside S :=
{
p̃, ṽ ∈ RnN : V̇ (p̃, ṽ) = 0

}
.

From the time derivative of the collective energy (4.12) notice that V̇ (p̃, ṽ) = 0 if and
only if ṽ1 = · · · = ṽN , implying that every robot align its velocity with the WCOM
and, hence, with each others. This is, the multi-robot velocity mismatches are not
only bounded, but every robot asymptotically moves with the same velocity vector.
Moreover, in steady state ˙̃vi = 0n for all i ∈ I, therefore

ui = −
∑

j∈Ni(p)

∇p̃iψij (‖pij‖) = 0n, i ∈ I.

Hence, the multi-robot system attains fixed inter-robot distances. That is, the multi-
robot system asymptotically reach a rigid leaderless flocking motion.

Proof of (iii). By the property (4.10) the controller (4.4) can be written as

ui = −
∑

j∈Ni(p)

κij (‖pij‖) (∇piψ (‖pij‖) + ϑ (vij)) , i ∈ I.
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Figure 4.1: Artificial potential function (4.18).

Without loss of generality, assume the i-th robot distance and velocity difference with
respect to its neighbors j ∈ N (p) are such that ‖pij‖ = r, and ‖ϑ (vij)‖ = ϑ̂. Then,
the norm of (4.4) is

‖ui‖ ≤
(
ϕ̂ + ϑ̂

) ∑
j∈Ni(p)

κij (‖pij‖) , i ∈ I.

From there, condition (4.15) is obtained.

Remark 4.3. Notice that condition (4.15) it can be different for each robot, since
it depends on its neighborhood, the values of the gains κij (‖pij‖), and its own input
bound. Therefore, to fulfill local objectives, the i-th robot’s controller ui might produce
different control efforts than those of its neighbors. This is a key feature of our design,
where robots with higher capabilities compensate for the requirements of less capable
neighbors.

Example 4.1. Consider a multi-robot system with N = 7 robots moving on a plane,
i.e. n = 2, where every robot has a homogeneous communication/detection range r = 2
and individual input constraints such that û1 ≤ · · · ≤ û7. The initial robot positions are
shown in Figure 4.2a (left), where G (p)t0 is connected. Meanwhile, the velocity vector
vi for all i ∈ I at t0 is randomly selected within a box [−1.5, 1.5]× [−1.5, 1.5].

In controller (4.4), the implemented APF is

ψij (‖pij‖) =
ψ̂ij (dij − ‖pij‖)2

r (r − ‖pij‖) ‖pij‖+ (dij − ‖pij‖)2 (4.18)

where the desired inter-robot distance is dij = r
2

for all i, j ∈ V. This APF is shown
in Figure 4.1. Meanwhile, the velocity consensus function is an hyperbolic tangent
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(b) Input norms (left) and collision avoidance indicators (right) of the robotic swarm.

Figure 4.2: Leaderless flocking motion with proximity graph.

ϑij (s, x) = κij (s) tanh (x), with ‖ϑij (s, x)‖ ≤ κij (s)
√
n. Additionally, ε = 0.1 for the

neighborhood hysteresis process. The property (4.10) is fulfilled with κij (‖pij‖) = ψ̂ij,
where ûi

r2dij(N−1)(ϕ̂+ϑ̂)
is the APF’s maximum value, and the WCOM scaling factors are

ωi = N−1
ûi

for all i ∈ I.
To visualize the fulfillment of the collision avoidance objective consider the following

indicator

σi := ln

1 +
∏

j∈Ni(p)

‖pij‖

 , i ∈ I. (4.19)

Notice that σi = 0 if and only if a collision occurs among the i-th robot an any of its
neighbors. Therefore, if σi > 0, for all i ∈ I and t ∈ [0,∞), collisions where avoided at
every time instant.
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4.1. Bidirectional proximity graphs

In Figure 4.2a, robots are represented by colored filled circles and arrows. The
colored circles are centered at pi, for all i ∈ I. An arrow, is a scaled normalized velocity
vector illustrating the direction of motion of each robot. Dotted gray lines represent the
existence of a communication/detection link among pair of robots. Meanwhile, in Figure
4.2b(left) dotted lines stand for the predefined robot input constraints, while solid lines
are the input norm trajectories. Meanwhile in Figure 4.2b(right) solid lines represent
the trajectories of the collision avoidance indicator (4.19).

Initial and final configurations of the closed-loop system (4.1)-(4.4) are displayed in
Figure 4.2a. Notice that, for all t ∈ [0, 50], every initial edge is preserved and only new
edge additions are allowed, hence the connectivity of the proximity graph is preserved.
Also, the velocity of every robot in the swarm gets aligned. The control effort of each
robot in the swarm is shown in Figure 4.2b. Notice that the control effort applied by
each robot satisfy its own individual input constraint. Also, to fulfill local objectives
and taking advantage of the heterogeneity of the swarm, robots with higher capacities
produce a control effort magnitude greater than the input constraint of their less capable
neighbors.

In the following section, we modify our design to consider the existence of a virtual
leader.

4.1.2 Leader-followers configuration

Contemplate the existence of a virtual leader with its dynamics described by equa-
tion (2.35) moving at a constant speed, i.e. f (t, p0, v0) = 0. Also, consider a nonempty
subset of informed robots within the multi-robot system, that is I0 ⊂ I.

To conduct the design of (4.2), as before, we must guarantee the group remains
cohesive without avoid collisions and their velocity differences are bounded, although
in this case with respect to the leader’s states. Therefore, in (4.2), we keep the designs
of functions gij the same as in (4.4) and only the complementary actions regarded to
functions gi0 are designed. Here, the complementary actions between the members of
the group are key to spread the desired leader-following motion to those robots without
direct connection with the leader.

From Definition 2.6, notice that the multi-robot system, to be in leader-followers
flocking motion, must keep every robot’s position and velocity deferences with the
leader bounded. To achieve these objectives, we include driving forces that aims to
reach a zero position and velocity error in the informed robots. Hence, the functions
gi0 are divided into two terms: a position and a velocity consensus function.

For the position consensus function, let ξi0 (·) : Rn 7→ Cξ be defined by elements

with Cξ :=
{
y ∈ Rn : ‖y‖ ≤ ξ̂i0

}
, where ξ̂i0 > 0 is the maximum magnitude of any

force vector produced by this function, and such that

ξi0 (0n) = 0n; and xT ξi0 (x) > 0, ∀x 6= 0n and x ∈ Rn (4.20)

The function ξi0 (·) produces a force that steers an informed robot towards posi-
tion consensus. On the other hand, for velocity consensus, consider the function
νi0 (·) : Rn 7→ Cν defined by elements with Cν := {y ∈ Rn : ‖y‖ ≤ ν̂i0}, where ν̂i0
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is the maximum magnitude of any vector force produced by this function, and such
that

νi0 (0n) = 0n; and xTνi0 (x) > 0, ∀x 6= 0n and x ∈ Rn. (4.21)

This function drives the informed robot into a velocity consensus trajectory with respect
to the leader.

Taking gij as in (4.4) and adding the previously defined terms for gi0, the distributed
controller (4.2) takes the following form

ui = −
∑

j∈Ni(p)

∇piψij (‖pij‖)−
∑

j∈Ni(p)

ϑij (‖pij‖ , vij)− hi (ξi0 (pi0) + νi0 (vi0)) , i ∈ I.

(4.22)
where hi ∈ R≥0 with hi > 0 if i ∈ I0 and hi = 0 otherwise. Notice that (4.22) is the
sum of bounded terms and produce a finite control effort given by

‖ui‖ ≤
∑

j∈Ni(p)

(
ϕ̂ij + ϑ̂ij

)
+ hi

(
ξ̂i0 + ν̂i0

)
, i ∈ I. (4.23)

Consider now the coordinate system as the trajectories of the virtual leader (2.35).
Define the errors in position and velocity of the i-th robot with respect to the virtual
leader’s states as

p̃i := pi − p0 and ṽi := vi − v0, i ∈ I. (4.24)

Define the collective energy of the multi-robot system as follows

V (p̃, ṽ) :=
1

2

N∑
i=1

ωi

 ∑
j∈Ni(p̃)

ψij (‖p̃ij‖) + ‖ṽi‖2 + hi

∫
p̃i

ξi0 (y) · dy

 . (4.25)

In addition of the potential energies introduced by the APFs for all connected robots
and the kinetic energy of the i-th robot, here the work done by forces ξi0 (·) over the
error trajectories p̃i for every robot are included.

Once more, since the proximity graph might change over time, with addition/deletion
of edges, suppose G (p) switches every time instant tk with k = 1, 2, . . . , and remains
fixed over the time interval [tk−1, tk). The following Lemma examine the collective
energy (4.25) when the proximity graph remains fixed.

Lemma 4.2. Consider the closed-loop system (4.1)-(4.22), a virtual leader (2.35)
with f0 (p0, v0) ≡ 0n, a fixed set of informed members I0 ⊂ I, and the time in-
terval [tk−1, tk) in which the proximity graph remains fixed, i.e. G (p) = G for all
t ∈ [tk−1, tk). Denote as V (p̃, ṽ)tk−1

the collective energy at instant tk−1. If the terms

in (4.22) meet conditions (4.10) and (4.11), then the collective energy (4.25) is such
that V (p̃, ṽ)t ≤ V (p̃, ṽ)tk−1

for all t ∈ [tk−1, tk).

Proof. Consider the distributed controller (4.22) rewritten in error terms as

ui = −
∑

j∈Ni(p̃)

∇p̃iψij (‖p̃ij‖)−
∑

j∈Ni(p̃)

ϑij (‖p̃ij‖ , ṽij)− hi (ξi0 (p̃i) + νi0 (ṽi)) , i ∈ I.
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Then, since f0 (p0, v0) ≡ 0n and (4.22) fulfill conditions (4.10) and (4.11), the error
dynamics takes the form

˙̃pi = ṽi and ˙̃vi = ui, i ∈ I,

Taking the time derivative of (4.25), it follows that

V̇ (p̃, ṽ)t =
1

2

N∑
i=1

ωi

 ∑
j∈Ni(p̃)

ṽTij∇p̃iψij (‖p̃ij‖) + 2ṽTi ui + hiṽ
T
i ξi0 (p̃i)

 .

Applying controller (4.22), and considering conditions (4.10) and (4.11), after some
algebraic manipulations we obtain the following

V̇ (p̃, ṽ)t ≤ −
1

2

N∑
i=1

ωi

 ∑
j∈Ni(p̃)

ṽTijϑij (‖p̃ij‖ , ṽij) + hiṽ
T
i νi0 (ṽi)

 ≤ 0.

Therefore, for all t ∈ [tk−1, tk), the collective energy decreases, that is, V (p̃, ṽ)t ≤
V (p̃, ṽ)tk−1

.

The following results gives conditions over (4.22) such that its a solution to the
leader-followers flocking motion problem for a group of robots with different input
constraints.

Theorem 4.2. Consider the closed-loop system (4.1)-(4.22) with a neighborhood hys-
teresis process, a fixed set of informed members I0 ⊂ I and a virtual leader (2.35)
with f0 (p0, v0) ≡ 0n. Assume (4.22) has properties (4.10) and (4.11). If the proximity
graph G (p)t0 is connected, (4.14) is fulfilled, and

∑
j∈Ni(p)

κij (‖pij‖) ≤
ûi − hi

(
ξ̂i0 + ν̂i0

)
ϕ̂ + ϑ̂

, i ∈ I, (4.26)

with hi ∈
(

0, ûi
ξ̂i0+ν̂i0

)
for all i ∈ I0, then the following statements hold for all t ≥ 0:

(i) The proximity graph remains connected for all time;

(ii) The multi-robot system is on leader-followers flocking motion and asymptotically
reaches a rigid configuration, and;

(iii) Every robot’s control effort satisfy its own input restriction.

Proof. Proof of statement (i): This statement can be proven following the same rea-
soning as in Theorem 4.1 applying the results of Lemma 4.2.

Proof of statement (ii): The group cohesiveness, collision avoidance and robot-
leader velocity mismatches boundedness proofs can be derived from the reasoning done
in Theorem 4.1. It remains to show robot-leader position tracking errors are bounded.
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Since V (p̃, ṽ)t ≤ V̄ for all t ≥ 0, notice that ωihi
∫
p̃i
ξi0 (y) · dy ≤ V̄ . From the

properties of the controller’s function ξi0 (·) it can be shown that

‖p̃i‖ ≤
1√
n

(
V̄

ωihiξ̂i0
−

n∑
i=1

(
p̃

[k]
i

)
t0

)
, i ∈ I0.

On the other hand, since G (p) is connected for all t ≥ 0 then ‖pij‖ ≤ r(N − 1).
Therefore, ‖p̃i‖ ≤ ρ0 for all i ∈ I and t ≥ 0, with

ρ0 = max
i∈I0

{
1√
n

(
V̄

ωihiξ̂i0
−

n∑
i=1

(
p̃

[k]
i

)
t0

)}
+ r(N − 1).

Hence, the robot-leader position tracking errors are bounded.
To show the multi-robot system reaches a rigid leader-followers flocking motion, we

can follow the same steps as in Theorem 4.1.
Proof of statement (iii): Following the reasoning done in Theorem 4.1, leads to

(4.26).

Remark 4.4. In the literature, the leader-followers flocking motion problem with het-
erogeneous input constraints condition was addressed in [80, 119]. There, each unin-
formed robot selects another within its neighborhood that acts as a leader to be followed,
this target determination process is done by each robot and, once a target is chosen, it
is not changed at any future time. This allow robots to dedicate its entire control effort
on maintaining that single network’s edge. Nonetheless, with this process, the resulting
proximity graph’s configuration is susceptible to single node/edge failures that might
fragment the group. Moreover, it doesn’t guarantee inter-robot collision avoidance. In
contrast, the distributed controller (4.22) is designed to avoid inter-robot collisions and,
by considering the whole neighborhood of the i-th robot, makes the group less fragile to
single node/edge failures that might fragment the swarm.

Example 4.2. Consider the same set of the Example 4.1. The initial and final config-
urations of the closed-loop system (4.1)-(4.22) are shown in Figure 4.3a. Notice that
the connectivity of the proximity graph is preserved for all t ∈ [0, 50]. The robot-leader
velocity alignment and position tracking are shown in the final configuration, where the
states of the informed robots almost overlaps with the ones of the leader. Observe that
‖pk0‖ is not zero for informed robots, this is due to the collision avoidance rule among
them. The predefined input norms are displayed in Figure 4.3b. Observe that the con-
trol effort applied by each robot satisfy its own input constraint and allows robots with
higher capabilities to produce control efforts greater than their less capable neighbors to
fulfill local objectives.

4.1.3 Flocking motion with obstacle avoidance

We consider the presence of fixed obstacles in the environment. Before continuing,
we make the following assumption:
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ū3

ū4
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Figure 4.3: Leader-followers flocking motion.

Assumption 4.1. Agents distinguish between teammates and obstacles.

Assumption 4.1 let us use the obstacle induced virtual agent approach to represent
obstacles described in [64, 120]. To include obstacle avoidance objectives, we incor-
porate additional terms into controllers (4.4) and (4.22). These include the design of
a force pushing agents away from nearby obstacles and a consensus force towards the
velocity of the obstacle induced virtual agents.

Obstacle induced virtual agents

The main idea for obstacle avoidance is to introduce a virtual agent on the boundary
of obstacles and design control efforts to avoid collision with them [64, 120]. We restrict
our study to obstacles that are connected convex areas in Rn (with n = 1, 2 or 3) with
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Chapter 4. Flocking Problems

boundaries that are smooth manifolds. Specifically, spheres or infinite walls as shown
in Figure 4.4. The position of virtual agents are induced by the proximity of real
ones with these two types of obstacles. In what follows, we describe how position and
velocity of obstacle induced virtual agents are locally computed.

Let O := {o1, . . . , oM} denote the index set of obstacles. An agent is called a
neighbor of obstacle ok if and only if a ball of radius r, centered at pi, overlaps with ok
(see Figure 4.4). The set of nearby obstacles of an agent is defined as follows

N ob
i (p) := {k ∈ O : ‖pi − p̆i,k‖ ≤ r} (4.27)

where p̆i,k is the position of the virtual agent induced by the k-th obstacle. The following
Lemma describes how position p̆i,k and velocity v̆i,k vectors are locally computed (more
details and proof are found in [64, 120]).

Lemma 4.3. (Lemma 4 in [64]) Let p̆i,k and v̆i,k denote the position and velocity of a
virtual agent neighbor of obstacle ok. Then

i) For an obstacle with hyperplane boundary that has a unit normal vector ak and
passes through the point yk, the position and velocity of the virtual agent are de-
termined by

p̆i,k = Ppi + (In − P )yk, v̆i,k = Pvi

where P = In − aTk ak is a projection matrix.

ii) For a spherical obstacle with radius r̆k centered at yk, the position and velocity of
the virtual agent are given by

p̆i,k = µpi + (1− µ)yk, v̆i,k = µPvi

where µ = r̆k
‖pi−yk‖ , ak = (pi−yk)

‖pi−yk‖ , and P = In − aTk ak.

Figure 4.4: Virtual agents induced by nearby obstacles [64, 120].
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4.1. Bidirectional proximity graphs

Obstacle avoidance distributed controller

Since we have a local way of represent environmental obstacles, we now describe
how such information is used to design control efforts to induce obstacle avoidance
behavior into multi-robot system (4.1).

First, we use the gradient method to design a repelling force between real and
obstacle-induced virtual agents. Consider a distance-dependent APF ψobij : [0, r] 7→ R≥0

with partial derivative ϕobij (s) =
∂ψob

ij (s)

∂s
and the following properties:

i) For all s ∈ [0, r], 0 ≤ ψobij (s) ≤ ψ̄obij with ψobij (0) = ψ̄obij and ψobij (r) = 0;

ii) For all s ∈ [0, r], ϕ̄obij ≤ ϕobij (s) ≤ 0 with ϕobij (0) = ϕ̄obij and ϕobij (r) = 0.

where ψ̄obij , ϕ̄
ob
ij ∈ R>0.

The second control effort is an alignment term. Similarly to controllers (4.4) and
(4.22), we use velocity consensus functions. Consider a distance-dependent bounded

odd function ϑobij : R≥0×Rn 7→ C defined by elements with C :=
{
y ∈ Rn : ‖y‖ ≤ ϑ̂obij

}
,

where ϑ̂obij ∈ R>0 is the biggest norm of any vector on its image.

From the controller described in general form, equation (4.2), we have that functions

hik(pik, vik) = ∇piψ
ob
ik(‖pik‖) + ϑobik(‖pik‖ , vik)

where pik = pi− p̆i,k and vik = vi− v̆i,k are, respectively, the difference between position
and velocity of the ith agent and the kth obstacle-induced virtual agent. Therefore,
the distributed controllers including obstacle avoidance objectives are

ui = νi −
∑

k∈N ob
i (p)

∇piψ
ob
ik(‖pik‖)−

∑
k∈N ob

i (p)

ϑobik(‖pik‖ , vik), i ∈ I. (4.28)

where νi is either the leaderless or leader-followers flocking motion controllers (4.4)
and (4.22), respectively. With the following analysis, we establish the convergence of
closed-loop system (4.1)-(4.28) for both leaderless and leader-followers flocking motion
scenarios at once.

Collective energy

Define the collective energy of of the closed-loop system (4.1)-(4.28) as

Q(p̃, ṽ) := V (p̃, ṽ) +
N∑
i=1

ωi
∑

k∈N ob
i (p̃)

ψobik(‖p̃ik‖). (4.29)

where V (p̃, ṽ) is the collective energy (4.9) or (4.25) for leaderless or leader-followers
flocking motion, respectively. Also, p̃ and ṽ are the errors defined in (4.7) and (4.24)
for the leaderless and leader-followers cases. Notice this collective energy summarize
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the potential and kinetic energy due to agent interactions plus the APFs on each agent
due to nearby obstacles. Notice, the maximum value for Q(p̃, ṽ) is

Q̄ = V̄ +
N∑
i=1

ωi
∑
ok∈O

ψ̄obik

where V̄ is the bound of collective energies (4.9) or (4.25). We use (4.29) to establish
the stability of flocking motion for the closed-loop system (4.1)-(4.28).

Recalling that we are dealing with proximity graphs, the information network might
change over time. Then, suppose G (p) switches on time instants tk with k = 1, 2, . . . ,
and remains fixed over the time interval [tk−1, tk). At time instants tk edges might
be added to, or deleted from, E(p), or agents detect nearby obstacles. The following
lemma studies collective energy (4.29) in the time interval [tk−1, tk).

Lemma 4.4. For the closed-loop system (4.1)-(4.28) consider time interval [tk−1, tk).
Denote as Q(p̃, ṽ)tk−1

the collective energy at instant tk−1. In controller (4.28) suppose
νi fulfill properties (4.10) and (4.11). Then Q (p̃, ṽ)t ≤ Q (p̃, ṽ)tk−1

for all t ∈ [tk−1, tk).

Proof. Take the time-derivative of Q(p̃, ṽ)t for t ∈ [tk−1, tk). We have

Q̇(p̃, ṽ)t = V̇ (p̃, ṽ)t +
N∑
i=1

ωi
∑

k∈N ob
i (p̃)

(
ṽTik∇p̃iψ

ob
ik(‖p̃ik‖)− ṽTi ∇p̃iψ

ob
ik(‖p̃ik‖)

)
−

N∑
i=1

ωi
∑

k∈N ob
i (p̃)

ṽTi ϑ
ob
ik(‖p̃ik‖ , ṽik).

Lemma 4.1 (respectively, Lemma 4.2) states that V̇ (p̃, ṽ)t ≤ 0 for all t ∈ [tk−1, tk).
Therefore, we focus on the other terms of Q̇(p̃, ṽ)t.

First, notice that

N∑
i=1

ωi
∑

k∈N ob
i (p̃)

(
ṽTik∇p̃iψ

ob
ik(‖p̃ik‖)− ṽTi ∇p̃iψ

ob
ik(‖p̃ik‖)

)
= −

N∑
i=1

ωi
∑

k∈N ob
i (p̃)

ṽTk∇p̃iψ
ob
ik(‖p̃ik‖)

where ṽTk∇p̃iψ
ob
ik(‖p̃ik‖) = ϕobij (‖p̃ik‖)ṽTk p̃ik

‖p̃ik‖ with ṽk = v̆i,k − p̄. Notice, from the def-

inition of v̆i,k, that ṽk and p̃ik are orthogonal, hence the product ṽTk
p̃ik
‖p̃ik‖ = 0. In

consequence,
N∑
i=1

ωi
∑

k∈N ob
i (p̃)

ṽTk∇p̃iψ
ob
ik(‖p̃ik‖) = 0

On the other hand, the third term of Q̇(p̃, ṽ) is

N∑
i=1

ωi
∑

k∈N ob
i (p̃)

ṽTi ϑ
ob
ik(‖p̃ik‖ , ṽik) =

N∑
i=1

ωi
∑

k∈N ob
i (p̃)

ṽTi ϑ
ob
ik (‖p̃ik‖ , (In − µP )ṽi) .
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Since P is a projection matrix, with eigenvalues either 0 or 1, and noticing µ ∈ [0, 1]
(see its definition in Lemma 4.3), matrix In − µP have positive eigenvalues. In con-
sequence, the product (In − µP )ṽi have the same sign of ṽi, therefore, the products
ṽTi ϑ

ob
ik (‖p̃ik‖ , (In − µP )ṽi) ≥ 0. This implies that

N∑
i=1

ωi
∑

k∈N ob
i (p̃)

ṽTi ϑ
ob
ik(‖p̃ik‖ , ṽik) ≥ 0

as the sum of non-negative values.
Finally, we conclude that

Q̇(p̃, ṽ)t = V̇ (p̃, ṽ)t −
N∑
i=1

ωi
∑

k∈N ob
i (p̃)

ṽTi ϑ
ob
ik(‖p̃ik‖ , ṽik) ≤ 0. (4.30)

This, implies that Q (p̃, ṽ)t ≤ Q (p̃, ṽ)tk−1
for all t ∈ [tk−1, tk), finishing our proof.

Leaderless flocking motion with obstacle avoidance

Let νi in (4.28) be defined by equation (4.4). The following theorem gives condi-
tions for the multi-agent system approach to a leaderless flocking motion with obstacle
avoidance abilities.

Theorem 4.3. Consider the closed-loop system (4.1)-(4.28) along with the neighbor-
hood hysteresis process (described in Definition 3.2). Suppose the terms in νi meet
conditions (4.10) and (4.11) while the obstacle avoidance terms satisfy

∇piψ
ob
ik(‖pik‖) = κobik(‖pik‖)∇piψ

ob(‖pik‖) and ϑobik (‖pik‖ , vik) = κobik(‖pik‖)ϑob (vik) ,
(4.31)

where κobik(‖pik‖) ∈ R>0 for all ‖pik‖ ∈ [0, r]. If the proximity graph G (p)t0 is connected;

the initial collective energy is such that Q̄ < min
{
V̂ij, ψ̂

ob
ik

}
, where V̂ij :=

ωiψ̂ij+ωj ψ̂ji

2
;

the values κij(s), for all s ∈ [0, r] are such that∑
j∈Ni(p)

κij(‖pij‖) +
∑

k∈N ob
i (p)

κobik(‖pik‖) ≤
ūi

ϕ̂+ ϑ̂
i ∈ I. (4.32)

where ϕ̂obik = ϕ̂ := maxs∈[0,r] {|ϕ (s)|} and ϑ̂ is the value such that ‖ϑ (x)‖ ≤ ϑ̂ for all
x ∈ Rn.Then, the following statements hold for all t ≥ t0:

i) The proximity graph remains connected;

ii) The multi-robot system is on leaderless flocking motion while avoid environmental
obstacles;

iii) Every robot’s control effort satisfy its own input constraint.
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Figure 4.5: Artificial potential function (4.33).

Proof. Proof of statement i) follows the same reasoning of its equivalent in Theorem
4.1 using the non-increasing property of the collective energy shown by Lemma 4.4.

Proof of statement ii) follows the same reasoning of its equivalent in Theorem 4.1.
Using LaSalle’s invariance principle, it can be seen, from (4.30), that the largest invari-
ant corresponds to a fixed leaderless-flocking motion configuration and, in presence of
obstacles, a velocity alignment with obstacle induced virtual agents.

Proof of statement iii) use properties (4.10), (4.11) and (4.34) to compute bound
shown in equation (4.35).

Remark 4.5. Notice, Theorem 4.3 is quite similar to Theorem 4.1; Condition (4.34)
allows us to write conditions over the values κij and κobik similarly to equation (4.15).
Also, the initial energy condition includes the potential induced by nearby obstacles.
With these minor modifications to Theorem 4.1, we were able to include obstacle avoid-
ance objectives.

Example 4.3. Consider the same setup of Example 4.1 and choose agents initial ve-
locity vectors such that vi ∈ [0, 0.4] × [0, 0.4] for all i ∈ I. For the obstacle avoidance
terms in (4.28), define the APF as

ψobik(‖pik‖) :=
ψ̂ik(r − ‖pik‖)2

r2
; (4.33)

Figure 4.5 shows its shape. And, for the velocity alignment part, consider ϑobik(x, s) =
κik (s) tanh (x), with ‖ϑik (s, x)‖ ≤ κik (s)

√
n. Also, consider two spherical obstacles of

radius r̆k = 3, with k = 1, 2, located at y1 = [8, 15] and y2 = [15, 5], respectively.
In Figure 4.6a agents are represented by coloured circles and arrows and dotted grey

lines represent the existence of information exchange between agents. Dotted coloured
lines represent each agent’s trajectory. The spherical obstacles are illustrated by the
dark grey colour circles. Meanwhile, in Figure 4.6b, solid lines represent the trajectories
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ū2

ū3
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(b) Input norms (left) and collision avoidance indicators (right).

Figure 4.6: Leaderless flocking motion with obstacle avoidance.

of input norms and collision avoidance indicators from equation (4.19), and dotted lines
represent agent’s input constraints.

From Figure 4.6a, notice the agents avoid nearby obstacles while preserving con-
nectivity of the proximity graph and avoid inter-agent collisions. In Figure 4.6b, we
highlighted the agent’s maximum input norms to show the fulfilment of input restric-
tions as well. Again, agents with higher capacities produce control efforts beyond the
input constraint of their neighbours with smaller input constraints.

Leader-followers flocking motion with obstacle avoidance

Let νi in (4.28) be defined by equation (4.22). The following theorem gives condi-
tions for the multi-agent system approach to a leader-followers flocking motion with
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obstacle avoidance abilities.

Theorem 4.4. Consider the closed-loop system (4.1)-(4.28) along with the neighbor-
hood hysteresis process (described in Definition 3.2), a fixed set of informed members
I0 ⊂ I with a virtual leader (2.35), where f0 (p0, v0) ≡ 0n.. Suppose the terms in νi
meet conditions (4.10) and (4.11) while the obstacle avoidance terms satisfy

∇piψ
ob
ik(‖pik‖) = κobik(‖pik‖)∇piψ(‖pik‖) and ϑobik (‖pik‖ , vik) = κobik(‖pik‖)ϑ (vik) ,

(4.34)
where κobik(‖pik‖) ∈ R>0 for all ‖pik‖ ∈ [0, r]. If the proximity graph G (p)t0 is connected;

the initial collective energy is such that Q̄ < min
{
V̂ij, ψ̂

ob
ik

}
, where V̂ij :=

ωiψ̂ij+ωj ψ̂ji

2
;

the values κij(s), for all s ∈ [0, r] are such that

∑
j∈Ni(p)

κij(‖pij‖) +
∑

k∈N ob
i (p)

κobik(‖pik‖) ≤
ûi − hi

(
ξ̂i0 + ϑ̂i0

)
ϕ̂ + ϑ̂

, i ∈ I. (4.35)

with hi ∈
(

0, ûi
ξ̂i0+ϑ̂i0

)
for all i ∈ I0 and where ϕ̂obik = ϕ̂ := maxs∈[0,r] {|ϕ (s)|} and ϑ̂ is

the value such that ‖ϑ (x)‖ ≤ ϑ̂ for all x ∈ Rn.Then, the following statements hold for
all t ≥ t0:

i) The proximity graph remains connected;

ii) The multi-robot system is on leader-followers flocking motion while avoid environ-
mental obstacles;

iii) Every robot’s control effort satisfy its own input constraint.

The proof of this result is similar to the proof for the previous result so is not
included.

Example 4.4. Again, consider the multi-agents system setup of Example 4.1. Let the
obstacle avoidance terms be as defined for Example 4.3 and consider a virtual leader
moving at a constant velocity towards the position of two nearby obstacles. This setup
is illustrated in Figure 4.7a, where the virtual leader is in black. The set of informed
agents is I0 = {6, 7}.

In Figure 4.7a we illustrate how the multi-agent system navigates from an initial to
a final position while evading nearby obstacles. Notice that, at all times, the distributed
controller design preserves the proximity graph’s connectivity. Meanwhile, Figure 4.7b
shows the input constraints are satisfied at any time; We highlighted the maximum
values of each control effort to illustrate this. Also, the inter-agent collision avoidance
objective is fulfilled as shown by the indicators.

Remark 4.6. By adding a couple of terms in our controller designs from equations
(4.4) and (4.22), we included obstacle avoidance into the multi-agent systems behaviour.
We computed these pieces in a fully distributed fashion using the notions described
in [64, 120]. As such, the idea of using virtual agents to represent obstacles is not
new. These notions, or slight modifications of them, are used extensively in previous
researches [81, 83, 92, 121, 122]. However, we implemented it in a new multi-agent
setup; Second-order multi-agent systems with heterogeneous input bounds.
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(b) Input norms (left) and collision avoidance indicators (right).

Figure 4.7: Leader followers flocking motion with obstacle avoidance.

4.2 Directed Proximity Graphs

Consider a multi-robot system consisting of N mobile robots where the position
and velocity dynamics of the ith robot is described by the equations

ṗi = vi, v̇i = ui, i ∈ I := {1, 2, . . . , N} . (4.36)

But now, let ri ∈ R>0 be the sensing/communication radius of agent i and define the
set of neighbours as

N in
i (p) := {j ∈ V : ‖pij‖ ≤ ri} . (4.37)

Notice that if rj < ri then j ∈ N in
i (p) but i /∈ N in

j (p). Proximity digraphs are a natural
approach to model this kind of information exchange.
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In the following sections, we discuss the implications of modelling information net-
works with proximity digraphs; Also, how we use a similar controller design to the
previous section by introducing a digraph connectivity measure.

4.2.1 Connectivity measure

In previous sections, we discussed why network connectivity it’s a milestone in the
induction of collective behaviours on multi-agent systems. We ensured this property
in bidirectional proximity graphs by assuming the initial information networks were
connected and designed the distributed controllers to preserve every initial or newly
added network edge. Using a balance condition, we were able to do this even though
each agent has different control limitations. In consequence, agents don’t need to know
the global network configuration. However, in proximity digraphs, the existence of
an edge does not imply the existence of its reciprocal. Much less the preservation of
connectivity. Hence, we cannot rely on balance conditions nor neighbours acting to
preserve reciprocal edges. We aim for a more flexible distributed controller design. To
do so, we must have some local sense of the global network configuration.

Connectivity measures are functions of the network’s connectivity indicators. The
possible values the connectivity measure take reflects the global configuration of the
network. Perhaps, the most well-known connectivity indicator on digraphs is the al-
gebraic connectivity of the Laplacian matrix (defined in Section 2.1.3). If the digraph
contains a spanning rooted tree, then the algebraic connectivity has a positive real
part. Then, by defining the connectivity measure as the real part of the algebraic
connectivity, our objective is to keep it positive. Thus, ensuring the existence of a
rooted spanning tree in the digraph. Another connectivity indicator is the Laplacian
matrix first left eigenvector. The vector entries of this eigenvalue are all positive if and
only if the digraph is strongly connected. It is possible to define connectivity measures
as functions of these entries. The domain of these functions for positive entries cor-
responds to strongly connected digraphs. Then, the objective is to keep the measure
inside that domain.

The previously mentioned connectivity measures are based on indicators using
global network information. That is, to all the link weights of the network that
make up the inputs of the Laplacian matrix. However, there are methods to calcu-
late, in a distributed way, the algebraic connectivity or the first left eigenvector. In
[74, 84, 92, 93, 123], distributed algorithms are presented to compute the algebraic
connectivity. The shortcoming is it requires the network to be, at least, strongly con-
nected and balanced. To overcome this drawback, we propose to change the indicator
to the first left-eigenvector. In which case, the network no longer needs to be balanced.

For presentation simplicity, we make the following assumption.

Assumption 4.2. Every agent computes its corresponding entry of the network’s
Laplacian matrix first left-eigenvector and shares it with its out-neighbours.

This assumption implies the ith agent computes the entry γi, of vector γ ∈ RN such
that γTL = 0TN , and have access to vector entries γj for all j ∈ N in

i (p). Although this
assumption is quite strong, there are algorithms to compute, in a distributed fashion,
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matrix eigenvalues through their corresponding eigenvectors. The only missing piece
is an algorithm to distributedly compute the transpose of the Laplacian matrix. We
let this issue for future works.

Under assumption 4.2, we define the connectivity measure between the ith agent
and its in-neighbor j, as a function µ(γi, γj) : R≥0 × R≥0 7→ C as follows:

µ(γi, γj) :=
γi
γj

+
γj
γi
. (4.38)

Notice, function’s image C := (1,∞) with µ(γi, γj) → ∞ if and only if either γi → 0
or γj → 0. We will use, as a shorthand notation, µij = µ(γi, γj). We present some
convenient properties of this connectivity measure in the following proposition.

Proposition 4.1. Let digraph D be strongly connected. Then, the connectivity measure
(4.38), has the following properties:

i) Sign
(
∂µij
∂γi

)
+ Sign

(
∂µij
∂γj

)
= 0;

ii) γi
∂µij
∂γi

+ γj
∂µij
∂γj

= 0;

iii) γi

∣∣∣∂µij∂γi

∣∣∣ = γj

∣∣∣∂µij∂γj

∣∣∣ = µij;

iv) 1 < µij.

Proof. Statement i): First, notice that
∂µij
∂γi

= 1
γj
− γj

γ2i
and

∂µij
∂γj

= 1
γi
− γi

γ2j
. Now, without

lost of generality, suppose γi ≤ γj. Notice that squaring both sides of the inequality
and taking the reciprocal on both sides, we get 1

γ2i
≥ 1

γ2j
. Multiplying by γj both sides

and changing a term to one side, we get

∂µij
∂γi

=
1

γj
− γj
γ2
i

≤ 0.

Meanwhile, if we multiply 1
γ2i
≥ 1

γ2j
by γi, we get

∂µij
∂γj

=
1

γi
− γi
γ2
j

≥ 0.

Therefore, if γi ≤ γj, both partials are of different sign. Following a similar reasoning,
the case γj < γi, yields the same conclusion. Hence, our equality holds.

Statement ii): Recalling that
∂µij
∂γi

= 1
γj
− γj

γ2i
and

∂µij
∂γj

= 1
γi
− γi

γ2j
, we have

γi
∂µij
∂γi

+ γj
∂µij
∂γj

= γi

(
1

γj
− γj
γ2
i

)
+ γj

(
1

γi
− γi
γ2
j

)
= µij − µij = 0.

Statement iii): Notice, by the triangle inequality, that

γi

∣∣∣∣∂µij∂γi

∣∣∣∣ = γi

∣∣∣∣ 1

γj
− γj
γ2
i

∣∣∣∣ ≤ γi

(
1

γj
+
γj
γ2
i

)
= µij.
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Following the reasoning for γj

∣∣∣∂µij∂γj

∣∣∣, we get our result.

Statement iv): First, notice that µij =
γ2i +γ2j
γiγj

. Now, without loss of generality,

suppose γi ≤ γj. Notice that the product γiγj ≤ γ2
j , therefore 1 +

γ2i
γ2j
≤ µij. Due the

fact that γi and γj are both positive, we yield to our result.

In what follows, we discuss a method to produce a position-dependent first left
eigenvector and, in consequence, dynamic connectivity measure µij.

Position-dependent first left eigenvector.

In this section, we set a relation between the multi-agent system’s configuration p
and the first left eigenvector γ of the matrix Laplacian for strongly connected digraphs.
We do this through the edge weights definition. Then, we discuss some properties of γ
related to the multi-agent system dynamics.

First, notice that proposition 2.1 gives us a clear relation between the eigenvector γ
and the edge weights of the proximity digraph. The key idea here is to define interagent
distance-dependent edge weights to produce position-dependent eigenvector entries.
Since the edge weights set the adjacency matrix entries, we continue our discussion by
defining those entries.

Let the ij-th element of the adjacency matrix A(p) be defined as follows:

aij(‖pij‖) :=


1 if ‖pij‖ < ρi,

αij(‖pij‖) if ρi ≤ ‖pij‖ ≤ ri,
0 if ri < ‖pij‖

(4.39)

where αij(·) : [ρi, ri] 7→ [0, 1] is a differentiable and strictly decreasing function such

that
∂aij(‖pij‖)
∂‖pij‖ = bij(‖pij‖)aij(‖pij‖). This definition allows us to have a time-varying

position-dependent nonnegative value ranging from connectivity to non-connectivity
between an agent and nearby agents. Notice also that the time-derivative of the adja-
cency matrix entry is:

ȧij(‖pij‖) = vTij∇piaij(‖pij‖) = bij(‖pij‖)aij(‖pij‖)vTij
pij
‖pij‖

, (4.40)

where ∇piaij(‖pij‖) =
∂aij(‖pij‖)
∂‖pij‖

pij
‖pij‖ is the gradient respect to pi of aij(‖pij‖). Before

we discuss the implications of this definition, we define a couple of sets and a function.
Let T be a spanning tree contained on a digraph D and denote as E(T ) the edge

set of T , then the sets

E ini (T ) :=
{

(j, i) ∈ E(T ) : j ∈ N in
i

}
and Eouti (T ) :=

{
(i, j) ∈ E(T ) : j ∈ N out

i

}
,

(4.41)
define, respectively, the set of edges of T ending and starting at the ith node. Also,
N in
i and N out

i are, respectively, the in- and out-neighbours of the ith agent on digraph
D . Now, consider an edge subset S ⊆ E(D). The function

P(S) :=
∏

(k,j)∈S
ajk(‖pjk‖) (4.42)
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defines the matrix adjacency entries product related to the edges in S. Notice that,
from the edge-weight definition (4.39), P(S) ≤ 1 for any S ⊆ E(D). Now, we use these
sets and function definitions to analyze some properties of the γ eigenvector entries.

Let γ be the first left eigenvector for the matrix Laplacian L of the proximity
digraph D . Then, from proposition 2.1, the ith entry of γ is

γi =
∑

T ∈Ti(D)

P (E(T )) =
∑

T ∈Ti(D)

P
(
E ini (T )

)
P
(
Ē(T )

)
, (4.43)

where Ti (D) is the set of all directed spanning trees in D that are rooted at the ith
node and Ē(T ) = E(T ) \ E ini (T ). A quick examination of this equation shows that
γi ≤ |Ti (D)|. Also, if there is no directed spanning tree with the ith node as the root,
then γi = 0. This case corresponds to one where proximity graph D is not a strongly
connected digraph. On the other hand, notice we can relate a vector entry γi with any
other node, say k 6= i, of the information network through the sets defined in (4.41) as
follows:

γi =
∑

T ∈Ti(D)

P
(
E ink (T )

)
P
(
Eoutk (T )

)
P
(
Ē(T )

)
, (4.44)

where Ē(T ) = E(T ) \ {E ink (T )
⋃ Eoutk (T )}. This property allows us to relate vector

entries of a node and the edges (and its weights) of its network neighbours.

Equation (4.43) allows us to compute the time derivative of γi and relate it to both
inter-agent position and velocity vectors, and the edge weights gradient with respect
to the agent’s position as follows:

γ̇i =
∑

T ∈Ti(D)

∑
(k,j)∈E(T )

vTjk∇pjajk(‖pjk‖)P (E(T ) \ {(k, j)}) (4.45)

=
∑

T ∈Ti(D)

P (E(T ))
∑

(k,j)∈E(T )

bkj(‖pjk‖)
vTjkpjk

‖pjk‖
.

The second inequality uses the property shown in equation (4.39) and the fact that
P (E(T )) = ajk(‖pjk‖)P (E(T ) \ {(k, j)}). Similarly, we can compute gradients for
agent positions of the eigenvector entries. That is, the gradient of γi respect to agent’s
position pi is

∇piγi =
∑

T ∈Ti(D)

∑
(k,i)∈Eini (T )

∇piaik(‖pik‖)P (E(T ) \ {(k, i)}) (4.46)

=
∑

T ∈Ti(D)

P (E(T ))
∑

(k,i)∈Eini (T )

bik(‖pik‖)
pik
‖pik‖

.

In this case that the inner sum is over the set E ini (T ) and not over E(T ). This is
because the ith node is the root of every spanning tree in Ti, therefore, it only has
incoming edges. If we compute the gradient of an entry γj respect to position pi, with
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j 6= i, we obtain

∇piγj =
∑

T ∈Tj(D)

 ∑
(k,i)∈Eini (T )

∇piaik(‖pik‖)P (E(T ) \ {(k, i)})

+
∑

(i,l)∈Eouti (T )

∇piali(‖pli‖)P (E(T ) \ {(i, l)})

 (4.47)

=
∑

T ∈Tj(D)

P (E(T ))

 ∑
(k,i)∈Eini (T )

bik(‖pik‖)
pik
‖pik‖

+
∑

(i,l)∈Eouti (T )

bli(‖pli‖)
pli
‖pli‖

 .
Notice the sums are over all in- and out-edges of the ith node. In the case of node i
being a leaf of the tree T ∈ Tj, the sum is over the out-edges only.

Remark 4.7. Equation (4.43), and those derived from it, depend on the set of the
directed trees contained in D and rooted at the node of interest. To the best of our
knowledge, there is no reported distributed algorithm to identify the set Ti (D), for any
i ∈ VD . The well-known Dijkstra’s and Edmond’s algorithms identify the minimum
weighted rooted tree on a digraph. However, a method to retrieve every tree in Ti (D)
still is a case of study. This observation leads us to the following assumption.

Assumption 4.3. The ith agent computes the set Ti (D) and vectors ∇piγi and ∇piγj,
for all j ∈ N in

i (p).

With this position-dependent first left eigenvector, we embed agent’s positions into
our connectivity measure. In consequence, connectivity measure (4.38) is position-
dependent. We will discuss the consequences below.

Position-dependent connectivity measure

With the definition of the position-dependent first left eigenvector, we get a position-
dependent connectivity measure. Therefore, we can compute time-derivatives and gra-
dients of (4.38). In this section, we describe their properties and implications.

First, from Lemmas 2.6 and 2.7, notice that some entry of the first left eigenvector
is zero, if and only if the digraph is not strongly connected. Then, there exist some
configurations of multi-agent system (4.36) that lead to non-strongly connected prox-
imity digraphs. The following Lemma relates the time-varying property of strongly
connected proximity digraphs with the connectivity measure.

Lemma 4.5. Let D(c) = (V , E) be a graph parametrized continuously by c such that
D(c) is strongly connected ∀c > 0. Let L(c) be its matrix Laplacian with first left
eigenvector γ(c). Let D(0) be the subgraph of D(c) obtained when c = 0, such that
D(0) has at least one weakly connected component. Let E0 be the subset of edges in
E that are deleted when c = 0. Let E ′ ⊂ E0 the set of edges belonging to a minimal
connected edge set of D(0). Then, There exists (i, j) ∈ E ′ such that µij → 0 as c→ 0+.
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This lemma’s proof follows the same steps of Lemma IV.9 in [94]. Therefore, we
omitted it here. Notice, Lemma 4.5 states that, for a strongly connected digraph D , the
connectivity measure µij tends to infinity as D approaches to a not strongly connected
configuration. We’ll use this fact later in our controller design.

Connectivity measure (4.38) change as eigenvector entries γi and γj does. We now
present the rate change properties of µij concerning time and agent’s positions in terms
of equations (4.43)-(4.47). The time derivative of connectivity measure (4.38) is

µ̇ij =
∂µij
∂γi

γ̇i +
∂µij
∂γj

γ̇j. (4.48)

Meanwhile, the gradient of µij in the direction of the agent’s position pi is

∇piµij =
∂µij
∂γi
∇piγi +

∂µij
∂γj
∇piγj. (4.49)

where
∂µij
∂γi

=
1

γj
− γj
γ2
i

and
∂µij
∂γj

=
1

γi
− γi
γ2
j

.

Notice, for this connectivity measure, we have that
∂µij
∂γj

= − γi
γj

∂µij
∂γi

.

So far, we have constructed and discussed the properties of a connectivity measure
based on the first left eigenvector of the Laplacian matrix. In the next subsection, this
measure is used to build a distributed controller to preserve the proximity digraph’s
strong connectivity while the group of agents maintain a flocking motion behaviour.

4.2.2 Controller design

We aim to design control actions to preserve proximity digraph’s strong connectivity
and induce a leaderless flocking motion, as described in Definition 2.5, in the multi-
agent system (4.36). We will use an approach similar to that used for the bidirectional
case (section 4.1), where the shape of the APF is key for our result. However, we will
modify the APF’s design. Since we will not preserve every single edge in E(p), we
allow the APF to take different values as the inter-agent distance approach the sensing
radius. The actual value of the APF will depend on both inter-agent distances and
the connectivity measure described in section (4.38). We begin our design with the
APF’s definition, in charge of inter-agent position control. Then, we discuss a velocity
consensus term used to fulfil the velocity alignment objective.

Let ψij(·, ·) : [0, ri]×(1,∞) 7→ R≥0 be an APF, with partial derivatives φij(s1, s2) :=
∂ψij(s1,s2)

∂s1
and ϕij(s1, s2) :=

∂ψij(s1,s2)

∂s2
, be defined with the following properties:

(i) For all s1 ∈ [0, ri] and s2 ∈ (1,∞), 0 ≤ ψij(s1, s2);
(ii) For all s1 ∈ [0, ri] and any s2 ∈ (1,∞), φij(s1, s2) < 0;

(iii) For all s2 ∈ (1,∞) and any s1 ∈ [0, ri], ϕij(s1, s2) > 0;
(iv) |φij(s1, s2)| ≤ φ̄ij with φ̄ij <∞;
(v) ϕij(s1, s2) = 1

s2
χij(s1, s2) with |χij(s1, s2)| ≤ χ̄ij <∞.

(4.50)
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Property (i) states the potential function is non-negative. Properties (ii-iii) states
ψij(s1, s2) is a decreasing function of s1 but increasing for s2. Property (iv) states
|φij(s1, s2)| is bounded for all values of s1 and s2. Meanwhile, property (v) states
ϕij(s1, s2) is bounded by a relation of s2 and a bounded function of both inputs.
Computing ∇piψij(‖pij‖ , µij), we obtain a vector force in the direction of the minimum
value of ψij(‖pij‖ , µij), i.e. towards the desired inter-robot distance and connectivity
measure, as follows:

∇piψij (‖pij‖ , µij) = φij(‖pij‖ , µij)
pij
‖pij‖

+ ϕij (‖pij‖ , µij)∇piµij. (4.51)

On the other hand, the time-derivative of APF ψij(·, ·) is

ψ̇ij (‖pij‖ , µij) = φij(‖pij‖ , µij)
vTijpij

‖pij‖
+ ϕij (‖pij‖ , µij) µ̇ij. (4.52)

The second controller’s term, as in our previous controller designs, is a velocity
consensus function. Here, the distance dependent edge weights defined in equation
(4.39) are considered. The explicit form of this term can be seen in the definition of
the controller shown below.

Consider the following controller:

ui = − 1

γi

∑
j∈N in

i (p)

∇piψij (‖pij‖ , µij)− c
∑

j∈N in
i (p)

aij (‖pij‖) (vi − vj) , i ∈ I. (4.53)

The key difference between this and previously defined controllers is due to the APF’s
dependency on the connectivity measure µij and the non-constant distance dependent
edge weights. We also drop the use of the neighborhood hysteresis process. Here,
the addition/deletion of in-neighbors is a continuous process, as can be seen from the
adjacency matrix elements definition from equation (4.39).

4.2.3 Stability analysis

In this section, we discuss the stability of the closed loop system (4.36)-(4.53). First,
we define a velocity disagreement vector; The way it is defined and its properties will
be useful for our stability analysis. Then, the collective energy, through which we will
analyze the closed-loop stability, is described.

Disagreement vector

Let γ ∈ R be the first left eigenvector of the matrix Laplacian L(D) associated with

a strongly connected proximity graph D(p). Denote as v =
[
vT1 , · · · , vTN

]T
the stack

velocity vector of the whole multi-agent system (4.36). Introduce a new variable

δ =
[(
IN − 1Nγ

T
)
⊗ In

]
v, (4.54)
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where notice 1Nγ
T ∈ RN×N . Each entry of δ is

δi = vi −
N∑
k=1

γkvk, i ∈ I. (4.55)

Notice δi sets a difference between the ith agent’s velocity and the weighted sum of
all other agent velocities; The weights are, in fact, the entries of vector γ. The time-
derivative of δi its given by the following equation

δ̇i = ui −
N∑
k=1

(γ̇kvk + γkuk) , i ∈ I, (4.56)

where γ̇k is described by the equation (4.45).

Remark 4.8. Previous works use the disagreement vector δ in the stability analysis for
consensus problems over directed graphs (see [103] and references therein). However,
they consider fixed information networks. Here, we deal with proximity digraphs of
moving agents and, therefore, time-varying eigenvectors.

The following lemma summarizes some properties of the disagreement vector.

Lemma 4.6. Consider a strongly connected proximity digraph D(p) with matrix Lapla-
cian L(D). Let γ ∈ RN

>0 be such that γTL(D) = 0TN and satisfy γT1N = 1. Then the
following statements/equalities hold:

i) δ = 0Nn if and only if v1 = · · · = vN .

ii)
∑N

i=1 γiδi = 0n.

iii)
∑N

i=1 γ̇i (δi − vi) = 0n.

iv) If ‖v‖ ≤ v̄, then ‖δi‖ ≤ (1− γi)v̄ for all i ∈ I.

Proof. Proof of statement i): By definition of γ, it is easy to verify that δ satisfies(
γT ⊗ In

)
δ = 0Nn.

Also, by the definition of γ, it is not difficult to see that 0 is a simple eigenvalue of
matrix IN−1Nγ

T with 1N as the corresponding eigenvector and 1 is another eigenvalue
with multiplicity N − 1. Then, it follows from (4.54) that δ = 0Nn if and only if
v1 = · · · = vN .

Proof of statement ii): From the definition of δi we have that

N∑
i=1

γiδi =
N∑
i=1

γi

(
vi −

N∑
k=1

γkvk

)
,

=
N∑
i=1

γivi −
(

N∑
i=1

γi

)
N∑
k=1

γkvk,

=
N∑
i=1

γivi

N∑
k=1

γkvk = 0n.
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where for the last equality we use the fact that γT1N = 1.
Proof of statement iii): From statement ii) we know that

∑N
i=1 γiδi = 0, i.e. a

constant, this implies that d
dt

∑N
i=1 γiδi = 0. Now, notice

d

dt

N∑
i=1

γiδi =
N∑
i=1

(
γ̇iδi + γi

[
ui −

N∑
k=1

(γ̇kvk + γkuk)

])
,

=
N∑
i=1

(γ̇iδi + γiui)−
(

N∑
i=1

γi

)(
N∑
k=1

(γ̇kvk + γkuk)

)
,

=
N∑
i=1

γ̇i (δi − vi) = 0n,

where, again, for the last inequality, we use that fact that γT1N = 1.
Proof of statement iv): Assumption ‖v‖ ≤ v̄ implies that ‖vi − vk‖ ≤ v̄ for all

i, k ∈ I with k 6= i. From the definition of δi and assumption γT1N = 1 we have

‖δi‖ =

∥∥∥∥∥
N∑
k=1

γk (vi − vk)
∥∥∥∥∥ ≤∑

k 6=i
γk ‖vi − vk‖ = (1− γi)v̄,

where for the last inequality we use tha fact that
∑

k 6=i γk = 1− γi.

Disagreement vector properties are key to the close-loop system’s stability analysis.
We discuss this relationship in the following section.

Collective energy

In this section, we present the energy function with which we will study the stability
of the closed-loop system (4.36)-(4.53). We discuss its relation with the flocking motion
and connectivity preservation objectives. Then, we analyze its time-derivative, which
leads us to a lemma, essential for our main result.

Define the collective energy of the closed-loop system (4.36)-(4.53), as follows

V (p, v) :=
1

2

N∑
i=1

∑
j∈N in

i (p)

ψij(‖pij‖ , µij) +
1

2

N∑
i=1

γi ‖δi‖2 . (4.57)

This equation summarizes the artificial potential and kinetic energies of the overall
closed-loop system. The minimum collective energy takes place in a configuration p∗

such that the sum of APFs is locally minimal and a velocity vector v∗, such that
v1 = · · · = vN . On the other hand, for strongly connected proximity digraphs D(p),
configurations p such that ‖pij‖ > 0 for all i, j ∈ I with j 6= i, and bounded velocity
vector v, there exists a V̄ ∈ R>0 such that V (p, v) ≤ V̄ <∞.

Before we continue our analysis of the collective energy function, and to keep the
notation as short as possible, we will write V (p, v) = V , ψij = ψij(‖pij‖ , µij), φij =
φij(‖pij‖ , µij), ϕij = ϕij (‖pij‖ , µij) and so on.
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Take the time-derivative of equation (4.57), we get

V̇ =
1

2

N∑
i=1

∑
j∈N in

i (p)

ψ̇ij +
1

2

N∑
i=1

(
γ̇i ‖δi‖2 + 2γiδ

T
i δ̇i

)
,

where the terms γ̇i, ψ̇ij and δ̇i, are described in equations (4.45), (4.52) and (4.56),
respectively. Notice that

N∑
i=1

γiδ
T
i δ̇i =

N∑
i=1

γiδ
T
i

(
ui −

N∑
k=1

(γ̇kvk + γkuk)

)
,

=
N∑
i=1

γiδ
T
i ui −

N∑
i=1

γiδ
T
i

(
N∑
k=1

(γ̇kvk + γkuk)

)
,

=
N∑
i=1

γiδ
T
i ui,

where, for the last inequality, we use Lemma 4.6 property ii) to eliminate the latest
term of the second inequality. Therefore, collective energy time-derivative is

V̇ =
1

2

N∑
i=1

∑
j∈N in

i (p)

ψ̇ij +
1

2

N∑
i=1

γ̇i ‖δi‖2 +
N∑
i=1

γiδ
T
i ui, (4.58)

As we are considering proximity digraphs, the information network’s topology might
change over time. Suppose the topology of D(p) switches every time instant tk with
k = 1, 2, . . ., and remains fixed over the time interval [tk−1, tk). At each time instant
tk, edges might be added or removed from E(p). The following lemma studies the
time-derivative of the collective energy function (4.57) in the time interval [tk−1, tk).

Lemma 4.7. Consider the closed-loop system (4.36)-(4.53) for the time interval [tk−1, tk)
where no edges are added nor deleted. Denote Vk−1 the collective energy at time instant
tk−1. Suppose at time instant tk−1 configuration p is such that the proximity digraph
D(p) is strongly connected, vector v is bounded and, for all t ∈ [tk−1, tk),

c ≥ b̄

γ̌α(t)

(
4N(N − 1)2(φ̄+ χ̄) + v̄

)
(4.59)

where γ̌ = mini∈I {γi}. Then Vk ≤ Vk−1 for all t ∈ [tk−1, tk).

Proof. Before we begin our collective energy analysis, notice that, from our assump-
tions, there exists some v̄ such that ‖v‖ ≤ v̄. Then, from Lemma 4.6, ‖δi‖ is bounded
for all i ∈ I.

Plugging in controller (4.53) into the last term of equation (4.58), we get

N∑
i=1

γiδ
T
i ui = −

N∑
i=1

δTi
∑

j∈N in
i (p)

∇piψij − c
N∑
i=1

γiδ
T
i

∑
j∈N in

i (p)

aij (‖pij‖) (δi − δj) ,

= −
N∑
i=1

δTi
∑

j∈N in
i (p)

∇piψij −
c

2
δT
([

ΓL(p) + LT (p)Γ
]
⊗ In

)
δ
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where notice δi− δj = vi− vj and for the second equality matrix Γ = diag(γ1, . . . , γN).
Therefore, equation (4.58) is

V̇ =
N∑
i=1

∑
j∈N in

i (p)

(
1

2
ψ̇ij − δTi ∇piψij

)
+

1

2

N∑
i=1

γ̇i ‖δi‖2

− c

2
δT
([

ΓL(p) + LT (p)Γ
]
⊗ In

)
δ. (4.60)

We analyze each term of this equation separately.

Let us center our attention to the first term. From equations (4.51) and (4.52),
notice

N∑
i=1

∑
j∈N in

i (p)

(
1

2
ψ̇ij − δTi ∇piψij

)
=

N∑
i=1

∑
j∈N in

i (p)

φij

(
vTijpij

2 ‖pij‖
− δTi

pij
‖pij‖

)

+
N∑
i=1

∑
j∈N in

i (p)

ϕij

(
µ̇ij
2
− δTi ∇piµij

)
. (4.61)

We now study the properties of both terms in the right hand side of the equations. For
the first term of the right hand side of equation (4.61) is easy to show that, for all pair
of agents i, j ∈ I such that ‖pij‖ ≤ min {ri, rj}, i.e. (i, j), (j, i) ∈ E(p), the sum

φij

(
vTijpij

2 ‖pij‖
− δTi

pij
‖pij‖

)
+ φji

(
vTjipji

2 ‖pji‖
− δTj

pji
‖pji‖

)
= 0.

Now, define the set ~E(p) := {(l, k) ∈ E(p)|(k, l) /∈ E(p)}, clearly ~E(p) ⊆ E(p). Then,
the sum

N∑
i=1

∑
j∈N in

i (p)

φij

(
vTijpij

2 ‖pij‖
− δTi

pij
‖pij‖

)
=

1

2

∑
(j,i)∈~E(p)

φij (vij − 2δi)
T pij
‖pij‖

is the sum of every edge of D(p) that has no reciprocal. Notice vij − 2δi = −(δi + δj)
and the previous sum is bounded as∥∥∥∥∥∥
∑

(j,i)∈~E(p)

φij (vij − 2δi)
T pij
‖pij‖

∥∥∥∥∥∥ ≤
∑

(j,i)∈~E(p)

|φij| ‖δi + δj‖ ,

≤
∑

(j,i)∈~E(p)

|φij| (2 [1− (γi + γj)] v̄ + |γj − γi| ‖vi − vj‖) ,

≤ 2v̄
∑

(j,i)∈~E(p)

|φij| (1− 2γ̄ij) ,
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where γ̄ij = max {γi, γj}. Therefore,∣∣∣∣∣∣
N∑
i=1

∑
j∈N in

i (p)

φij

(
vTijpij

2 ‖pij‖
− δTi

pij
‖pij‖

)∣∣∣∣∣∣ ≤ 2v̄
∑

(j,i)∈~E(p)

|φij| (1− 2γ̄ij) ,

≤ 2v̄φ̄
∣∣∣~E(p)

∣∣∣ ,
where φ̄ = max(j,i)∈E(p) {|φij|}. As for the second term of the right-hand side of equation
(4.61), all pair of agents such that (i, j), (j, i) ∈ E(p), the sum

ϕij

(
µ̇ij
2
− δTi ∇piµij

)
+ ϕji

(
µ̇ji
2
− δTj ∇pjµji

)
= ϕij

(
µ̇ij − δTi ∇piµij − δTj ∇pjµji

)
,

where notice ϕij = ϕji and µ̇ij = µ̇ji, and the sum on the right-hand side of this
equation

µ̇ij − δTi ∇piµij − δTj ∇pjµji =
∂µij
∂γi

(
γ̇i − δTi ∇piγi − δTj ∇pjγi

)
+
∂µij
∂γj

(
γ̇j − δTj ∇pjγj − δTi ∇piγj

)
where

γ̇i − δTi ∇piγi − δTj ∇pjγi = −
∑

T∈Ti(D)

P (E(T))

 ∑
(k,i)∈Eini (T)

k 6=j

bik(‖pik‖)
δTk pik
‖pik‖

+
∑

(l,j)∈Einj (T)

bjl(‖pjl‖)
δTl pjl
‖pjl‖

−
∑

(n,m)∈Ē(T)

bmn(‖pmn‖)
δTmnpmn
‖pmn‖

 ,

with Ē(T) = E(T) \
{
E ini (T)

⋃ E inj (T)
}

, and

γ̇j − δTj ∇pjγj − δTi ∇piγj = −
∑

T∈Tj(D)

P (E(T))

 ∑
(k,j)∈Einj (T)

k 6=i

bjk(‖pjk‖)
δTk pjk
‖pjk‖

+
∑

(l,i)∈Eini (T)

bil(‖pil‖)
δTl pil
‖pil‖

−
∑

(n,m)∈Ê(T)

bmn(‖pmn‖)
δTmnpmn
‖pmn‖

 ,

with Ê(T) = E(T)\
{
E inj (T)

⋃ E ini (T)
}

. Notice, both of the previous terms are bounded
as follows ∣∣γ̇i − δTi ∇piγi − δTj ∇pjγi

∣∣ ≤ γib̄v̄(N − 2) and∣∣γ̇j − δTj ∇pjγj − δTi ∇piγj
∣∣ ≤ γj b̄v̄(N − 2),
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where b̄ = max(y,x)∈E(D(p)) {|bxy(‖pxy‖)|}. Finally, notice∣∣ϕij (µ̇ij − δTi ∇piµij − δTj ∇pjµji
)∣∣ ≤ |ϕij|(∣∣∣∣∂µij∂γi

∣∣∣∣ (γib̄v̄(N − 2)
)

+

∣∣∣∣∂µij∂γj

∣∣∣∣ (γj b̄v̄(N − 2)
))

≤ 2 |ϕij|µij b̄v̄(N − 2),

≤ 2χ̄b̄v̄(N − 2)

where, for the last two inequalities, we use properties iii) in Proposition 4.1 and iv) of

equation (4.50). On the other hand, for those edges in the set ~E(p), we have

ϕij

(
µ̇ij
2
− δTi ∇piµij

)
= ϕij

(
∂µij
∂γi

(
γ̇i − δTi ∇piγi

)
+
∂µij
∂γj

(
γ̇j − δTi ∇piγj

))
where

γ̇i − δTi ∇piγi = −
∑

T∈Ti(D)

P (E(T))

 ∑
(k,i)∈Eini (T)

bik(‖pik‖)
δTk pik
‖pik‖

−
∑

(y,x)∈Ē(T)

bxy(‖pxy‖)
δTxypxy

‖pxy‖


where Ē(T) = E(T) \ E ini (T) , and

γ̇j − δTi ∇piγj = −
∑

T∈Tj(D)

P (E(T))

 ∑
(k,i)∈Eini (T)

bik(‖pik‖)
δTk pik
‖pik‖

−
∑

(i,l)∈Eouti (T)

bli(‖pli‖)
(δl − 2δi)

Tpli
‖pli‖

−
∑

(y,x)∈Ê(T)

bxy(‖pxy‖)
δTxypxy

‖pxy‖


with Ê(T) = E(T) \ {E ini (T)

⋃ Eouti (T)}. Taking the absolute value of both equations,
we get ∣∣γ̇i − δTi ∇piγi

∣∣ ≤ 2γib̄v̄(N − 1) and
∣∣γ̇j − δTi ∇piγj

∣∣ ≤ 2γj b̄v̄(N − 1).

Hence∣∣∣∣ϕij ( µ̇ij2
− δTi ∇piµij

)∣∣∣∣ ≤ |ϕij|(∣∣∣∣∂µij∂γi

∣∣∣∣ (2γib̄v̄(N − 1)
)

+

∣∣∣∣∂µij∂γj

∣∣∣∣ (2γj b̄v̄(N − 1)
))

≤ 4 |ϕij|µij b̄v̄(N − 1),

≤ 4χ̄b̄v̄(N − 1),

where again, for the last two inequalities, we use properties iii) in Proposition 4.1 and
iv) of equation (4.50). Therefore,∣∣∣∣∣∣

N∑
i=1

∑
j∈N in

i (p)

ϕij

(
µ̇ij
2
− δTi ∇piµij

)∣∣∣∣∣∣ ≤ χ̄b̄v̄(N − 2)
∣∣∣E(p) \ ~E(p)

∣∣∣+ 4χ̄b̄v̄(N − 1)
∣∣∣~E(p)

∣∣∣ ,
≤ 4χ̄b̄v̄(N − 1) |E(p)|
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4.2. Directed Proximity Graphs

where, for the second inequality, notice 2χ̄b̄v̄(N − 2) ≤ 4χ̄b̄v̄(N − 1). Finally, plugging
in all these inequalities into equation (4.61) we get an upper bound as follows∣∣∣∣∣∣

N∑
i=1

∑
j∈N in

i (p)

(
1

2
ψ̇ij − δTi ∇piψij

)∣∣∣∣∣∣ ≤ 2v̄φ̄
∣∣∣~E(p)

∣∣∣+ 4χ̄b̄v̄(N − 1) |E(p)| ,

≤ 4b̄v̄(N − 1) |E(p)|
(
φ̄+ χ̄

)
,

≤ 4b̄v̄2N(N − 1)2
(
φ̄+ χ̄

)
,

where we should notice that |E(p)| ≤ N(N − 1) with the equality holding only when
D(p) is a fully connected digraph.

With the previous analysis, we are able to bound every term in the time-derivative
of collective energy (4.58) as follows

V̇ ≤
N∑
i=1

4b̄v̄2(N − 1)2
(
φ̄+ χ̄

)
+

1

2

N∑
i=1

γ̇i ‖δi‖2 − c

2
δT
([

ΓL(p) + LT (p)Γ
]
⊗ In

)
δ.

Its easy to show that

1

2

N∑
i=1

γ̇i ‖δi‖2 ≤ b̄v̄
N∑
i=1

γi ‖δi‖2 ≤ b̄v̄3.

And, from Lemma 2.9, we know that

c

2
δT
([

ΓL(p) + LT (p)Γ
]
⊗ In

)
δ ≥ cα(t)δT (Γ⊗ In) δ = cα(t)

N∑
i=1

γi ‖δi‖2

≥ cα(t)γ̌v̄2,

where α(t) = α (L(p)) > 0 is the generalized algebraic connectivity. Thus, we can
resume the previous inequality for V̇ as follows

V̇ ≤ 4b̄v̄2N(N − 1)2
(
φ̄+ χ̄

)
+ b̄v̄3 − cα(t)γ̌v̄2 ≤ 0,

where the non-positivity is due to our assumption from equation (4.59).

Remark 4.9. Notice, from equation (4.59), the lower bound for a suitable control
gain c is time-varying. That is, it changes as the proximity digraph’s topology does.
While D(p) remains strongly connected, from Lemma 2.9, we know α(t) is positive.
Therefore, there exists a suitable finite control gain. However, up to date, there is no
known lower bound of it. Moreover, the lower bound of c also changes over switching
time intervals. When new edges are added or removed from E(p), the values of α(t)
also switch. Therefore, for the terms involving the APFs within V̇ in our proof for
Lemma 4.7, we considerer the upper bound of the possible number of edges in E(p).
But, we still need a constant lower bound for α(t) to keep our result in Lemma 4.7 over
every topology switching time instant.
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With this supporting Lemma, we build up our main result of this section.

Theorem 4.5. Consider the multi-agent system (4.36)-(4.53). Suppose at t0 multi-
agent’s configuration p is such that D(p) is strongly connected and the collective energy
is bounded. Also, for controller (4.53), choose gain c such that fulfills inequality (4.59)
for all t ≥ t0. Then, the following statements hold:

(i) Proximity digraph D(p) is strongly connected for all t ≥ t0;

(ii) The multi-agent system is on leaderless flocking motion.

Proof. Proof of statement (i): Suppose the proximity digraph D(p) switches at every
time instant tk, with k = 1, 2, · · · , and remains fixed over the time interval [tk−1, tk).
We carry out the following analysis for k = 1 and then it will be extended to every
time interval.

Given the topology of D(p) doesn’t change for all t ∈ [t0, t1), from Lemma 4.7, the
collective energy doesn’t increase, i.e. Vt ≤ Vt0 for all t ∈ [t0, t1). Hence, Vt is bounded
above by some constant value and there are no APFs approaching infinity in (4.57).
From our APFs definition, this implies there are no connectivity measures approaching
infinity. In consequence, the entries of eigenvector γ are such that γi > 0, for all i ∈ I.
That is, proximity digraph D(p) remains strongly connected for all t ∈ [t0, t1).

Now, consider the time instant t1, where the topology of D(p) change. Denote,
respectively, as E− and E+ the set of edges added to and removed from E(p) at instant
t1. Since the remotion of edges reduce the collective energy, is clear that Vt1 will
be smaller than Vt0 and our statement of the previous paragraph will still hold true.
However, for edge additions, this is not the case. Notice, the collective energy at t1 is
such that

Vt1 ≤ Vt0 +
∑

(k,i)∈E+
ψik.

However, addition of edges will not decrease the values of eigenvector entries, as we
can see from their definition in equation (4.43). That is, connectivity measures µik
are bounded for all (k, i) ∈ E+ and also does the potentials ψik. Hence, the collective
energy at instant t1 is finite, thus D(p) is strongly connected.

By similar reasoning over each time interval, we conclude the collective energy is
finite for all time intervals. That is, there exists V̄ <∞ such that Vt ≤ V̄ for all t ≥ 0.
Thus, the proximity digraph D(p) remains strongly connected for all t ≥ 0.

Proof of statement (ii): For the multi-agent system to be in leaderless flocking
motion, it must satisfy the properties described in Definition 2.5. We discuss them
separately.

(The group is cohesive) We already show D(p) remains strongly connected for all
t ≥ 0. Therefore, the maximum distance between any pair of agents is the sum of their
sensing radius, i.e. ρ =

∑N
i=1 ri for all t ≥ 0. Hence the group is cohesive.

(Inter-robot collisions are avoided) Notice from the definition of APFs that the
values of ψij →∞ as ‖pij‖ → 0. However, we already show, in our proof of statement
(i), that there exists V̄ < ∞ such that Vt ≤ V̄ for all t ≥ 0. In consequence, there
are no distances ‖pij‖ approaching zero for all i, j ∈ I and t ≥ 0. Hence, inter-robot
collisions are avoided.
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(Inter-robot velocity mismatches are bounded) Notice vectors δi can be rewritten
as ponderated inter-agent velocity differences as δi =

∑N
k=1 γkvik. We already show the

proximity digraph D(p) is strongly connected and the collective energy (4.57) remains
bounded for all t ≥ 0. On the one hand, this implies that every eigenvector entry
is positive. And, on the other hand, the disagreement velocity vectors are bounded,

that is ‖δi‖ ≤
√

2V̄
γi

. With these observations, we conclude that, at any time t ≥ 0,

velocity differences ‖vij‖ ≤ v̄ for some v̄ < ∞. Thus, inter-robot velocity mismatches
are bounded.

Remark 4.10. Conclusions in Theorem 4.5 relies on the properties exhibited by the
collective energy; More specifically, on its boundedness, which allowed us to ensure
the strong connectivity property of D(p) and, at the same time, the leaderless flocking
motion behaviour. However, in this case, and different from our results in Section
4.1, we cannot ensure the multi-agent system reaches a rigid configuration. Due to the
proximity digraph’s topology flexibility, we can’t establish a positively invariant set to
use Lasalle’s invariance principle as we did before. Instead, we concluded the system is
stable; Although this is sufficient to prove satisfaction of the flocking motion properties,
we can’t ensure asymptotic velocity alignment as we did in our previous results.

Remark 4.11. Connectivity measure (4.38) was presented in [94]. There, the objective
was to preserve the strong connectivity of digraph D(p) and no more. The dynamics of
every agent was of first-order and inter-agent collisions were allowed. The controller’s
design uses a sort of constrained bidirectionality over each network edge; Each agent is
aware of being sensed by another with a bigger sensing radius and uses this information
to compute its control actions. In contrast, we consider second-order dynamic agents
and inter-agent collisions are avoided. Also, the agents are unaware of others outside
their sensing radius and, therefore, compute their control actions only with local infor-
mation. With these considerations/restrictions, we also ensure the strong connectivity
preservation of D(p).

Remark 4.12. As we discussed in Remark 4.7, the computation of ∇piγi and ∇piγj re-
quires the local knowledge of sets Ti and Tj. Without this information, we cannot com-
pute ∇piµij and, in consequence, neither the distributed controller (4.53). Therefore,
up to date, we cannot provide any illustration for the effectiveness of the distributed
controller (4.53).

In this chapter, we studied flocking motion in multi-robot systems. Even though
having different combinations of robot- and environmental-related constraints, our dis-
tributed controller designs allow multi-robot systems to exhibit flocking behaviour.
These constructions extend the already existing controllers present in the literature.
We also presented the first use of a first-left eigenvector based connectivity measure
in combination with the gradient-descent method in a multi-robot system with hetero-
geneous sensing limitations. The following chapter resume this thesis’ results in some
final comments.
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In this thesis, we investigated the motion coordination of a finite set of mobile
robots. We designed distributed controllers under a behavioural approach while consid-
ering both robot and environmental constraints such as limited communication/sensing
and motion capabilities, non-unitary inertias and environmental obstacles. Our pro-
posed controller designs induce a desired collective behaviour in the multi-robot system.

In this work, we controlled the motion of a point of interest within two kinds of
mobile robots: differential mobile robots and quadrotors. The dynamics of each of these
points of interest are nonlinear; We discussed control schemes allowing us to describe
their motion as a second-order system. Then, we defined consensus and flocking motion
in leaderless and leader-followers configurations.

Our controller designs for consensus motion contemplated two scenarios: Fixed and
proximity graphs. In the first scenario, we considered robots with uneven inertias ex-
changing information through a fixed directed network. Our controller designs allowed
us to consider, through minor modifications, the leaderless and the leader-followers con-
figurations, even if the leader’s acceleration is time-varying. Also, sufficient and neces-
sary conditions to achieve consensus behaviour were derived. As a result, we extended
many previous works, such as [50, 51, 116, 124]. In the second scenario, we included
homogeneous robot communication/sensing constraints. This limitation leads us to
time-varying information networks. We used the concept of proximity graphs to model
information exchange among robots. A combination of the gradient-descent method
along with velocity consensus functions and a neighbourhood hysteresis process estab-
lish our controller designs. With it, we guaranteed the proximity graph’s connectivity
and asymptotic consensus behaviour in the multi-robot system in both leaderless and
leader-followers scenarios. Here, the leader’s states are available only to a portion of
informed robots in the group. Also, the leader’s velocity might be time-varying. Our
results extend [58], where every robot must know the leader’s acceleration.

On the other hand, our study on flock behaviour for multi-robot systems focused on
combinations of three physical constraints: limited communication/detection ranges,
input constraints, and obstacles in the workspace. We modelled the information net-
work with proximity graphs. Since we contemplated both homogeneous and hetero-
geneous communication/sensing ranges, proximity graphs were either bidirectional or
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directed. When the proximity graph was bidirectional, our controller designs allowed
flocking motion when robots had individual input constraints, even in the presence of
obstacles. With the developed designs we improve previously reported results such as
[78, 117] where predictive control schemes were used, or as [80, 119], where a target de-
termination process is needed. Our controller designs took advantage of heterogeneous
input constraints and allowed robots with higher capabilities to compensate for neigh-
bours that are less capable of meeting the group’s requirements. Meanwhile, when the
proximity graph was directed, our designs exploited the properties of a proposed con-
nectivity measure. The proposed controllers are the first of their kind, as they combine
the gradient descent method with a connectivity measure based on the first-left eigen-
vector of the matrix Laplacian. We proved the leaderless flocking motion behaviour
to be stable. Nonetheless, a distributed method to compute the first-left eigenvec-
tor entries gradient is needed; And thus obtain a clear illustration of the controller
effectiveness.

Multi-robot systems motion control seemed to be a colossal task; Especially when
motion constraints include physical restrictions such as those considered in this work.
To tackle it, we took a behavioural approach. Our design objective was to embed lo-
cal heuristical rules into distributed controllers that steer the multi-robot system into
the desired behaviour. The tool to do so was the gradient descent method. With a
careful design of APFs, this method allowed us to control the motion of each robot.
Then, using tools from graph and control theory, we showed multi-robot system states
trajectories fulfil the properties of the desired behaviour. With this, we positively an-
swer our hypothesis; It is possible to design, using a behavioural approach, distributed
controllers to drive multi-robot systems into a constrained coordinated motion.

5.1 Future work

There are, possibly, several extensions to our work. We described some ideas to
improve/extend the results here presented.

In Chapter 3 we solved consensus problems for both leaderless and leader follow-
ers scenarios. For the fixed information network case, our design supports constant
state deviations between connected robots. Being able to change the state deviations
on the fly would be helpful under environmental constrained scenarios. For the prox-
imity graphs case, we might consider obstacle avoidance objectives as well. Robots
with input constraints is another possible extension. For this last case, time-varying
neighbourhood hysteresis processes would be of great help to keep control efforts below
prescribed limitations. These are some possible modifications regarded to future works.

In Chapter 4, we solved leaderless and leader-follower flocking motion problems.
For the bidirectional proximity graph case, there are some further research directions.
To deal with heterogeneous input constraints, we had to make a detailed balance
assumption. With an adaptive rule, we might remove this assumption. Consequently,
this should relax the conditions to satisfy the heterogeneous input constraints. Also,
a time-varying hysteresis process might be helpful in this regard. Another possible
improvement is the use of connectivity measures. As we discussed, these allow more
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flexible final network configurations. Especially important in the case of workspace
obstacles. As for the directed proximity graphs case, there are still some aspects to
consider. To compute the entires of the first-left eigenvector of the matrix Laplacian,
we need a distributed algorithm to compute the transpose of this matrix. On the
other hand, we need an algorithm to identify the rooted tree sets in each robot; A
requirement to get the corresponding vector entries gradient to the robot’s position.
These are some possible improvements to our work and our future research objectives.

There are still many other challenges to be tackled in multi-robot systems control.
For example, robots of different kinds lead to more heterogeneous groups - in compar-
ison to our study. Also, many possible phenomenons might occur in the information
network like communication time delays, data loss or edge intermittence, to name a
few. In this thesis, we consider three of the critical constraint in multi-robot systems;
However, there is still much to do.

Either relegating humans from dangerous environments such as disaster zones or
finding victims of these events, improving the performance of surveillance tasks, or
supporting space explorations, implementations of multi-robot systems will bring many
benefits to society. There is no doubt that, over the coming years, many advances in
technology will appear and support future multi-robot systems implementations. They
are likely the future of robotics and robots implementations. However, none of them
will be possible without mathematicians and controller designers tackling the seemly
colossal task of developing theoretical frameworks to study multi-robot systems. It’s
up to us to pave the way and make it possible.
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