

INSTITUTO POTOSINO DE INVESTIGACIÓN CIENTÍFICA Y TECNOLÓGICA, A.C.

POSGRADO EN CIENCIAS EN BIOLOGIA MOLECULAR

El complejo Hst1-Rfm1-Sum1 de *Candida* glabrata es un regulador central de genes asociados a virulencia

Tesis que presenta

Norma Concepción Vázquez Franco

Para obtener el grado de

Doctora en Ciencias en Biología Molecular

Director de la Tesis:

Alejandro De Las Peñas Nava, Ph.D.

San Luis Potosí, S.L.P., abril de 2022

Constancia de aprobación de la tesis

La tesis "El complejo Hst1-Rfm1-Sum1 de *C. glabrata* como regulador central de genes asociados a virulencia" presentada para obtener el Grado de Doctora en Ciencias en Biología Molecular fue elaborada por Norma Concepción Vázquez Franco y aprobada el 04 de abril de 2022 por los suscritos, designados por el Colegio de Profesores de la División de Biología Molecular del Instituto Potosino de Investigación Científica y Tecnológica, A.C.

> Alejandro De Las Peñas Nava, Ph. D. Director de la tesis

> > **Dr. Jorge Luis Folch Mallol** Miembro del Comité Tutoral

Dr. Luis Antonio Salazar Olivo Miembro del Comité Tutoral

Dr. Samuel Lara González Miembro del Comité Tutoral

Créditos Institucionales

Esta tesis se realizó en el Laboratorio de Microbiología Molecular de la División de Biología Molecular del Instituto Potosino de Investigación Científica y Tecnológica, A.C., bajo la dirección de Alejandro De Las Peñas Nava, Ph.D.

Durante la realización del trabajo el autor recibió una beca académica del Consejo Nacional de Ciencia y Tecnología (No. de registro 225311) y del Instituto Potosino de Investigación Científica y Tecnológica, A. C.

Esta tesis recibió financiamiento del proyecto A1-S-9550 de la Convocatoria de Investigación Científica Básica CB-2017-2018 del Consejo Nacional de Ciencia y Tecnología

Instituto Potosino de Investigación Científica y Tecnológica, A.C.

Acta de Examen de Grado

El Secretario Académico del Instituto Potosino de Investigación Científica y Tecnológica, A.C., certifica que en el Acta 129 del Libro Segundo de Actas de Exámenes de Grado del Programa de Doctorado en Ciencias en Biología Molecular está asentado lo siguiente:

En la ciudad de San Luis Potosí a los 28 días del mes de abril del año 2022, se reunió a las 12:00 horas en las instalaciones del Instituto Potosino de Investigación Científica y Tecnológica, A.C., el Jurado integrado por:

Dr. Luis Antonio Salazar Olivo	Presidente	IPICYT
Dr. Samuel Lara González	Secretario	IPICYT
Dr. Alejandro De Las Peñas Nava	Sinodal	IPICYT
Dr. Jorge Luis Folch Mallol	Sinodal externo	UAEM

a fin de efectuar el examen, que para obtener el Grado de:

DOCTORA EN CIENCIAS EN BIOLOGÍA MOLECULAR

sustentó la C.

Norma Concepción Vázquez Franco

sobre la Tesis intitulada:

El complejo Hst1 -Rfm1 -Sum1 de Candida glabrata es un regulador central de genes asociados a virulencia

que se desarrolló bajo la dirección de

Dr. Alejandro De Las Peñas Nava

Mtra. Ivonne Lizette Cuevas Vélez Jefa del Departamento del Posgrado

El Jurado, después de deliberar, determinó

APROBARLA

Dándose por terminado el acto a las 14:37 horas, procediendo a la firma del Acta los integrantes del Jurado. Dando fe el Secretario Académico del Instituto.

A petición de la interesada y para los fines que a la misma convengan, se extiende el presente documento en la ciudad de San Luis Potosí, S.L.P., México, a los 28 días del mes de abril de 2022.

Dr. Marcial Bonilla Marín Secretario Académico

Dedicatorias

"Pero ese día que vendrá no ha de venir: es éste." Jaime Sabines

Agradecimientos

Al Consejo Nacional de Ciencia y Tecnología por la beca otorgada.

Al Instituto Potosino de Investigación Científica y Tecnológica, A.C. por el enorme apoyo otorgado a través de su personal, sus instalaciones y sus recursos materiales.

Al Dr. Alejandro De Las Peñas que indudablemente contribuyó a mi formación académica y personal.

A la Dra. Irene Castaño por sus constantes cuestionamientos científicos que motivan a seguir en la búsqueda del conocimiento.

Al Dr. Luis Antonio Salazar Olivo, al Dr. Samuel Lara González y la Dra. Ruth Elena Soria Guerra por su tiempo, sus aportaciones, sus preguntas, sus consejos, su apoyo y su confianza. Sin ustedes este trabajo estaría incompleto.

Al Dr. Jorge Luis Folch Mallol por su tiempo y sus aportaciones.

A la Dra. Guadalupe Gutiérrez Escobedo por su amistad, sus enseñanzas, su confianza, sus consejos, su apoyo y su tiempo.

A los Profesores Investigadores y Técnicos Académicos de la División de Biología Molecular y Profesores Investigadores asociados a otras Divisiones por sus valiosas enseñanzas, disposición, aportaciones, dedicación y esfuerzo, en especial a: Dra. Lina Riego, Dr. Sergio Casas, Dr. Nicolás Gómez, Dra. Angélica Montoya, Biol. Mireya Sánchez, M. en C. Alberto Barrera, Dr. Elihú Bautista, Dr. Cesaré Ovando, M. en C. Alicia Becerra.

A Funcogen-Lab, IPICYT, en especial al Dr. Luis García, por su asesoría técnica y sus aportaciones.

A mis amigos del laboratorio de Microbiología Molecular, en especial a: Jacqueline Juárez, Marcela Briones, Alex Juárez, Gloria López, Eunice López, Karen Núñez, Osney Leiva, Gabriel Luna y Laura Vera; a mis amigos del Instituto: Daniel Hernández, Laura Rodríguez, Marcela Solís y Paulina Cázares. A todos ustedes por compartir tantas cosas conmigo, por su apoyo y por todo lo que les he aprendido.

Contenido

	Página
Constancia de aprobación de la tesis	ii
Créditos institucionales	iii
Acta de examen	iv
Dedicatorias	V
Agradecimientos	vi
Lista de tablas	ix
Lista de figuras	х
Resumen	xiii
Abstract	xiv

	Página
1. Introducción	1
2.Antecedentes directos	5
3. Objetivo general	6
3.1. Objetivos específicos	6
4. Material y métodos	7
5. Resultados	22
6. Discusión	23
7. Conclusiones	25
8. Perspectivas	26
9. Resultados adicionales	27
9.1. El medio de cultivo modula la susceptibilidad a fluconazol	27
9.1.1. Factores de señalización celular que modifican la resistencia a FLC en <i>Candida glabrata</i> .	27
9.1.2. Factores del medio de cultivo que modifican la resistencia a FLC en <i>C. glabrata</i> .	29
9.1.3. La peptona confiere la resistencia a FLC en la mutante <i>hst1</i> Δ .	31
9.1.4. Perfil de aminoácidos de la peptona y su efecto en la activación de la resistencia a FLC.	35

9.1.5. La peptona (Thermo Fisher Scientific™) puede activar la resistencia a FLC en ausencia de Hst1 o Sum1.	38
9.1.6. Perfil de aminoácidos de la peptona de caseína de BD Bioxon™.	40
9.1.7. La peptona (Thermo Fisher Scientific™) aumenta la resistencia a FLC en ausencia de Hst1 o Sum1 mediante la activación de la expresión de <i>CDR1</i> .	43
9.1.8. La fracción no polar de la peptona Thermo Fisher Scientific™ induce la activación del promotor de <i>CDR1</i> .	47
9.1.9. La fracción no polar de las diferentes proteínas hidrolizadas induce la activación del promotor de CDR1.	49
9.2. Evaluación de la susceptibilidad a FLC en aislados clínicos	56
9.3. Evaluación de la susceptibilidad a H₂O₂ en las cepas BG14 y <i>hst1</i> ∆ y en aislados clínicos	58
9.4. Análisis del transcriptoma de las cepas de C. glabrata BG14, hst1 Δ , sum1 Δ y hst1 Δ sum1 Δ	62
9.5. Análisis de la activación de la expresión de CDR1 en rfm1 Δ	73
9.6. La complementación heteróloga con <i>Sc</i> SUM1 y <i>Lk</i> SUM1 aumenta la supervivencia a neutrófilos	78
9.7. La complementación heteróloga con <i>Sc</i> SUM1 y <i>Lk</i> SUM1 no modifica el fenotipo de hiperadherencia de <i>C. glabrata</i>	81
10. Anexos	83
11. Referencias	84

Lista de tablas

	Página
Tabla 1. Cepas utilizadas en este trabajo	7
Tabla 2. Plásmidos usados en este estudio	9
Tabla 3. Oligonucleótidos utilizados en este trabajo.	10
Tabla 4. Número de acceso o nombre sistemático de las secuencias utilizadas en el análisis filogenético	15
Tabla 5. Porcentaje relativo de los compuestos encontrados por GC/MS en la fracción no polar de las tres proteínas hidrolizadas.	52
Tabla 6. Medios de cultivo modificados utilizados en esta sección de resultados adicionales	55
Tabla 7. Aislados clínicos de <i>C. glabrata</i> utilizados en este trabajo	61
Tabla 8. Genes expresados diferencialmente en las cepas <i>hst1</i> Δ , sum1 Δ y hst1 Δ sum1 Δ .	67
Tabla 9. Cambio logarítmico en la expresión (log2(FC)) de genes de interés en las cepas <i>hst1</i> Δ , <i>sum1</i> Δ y <i>hst1</i> Δ sum1 Δ .	72

Lista de figuras

	Página
Figura 1. Evaluación de la presencia de factores difusibles en medio condicionado proveniente de células de fase estacionaria y que modifiquen la resistencia a FLC en las cepas BG14 y <i>hst1</i> Δ de <i>C.</i> <i>glabrata</i> .	28
Figura 2. Determinación de factores del medio de cultivo que modifiquen la resistencia a FLC en <i>C. glabrata</i> .	30
Figura 3. Concentraciones de extracto de levadura que confiere resistencia a FLC en ausencia del HRS-C.	33
Figura 4. Determinación de los compuestos del YPD que confieren resistencia a FLC en ausencia del HRS-C.	34
Figura 5. Perfil de aminoácidos en CAA y peptona.	36
Figura 6. Determinación del efecto de cisteína, glicina y prolina sobre la activación de la resistencia a FLC.	37
Figura 7. Ensayo de susceptibilidad a FLC con células de fase estacionaria de <i>C. glabrata</i> y diferentes proteínas hidrolizadas.	39
Figura 8. Perfil de aminoácidos en CAA, peptona de Thermo Fisher Scientific™ y peptona de caseína de BD Bioxon™.	41
Figura 9. Efecto de la peptona de caseína (BD Bioxon™) en la susceptibilidad a FLC de <i>C. glabrata</i> aún en ausencia del HRS-C.	42
Figura 10. Evaluación de la activación de la expresión de <i>PDR1</i> según el medio de cultivo.	44
Figura 11. Evaluación de la activación de la expresión de <i>CDR1</i> según el medio de cultivo.	46
Figura 12. Evaluación de la inducción de la expresión de <i>CDR1</i> en CAA más peptona o sus diferentes fracciones.	48
Figura 13. Evaluación de la inducción de la expresión de <i>CDR1</i> en CAA más peptona marca Thermo Fisher Scientific™ (Peptone), peptona de caseína marca BD Bioxon™ (Casein Peptone) y triptona marca BD Bioxon™ (Tryptone) y sus fracciones no polares (NPF).	50
Figura 14. Diagrama de Venn que muestra los compuestos no polares compartidos entre los diferentes medios de crecimiento.	51

Figura 15. Aislados clínicos resistentes a 32 μg/ml de FLC en YPD pero susceptibles en CAA.	57
Figura 16. Susceptibilidad a H ₂ O ₂ dependiente de los medios de crecimiento.	59
Figura 17. Susceptibilidad de los aislados clínicos a FLC (32 μg/ml) y H₂O₂ en YPD y CAA.	60
Figura 18. Evaluación de la variación de los transcritos de las cepas de C. glabrata BG14, hst1 Δ , sum1 Δ y hst1 Δ sum1 Δ .	65
Figura 19. Comparación de los niveles de expresión del genoma de las cepas de <i>C. glabrata</i> BG14, <i>hst1</i> Δ, <i>sum1</i> Δ y <i>hst1</i> Δ <i>sum1</i> Δ.	66
Figura 20. Diagrama de Venn que muestra la superposición entre genes inducidos o reprimidos en las cepas de <i>C. glabrata hst1</i> Δ , <i>sum1</i> Δ and <i>hst1</i> Δ sum1 Δ .	68
Figura 21. Categorías por ontología genética con un enriquecimiento significativo en las cepas de <i>C. glabrata hst1</i> Δ, <i>sum1</i> Δ y <i>hst1</i> Δ <i>sum1</i> Δ.	69
Figura 22. Enriquecimiento de categorías de interés por ontología genética en las cepas de <i>C. glabrata hst1</i> Δ, <i>sum1</i> Δ y <i>hst1</i> Δ <i>sum1</i> Δ.	70
Figura 23. Niveles de expresión de genes involucrados en la respuesta a fármacos y a estrés oxidante en células de fase logarítmica (A) y células de fase estacionaria (B) de <i>C. glabrata hst1</i> Δ, <i>sum1</i> Δ y <i>hst1</i> Δ <i>sum1</i> Δ.	71
Figura 24. Identificación de regiones similares (posibles dominios) entre <i>Cg</i> Rfm1 y <i>Sc</i> Rfm1.	74
Figura 25. Evaluación de la activación de la expresión de <i>CDR1</i> en 20 clonas de la cepa <i>rfm1</i> ∆ de <i>C. glabrata.</i>	75
Figura 26. Evaluación de la activación de la expresión de <i>CDR1</i> en la cepa <i>rfm1</i> ∆ de <i>C. glabrata</i> .	76
Figura 27. Ensayo de confrontación a neutrófilos con las cepas de <i>C. glabrata</i> BG14, <i>hst1∆, sum1∆, sum1∆::LkSUM1, sum1∆::ScSUM1</i> y <i>hst1∆::ScHST1</i> .	79
Figura 28. Micrografía de cepas de <i>C. glabrata</i> BG14, <i>hst1∆, sum1∆, sum1∆, sum1∆::LkSUM1, sum1∆::ScSUM1</i> y <i>hst1∆::ScHST1</i> .	80

Figura 29. Ensayo de adherencia a células HeLa con las cepas de *C. glabrata* BG14, *hst1* Δ , *sum1* Δ , *sum1* Δ ::*LkSUM1*, *sum1* Δ ::*ScSUM1* y *hst1* Δ ::*ScHST1*.

82

Resumen

El complejo Hst1-Rfm1-Sum1 de *Candida glabrata* es un regulador central de genes asociados a virulencia

Candida glabrata es una levadura comensal que puede actuar como patógeno oportunista en pacientes inmunocomprometidos. La patogenicidad de C. glabrata se atribuye a factores de virulencia que le han convertido en un patógeno exitoso: adherencia a células epiteliales, formación de biopelículas y resistencia a estrés oxidante y a xenobióticos. La adherencia y la formación de biopelículas están mediadas por la expresión de adhesinas de la familia EPA; la respuesta a estrés oxidante está mediada por la síntesis de enzimas antioxidantes como la catalasa (CTA1), la sulfirerdoxina (SRX1) y peroxiredoxinas; y la resistencia a xenobióticos está controlada por la expresión de bombas de flujo de fármacos como el transportador Cdr1. La expresión de varios de estos genes de virulencia está regulada negativamente por el complejo Hst1-Rfm1-Sum1 (HRS-C). En este trabajo mostramos que las proteínas del HRS-C, dentro de la familia de los Saccharomycetaceae, muestran relaciones filogenéticas distintas y esto coincide con la conservación funcional de cada una de ellas. Sum1 es la proteína más distante en la relación filogenética y no está conservada funcionalmente. CDR1 está regulado negativamente por HRS-C ya que éste se une a una secuencia en cis localizada dentro de los 223pb río arriba del ATG de CDR1. Además, la ausencia de Sum1 y Hst1 aumenta la capacidad de adhesión a células HeLa, debido a un aumento en la expresión de AED1, EPA1, EPA22 y EPA6, que codifican para adhesinas. Hst1 y Sum1 no se requieren para aumentar la supervivencia en presencia de neutrófilos. La complementación heteróloga de ScHST1. ScSUM1. LkHST1 y LkSUM1 favorece la formación de cúmulos celulares y aumenta la supervivencia a la fagocitosis por neutrófilos y el medio de crecimiento modula la expresión de CDR1 debido probablemente a la presencia de compuestos heterocíclicos. Proponemos que el HRS-C de C. glabrata divergió funcionalmente para regular genes de virulencia.

Palabras clave: *Candida glabrata*, Hst1-Rfm-Sum1, evolución, fluconazol, adherencia

Abstract

Hst1-Rfm1-Sum1 complex of *Candida glabrata* is a central regulator of virulence-associated genes

Candida glabrata is a commensal yeast that can turn into an opportunistic pathogen in immunocompromised patients. The pathogenicity of C. glabrata is attributed to virulence factors: adherence to host epithelial cells, biofilm formation and resistance to oxidative stress and xenobiotics. Adherence and biofilm formation are mediated by the expression of adhesins encoded in the EPA gene family; the oxidative stress response is mediated by the induction of several genes including CTA1 (catalase), SRX1 (sulfiredoxin) and TSA1/2 (peroxiredoxins), among others, and the resistance to xenobiotics is mediated by the induction of genes encoding drug efflux pumps like CDR1. Expression of these virulence genes is negatively regulated by the Hst1-Rfm1-Sum1 complex (HRS-C). In this work, we show that, within the Saccharomycetaceae family, HRS-C proteins show different phylogenetic relationships consistent with their functional conservation. Sum1 is the most distant phylogenetically and is not functionally conserved. We show that HRS-C binds to a *cis* element located within 223bp upstream from the ATG of *CDR1* and negatively controls the expression of this gene. The absence of Sum1 and Hst1 render the cells hyper-adherent, due to overexpression of AED1, EPA1, EPA22 and EPA6, all adhesin encoding genes. Furthermore, the absence of Hst1 or Sum1 do not increase survival in a neutrophil phagocytosis assay. We observed that heterologous complementation with ScHST1, ScSUM1, LkHST1 and LkSUM1 induces C. glabrata cells to make clusters and increases neutrophil survival. Interestingly, growth media modulates CDR1 expression, probably due to heterocyclic compounds in it. We propose that HRS-C diverged functionally to control a set of genes implicated in virulence.

Key words: Candida glabrata, Hst1-Rfm-Sum1, evolution, fluconazole, adherence

1. Introducción

Las especies del género *Candida* forman parte de la microbiota normal de la mucosa en humanos, pero pueden actuar como patógenos oportunistas y producir candidiasis (Polvi et al., 2015; Ramana et al., 2013). *Candida glabrata* se identificó dentro de las especies de *Candida* no-*albicans*, como el principal agente etiológico de las candidemias y otras formas de candidiasis invasivas (Choi et al., 2009; Pappas et al., 2018; Pfaller et al., 2014). Las candidiasis invasivas son una de las principales causas de mortalidad en pacientes hospitalizados con factores de riesgo como diabetes mellitus, insuficiencia renal, inmunosupresión, ventilación mecánica, procedimientos quirúrgicos recientes y edad avanzada, entre otros (Choi et al., 2009; Corzo-Leon et al., 2014; Pappas et al., 2018).

El tratamiento más utilizado para las candidiasis invasivas son los fármacos azólicos, dentro de los cuales está el fluconazol (FLC). La mayoría de los aislados clínicos de *Candida* spp. son susceptibles a FLC (Ahmad et al., 2013). El mecanismo de acción del FLC es a través de la inhibición de la actividad de la P-450 lanosterol 14-alfa-desmetilasa, que provoca la acumulación de esteroles metilados y disminuye la síntesis de ergosterol. El ergosterol es un regulador de la fluidez, asimetría e integridad de la membrana de levaduras (Kathiravan et al., 2012; Odds et al., 2003). Sin embargo, se ha observado que *C. glabrata* es susceptible dependiente de dosis o inclusive resistente a FLC (Kathiravan et al., 2012; Pfaller et al., 2009). Esto indica que el aumento en la incidencia de *C. glabrata* reportado en los últimos años se debe a la resistencia tanto innata como adquirida de esta levadura (Eggimann et al., 2003; Pfaller et al., 2010; Pfaller and Diekema, 2007, 2004; Rodrigues et al., 2014).

La patogenicidad de *C. glabrata* se atribuye a factores de virulencia como: su capacidad para adherirse a células epiteliales y para formar biopelículas tanto en tejidos como en material médico, mecanismos de resistencia a fármacos y resistencia a estrés oxidante (Briones-Martin-del-Campo et al., 2015, 2014; Cuéllar-

1

Cruz et al., 2008; Gutiérrez-Escobedo et al., 2020, 2013; Juárez-Cepeda et al., 2015; Rodrigues et al., 2014; Silva et al., 2012; Tamura et al., 2007).

C. glabrata está clasificada dentro del clado *Nakaseomyces/Candida* dentro del "grupo *glabrata*" (Gabaldón et al., 2013). Este grupo filogenético es más cercano a *Saccharomyces cerevisiae* que a otras especies de *Candida* como *C. albicans*. Sin embargo, existen diferencias genéticas específicas entre ambas especies (Herrero, 2005). Una de estas diferencias es el <u>C</u>omplejo <u>H</u>st1-<u>R</u>fm1-<u>S</u>um1 (HRS-C) que en *S. cerevisiae* regula genes asociados a la esporulación (Piekarska et al., 2010) y en *C. glabrata*, que no esporula, se ha propuesto a este complejo como un regulador central de genes de respuesta a estrés oxidante y a xenobióticos (Orta-Zavalza et al., 2013).

Tanto en C. glabrata como en S. cerevisiae se ha descrito que el HRS-C está formado por las proteínas Hst1 (una desacetilasa de histonas dependiente de NAD+ y que actúa como un regulador negativo local de la transcripción), Rfm1 (una proteína de andamiaje entre Hst1 y Sum1) y Sum1 (una proteína con función putativa de unión a DNA) (Orta-Zavalza et al., 2013; Piekarska et al., 2010). En S. cerevisiae el HRS-C reprime la expresión de genes de la esporulación/meiosis intermedia (MMG) durante el crecimiento vegetativo (Piekarska et al., 2010). Se ha propuesto que la activación de los MMG se regula negativamente por la presencia de Sum1 en los elementos en *cis* MSE (cajas de meiosis intermedia) presentes en los promotores de los genes MMG. La fosforilación de Sum1 por la cinasa Ime2 durante la meiosis pre-intermedia, inhibe el reclutamiento de las proteínas Hst1 y Rfm1 para formar el complejo represor. Esto permite la activación de la expresión a niveles bajos de NDT80, un MMG que codifica para un factor de transcripción que es indispensable para la expresión de otros MMG. Ndt80 compite con Sum1 por la unión de los MSE, aumenta la expresión de su propio gen y da inicio a la fase intermedia de la meiosis (Pak and Segall, 2002).

En *C. glabrata* no se ha descrito apareamiento, meiosis o esporulación (Wong et al., 2003), pero se ha reportado que el HRS-C regula genes implicados en la

resistencia a FLC, la respuesta a estrés oxidante, la adherencia y el transporte de ácido nicotínico (Domergue, 2005; Ma et al., 2009; Orta-Zavalza et al., 2013).

En C. glabrata, el mecanismo principal de resistencia a FLC es la inducción de transportadores de membrana de tipo ABC que expulsan al fármaco fuera de la célula. La mayoría de las cepas resistentes a FLC sobreexpresan genes que codifican para estos transportadores, como son CDR1 y CDR2 (Cannon et al., 2009; Orta-Zavalza et al., 2013). Esta sobreexpresión depende del factor de transcripción Pdr1 (Vermitsky et al., 2006). Pdr1 se activa mediante su interacción directa con la molécula de FLC a través del dominio de unión a xenobióticos (XBD). Una vez activado, Pdr1 reconoce la caja PDRE (resistencia pleiotrópica farmacológica) en los promotores de sus genes blanco (transportadores), induce la transcripción de estos genes y los transportadores expulsan el fármaco de la célula mediante la hidrólisis del ATP (Thakur et al., 2008). Se han identificado cepas resistentes a FLC que a) tienen mutaciones de ganancia de función (GOF) en Pdr1 (Ferrari et al., 2009) e inducen constitutivamente la expresión de CDR1 y otros transportadores o b) presentan rearreglos cromosómicos que aumentan el número de copias de los genes que codifican para los transportadores (Abbes et al., 2013). La expresión de PDR1 y CDR1 está regulada negativamente por Hst1: la susceptibilidad a fluconazol disminuye en la cepa hst1 Δ y, consistente con este fenotipo, en esta mutante se incrementan los niveles de transcripción de PDR1 y CDR1 (Orta-Zavalza et al., 2013).

El H₂O₂ es uno de los principales agentes oxidantes producidos por los neutrófilos y los macrófagos durante el proceso de fagocitosis (Rendra et al., 2019; Winterbourn et al., 2016). Los neutrófilos, como primera línea de defensa celular del sistema inmune, son eficientes para eliminar mediante fagocitosis a *C. glabrata*. Para que la fagocitosis ocurra, se requiere del contacto entre el neutrófilo y *C. glabrata*, sin embargo, se ha reportado que la tasa de fagocitosis entre las células es baja comparada con la tasa de fagocitosis de los neutrófilos con otros patógenos como *C. albicans* (Duggan et al., 2015). La baja tasa de fagocitosis permite a *C. glabrata* inducir el reclutamiento de macrófagos y unirse a ellos a través de la

3

adhesina Epa1. Una vez dentro del macrófago, *C. glabrata* puede replicarse y sobrevivir intracelularmente sin causar apoptosis (Duggan et al., 2015; Kaur et al., 2007; Kuhn and Vyas, 2012; Seider et al., 2011). *C. glabrata* es altamente resistente al estrés oxidante. Esta resistencia está mediada por un sistema enzimático que incluye a: Cta1 (catalasa), Sod1 y Sod2 (superóxido dismutasas), Srx1 (sulfiredoxina) y Tsa1 y Tsa2 (peroxiredoxinas) entre otras (Briones-Martin-del-Campo et al., 2015; Cuéllar-Cruz et al., 2008; Roetzer et al., 2011). Estas dos últimas se requieren para la supervivencia a neutrófilos (Gutiérrez-Escobedo et al., 2020). La regulación de la respuesta a estrés oxidante está controlada por los factores de transcripción Yap1, Skn7, Msn2 y Msn4 (Cuéllar-Cruz et al., 2008). Se sabe además que el HRS-C está involucrado en esta regulación, ya que la cepa *hst1*Δ es resistente a H₂O₂. Esta resistencia se da a través del aumento en la expresión de *CTA1* y es dependiente del factor de transcripción Msn4. (Ma et al., 2009; Orta-Zavalza et al., 2013).

C. glabrata produce proteínas de pared celular llamadas adhesinas que le confieren la habilidad de adherirse a células del hospedero y a superficies abióticas. La adherencia *in vitro* a células epiteliales está mediada principalmente por Epa1 una adhesina de la familia *EPA*. La mayoría de los genes *EPA* se encuentran localizados en regiones subteloméricas y su expresión está regulada por silenciamiento subtelomérico que modifica la estructura de la cromatina (Castaño et al., 2005; Cormack et al., 1999; De Las Penas, 2003). Se han descrito mutaciones con ganancia de función en *PDR1* que además de incrementar la resistencia a azoles, aumentan la expresión de *EPA1* y por lo tanto la capacidad de adherencia de *C. glabrata* (Vale-Silva et al., 2013, 2016). También, la ausencia de Hst1 aumenta la expresión de *EPA6*, *EPA20* y *EPA22* (Domergue et al., 2005; Ma et al., 2009). Un dato interesante es que la expresión de *EPA2* se induce en presencia de estrés oxidante generado por H₂O₂ y esta inducción se encuentra mediada por Yap1, Skn7 y Msn4 (Juárez-Cepeda et al., 2015).

2. Antecedentes directos

El complejo HRS-C está formado por <u>H</u>st1 (una desacetilasa de histonas dependiente de NAD⁺ y que actúa como un regulador negativo local de la transcripción), <u>R</u>fm1 (una proteína de andamiaje entre Hst1 y Sum1), y <u>S</u>um1 (una proteína con función putativa de unión a DNA) (Orta-Zavalza et al., 2013; Piekarska et al., 2010). En nuestro laboratorio se ha demostrado que la ausencia de Hst1, Rfm1 o Sum1 disminuye la susceptibilidad de *C. glabrata* a FLC y al H₂O₂. La resistencia a FLC se debe a la sobreexpresión de *CDR1* y *PDR1* (genes regulados negativamente por HRS-C) y el aumento en la resistencia a H₂O₂, se debe a la sobreexpresión de *CTA1*. Se determinó también que el factor de transcripción Sum1 interactúa físicamente con Hst1 y participa en la regulación de los genes que confieren estas resistencias. La ausencia de *HST1* sólo modifica la susceptibilidad al FLC y al H₂O₂ en *C. glabrata*, pero no en *S. cerevisiae* (Orta-Zavalza et al., 2013). En resumen, los datos indican que el HRS-C podría funcionar como un regulador negativo de genes asociados a virulencia como son la adherencia y la resistencia a estrés oxidante y xenobióticos.

3. Objetivo general

Evaluar la participación del complejo Hst1-Rfm1-Sum1 (HRS-C) de *Candida glabrata* como un regulador central de genes asociados a virulencia.

3.1. Objetivos específicos

- Analizar las relaciones evolutivas del HRS-C dentro del orden de los Saccharomycetales.
- Determinar si *Cg*Sum1 está conservado funcionalmente.
- Determinar si HRS-C se une al promotor de CDR1.
- Identificar el elemento en *cis* para la unión del HRS-C.
- Determinar si el HRS-C se requiere en la supervivencia ante neutrófilos.
- Determinar si la expresión de las adhesinas *AED1*, *EPA1*, *EPA6*, *EPA20* y *EPA22* están controladas por HRS-C.

4. Material y métodos

Cepas

Las cepas utilizadas en este trabajo se describen en la Tabla 1. Todas las cepas se crecieron a 30 °C (48 h para levaduras y 12 h para bacterias) y se resguardaron a - 80 °C en glicerol al 15 % para levaduras y 10 % para bacterias.

Tabla 1. Cepas utilizadas en este trabajo

Cepas de Escherichia coli

Сера	Genotipo	Referencia
DH10	F^- mcrA Δ(mrr-hsdRMS-mcrBC) Φ80ΔlacZ ΔM15 ΔlacX74	Calvin and
	deoR recA1 endA1 araD139 Δ (ara,leu)7697 galU galK λ^-	Hanawalt,
	rpsL nupG	1988

Cepas de Saccharomyces cerevisiae y Lachancea kluyveri

Сера	Genotipo	Referencia	
Saccharomyces	MATα his3 Δ 1, leu2 Δ 0, lys2 Δ 0, ura3 Δ 0	Brachmann	et
cerevisiae		al.,1998	
Lachancea	Wild type NRRL Y-12651	Kurtzman,	
kluyveri		2003	

Cepas de Candida glabrata

Сера	Parental	Genotipo relevante	Referencia
BG2	Aislado		Cormack and
	clinico		Falkow (1999)
BG14	BG2	<i>ura3</i> ∆::Tn903 G418 ^R	Cormack et al. (1999)
BG676	BG14	<i>ura3∆</i> ::Tn903 G418 ^R sir3∆	De Las Peñas et al. (2003)
BG1073	BG14	<i>ura3</i> ∆::Tn903 G418 ^R hst1∆::hph Hyg ^R	Domergue et al. (2005)
CGM84	BG1073	<i>ura3</i> ∆::Tn903 G418 ^R <i>hst1</i> ∆	Orta-Zavalza (2013)
CGM673	BG14	<i>ura3</i> ∆::Tn903 G418 ^R sum1∆::hph Hyg ^R	Orta-Zavalza (2013)
CGM943	BG14	<i>ura3</i> ∆::Tn903 G418 ^R <i>rfm1</i> ∆:: <i>NatMX4</i> Nat ^R	Orta-Zavalza (2013)
CGM1094	BG14	<i>ura3</i> ∆::Tn903 G418 ^R pdr1∆::hph Hyg ^R	Orta-Zavalza (2013)

CGM1232	CGM673	<i>ura3</i> ∆::Tn903 G418 ^R sum1∆	Orta-Zavalza (2013)
CGM1234	CGM943	<i>ura3</i> ∆::Tn903 G418 ^R <i>rfm1</i> ∆	Orta-Zavalza (2013)
CGM1605	CGM84	<i>ura3</i> ∆::Tn903 G418 ^R HST1	Orta-Źavalza (2013)
CGM1611	CGM1232	<i>ura3</i> ∆::Tn903 G418 ^R SUM1	Orta-Zavalza (2013)
Cepas para com	plementación	heteróloga	
CGM3148	CGM1232	<i>ura3</i> ∆::Tn <i>903</i> G418 ^R	Este trabajo
		sum1∆::LkSUM1	
CGM3192	CGM1232	<i>ura3</i> ∆::Tn <i>903</i> G418 ^R	Este trabajo
		sum1∆::ScSUM1	
CGM3935	CGM84	<i>ura3</i> ∆::Tn <i>903</i> G418 ^R	Este trabajo
		hst1Δ::ScHST1	-
		_	
Cepas con fusio	ones transcripc	ionales de GFP	T -
CGM514	BG14	<i>ura3</i> ∆::Tn <i>903</i> G418 ^R GFP::3'UTR	Gutiérrez-
			Escobedo et
			al. (2020)
CGM1923	BG14	<i>ura3</i> ∆::Tn903 G418 ^R pCV37 Ura⁺	Gutiérrez-
			Escobedo et
0.01/0750			al. (2020)
CGM3756	BG14	ura3∆::1n903 G418 [™]	Este trabajo
0.0140750	0.01/0.4	$P_{CDR1}::GFP::3'UTR_{CDR1}$	
CGM3758	CGM84	$ura3\Delta$:: 1n903 G418 ^{\chi} hst1 Δ	Este trabajo
0.0140700	0.014.000	P _{CDR1} ::GFP:: 3'UTR _{CDR1}	
CGM3760	CGM1232	$Ura_{3\Delta}$:: 1n903 G418" sum1 Δ	Este trabajo
00140704	DC14	PCDR1::GFP:: 3 UTR CDR1	Esta trabaia
CGIN3764	BG14	$Ura_{3\Delta}$: 1ng03 G4 18''	Este trabajo
00142766		P_{PDR1} GFP::3 UTR _{PDR1}	Lata trabaia
CGIVI3700	CGIVI84	$U/a_3\Delta$.: 11903 G4 18" NSU/Δ	Este trabajo
CCM2769	CCM1222	$F_{PDR1}GFFSOTR_{PDR1}$	Ecto trobaio
CGINI3700	CGIVITZ5Z	P_{Desc} (CED: 3'LITP and	
CCM2779	CCM1004	F PDR1GFF 3 OTT PDR1	Ecto trobaio
CGINISTTO	CGIVIT094	P_{ODD} (CEP: 3'LITE opp)	
CCM3772	CGM84	ura2ATp $0/3$ C/18 ^R bet1A	Este trabaio
CGINISTTZ	CGIVIO4	$nCV/37 Hra^+$	
CGM3774	CGM1232	$\mu ra3\Lambda$ Tn903 G418 ^R sum1 Λ	Este trabaio
		pCV37 Ura ⁺	
CGM4067	CGM1234	$\mu ra3\Lambda$. Tn903 G418 ^R rfm1A clona	Este trabaio
		1 PCDP1"GEP" 3'UTR CDP1	
CGM4068	CGM1234	$\mu ra3\Delta$::Tn903 G418 ^R rfm1 Λ clona	Este trabaio
		2 PCDR1::GFP:: 3'UTR CDR1	
			1

CGM4069	CGM1234	<i>ura3</i> ∆::Tn903 G418 ^R <i>rfm1</i> ∆ clona	Este trabajo
		3 Pcdr1::GFP:: 3'UTR cdr1	
Cepas marcadas o	on epítopos <i>l</i>	FLAG о сМус	
CGM934	CGM823	<i>ura3</i> ∆::Tn903 G418 ^R <i>HST1-</i>	Orta-Zavalza
		cMyc13	(2013)
CGM982	CGM934	<i>ura3</i> ∆::Tn903 G418 ^R <i>HST1-</i>	Orta-Zavalza
		cMyc13 SUM1-FLAG::hph Hyg ^R	(2013)
CGM1294	CGM982	<i>ura3</i> ∆::Tn903 G418 ^R <i>HST1-</i>	Orta-Zavalza
		cMyc13 SUM1-FLAG::hph E ^R	(2013)
		<i>rfm1∆::NatMX4</i> Nat ^R	
CGM1340	BG14	<i>ura3</i> ∆::Tn903 G418 ^R <i>SUM1-</i>	Orta-Zavalza
		FLAG::hph Hyg ^R	(2013)

Plásmidos

Los plásmidos utilizados en este trabajo se describen en la Tabla 2. Todas las construcciones de plásmidos se transformaron en la cepa DH10 por electroporación (Ausubel 1992). Los plásmidos se purificaron con el kit Qiagen® QIAprep.

Plásmido	Genotipo relevante	Referencia		
Vectores de clonación				
pRS306	pBluescript, <i>URA3</i>	(Sikorski and Hieter, 1989)		
pMB11	Contraselección para <i>sacB,</i> Cm ^R <i>ori</i> p15A	(Briones-Martin- Del-Campo et al., 2015; Gallegos-García et al., 2012)		
pAP668	GFP clonado en pRS306 para fusiones transcripcionales. Vector integrativo <i>URA3</i> Ap ^R	(Gutiérrez- Escobedo et al., 2020)		
Plásmidos para complementación heteróloga				
pVF27	Fragmento producto de PCR de fusión de 4.87 kb BamH I/Sal I (oligonucleótidos 859/860) que contiene el promotor (Fragmento producto de PCR de 0.83 kb, oligonucleótidos 859/1006) y la región 3'UTR (Fragmento producto de PCR de 0.84 kb, oligonucleótidos 1009/860) de CgSUM1, y el ORF de ScSUM1 (Fragmento producto de PCR de 3.19 kb, oligonucleótidos 1007/1008) clonado en pRS306 [pPsum1::ScSUM1::3'UTRsum1]. URA3 CaCEN ARS Ap ^R	Este trabajo		

Tabla 2. Plásmidos usados en este estudio

pVF31	Fragmento producto de PCR de fusión de 4.37 kb <i>BamH I/Sal</i> I (oligonucleótidos 859/860) que contiene el promotor (Fragmento producto de PCR de 0.83 kb, oligonucleótidos 859/1012) y la región 3'UTR (Fragmento producto de PCR de 0.84 kb, oligonucleótidos 1015/860) de <i>CgSUM1</i> , y el ORF de <i>LkSUM1</i> (Fragmento producto de PCR de 2.70 kb, oligonucleótidos 1013/1014) clonado en pRS306 [pP _{SUM1} :: <i>LkSUM1</i> ::3'UTR _{SUM1}]. <i>URA3 CgCEN ARS</i> Ap ^R	Este trabajo		
pVF73	Fragmento producto de PCR de fusión de 3.32 kb Sac II/Xho I (oligonucleótidos 2514/789) que contiene el promotor (Fragmento producto de PCR de 0.82 kb, oligonucleótidos 2514/2515) y la región 3'UTR (Fragmento producto de PCR de 1.03 kb, oligonucleótidos 2516/789) de CgSUM1, y el ORF de ScHST1 ORF (1.51 kb, oligonucleótidos 2512/2513) clonado en pRS306 [pP _{HST1} ::ScHST1::3'UTR _{HST1}]. URA3 CgCEN ARS Ap ^R	Este trabajo		
Plásmidos con fusiones transcripcionales con GFP				
pCV37	Fusión transcripcional entre <i>CTA1</i> y GFP [pP _{CTA1} ::GFP::3′UTR _{CTA1}] <i>URA3 CgCEN ARS</i> Ap ^R	(Gutiérrez- Escobedo et al., 2020)		
pVF65	Fragmentos de PCR de 0.60 kb <i>Kpn</i> I/Sal I (oligonucleótidos 2494/2495) y de 0.97 kb <i>BamH</i> I/Sac I (oligonucleótidos 2496/2497) que contienen respectivamente el promotor y la región 3'UTR de <i>CgCDR1</i> clonada en pAP668 [pP _{CDR1} ::GFP::3'UTR _{CDR1}]. <i>URA3 CgCEN ARS</i> Ap ^R	Este trabajo		

Oligonucleótidos

Tabla 3. Oligonucleótidos utilizados en este trabajo.

No.	Secuencia	Sitio
789	CGA CTCGAG TACGGTGCCGCTGTTC	Xho I
859	GAG GGATCC GGTACGTTAGCTGTGTGCG	BamH I
860	ACG GTCGAC AAACGTTCGCGCAGC	Sal I
1006	GTGGTGTTCTCAGACATAGCTGGTTTATATAATTGTTTCTAAG	
	С	
1007	ATGTCTGAGAACACCACAGC	
1008	TAACGGATATCTGGCGGTATG	
1009	CCGCCAGATATCCGTTAAAACAACTCGTATATATAAGAGTCTC	
	AATAC	
1012	ACAACATGGCTATCAACACTCATAGCTGGTTTATATAATTGTTT	
	CTAAGC	
1013	ATGAGTGTTGATAGCCATGTTG	

1014	ACGAGTTGTTCTAAACCTCTGGTTG	
1015	CCTCAACCAGAGGTTTAGAACAACTCGTATATATAAGAGTCTC	
	AATAC	
2494	CGG GGTACC CAGGACATAGATCAGAG	Kpn I
2495	CAAG GTCGAC TGTTACTTTCTTTACTTTG	Sal I
2496	CGC GGATCC TTTATTTAGCCTGCGCTC	BamH I
2497	CAAG GAGCTC GATCTGAACGTAATTTCC	Sac I
2512	ATGAACATATTGCTAATGCAACGG	
2513	TTACTGTTGTTTCTTTCGTGGCTG	
2514	ACAC CCGCGG AGACGAAACGCAGG	Sac II
2515	TGCATTAGCAATATGTTCATTCCTAATTTCTTGGTCACCG	
2516	CACGAAAGAAACAACAGTAAACCGCTCATTTGTTTTATAATA	
	G	
2750	AGGCGAGTCTCTACATCTAACT	
2751	CCATAGGTTCCGTCCTTTCTG	
2764	ACAACCTTCGGACACGATAAG	
2765	GATCTTCTGTGCGTCTCTTCTT	
2770	AGAAACTGGACGAGGAAGTTAAG	
2771	TCACCACTGTTGCTGCTATT	
2910	TGGAAGAAAGACCATCGAATTA	
2911	GCACACACAAACAACAA	
2912	ATCCAAGTCCAGGTCCAA	
2913	CAGCTATGAGTTGAGGAAGATT	
2915	GAAGGATCAAGAATTCGATTACAAC	
2920	GGCATCCTTCTTGTCACTT	
2921	CAAACCCAGGACATAGATCAG	
2924	CATAGCTGCTAGAAGAAGAGA	
2927	CCCAGTTGATGATGGTAAGG	
2928	CCATCTTTGTCGGTAGTAGTG	
2931	CAACAGCAGTGGAGAATACA	
2932	CGTCTTTGGTTTCCTTGATTAC	
2939	ACAGGCTATAAATCACAGAGAC	
2940	TTGTCAATGGTGTACGATAGTT	
2949	CTGTTGCAGACAAGAGAGTAG	
2950	TCATGTCAAGGTACACAGTAAG	
2955	TTGCCAGCAGGTTACAATTA	
2956	GTGGATACCCGATGTTTGAG	
A16	CTTTCGGCAATACCTGGG	
A17	TCCTACGAACTTCCAGATGG	
H46	CATGGTATTGTTACCAACTGGG	
H47	AAGAGTATAGAGACAAGACGGC	

Medios de cultivo

El medio de cultivo para bacterias fue Luria-Bertani (LB), constituido de 10 g/L de NaCl (Sigma Aldrich®), 10 g/L de peptona Bacto y 5 g/L de extracto de levadura (Thermo Fisher Scientific [™]). Para medio sólido se complementó con agar a una concentración final de 1.5 % (p/v) (Thermo Fisher Scientific [™]). Donde fue necesario se agregó 50 µg/ml de carbenicilina (Invitrogen), 20 µg/ml de cloranfenicol (Invitrogen) o sacarosa 5 % (p/v) (Fermont ®). Los medios de cultivo para levadura fueron: **YPD**, extracto de levadura 1 % (p/v) (Thermo Fisher Scientific[™]), peptona 2 % (p/v) (Thermo Fisher Scientific[™]), peptona 2 % (p/v) (Thermo Fisher Scientific[™]), peptona 2 % (p/v) (Thermo Fisher Scientific[™]) y glucosa 2 % (p/v)(J.T.Baker®) y **CAA** (medio mínimo más casaminoácidos), 1.7 g/L YNB (Yeast Nitrogen Base) (BD-Difco[™]), 5g/L sulfato de amonio ((NH₄)₂SO₄) (J.T.Baker®), casaminoácidos 0.6 % (p/v) (Thermo Fisher Scientific[™]) y glucosa 2 % (p/v) (J.T.Baker®). Ambos medios de cultivo se suplementaron en caso de necesitarlo con 25 mg/ml de uracilo (Sigma Aldrich®). Para los medios de cultivo sólidos se adicionó agar a una concentración final de 2 % (p/v) (Thermo Fisher Scientific[™]).

Construcción de plásmidos.

Todos los fragmentos para las construcciones de los plásmidos se generaron por PCR. Para las complementaciones heterólogas los fragmentos se construyeron por PCR de fusión (Baudin et al., 1993) Todos los productos de PCR se purificaron con el kit de extracción de gel Qiagen®. Para las reacciones de PCR se utilizó como molde DNA genómico de *C. glabrata* BG14, *S. cerevisiae* BY4742 o *L. kluyveri* NRRL Y-12651. El experimento de complementación heteróloga en *C. glabrata* se realizó con: a) *HST1*, la región intergénica entre *CgRTG1* y *CgHST1* que contiene el promotor de *CgHST1* se fusionó con el ORF de *ScHST1* y a región 3'UTR de *CgHST1*; b) *SUM1*, la región intergénica entre *CgTFB1* y *CgSUM1* que contiene el promotor de *CgSUM1* se fusionó con el ORF de *ScSUM1* o el de *LkSUM1* y la región 3'UTR de *CgSUM1*. Todos los fragmentos se clonaron en el plásmido integrativo pRS306. Los plásmidos son los siguientes: $pP_{CgHST1}::ScHST1::3'UTR_{CgHST1}$, $pP_{cgSUM1}::ScSUM1::3'UTR_{cgSUM1}$ y $pP_{CgSUM1}::LkSUM1::3'UTR_{cgSUM1}$. Para construir la fusión transcripcional entre GFP y *CDR1*, los fragmentos que contienen la región intergénica entre *SPT7* y *CDR1* que llevan el promotor de *CDR1* y el 3'UTR de

CDR1 se clonaron en el plásmido integrativo pAP668: pP_{CDR1} ::GFP::3'UTR_{CDR1}. Para construir la fusión transcripcional entre GFP y *PDR1*, los fragmentos que contienen la región intergénica entre *SCL1* y *PDR1* que llevan el promotor de *PDR1* y el 3'UTR de *PDR1* se clonaron en el plásmido integrativo pAP668: pP_{PDR1} ::GFP::3'UTR_{PDR1}. Todos los plásmidos utilizados en este estudio se secuenciaron.

Construcción de cepas

Complementación heteróloga: La cepa mutante $hst1\Delta$ se transformó con pP_{CqHST1}::ScHST1::3'UTR_{CqHST1} cortado en el sitio Hind III presente en 3'UTRCgHST1. cepa sum1∆ La mutante transformó se con pP_{CqSUM1}::ScSUM1::3'UTR_{CqSUM1} cortado en el sitio Mfe I presente en 3'UTR_{CqHST1} y con pP_{cgSUM1}::LkSUM1::3'UTR_{cgSUM1} cortado en el sitio Pac I presente en P_{cgHST1}. Fusiones transcripcionales: Las cepas BG14, hst1 Δ , pdr1 Δ , rfm1 Δ y sum1 Δ se transformaron con pP_{CDR1}::GFP::3'UTR_{CDR1} cortado en el sitio BstE II presente en el 3'UTR_{CDR1}. Las cepas BG14, hst1 Δ , pdr1 Δ y sum1 Δ se transformaron con pP_{PDR1}::GFP::3'UTR_{PDR1} cortado en el sitio Hind III presente en el P_{PDR1}. Todos los plásmidos están integrados en su sitio respectivo y se verificaron con oligonucleótidos genómicos específicos de cada locus.

Transformación de levadura.

La transformación de levadura se realizó con el protocolo de acetato de litio (Castaño et al., 2003). Todas las transformantes se seleccionaron en placas CAA sin uracilo y se incubaron a 30 °C.

Análisis filogenético y evolutivo

Se buscaron secuencias reportadas como ortólogas a las secuencias de aminoácidos para las proteínas Hst1, Rfm1 y Sum1. La búsqueda se realizó en las siguientes bases de datos: Candida Genome Database (http://www.candidagenome.org/, CGD Copyright © 2004-2017 The Board of Trustees, Leland Stanford Junior University; Skrzypek et al., 2017), Genome Resources for Yeast Chromosomes (http://gryc.inra.fr/; GRYC © INRA 2013-2015),

13

PhylomeDB (http://phylomedb.org/; Comprative Genomics Group; Huerta-Cepas et al., 2011), Yeast Genome Order Browser (http://ygob.ucd.ie/, YGOB © Dr Kevin Bvrne-Wolfe Laboratory; Byrne and Wolfe. 2005). NCBI V (https://www.ncbi.nlm.nih.gov/, National Center for Biotechnology Information, U.S. National Library of Medicine). Además, se realizó la búsqueda de secuencias similares mediante BLAST dentro del orden de los Saccharomycetales. Se obtuvieron secuencias de 29 especies diferentes dentro de este orden (Tabla 4). Con las secuencias ortólogas se realizó el alineamiento mediante ClustalW (Larkin et al., 2007) y MUSCLE (Edgar et al., 2004) con el programa MEGA v7 (Kumar et al., 2016). Los parámetros utilizados en ClustalW fueron: matriz BLOSUM, penalización por apertura 10/10, penalización por extensión 0.1/0.2 (alineamiento pareado/alineamiento múltiple), con penalización para residuos específicos e hidrofílicos. Los parámetros utilizados en MUSCLE fueron: penalización por apertura -2.9, penalización por extensión 0, penalización para residuos hidrofílicos 1.2, método de agrupación para las iteraciones UPGMA. Los alineamientos se editaron con PhyDE® (Phylogenetic Data Editor, http://www.phyde.de/) y se analizaron para la selección estadística de modelos de sustitución de aminoácidos mediante ModelFinder (Kalyaanamoorthy et al., 2017) bajo los criterios AIC, AIC corregido y BIC. El análisis filogenético y de evolución molecular se realizó con MEGA v7 (Kumar et al., 2016) (método de distancia Neighbor-Joining) y con el servidor IQ-TREE (Trifinopoulos et al., 2016) (método de Máxima Verosimilitud). El análisis mediante Neighbor-Joining se hizo con el modelo de sustitución JTT con bootstrap de 1000 replicaciones y distribución Gamma. Los resultados del análisis mediante Neighbor-Joining sirvieron de base para realizar el análisis de los alineamientos por Máxima Verosimiltud. En el análisis por Máxima Verosimilitud se utilizaron los modelos de sustitución LG+F+R5 (para Hst1) y JTT+F+I+G4 (para Rfm1 y Sum1) con ultrafast bootstrap de 1000 replicaciones (Minh et al., 2013), de acuerdo con los resultados de selección estadística por ModelFinder. Los porcentajes de similitud entre las secuencias de aminoácidos de las proteínas Hst1, Rfm1 y Sum1 de S. cerevisiae y C. glabrata se obtuvieron mediante alineamientos pareados realizados con matriz de similitud BLOSUM, penalización por apertura 10,

penalización por extensión 0.1 mediante el programa MacVector v15.0.3(34) (© 2016 MacVector, Inc.).

Clade	Specie	Hst1	Rfm1	Sum1
	Hanseniaspora opuntiae	OEJ85856	OEJ90056	OEJ83615
	Hanseniaspora uvarum	OEJ81758	OEJ87168	KKA03429
	Candida albicans	C1_09050W_A	-	-
	Candida dubliniensis	Cd36_08540	-	-
Candida /	Candida tropicalis	CTRG_03242	-	-
Lodderom yces	Candida orthopsilosis	CORT_0A0393 0	-	-
	Candida parapsilosis	CPAR2_80390 0	-	-
	Kluyveromyces lactis	KLLA0F14663 g	KLLA0C0706 2g	KLLA0C1469 6g
	Lachancea kluyveri	SAKL0C08602 g	SAKL0H0506 0g	SAKL0G0946 0g
	Lachancea thermotolerans	KLTH0C08690 g	KLTH0D1269 4g	KLTH0F0719 4g
KLE	Lachancea waltii	Kwal_56.2285 3_s56	Kwal_26.9097 -s26	Kwal_33.1434 2
	Eremothecium gossypii	AEL013C	AER355C	AAL045C
	Eremothecium cymbalariae	Ecym_5284	Ecym_6246	Ecym_3213
ZT	Zygosaccharomyces bailii	BN860_09846 g1_1	SJM87887	SJM83795
	Zygosaccharomyces rouxii	ZYRO0B05148 g	ZYRO0A0605 0g	ZYRO0C1414 6g
	Torulaspora delbrueckii	TDEL0D04710	TDEL0B0371 0	TDEL0E0293 0
WGD	Vanderwaltozyma polyspora	Kpol_479.29_s 479	Kpol_413.10- s413	Kpol_1005.6
	Tetrapisispora phaffii	TPHA_0A0088 0	TPHA- 0G01350	TPHA0D0196 0
	Naumovozyma castellii	NCAS0C03490	NCAS0B0056 0	NCAS0F0281 0
	Naumovozyma dairenensis	NDAI0G02830	NDAI0E00830	NDAI0C04270

Tabla 4. Número de acceso o nombre sistemático de las secuencias utilizadasen el análisis filogenético

	Kazachstania africana	KAFR0C01100	KAFR0A0419 0	KAFR0K0221 0
	Kazachstania naganishii	KNAG0K01070	KNAG0G0291 0	XP_02246289 1
	Saccharomyces cerevisiae	YOL068C	YOR279C	YDR310C
	Saccharomyces eubayanus	XM_01836546 9	DI49-5098	XP_01822385 2
	Saccharomyces kudriavzevii	SKUD_12120	SKUD_15.443	SKUD_4.573
<i>glabrata</i> group	Candida glabrata	CAGL0C05357 g	CAGL0L1102 2g	CAGL0J1095 6g
	Candida bracarensis	CABR0s04e00 341g1	CABR0s17e0 0803g	CABR0s16e0 1034g
	Candida nivariensis	CANI0s09e046 64g1	CANI0s16e00 792g	CANI0s15e01 507g
	Nakaseomyces delphensis	NADE0s25e00 286g1	NADE0s06e0 4411g	NADE0s13e0 1221g

Ensayo de susceptibilidad a fluconazol

Para evaluar la susceptibilidad a fluconazol (Pfizer[®]) se obtuvieron células de *C. glabrata* a partir de cultivos en fase estacionaria (72 h, 30 °C) en YPD y se diluyeron en agua destilada a una O.D._{600nm} 0.5. Se hicieron diluciones seriadas logarítmicas y se platearon en cajas YPD o CAA con diferentes concentraciones de FLC (Sanglard et al., 1999). Las cajas se incubaron a 30 °C durante 48 h y se fotografiaron. Se hicieron al menos 3 réplicas biológicas de cada experimento.

Ensayo de susceptibilidad a H₂O₂

La susceptibilidad a H₂O₂ de células en fase logarítmica de *C. glabrata* se determinó como está descrito previamente (Cuéllar-Cruz et al. 2008). Se utilizó una solución de H₂O₂ al 35 % (v/v) (Sigma Aldrich[®]). Se crecieron cultivos por 48 h a 30 °C in YPD y se diluyó en medio fresco para que las cepas pasaran por 7 duplicaciones. Después de este período los cultivos se dividieron, se expusieron a diferentes concentraciones de H₂O₂ y se incubaron en agitación a 30 °C por 3 h. Después del tratamiento, el H₂O₂ se removió por centrifugación y las células se resuspendieron en 1 ml de agua destilada. Los cultivos se ajustaron a una O.D._{600nm} 0.5 y se hicieron diluciones logarítmicas seriadas. Las células se platearon en cajas de YPD

utilizando un replicador metálico. Las cajas se incubaron a 30 °C durante 48 h y se fotografiaron. Se hicieron al menos 3 réplicas biológicas de cada experimento.

Análisis de la expresión de GFP por citometría de flujo

Las cepas se crecieron por 48 h a 30 °C en YPD o CAA. Para los ensayos de exposición a FLC y H₂O₂ en fase logarítmica, los cultivos se llevaron a una O.D._{600nm} 0.5 en medio fresco. La inducción de la expresión de *CDR1* se hizo mediante la adición de FLC a una concentración final de 8 µg/ml y para la cepa *pdr1*Δ (CGM1094) se utilizó una concentración final de 1 µg/ml. La actividad del promotor se determinó por análisis FACS mediante el registro de fluorescencia del reportero GFP. Se utilizó el citómetro de flujo BD FACSCalibur y el programa de cómputo CellQuestPro. El análisis estadístico se hizo mediante la prueba de ANOVA de dos vías, con el programa GraphPad Prism (versión 7.0.0 for Windows, GraphPad Software, San Diego, California USA, www.graphpad.com). Las barras de error representan la desviación estándar (SD). P < 0.05 se consideró como estadísticamente significativo.

Precipitación de proteínas con sulfato de amonio

Se preparó 100 ml a una concentración del 25 % de Peptona (Thermo Fisher Scientific[™]) y se esterilizó por autoclave. Se adicionó EDTA a una concentración final de 5 mM como amortiguador de pH. Para la precipitación se añadió sulfato de amonio sólido ((NH₄)₂SO₄) (J.T.Baker®) de manera secuencial y según lo recomendado en la literatura (Wingfield, 1998) y utilizando la herramienta Ammonium Sulfate Calculator (http://www.encorbio.com/protocols/AM-SO4.htm, EnCor Biotechnology Inc.) para obtener soluciones con concentraciones de 20 %, 40 %, 60 %, 80 % y 100 % de sulfato de amonio. Para la desalinización de cada fracción obtenida se utilizó una columna PD-10 (GE Healthcare Bio-Sciences AB ©) siguiendo las instrucciones del fabricante y utilizando Tris 10 mM como amortiguador. Se obtuvieron 20 ml de cada fracción después de su desalinización y éstos se agregaron a 11.25 ml de CAA 2.7x para equiparar la concentración de peptona al 2 % (20 mg/ml) utilizada en YPD.

17

Extracción de compuestos no polares

Para la extracción de compuestos no polares se utilizó el método de Bligh y Dyer con algunas modificaciones (Bligh, E.G. and Dyer, 1959). Se prepararon 100 ml a una concentración del 20 % de los medios peptona (Thermo Fisher Scientific[™]), peptona de caseína (BD Bioxon[™]) y triptona (Thermo Fisher Scientific[™]). Estas soluciones se esterilizaron por autoclave. Se añadieron 100 ml de cloroformo y 200 ml de metanol y se mezcló por agitación, después se agregó 100 ml más de cloroformo, se mezcló de nuevo, se añadieron otros 100 ml de agua y se mezcló por última vez. La mezcla se dejó reposar por 5 minutos y después se obtuvieron 100 ml de la capa de cloroformo. La capa de cloroformo obtenida se colocó en matraces de vidrio y los compuestos no polares se obtuvieron por evaporación del cloroformo por calentamiento indirecto en baño de agua dentro de campana de extracción. Los residuos (aproximadamente 500 µg) se resuspendieron cada uno en 5 ml de DMSO y de éstos se añadieron 50 µl a 5 ml de CAA para equiparar la concentración de peptona al 2 % (20 mg/ml) utilizada en YPD.

Obtención de neutrófilos y ensayo de confrontación a neutrófilos

El ensayo de confrontación a neutrófilos se realizó como está descrito previamente (Gutiérrez-Escobedo et al., 2020). Preparación de neutrófilos: Se obtuvo 5 ml de sangre venosa periférica humana de donantes voluntarios sanos con conocimiento informado con las medidas de higiene necesarias y de acuerdo con las recomendaciones del Comité de Bioética del IPICYT. Las muestras se recolectaron en tubos de plástico con EDTA disódico (BD Vacutainer®). Los neutrófilos se purificaron mediante separación por Polymorphoprep[™] (Abbott Daignostics Technologies AS) según las instrucciones del fabricante. Las células se observaron al microscopio, se cuantificaron con hematocitómetro y se ajustaron a una concentración de 2x10⁶ cél/ml con RPMI-HEPES-Suero (medio RPMI (SIGMA), 10 mM HEPES (JT Baker) y suero humano inactivado por calor al 1 % (v/v)). Preparación de células de levadura: las células de levaduras se crecieron durante 48 h a 30 °C en YPD. Los cultivos se ajustaron a una O.D._{600nm} 1.0 (2x10⁷ cel/ml) en PBS (solución salina ajustada con fosfatos, NaCl 137 mM, KCl 2.7 mM, Na₂HPO₄

18

10 mM, KH₂PO₄ 1.8 mM). Ensayo de confrontación a neutrófilos: Se colocaron 100 µl/pozo de la suspensión de neutrófilos en placas de 96 pozos y se incubaron a 37 °C y 5 % de CO₂ por 10 min. 10 µl de la suspensión de levaduras (MOI 1:1) se añadió a los pozos que contenían neutrófilos y como control las levaduras se agregaron a pozos que contenían solo RPMI-HEPES-Suero. La placa se centrifugó a 800 *g* por 10 minutos y se incubó durante 3 h a 37 °C bajo una atmósfera de CO₂ al 5 % (Thermo Scientific). Después de la incubación los neutrófilos se lisaron por choque térmico con agua mili-Q fría y se recolectaron las células de levadura. Se hicieron diluciones logarítmicas seriadas con las células y agua destilada y después se platearon en cajas de YPD. Las cajas se incubaron a 30 °C durante 48 h y finalmente se contaron las UFC (unidades formadoras de colonias). El porcentaje de sobrevivencia se calculó con la siguiente fórmula:

% supervivencia = [UFC (células con neutrófilos) / UFC (células sin neutrófilos)]*100 De cada experimento se realizó 3 réplicas biológicas con 3 replicados técnicos. Los resultados se muestran como el promedio de estas mediciones. El análisis estadístico se hizo mediante la prueba de ANOVA de una vía con el programa GraphPad Prism (versión 7.0.0 for Windows, GraphPad Software, San Diego, California USA, www.graphpad.com). Las barras de error representan la desviación estándar (SD). P<0.05 se consideró como estadísticamente significativo.

Ensayo de adherencia a células HeLa

Los ensayos de adherencia se realizaron como está descrito previamente (Martínez-Jiménez et al., 2013). Se utilizó la línea celular epitelial HeLa en monocapa confluente y se mantuvieron en placas de 24 pozos con PBS, penicilina (100 U/ml) y estreptomicina (100 µg/ml). Las levaduras se crecieron durante 48 h a 30 °C en YPD. Los cultivos se ajustaron a una O.D._{600nm} 0.5 con Solución Salina de Hank Balanceada (HBSS: 5.4 mM KCl, 0.3 mM Na₂HPO₄, 0.4 mM KH₂PO₄, 4.2 mM NaHCO₃, 0.6 mM MgSO₄, 137 mM NaCl, pH 7.4) con CaCl₂ a una concentración final de 5 mM. El medio de conservación para las células HeLa se retiró con pipeta y se añadió 1 ml de la suspensión de células de levadura. Las placas se centrifugaron a 1500 rpm por 2 minutos y se incubaron a temperatura ambiente durante 3 h. Para eliminar las levaduras no adheridas, las cajas de 24 pozos se lavaron 6 veces con 1 ml de HBSS con CaCl₂. Las células adheridas se recuperaron en tubos de 1.5 ml después de raspar los pozos con 500 µl de PBS adicionado con 0.1 % de triton X-100, 0.5 % de SDS y 10 mM de EDTA. Con las células obtenidas se hicieron diluciones logarítmicas seriadas en agua destilada y se platearon 200 µl de cada una en cajas de YPD. Las cajas se incubaron a 30 °C durante 48 h y las UFC de las células adherentes se contaron. El porcentaje de las células adherentes se calculó con la siguiente fórmula:

% adherencia = [UFC (células adherentes) / UFC (células "input")]*100 De cada experimento se realizaron 3 réplicas biológicas con 3 replicados técnicos. Los resultados se muestran como la media de estas mediciones. Los porcentajes de adherencia entre 15 % - 25 % se consideran ligeramente hiperadherentes y entre 25 % - 45 % moderadamente hiperadherentes (Martínez-Jiménez et al., 2013). El análisis estadístico se hizo mediante la prueba de ANOVA con el método de Dunnett, con el programa GraphPad Prism (versión 7.0.0 for Windows, GraphPad Software, San Diego, California USA, www.graphpad.com). Las barras de error representan la desviación estándar (SD). P < 0.05 se consideró como estadísticamente significativo.

Análisis de uso de codones

Se hizo un análisis del uso de codones entre las cepas de *C. glabrata*, *S. cerevisiae* y *L. kluyveri*. Para hacer las comparaciones se utilizaron la base de datos *Codon Usage Database* (https://www.kazusa.or.jp/codon/) y la herramienta *Graphical Codon Usage Analyzer* (http://gcua.schoedl.de/index.html, Fuhrmann M, et al. 2004).

Análisis por PCR cuantitativa

Se realizó un análisis cuantitativo de la transcripción (qPCR) para analizar la expresión de los genes *ScSUM1*, *LkSUM1*, *AED1*, *EPA1*, *EPA6*, *EPA20* y *EPA22*. Las células de *C. glabrata* se crecieron como está descrito en esta sección. El ARN se aisló mediante el uso de TRIzol (Invitrogen) según las instrucciones del fabricante y después se trató con DNAsa I recombinante, libre de RNAsa (Roche Applied

Science). El ADNc se sintetizó con SuperScript II Reverse Transcriptase (Invitrogen) y oligo (dT). La reacción de qPCR se llevó a cabo con Fast SYBR Green Master Mix (Thermo Fisher Scientific) y con el termociclador PIKOREAL 96 Real-Time PCR System (Thermo Scientific). La expresión de ACT1 se utilizó como control para las tres especies: C. glabrata, S. cerevisiae y L. kluyveri. Los oligonucleótidos para la reacción de gPCR se diseñaron utilizando la herramienta PrimerQuest de Integrated DNA Technologies, Inc. (https://www.idtdna.com/Primerquest/Home/Index): CgACT1 #1266-#1267, ScACT1 #A16-#A17, LkACT1 #H46-H47, CgSUM1 #2750-#2751, ScSUM1 #2764-#2765, LkSUM1 #2770-#2771, AED1 #2927-#2928, EPA1 #2931-#2932, EPA6 #2939-#2940, EPA20 #2949-2950, EPA22 #2955-2956. Se utilizó el método de determinación del punto umbral $(2^{-\Delta Ct})$ para calcular las diferencias en la expresión. Los experimentos se realizaron en triplicados técnicos y a partir de cuatro extracciones independientes de ARN. El análisis estadístico (prueba de Mann Whitney) se realizó con el programa GraphPad Prism (versión GraphPad Software, San Diego, 7.0.0 for Windows, California USA. www.graphpad.com).

Ensayo de Inmunoprecipitación de la cromatina (ChIP)

El ensayo de ChIP se realizó como está descrito previamente (López-Fuentes et al., 2018). Se crecieron las levaduras en 10 ml de medio mínimo durante 48 horas a 30 °C. Los cultivos se ajustaron a una DO _{600nm} 1.0 en un volumen total de 150 ml de agua destilada. Los anticuerpos utilizados fueron α -FLAG y α -cMyc (SIGMA-ALDRICH, Co.). Para las reacciones de qPCR se utilizó el DNA inmunoprecipitado y el DNA *input*. La reacción de qPCR se realizó con la enzima Fast SYBR Green Master Mix (Thermo Fisher Scientific) y con el equipo PIKOREAL 96 (Thermo Scientific). Los oligonucleótidos utilizados fueron #2921/#2924, #2913/#2910, #2915/#2912 y #2911/#2920. El porcentaje de enriquecimiento relativo a la cepa BG14 se calculó por el método de porcentaje del *input*, con la ecuación 100*2^-(Cq ajustado del DNA *input* – Cq del DNA inmunoprecipitado). El análisis estadístico se realizó con GraphPad Prism (versión 7.0.0 paraWindows, software GraphPad, San Diego, California, EE. UU., www.graphpad.com) a través de una prueba *t* de Student no pareada de dos colas.

5. Resultados

Los datos obtenidos con el presente trabajo de investigación se publicaron en el siguiente artículo:

Candida glabrata Hst1-Rfm1-Sum1 complex evolved to control virulencerelated genes. Vázquez-Franco, N., Gutiérrez-Escobedo, G., Juarez-Reyes, A., Orta-Zavalza, E., Castaño, I., De Las Peñas, A., 2021. Fungal Genetics and Biology. Este artículo puede ser consultado en la siguiente liga: https://doi.org/10.1016/j.fgb.2021.103656
6. Discusión

C. glabrata está clasificada dentro del clado *Nakaseomyces/Candida*, dentro del "grupo *glabrata*" (Gabaldón et al., 2013) y relacionada filogenéticamente con *S. cerevisiae*. A pesar de esta cercanía filogenética, existen diferencias específicas entre ambas especies (Herrero, 2005). El HRS-C de *C. glabrata* regula genes de la respuesta a estrés oxidante, resistencia a FLC, adherencia y el transporte de ácido nicotínico y en cambio, en *S. cerevisiae* este complejo (formado con los mismos ortólogos de *C. glabrata*) controla la expresión de genes importantes para la meiosis y esporulación (Ma et al., 2009; Orta-Zavalza et al., 2013; Pak and Segall, 2002; Piekarska et al., 2010; Winter, 2012; Wong et al., 2003). Por esta razón, decidimos estudiar la evolución del HRS-C y su relación en la regulación de la respuesta a estrés oxidante, su capacidad de adherencia, la resistencia a FLC y su supervivencia en neutrófilos.

En S. cerevisiae las proteínas Ime1, Ume6 e Ime2 tienen un papel importante en la regulación negativa del HRS-C. Ime1 funciona como activador de la transcripción cuando Ume6 la recluta (una proteína de unión a DNA que reconoce los elementos en cis URS1s). Ume6 también tiene función de represor al unirse al complejo Rpd3/Sin3 y mediar la desacetilación de histonas. Ime2 es un activador ya que regula negativamente a Sum1 mediante fosforilación y esto evita la formación del complejo HRS-C (Winter, 2012). En C. glabrata se han designado por sintenia los genes que codifican para las proteínas ortólogas Ime1, Ime2 y Ume6, sin embargo, con base al análisis in silico (CDD, NCBI, https://www.ncbi.nlm.nih.gov/, National Center for Biotechnology Information, U.S. National Library of Medicine, Marchler-Bauer and Bryant, 2004; MacVector v15.0.3(34) © 2016 MacVector, Inc) de estas proteínas en ambas especies, S. cerevisiae y C. glabrata, presentan un porcentaje de similitud bajo: Ime1 30.5 % (19 % de Identidad), Ume6 32.7 % (20.7 % de Identidad) e Ime2 55 % (41 % de Identidad). A pesar de los porcentajes de similitud bajos a estas proteínas se les puede identificar los siguientes dominios: CgUme6 tiene un dominio de unión a DNA de tipo C6-Zinc, y CgIme2 tiene un sitio de unión a ATP, un sitio de unión a sustancias polipeptídicas y un sitio activo de proteína cinasa.

Los resultados de los ensayos de inmunoprecipitación de la cromatina (ChIP), indican que el sitio de unión para el HRS-C se localiza entre -1pb y -223pb río arriba del ATG de CDR1. El análisis in silico de la secuencia de esta región (YEASTRACT+, http://www.yeastract.com/, Monteiro et al., 2020) muestra que existen sitios potenciales de unión para el factor de transcripción ScMot3 (secuencia WAGGTA). Se ha descrito que ScMot3 participa en la regulación negativa de ERG9, ERG6 y ERG2 que codifican para proteínas que participan en la biosíntesis del ergosterol (Hongay et al., 2002). Cuando ScMot3 se asocia con Rox1, regula negativamente genes involucrados en el transporte de membrana, el apareamiento y la homeostasis de esfingolípidos y esteroles (entre los que se encuentra ERG11) (Martínez-Montañés et al., 2013). ScMot3 es también un regulador positivo de genes asociados a estrés que dependen de la activación de Msn2 y Msn4 (Martínez-Montañés et al., 2013). El análisis in silico de CgMot3 indicó que tiene un 17 % de similitud con ScMot3, sin embargo, conserva el dominio de unión a DNA de tipo dedo de Zinc C2H2. Se podría especular que Ime1, Ime2, Ume6 y Mot3 divergieron en C. glabrata, pero conservaron su capacidad regulatoria; de la misma manera que el HRS-C regula genes distintos en C. glabrata y en S. cerevisiae.

7. Conclusiones

- La proteína Sum1 del complejo Hst1-Rfm1-Sum1 evolucionó de manera distinta en *C. glabrata* para regular genes asociados a virulencia.
- HST1 de S. cerevisiae y de L. kluyveri complementan la función de HST1 en
 C. glabrata, pero no así SUM1 de S. cerevisiae o de L. kluyveri.
- Hst1 requiere de Rfm1 y Sum1 para funcionar como represor.
- Es necesaria la presencia de Rfm1 para la integridad del HRS-C, sin embargo, aún se desconoce como interactúa con las proteínas del complejo.
- Sum1 podría unirse directa o indirectamente al DNA independientemente de las otras proteínas del complejo.
- La secuencia de unión reconocida por el complejo se localiza entre -1pb y -223pb río arriba del ATG de CDR1.
- La sobreexpresión de genes controlados por el complejo no aumenta la sobrevivencia a neutrófilos.
- La capacidad de adherencia de *C. glabrata* a células HeLa aumenta en ausencia del HRS-C, debido a un aumento en la expresión de *AED1*, *EPA1*, *EPA6* y *EPA22*.

8. Perspectivas

- Realizar el análisis del transcriptoma o un ChIP-Seq en las cepas carentes de Hst1, Rfm1 y Sum1 para conocer qué otros genes están regulados por HRS-C.
- Determinar qué otras proteínas están asociadas al HRS-C.
- Determinar la caja de unión de HRS-C.
- Determinar qué compuestos en el YPD inducen la expresión de CDR1 aún en ausencia de FLC.
- Determinar si los aislados clínicos resistentes a fluconazol tienen mutaciones en los genes que codifican el HRS-C.

9. Resultados adicionales

9.1. El medio de cultivo modula la susceptibilidad a fluconazol

9.1.1. Factores de señalización celular que modifican la resistencia a FLC en *Candida glabrata.* Hemos observado que la susceptibilidad a FLC en la cepa *hst1* Δ varía según el medio de cultivo, por lo que se decidió evaluar si existía en este último algún factor difusible de señalización celular generado por las cepas de *C. glabrata* BG14 y *hst1* Δ en fase estacionaria y que pudiera modificar la resistencia a FLC. Para determinar esto se realizó una incubación en medio condicionado durante 4 h y después un ensayo de susceptibilidad a FLC (Ver Material y Métodos). Después de 48 h de crecimiento se observó que las cepas BG14 y *hst1* Δ se comportan, respectivamente, como susceptible y resistente en YPD, pero ambas como susceptibles en CAA (como se ha reportado antes), sin importar la incubación previa con cualquier tipo de medio, ya sea condicionado o fresco. Los resultados indican que no existe en el medio de crecimiento algún elemento difusible de señalización que provenga de las células de fase estacionaria y que modifique la resistencia a FLC en las cepas BG14 y *hst1* Δ , además sugieren que el medio de crecimiento influye directamente sobre el fenotipo de susceptibilidad (Figura 1).

SD	4 h	YPD 0 ug/ml FLC	YPD 32 ug/ml FLC	CAA 0.ug/ml FLC	CAA 32 ug/ml FLC
	VDD freeb		52 µg/111 FEC		ο2 μ _B / m + 20
BG14 YPD	TPD fresh				
	YPD BG14	<u></u>	·@ :		
	YPD hst1∆	6 6 . 8	@ !! ·		() ()
	CAA fresh		\$ · ·		🕲 😳 🔅
	CAA BG14		\$ ~ ~	●●參格.	
	CAA hst1Δ	• • • • • • • •	18 (r)		\$ \$;
	YPD fresh	 	49 (B)	• • • •	۵ 😵 🕸
	YPD BG14	••*	(2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	• \$ \$ \$ \$. •	
BG14	YPD hst1∆	••••	۵ 🕆 :		🚳 😤 े
CAA	CAA fresh	🖲 🗑 🤻 🐛	5 · ·		🕲 🐵 🗇
	CAA BG14	• • • • •	10 (h i)	 <!--</td--><td>* *</td>	* *
	CAA hst1∆	· \$\$ \$\$ \$\$ \$	@.@ :	• • • • •	6 8
	YPD fresh	● 🏶 🏶 🔅 🗵		(i) 🕘 🍈 🏘 🔹 👘	💿 🍈 🛞 🛛
	YPD BG14	🔵 🌒 🏟 🐮 •			
hst1∆	YPD hst1∆	• • * * • •	• 2. 2. 0.	() () () () () () () () () () () () () (
YPD	CAA fresh		• • • • •		A A A A
	CAA BG14	🖗 🌒 🏘 👻 🔒 👘			
	CAA hst1Δ	🗇 🕘 🎲 🐇 📜	🕘 💮 💮 🖉 ·		
	YPD fresh	🕒 🏶 🏶 \land	• • • •		🔘 🏶 🕸 🖓 .
<i>hst1∆</i> CAA	YPD BG14	۰ ۱ 🕲 🔘 🌑	🔘 🌒 🏶 🤫	• • • • • •	🔘 🗶 🥵 (12 - 1 - 1 - 1
	YPD hst1∆	ې چې چې 🔍 🌑	● ● 肇 仲士	🗶 🌒 🏟 🧶	
	CAA fresh	🕘 🖲 🏶 🚯 🔹	参 🛞 🌑 🌒		🍥 🚳 🔅 🕐
	CAA BG14	۰۰۰ 📜 🏟 🕲 🌒	🔘 🌒 🏶 🐇 🚏 .	🐑 🌩 🏟 N	🔘 🏟 🧐 👘 👘
	CAA hst1Δ		🌰 🍏 🏶 🐀 👘	(i)	🕒 🏟 🖓 🖓

Figura 1. Evaluación de la presencia de factores difusibles en medio condicionado proveniente de células de fase estacionaria y que modifiquen la resistencia a FLC en las cepas BG14 y *hst1* Δ de *C. glabrata*. Se utilizaron cultivos en fase estacionaria de las cepas BG14 y *hst1* Δ de *C. glabrata*, tanto en YPD como en CAA. De estos cultivos se obtuvieron células y medio condicionado. Para obtener el medio condicionado los cultivos se centrifugaron y se filtraron (0.22 µm). Los medios condicionados y las células fueron mezclados y se mantuvieron en agitación a 30 °C durante 4 h. Finalmente se hicieron diluciones seriadas logarítmicas a partir de 200 µl de cultivo con una O.D._{600nm} de 0.5. Las diluciones fueron plateadas en cajas de agar YPD o agar CAA con 32 µg/ml de FLC o sin FLC. Se hicieron al menos 3 réplicas biológicas. SP: indica el medio y la cepa utilizados para obtener células en fase estacionaria. 4 h: cuatro horas de incubación con medio fresco o con el medio condicionado proveniente de la cepa indicada.

9.1.2. Factores del medio de cultivo que modifican la resistencia a FLC en C. glabrata. Una vez que establecimos que el medio de cultivo participa directamente sobre el fenotipo de resistencia/sensibilidad a FLC (32 µg/ml) de la cepa hst1^Δ de C. glabrata, decidimos determinar qué componentes de los medios CAA y YPD pudieran participar directamente. Para esto, realizamos otro ensayo de susceptibilidad a FLC, utilizando YPD, CAA y los siguientes 4 medios de cultivo modificados: YPD más sulfato de amonio (componente del medio CAA), CAA más YPD, CAA más extracto de levadura (componente del medio YPD) y CAA más peptona (componente del medio YPD); cabe mencionar que la glucosa (D en YPD) es un componente común en ambos medios (Tabla 6) (Ver Material y Métodos). En la figura 2A se encuentra la cuenta viable de las cepas BG14 y hst1Δ en ausencia de FLC en cajas YPD, CAA y YPD (NH₄)₂SO₄. En la figura 2B la cepa BG14 es sensible a 32 µg/ml FLC en cajas de YPD, CAA y YPD (NH₄)₂SO₄, en cambio la cepa $hst1\Delta$ es sensible a 32 µg/ml FLC en solo en cajas de CAA, pero resistente en cajas de YPD y YPD (NH₄)₂SO₄. En la figura 2C se encuentra la cuenta viable de las cepas BG14 y hst1Δ en ausencia de FLC en cajas CAA+YPD, CAA+Y y CAA+P. En la figura 2D la cepa BG14 es sensible a 32 µg/ml FLC en cajas de CAA+YPD, CAA+Y y CAA+P y la cepa hst1 Δ es resistente a 32 µg/ml FLC en cajas de CAA+YPD y CAA+Y y presenta un fenotipo intermedio de resistencia en cajas de CAA+P. Estos resultados indican que la adición de extracto de levadura o peptona a CAA permite la resistencia de la cepa hst1 Δ a 32 µg/ml FLC, además de que no existe ningún compuesto en CAA que inhiba la resistencia a FLC. Finalmente, el (NH₄)₂SO₄ no afecta la resistencia/sensibilidad a FLC.

Figura 2. Determinación de factores del medio de cultivo que modifiquen la resistencia a FLC en *C. glabrata*. Se realizó un ensayo de susceptibilidad a FLC con las cepas BG14 y *hst1* Δ de *C. glabrata*. Se hicieron diluciones seriadas logarítmicas de los cultivos y se platearon en cajas de YPD, CAA, YPD+(NH₄)₂SO₄ (sulfato de amonio), YPD+CAA, CAA+Y (extracto de levadura) y CAA+P (Peptona) suplementadas con 32 µg/ml de FLC. Se hicieron al menos 3 réplicas biológicas.

9.1.3. La peptona confiere la resistencia a FLC en la mutante hst1A. En el ensayo anterior hemos observado que el YPD confiere resistencia a FLC a la cepa hst1A. El YPD está compuesto por 1 % de extracto de levadura (Y), 2 % de peptona (P) y 2 % de glucosa (D). Primero evaluamos si la resistencia a fluconazol de la cepa *hst1* Δ disminuye agregando concentraciones finales menores al 2 % extracto de levadura en CAA. Para responder a esto, hicimos un ensayo de susceptibilidad a FLC con las cepas BG14 y hst1∆ de C. glabrata en CAA adicionado con 1 %, 0.5 %, 0.1 %, 0.05 %, 0.025 %, 0.01 %, 0.005 % y 0.001 % de extracto de levadura (Y) y 32 µg/ml de FLC. Los resultados muestran que se necesita al menos una concentración de 500 µg/ml de extracto de levadura en el medio para que la cepa *hst1* Δ se muestre como resistente a FLC (Figura 3). Esto sugiere que se necesitan cantidades bajas de algún o algunos compuestos propios del extracto de levadura para activar la resistencia a fluconazol en dicha cepa. El extracto de levadura está compuesto por proteínas, aminoácidos, carbohidratos, vitaminas y minerales extraídos de células de levadura sin pared celular (Ahranjani et al., 2020; Zarei et al., 2016). La peptona es un hidrolizado enzimático de proteína animal, lo que la hace más fácil caracterizar en comparación con el extracto de levadura. Para determinar si la concentración de peptona en el medio tiene un efecto en la resistencia FLC, hicimos un ensayo de susceptibilidad con las cepas BG14, hst1A y sum1 Δ en CAA adicionado con 2 % o 4 % de peptona y FLC (32 µg/ml). Dado que es posible que la esterilización del medio por autoclave (temperatura y presión) pueda generar compuestos adicionales bioactivos, evaluamos también YPD filtrado, CAA adicionado con extracto de levadura filtrado (CAA + Y filtrado) CAA adicionado con peptona filtrada (CAA + P filtrada) (Tabla 6) (Ver Material y Métodos). En la Figura 4A observamos que la cepa BG14 es sensible a 32 µg/ml en las cajas de YPD (autoclave) (Figura 4A columna I) y en las cajas de YPD donde el extracto de levadura fue filtrado por separado (Figura 4A columna III); en cambio, las mutantes hst1 Δ y sum1 Δ son resistentes en estos mismos medios; esto concuerda con resultados anteriores e indica que el proceso de autoclave del extracto de levadura no genera compuestos bioactivos que modifican la resistencia a FLC. En la Figura 4B (columna I) se observa que las tres cepas utilizadas en este ensayo son susceptibles a FLC cuando son crecidas en CAA, como se ha visto en ensayos

anteriores. Sin embargo, las mutantes *hst1* Δ y *sum1* Δ , a diferencia de la BG14, son resistentes a FLC en las cajas CAA adicionada con extracto de levadura (autoclave) (CAA + Y) (Figura 4B columna II) y CAA adicionada con extracto de levadura filtrado (CAA + Y filtrado) (Figura 4B columna III). Este mismo fenotipo de susceptibilidad o resistencia a FLC en las tres cepas evaluadas se observa en las figuras 3C y 3 D, donde se utilizaron las cajas CAA adicionada con 2 % de peptona (autoclave) (CAA + P) (Figura 4C columna II), CAA adicionada con 2 % de peptona filtrada (CAA + P) filtrada) (Figura 4C columna III), CAA adicionada con 4 % de peptona (autoclave) (CAA + P) (Figura 4D columna III), CAA adicionada con 4 % de peptona filtrada (CAA + P filtrada) (Figura 4D columna III). Estos resultados confirman que en extracto de levadura y en la peptona, componentes del YPD, hay una molécula que confiere la resistencia a FLC en ausencia del HRS-C e indican que el proceso de autoclave no modifica la actividad de dicha molécula. Estos resultados también corroboran que en CAA no hay ninguna molécula que inhiba la resistencia a FLC en ausencia de Sum1 o Hst1.

Figura 3. Concentraciones de extracto de levadura que confiere resistencia a FLC en ausencia del HRS-C. Se realizó un ensayo de susceptibilidad a FLC con las cepas BG14, *hst1* Δ y *sum1* Δ de *C. glabrata*. Se hicieron diluciones logarítmicas de cultivos saturados de las cepas BG14, *hst1* Δ y *sum1* Δ y se crecieron en presencia de 32 µg/ml de FLC en cajas de: (A) YPD, CAA y (B) CAA adicionado con 1 %, 0.5 %, 0.1 %, 0.05 %, 0.01 %, 0.005 % y 0.001 % de extracto de levadura.

Figura 4. Determinación de los compuestos del YPD que confieren resistencia a FLC en ausencia del HRS-C. Se realizó un ensayo de susceptibilidad a FLC con las cepas BG14, *hst1* Δ y *sum1* Δ de *C. glabrata*. Se hicieron diluciones seriadas logarítmicas de cultivos saturados de las cepas BG14, *hst1* Δ y *sum1* Δ y se crecieron en presencia de 32 µg/ml de FLC en cajas de: YPD (A-I), Y filtrado + PD (YPD con

extracto de levadura filtrado por separado) (A-III), CAA (B-I), CAA+Y (CAA con extracto de levadura) (B-II), CAA+Y filtrado (CAA con extracto de levadura filtrado) (B-III), CAA+P 2 % (CAA más 2 % de peptona) (C-II), CAA+P filtrado 2 % (CAA más 2 % de peptona) (C-II), CAA+P filtrado 2 % (CAA más 2 % de peptona) (D-II) y CAA+P filtrado 4 % (CAA más 4 % de peptona filtrada) (D-III). Se hicieron al menos 3 réplicas biológicas. Columna I, medio preparado de manera tradicional; columna II, medio preparado de manera tradicional adicionado con extracto de levadura (Y) o peptona (P) esterilizados por autoclave por separado; columna III, medio preparado de manera tradicional adicionado con extracto de levadura (Y) o peptona (P) esterilizados por separado.

9.1.4. Perfil de aminoácidos de la peptona y su efecto en la activación de la resistencia a FLC. Hasta ahora sabemos que la peptona contiene moléculas que permiten la activación de la resistencia a FLC en las cepas $hst1\Delta$ y sum1 Δ de C. glabrata. Como ya se mencionó, la peptona es un hidrolizado enzimático de proteína animal, lo que nos sugiere que en la activación de la resistencia a FLC pudieran estar involucrados aminoácidos o moléculas de tipo peptídico. Por esta razón, se caracterizó el perfil de aminoácidos en la peptona mediante Cromatografía de Líquidos (HPLC) y el método estandarizado comercial para aminoácidos AccQ-Tag (Waters©). Los resultados muestran que los aminoácidos más abundantes son cisteína, glicina y prolina con un 18.20 %, 12.77 % y 20.08 % respectivamente (Figura 5). Posteriormente se decidió caracterizar el perfil de aminoácidos en CAA y compararlos con los resultados del perfil de la peptona (Figura 5). Estos resultados nos sugieren que la cisteína, la glicina y la prolina pudieran estar involucrados en la activación de la resistencia a FLC. Para evaluar si dichos aminoácidos tienen algún efecto directo sobre la activación de la resistencia a FLC, realizamos un ensayo de susceptibilidad en CAA adicionado con cisteína, glicina y prolina, ya sea individualmente o los tres en conjunto (Tabla 6) (Ver Material y Métodos) (Figura 6). Observamos que la cepa BG14 es sensible a FLC (32 µg/ml) en YPD y CAA+P mientras que las mutantes $hst1\Delta$ y sum1 Δ son resistentes, al mismo tiempo, la cepa BG14 y las mutantes $hst1\Delta$ y $sum1\Delta$ son sensibles a FLC (32 µg/ml) en CAA y en cualquiera de los medios CAA adicionados con aminoácidos. Estos resultados nos indican que la activación de la resistencia a FLC no depende de los tres aminoácidos con mayor abundancia en la peptona y que la activación podría darse a través de uno o varios compuestos de tipo peptídico.

Figura 5. Perfil de aminoácidos en CAA y peptona con base en el contenido total de aminoácidos por gramo de medio. LANBAMA, IPICYT.

FLC	Media	BG14	hst1∆	sum1∆
0 µg/ml	YPD		• • * * •	•••
	CAA+P	••••	🕒 🕘 🏶 🥫 ·	🗣 🏶 🗣 🕘
	CAA	• : @ •	** 🕲 🔘 🔘	🔵 🗑 🏶 49 i 👘
	CAA+CGP		•••	🕒 🍥 🎕 🍀 🦾 🔸
	CAA+Cys	•••	• • • •	🔍 🕲 🏟 🛠 "
	CAA+Gly	•••*.	• • * * · ·	
	CAA+Pro	••••	🕘 🌒 🕸 🛟 *	
	YPD		•••	
	CAA+P	\$\$ @ ·	• • • •	•••
32 µg/ml	CAA	🔘 🧶 (gr. 5)		
	CAA+CGP	🔮 🙆 🐨 📜 👘	🕒 🌒 🖗 🐁 👘 🔸	🕒 🍈 🚳 🚳 👘 👶
	CAA+Cys	🖲 🏶 🔅 🗧	🔴 🗣 👻 😒	🕘 🏶 🕸 🖄
	CAA+Gly	🏶 🚸 🔅		
	CAA+Pro	🕘 🍈 🛞 🐘	🔵 👹 🖗 👘	۵ 🐵 🛞 🖏 🔅

Figura 6. Determinación del efecto de cisteína, glicina y prolina sobre la activación de la resistencia a FLC. Se realizó un ensayo de susceptibilidad a FLC con células las cepas BG14, *hst1* Δ y *sum1* Δ . Se hicieron diluciones seriadas logarítmicas y se platearon en medio sólido. YPD, CAA, CAA+P, CAA+CGP, CAA+Cys, CAA+Gly, CAA+Pro; en ausencia o presencia de 32 µg/ml de FLC. Se hicieron al menos 3 réplicas biológicas.

9.1.5. La peptona (Thermo Fisher Scientific[™]) puede activar la resistencia a FLC en ausencia de Hst1 o Sum1. Debido a la variación entre las diferentes marcas comerciales de peptona, tanto en la composición general como en el proceso de obtención, nos preguntamos si la resistencia a FLC puede ser activada por cualquier tipo de peptona o si este rasgo es característico de la marca Thermo Fisher Scientific[™]. Por eso evaluamos la susceptibilidad a FLC de las cepas BG14 y hst1^Δ en CAA adicionado con peptona proveniente de otra compañía (BD Bioxon[™]) y un hidrolizado de proteína obtenido mediante un proceso distinto (Triptona - Thermo Fisher Scientific[™]) (Tabla 6). Como hemos observado previamente, la cepa BG14 es sensible a FLC (32 µg/ml) en YPD y CAA+P (ambos con peptona de Thermo Fisher ScientificTM), mientras que la mutante *hst1* Δ es resistente. Sorprendentemente, las cepas BG14 y hst1∆ son sensibles a 32 µg/ml FLC cuando se crecen en medio adicionado con peptona de caseína de BD Bioxon[™] o triptona de Thermo Fisher Scientific[™]. Estos resultados nos indican que la resistencia a FLC se activa por un compuesto presente únicamente en la peptona de Thermo Fisher Scientific™. Además, sugiere que la peptona de caseína de BD Bioxon[™] y la triptona de Thermo Fisher Scientific[™] tienen algún compuesto antifúngico que reduce su crecimiento y, además, aumenta la sensibilidad de la mutante *hst1* Δ ante el FLC (32 µg/ml) (Figura 7).

Figura 7. Ensayo de susceptibilidad a FLC con células de fase estacionaria de *C. glabrata* y diferentes proteínas hidrolizadas. Se hicieron diluciones seriadas logarítmicas con células en fase estacionaria de las cepas BG14 y *hst1* Δ . Las diluciones se platearon en medio sólido. YPD, CAA+P, CAA, CAA+CasP (CAA más 2 % de peptona de caseína de BD BioxonTM), CAA+Trypt (CAA más 2 % de triptona); en ausencia o presencia de 32 µg/ml de FLC. Las cajas se incubaron a 30 °C. Se hicieron al menos 3 réplicas biológicas.

9.1.6. Perfil de aminoácidos de la peptona de caseína de BD Bioxon™. La peptona de caseína de BD Bioxon™ es un hidrolizado enzimático de caseína, que como va hemos visto aumenta la sensibilidad de la mutante hst1 Δ ante el FLC (32) µg/ml). Por esto, se decidió caracterizar el perfil de aminoácidos en la peptona de caseína de BD Bioxon™ para poder compararlo con los resultados obtenidos previamente de la peptona de Thermo Fisher Scientific™ y de los casaminoácidos (CAA) (Figura 8). Los resultados muestran que el perfil de aminoácidos en la peptona de caseína de BD Bioxon™ es muy similar al perfil obtenido en CAA. Dado que la peptona de caseína de BD Bioxon™ aumenta la sensibilidad de la mutante *hst1* Δ a 32 µg/ml de FLC, nos interesamos en conocer cuál era la concentración mínima inhibitoria de FLC en presencia de la peptona de caseína de BD Bioxon™. Por eso evaluamos la susceptibilidad a FLC de las cepas BG14, hst1 Δ y pdr1 Δ en CAA adicionado con peptona de caseína de BD Bioxon™ (CAA+CasP) sin FLC o con 1 µg/ml, 2 µg/ml, 4 µg/ml y 8 µg/ml de FLC (Tabla 6) (Figura 9). Como hemos observado previamente, las cepas tienen un crecimiento limitado cuando se crecen en CAA+CasP. Las cepas BG14 y *hst1* Δ son resistentes a 8 µg/ml de FLC cuando se crecen en los medios YPD, CAA+P y CAA, mientras que la cepa $pdr1\Delta$ es sensible a partir de 1 μ g/ml de FLC. Interesantemente, las cepas BG14 y hst1 Δ son sensibles a 8 µg/ml FLC cuando crecen en CAA+CasP. Estos resultados nos indican que la peptona de caseína de BD Bioxon[™] tiene algún compuesto que aumenta la sensibilidad de las cepas BG14 y hst1 Δ al FLC a una concentración de 8 µg/ml FLC.

Figura 8. Perfil de aminoácidos en casaminoácidos (CAA), peptona de Thermo Fisher Scientific[™] (Peptone) y peptona de caseína de BD Bioxon[™] (Casein Peptone) con base en el contenido total de aminoácidos por gramo de medio. LANBAMA, IPICYT.

Biological replicate 1 (48hrs)

Figura 9. Efecto de la peptona de caseína (BD BioxonTM) en la susceptibilidad a FLC de *C. glabrata* aún en ausencia del HRS-C. Se realizó un ensayo de susceptibilidad a FLC con las cepas BG14, *hst1* Δ y *pdr1* Δ de *C. glabrata*. Se hicieron diluciones seriadas logarítmicas y se platearon en medio sólido YPD, CAA, CAA+P (CAA más peptona de Thermo Fisher ScientificTM) y CAA+CasP (CAA más peptona de Thermo Fisher ScientificTM) y CAA+CasP (CAA más peptona de 1μ g/ml, 2μ g/ml, 4μ g/ml y 8 μ g/ml de FLC.

9.1.7. La peptona (Thermo Fisher Scientific[™]) aumenta la resistencia a FLC en ausencia de Hst1 o Sum1 mediante la activación de la expresión de CDR1. Previamente, hemos determinado que la peptona (Thermo Fisher Scientific™) permite la activación de la resistencia a FLC en las cepas $hst1\Delta$ y sum1 Δ de C. glabrata. Por esto, decidimos determinar qué moléculas de la peptona tienen un efecto en la activación de la expresión de CDR1 y PDR1 de C. glabrata. Con este objetivo, se realizaron fusiones transcripcionales del gen que codifica para la proteína GFP bajo la regulación del promotor y la región 3'UTR de los genes CDR1 y PDR1. Dichas construcciones se transformaron en las cepas BG14, hst1 Δ , sum1 Δ y *pdr1* Δ de *C. glabrata*. Para determinar si el efecto de la peptona es directo sobre la actividad del promotor de PDR1 y de CDR1, realizamos ensayos de exposición a FLC en diferentes medios y se midió la fluorescencia relativa (Ver Material y Métodos). En la figura 10 observamos que la inducción de la expresión del factor de transcripción PDR1 no se modifica en los medios utilizados YPD (10A), CAA+P (10B) o CAA (10C). Estos resultados concuerdan con los reportes de que las vías de transducción de señales en levaduras están reguladas transcripcionalmente por la modificación de la actividad de los factores de transcripción involucrados, más que por el nivel de expresión de dichos factores. Contrario a lo anterior, en la figura 11 observamos que la peptona sí tiene efecto de sobre la activación de la expresión del transportador CDR1. En la figura 11A podemos observar que en YPD la activación de la expresión de CDR1 aumenta en las cepas hst1 Δ y sum1 Δ , además de que, la ausencia del complejo regulador negativo y la inducción por FLC tienen un efecto paralelo y elevan la inducción de CDR1. Un dato interesante es que la expresión de *CDR1* es mayor en la cepa sum 1Δ que en la cepa hst 1Δ , lo que sugiere que la unión de SUM1 al DNA no depende de HST1, pero la regulación negativa de HST1 sí depende de SUM1. En la figura 11B observamos que la peptona también tiene un efecto inductor en la activación de la expresión de CDR1. En la figura 11C, sin embargo, observamos que la inducción de CDR1 en el medio de CAA, no alcanza los niveles de expresión observados en los medios YPD y CAA más peptona, y que, no es suficiente para conferir resistencia a FLC. Estos resultados son consistentes con los observados en los ensayos de resistencia FLC presentados en la Figura 1 de esta sección.

43

Figura 10. Evaluación de la activación de la expresión de *PDR1* según el medio de cultivo. Las cepas BG14, *hst1* Δ , *sum1* Δ y *pdr1* Δ transformadas con la construcción pP_{PDR1}::GFP::3'UTR_{PDR1} se crecieron en medio líquido YPD, CAA+P o CAA. De estos cultivos se obtuvieron células en fase estacionaria y se llevaron a una O.D.

 $_{600nm}$ de 0.5. Las células se inocularon en 5 ml de los medios YPD, CAA+P ó CAA con o sin FLC (8 µg/ml para las cepas *hst1*Δ y *sum1*Δ y 1 µg/ml para la cepa *pdr1*Δ). Las mediciones se hicieron por citometría de flujo, tanto del cultivo saturado en fase estacionaria como del medio con o sin tratamiento al tiempo 0 (momento del inóculo), y a las 1, 2, 4, 6 y 8 h. Los experimentos fueron hechos por triplicado. Se realizó un ANOVA de dos vías para el análisis estadístico con el programa GraphPad Prism, no se encontró diferencia estadísticamente significativa.

r

Time (hours)

250

0

BG14 +FLC hst1∆ +FLC **BG14** hst1∆ pdr1∆ +/-FLC Promoterless

um1∆ +FLC

2 20 construcción pP_{*CDR1*}::GFP::3'UTR_{*CDR1*}. El ensayo y las mediciones por citometría de flujo se realizaron como fue descrito en la figura 10, y se hicieron mediciones extras a las 12 y 24 h. Los experimentos se realizaron por triplicado. Para el análisis estadístico se utilizó un ANOVA de dos vías con el programa GraphPad Prism.

9.1.8. La fracción no polar de la peptona Thermo Fisher Scientific™ induce la activación del promotor de CDR1. Cómo se ha demostrado, se sugiere que las moléculas involucradas en la activación de la expresión de CDR1 pudieran ser de tipo peptídico, sin embargo, se desconoce totalmente el proceso de manufacturación de la peptona y el grado de pureza en su obtención. Por esto, realizamos una extracción general de proteínas y de compuestos no polares a partir de la peptona marca Thermo Fisher Scientific™ para después medir la fluorescencia relativa de la proteína GFP en la cepa sum 1Δ de C. glabrata. La extracción de proteínas se hizo por precipitación con una solución de sulfato de amonio a diferentes concentraciones 20 %, 40 %, 60 %, 80 % y 100 % (Ver Material y Métodos). Para conocer la concentración de proteína en la peptona antes y después de la precipitación con sulfato de amonio, se utilizó el método de Bradford (Bradford, 1976), sin embargo, sólo se pudo obtener la concentración previo a la precipitación: 197 μ g/g ± 30 μ g/g. Las cinco fracciones obtenidas se adicionaron por separado al CAA (Ver Material y Métodos). La extracción de compuestos no polares se hizo por el método de Bligh y Dyer (Bligh, E.G. and Dyer, 1959) y la fracción obtenida se adicionó al CAA, (Ver Material y Métodos). En la figura 12 se muestran los resultados del efecto de las diferentes fracciones peptídicas de la peptona y de la fracción no polar (Thermo Fisher Scientific[™]) sobre la activación de la expresión del transportador CDR1. Podemos observar que la expresión de CDR1 aumenta en los medios de CAA con peptona y CAA con la fracción no polar.

Figura 12. Evaluación de la inducción de la expresión de *CDR1* en CAA más peptona o sus diferentes fracciones. La expresión se midió en el fondo genético de la cepa *sum1* Δ de *C. glabrata*. La cepa BG14 pP_{CDR1}::GFP::3'UTR_{CDR1} se utilizó como control en CAA más peptona. El ensayo y las mediciones por citometría de flujo se hicieron como fue descrito previamente en la figura 11. CAA+NPF, CAA más fracción no polar; CAA+20 % frac, CAA+40 % frac, CAA+60 % frac, CAA+80 % frac y CAA+100 % frac, CAA más las diferentes fracciones peptídicas obtenidas a partir de la precipitación con sulfato de amonio. Los experimentos se realizaron por triplicado. Para el análisis estadístico se utilizó un ANOVA de dos vías con el programa GraphPad Prism.

9.1.9. La fracción no polar de las diferentes proteínas hidrolizadas induce la activación del promotor de *CDR1*. Una vez que observamos que la fracción no polar de la peptona de marca Thermo Fisher Scientific[™] induce la actividad del promotor de *CDR1*, decidimos obtener las fracciones polares de la peptona de caseína de BD Bioxon[™] y la triptona de Thermo Fisher Scientific[™]. Esto con la finalidad de evaluar si el efecto de la fracción no polar de las 3 proteínas hidrolizadas comerciales es similar. El procedimiento se realizó como fue descrito en la sección 9.1.8. Los resultados muestran que la fracción polar de los tres productos comerciales es capaz de inducir la actividad del promotor de *CDR1*. Para identificar qué compuesto de la fracción no polar de la peptona (Thermo Fisher Scientific[™]) induce del gen *CDR1*, se analizó dicha fracción mediante Cromatografía de Gases acoplada a Espectrometría de Masas (GC/MS). En la figura 14 se muestra un análisis de Venn que indica la cantidad de compuestos no polares identificados que comparten entre sí las 3 proteínas hidrolizadas. En la Tabla 5 se desglosan los resultados del análisis.

Los compuestos no polares comunes en las diferentes proteínas hidrolizadas son sustancias del tipo de las pirrolo-pirazinas por lo que se sugiere que estas sustancias podrían ser las responsables de la inducción de la expresión de CDR1. La presencia de pirrolo-pirazinas ha sido detectada principalmente en bacterias y se ha descrito que tienen actividad alguicida contra Microcystis aeruginosa, actividad antibacteriana contra Staphylococcus aureus y actividad antifúngica contra las especies de Candida albicans, tropicalis y krusei (Kiran et al., 2018; Li et al., 2014; Sanjenbam et al., 2014). Se ha descrito también que estas sustancias tienen una importante actividad antioxidante y se propone su uso en el tratamiento de enfermedades cuya etiología se asocia a la presencia de radicales libres (Ser et al., 2015). En nuestro laboratorio se ha descrito que el secretoma de C. glabrata varía dependiendo del medio de crecimiento y es probable que estos metabolitos modifiquen la expresión transcripcional global y se genere una resistencia a estrés oxidante (López-Ramos et al., 2021). Es posible que la actividad antifúngica de las pirrolo-pirazinas pueda tener dos escenarios posibles. El primero, que influyan directamente en el perfil metabólico de la levadura y que esto lleve a una modificación global de la transcripción similar a lo que se reporta (López-Ramos et

49

al., 2021). El segundo, que puedan tener una actividad similar a la del fluconazol y activar a Pdr1 a través del sitio de unión a xenobióticos, y funcionar como activadores de la resistencia a fármacos, en vez de tener actividad antifúngica como sucede con otras especies de *Candida* (Sanjenbam et al., 2014).

Se requiere investigar más sobre esta posible unión de las pirrolo-pirazinas con Pdr1 que, aunada a la red de regulación del HRS-C y su relación con la respuesta a estrés oxidante, podría concordar con lo reportado sobre de la actividad antifúngica y antioxidante de estas sustancias.

Figura 13. Evaluación de la inducción de la expresión de *CDR1* en CAA más peptona marca Thermo Fisher Scientific[™] (Peptone), peptona de caseína marca BD Bioxon[™] (Casein peptone) y triptona marca BD Bioxon[™] (Tryptone) y sus

fracciones no polares (NPF). La expresión se midió en el fondo genético de la cepa sum1 Δ de *C. glabrata*. La cepa BG14 pP_{CDR1}::GFP::3'UTR_{CDR1} se utilizó como control en CAA más peptona marca Thermo Fisher ScientificTM. Las mediciones se hicieron mediante citometría de flujo. Los experimentos se realizaron por triplicado. Para el análisis estadístico se utilizó un ANOVA de dos vías con el programa GraphPad Prism.

Figura 14. Diagrama de Venn (http://bioinformatics.psb.ugent.be/web 51olos/Venn/) que muestra los compuestos no polares compartidos entre los diferentes medios de crecimiento. Peptone (F), peptona de marca Thermo Fisher Scientific™; Tryptone, triptona de Thermo Fisher Scientific™; Casein peptone (B), peptona de caseína de BD Bioxon™.

Tabla 5. Porcentaje relativo de los compuestos encontrados por GC/MS en la fracción no polar de las tres proteínas hidrolizadas.

Г

Compuestos	Peptona (Thermo Fisher Scientific™)	Triptona (Thermo Fisher Scientific™)	Peptona de caseína (BD Bioxon™)		
Comunes entre las tres proteínas hid	rolizadas				
(3R,8aS)-3-methyl-1,2,3,4,5,6,7,8,8a- octahydropyrrolo[1,2-a]pyrazine-1,4- dione	5.39 ± 0.40	1.69 ± 0.42	2.46 ± 0.24		
CAS 2000853-02-8	2.56 ± 0.97	0.76 ± 0.19	0.67 ± 0.14		
hexahydro-3-(2-methylpropyl)- pyrrolo[1,2-a]-pyrazine-1,4-dione	10.24 ± 0.49	16.88 ± 3.67	7.08 ± 1.73		
hexahydro-pyrrolo[1,2-a]-pyrazine-1,4- dione	68.06 ± 1.33	5.27 ± 0.78	3.64 ± 0.64		
Comunes entre peptona (Thermo Fisher Scientific™) y peptona de caseína (BD Bioxon™)					
3-(pnenylmethyl)-2,5,piperazinedione	0.71 ± 0.62	-	0.17 ± 0.16		
3-hydroxy-2,5,6-trimethyl-4-pyrone	4.47 ± 0.18	-	7.24 ± 1.46		
Comunes entre triptona (Thermo Fisher Scientific™) y peptona de caseína (BD Bioxon™)					
2-(dimethylhydrazono)-butanal	-	1.55 ± 0.65	0.44 ± 0.18		
2,4-bis-(1,1-dimethylethyl)-phenol	-	0.21 ± 0.03	0.08 ± 0.01		
2-[(methoxycarbonyl)methyl]- 3methylfuran	-	1.85 ± 0.78	5.17 ± 0.82		
2-ethoxy-3,4-dihydro-5-methyl-3- methylen-2H-pyran	-	1.58 ± 0.12	4.52 ± 0.74		

3,5-dimethoxy-phenol	-	2.63 ± 0.92	1.25 ± 0.22		
3-amino-2,6-dimethoxy-pyridine, 5-allyl- 3-methyl-2,5-dihydrofuran-2-one	-	10.97 ± 1.05	8.63 ± 0.43		
3-benzyl-6-isopropyl-2,5- piperazinedione	-	0.13 ± 0.22	0.22 ± 0.19		
3-benzyl-hexahydropyrrolo[1,2-a]- pyrazine-1,4-dione	-	25.71 ± 0.93	18.37 ± 0.17		
4-propoxy-catechol	-	0.46 ± 0.11	1.21 ± 0.47		
Ergotamine GC artefact I	-	3.53 ± 3.05	3.35 ± 0.02		
N-propargyloxycarbonyl dodecil ester-L- norvaline, 3-hydroxy-2-ethyl-5-methyl-4- pyrone, N-propargyloxycarbonyl heptadecil ester-L-valine	-	12.09 ± 2.97	7.44 ± 0.78		
Únicos en peptona (Thermo Fisher Scientific™)					
(2S,6R)-2,6-dibutyl-4-methylpiperidine	2.18 ± 1.91	-	-		
2,4-di-tert-butyl phenol	0.30 ± 0.27	-	-		
hexahydro-3-(phenylmethyl)- pyrrolo[1,2-a]pyrazine-1,4-dione	4.20.0.18 ±	-	-		
N-pivaloyl-L-leucine ethyl ester, N- cyclopropylcarbonyl-L-leucine hexadecyl ester	3.20 ± 0.16	-	-		
octahydro-5H,10H-dipyrrolo[1,2-a:1',2'- d]pyrazine-5,10-dione	1.24 ± 0.22	-	-		
Únicos en triptona (Thermo Fisher Scientific™)					
2,4-dimethoxyphenol	-	0.36 ± 0.62	-		
2,6-dimethoxyphenol	-	2.0 ± 1.82	-		

3,6-diisopropyl-piperazin-2,5-dione	-	0.54 ± 0.61	-		
bicyclo[2.2.2]octane-1-carboxylic acid	-	2.54 ± 0.17	-		
N-allyloxycarbonyl pentadecyl L-proline	-	4.95 ± 1.37	-		
Únicos en peptona de caseína (BD Bioxon™)					
1-(2'-aminothiazol-4'-yl)azulene	-	-	0.68 ± 0.12		
4,4,-dimethyl-2,5-dioxo-1- vynilimidazoline	-	-	6.28 ± 0.34		
4,5-dimethoxy-2-methyl-phenol	-	-	0.26 ± 0.17		
Cyclo(L-Pro-L-Val)	-	-	0.64 ± 1.11		
butanal dimethyl hydrazone	-	-	0.36 ± 0.33		
N-allylcarbonyl-L-proline butyl ester	-	-	8.56 ± 0.37		
N-allyloxycarbonyl L-proline pentyl or decyl ester	-	-	13.57 ± 1.84		
N-allyloxycarbonyl pentyl ester L-proline	-	-	12.06 ± 0.47		
Nicotinamide	-	-	0.49 ± 0.18		
N-propargyloxycarbonyl-N-norvaline octyl ester	-	-	7.8 ± 1.91		

Tabla 6. Medios de cultivo modificados utilizados en esta sección de resultados adicionales

Medio	Medio base	Compuesto adicionado	
CAA+Y	CAA	1 % de extracto de levadura (Thermo Fisher Scientific™)	
CAA+Y filtrado	CAA	1 % de extracto de levadura (Thermo Fishe Scientific™), esterilizado por filtración	
CAA+Y 1 %	CAA	1 % de extracto de levadura (Thermo Fisher Scientific™)	
CAA+Y 0.5 %	CAA	0.5 % de extracto de levadura (Thermo Fisher Scientific™)	
CAA+Y 0.1 %	CAA	0.1 % de extracto de levadura (Thermo Fisher Scientific™)	
CAA+Y 0.05 %	CAA	0.05 % de extracto de levadura (Thermo Fisher Scientific™)	
CAA+P	CAA	2 % de peptona (Thermo Fisher Scientific™)	
CAA+P 2 %	САА	2 % de peptona (Thermo Fisher Scientific™)	
CAA+P 4 %	САА	4 % de peptona (Thermo Fisher Scientific™)	
CAA+P 2 % filtrado	CAA	2 % de peptona (Thermo Fisher Scientific™), esterilizada por filtración	
CAA+P 4 % filtrado	CAA	4 % de peptona (Thermo Fisher Scientific™), esterilizada por filtración	
CAA+CGP	САА	530 μg/ml de cisteína (Sigma-Aldrich, Co.), 2.55 mg/ml de glicina (BIORAD) y 4.01 mg/ml de prolina (Sigma-Aldrich, Co.)	
CAA+Cys	CAA	530 μg/ml de cisteína (Sigma-Aldrich, Co.)	
CAA+Gly	CAA	2.55 mg/ml de glicina (BIORAD)	
CAA+Pro	CAA	4.01 mg/ml de prolina (Sigma-Aldrich, Co.)	
CAA+CasP	CAA	2 % de peptona de caseína (BD Bioxon™)	
CAA+Trypt	CAA	2 % de triptona (Thermo Fisher Scientific™)	
Y filtrado + PD	Peptona 2 %, Glucosa 2 %	1 % de extracto de levadura esterilizado por filtración (Thermo Fisher Scientific™)	

9.2. Evaluación de la susceptibilidad a FLC en aislados clínicos

La importancia de las infecciones por C. glabrata hace necesario que se determine la susceptibilidad de los aislados clínicos a los fármacos para que el tratamiento sea oportuno y específico. El medio RPMI-1640 se ha establecido como el estándar para la determinación de susceptibilidad a FLC en C. glabrata (Clinical and Laboratory Standards Institute, USA, NCCLS, 2002; European Committee on Antimicrobial Susceptibility Testing, Rodriguez-Tudela, 2008). Sin embargo, las mutantes $hst1\Delta$ y sum1 Δ son susceptibles a 32 µg/ml de FLC cuando se crecen en medio RPMI-1640 o CAA, pero son resistentes en YPD. Ésta es una observación importante, ya que es posible que el uso del medio RPMI-1640 esté subestimando el número de cepas de C. glabrata resistentes a FLC. Debido a esto, realizamos un escrutinio para determinar si hay aislados clínicos de C. glabrata que se comporten como las mutantes hst1 Δ y sum1 Δ cuando se crecen en los medios YPD y CAA adicionado con FLC. Hemos evaluado, mediante un ensayo de susceptibilidad a FLC, el fenotipo de 186 aislados clínicos diagnosticados como C. glabrata (Tabla 7) (Ver Material y Métodos), pertenecientes a la colección del Laboratorio de Microbiología Molecular del IPICYT. Los resultados obtenidos muestran que solo 9 aislados clínicos de la colección (5 %) se comportan con un fenotipo similar al de las mutantes $hst1\Delta$ y sum1 Δ , ya que son resistentes a FLC (32 µg/ml) en YPD, pero susceptibles en CAA (Figura 15).

Es importante determinar qué tan frecuente es la posibilidad de que se subestime la resistencia a fármacos debido al medio de cultivo utilizado en el procedimiento. Identificar aislados provenientes del mismo paciente será relevante ya que en la práctica se ha observado que la resistencia a los fármacos aumenta conforme avanza el tiempo. Sería interesante determinar si este aumento en la resistencia se debe a modificaciones en la red de regulación del HRS-C de *C. glabrata*, ya sea a través de modificaciones en la expresión génica o del transporte de señales externas provenientes del hospedero o del complejo infeccioso en el que pueda estar interactuando la levadura.

56

Strain	YPD	CAA	YPD 32 µg/ml FLC	CAA 32 µg/ml FLC
MC10		🖉 🍽 🏟 🏘 🍕 🔊	🖉 👁 🐨 🔍 📉	() () () () () () () () () ()
MC32	••*	🔵 🌒 🏟 🖏 👘	🌒 🌒 🏶 🏤 , 👘	
MC33	•••	🔍 🌒 🧐 🥐 💈	🔴 🌒 🏐 🗄	. (3)
MC35		• • • • •		
MC67	Q 🖉 🏶 🧏 • 🥖	🗶 🖲 📽 🔅 🦄	Q @ # ?? _//	Lo o I
MC88	•••	🔵 🔍 🕘 🌲	🕒 🌒 🏶 🕫 👘	۵.
MC90		X • * » //		R M
MC91	••** •• • •	🔊 🔿 💲 🤸 🔍	淹 会求: 1	() () () () () () () () () () () () () (
AN235	Q 🖗 🏶 🐐 🖉	Q. • • * * //	? * * * //	Q. • • • //
BG14		🍳 🌢 🍓 🌾 🕺 🔅	\$ · ·	Ø 6 - 6
hst1∆	● ● 参 査 子 子	●.● ♦ ♦ .	🕒 🌢 🏶 🆓	

Figura 15. Aislados clínicos resistentes a 32 μ g/ml de FLC en YPD, pero susceptibles en CAA. Se llevó a cabo un ensayo de susceptibilidad a FLC con aislados clínicos diagnosticados como *C. glabrata*. El ensayo se realizó como ha sido descrito previamente (Ver Material y Métodos). Se muestran solo aquellos aislados clínicos que presentan un comportamiento similar a la cepa *hst1* Δ de *C. glabrata*.

9.3. Evaluación de la susceptibilidad a H_2O_2 en las cepas BG14 y *hst1* Δ y en aislados clínicos

Dado que la susceptibilidad de *C. glabrata* al FLC depende directamente del medio de crecimiento, decidimos determinar si la susceptibilidad al H₂O₂ también podría depender de los medios de crecimiento, evaluamos la susceptibilidad al H₂O₂ de las células en fase logarítmica de BG14 y *hst1* Δ . Los cultivos se expusieron a 50 mM y 100 mM de H₂O₂ durante 3 horas, y después se crecieron en YPD (Figura 15). En la figura 15 podemos observar que la cepa *hst1* Δ es resistente a H₂O₂ cuando se crece en YPD, pero no cuando se crece en CAA. Por lo que podemos decir que la susceptibilidad de *C. glabrata* al H₂O₂ depende directamente del medio de crecimiento, al igual que la susceptibilidad al FLC.

Debido a que la susceptibilidad a H_2O_2 y a FLC de la mutante *hst1* Δ depende del medio de crecimiento utilizado, es posible que existan aislados clínicos que se comporten igual. Para determinar esto, seleccionamos los aislados clínicos MC10, MC32, MC33, MC88 y MC90, los cuales presentaron resistencia a 32 µg/ml FLC cuando se crecieron en YPD, pero no en CAA (Figura 16). Se utilizaron células en fase logarítmica para evaluar la susceptibilidad al H_2O_2 en los aislados clínicos seleccionados. Los cultivos se expusieron a 50 mM y 100 mM de H_2O_2 durante 3 horas, y después se crecieron en YPD. Al mismo tiempo, se evaluó la susceptibilidad al H_2O_2 y a FLC en *C. glabrata hst1* Δ está determinada directamente por el medio de crecimiento final, en los aislados clínicos no podemos correlacionar directamente la susceptibilidad al H_2O_2 y el medio de crecimiento.

Figura 16. Susceptibilidad a H₂O₂ dependiente de los medios de crecimiento. Los cultivos saturados de *C. glabrata* BG14 y *hst1* Δ se diluyeron en YPD o CAA fresco para que todas las cepas alcanzaran un OD_{600nm} igual a 0.5 después de siete duplicaciones a 30 °C. Cada cultivo se dividió y se expuso a 50mM y 100mM de H₂O₂. Después del tratamiento, el H₂O₂ se eliminó por centrifugación. Los cultivos se resuspendieron en agua destilada y su OD_{600nm} se ajustó a 0.5. Se realizaron diluciones seriadas logarítmicas y se crecieron en placas de agar YPD.

Figura 17. Susceptibilidad de los aislados clínicos a FLC ($32 \mu g/ml$) y H₂O₂ en YPD y CAA. Para la susceptibilidad a FLC, las células crecieron en YPD hasta la fase estacionaria, se hicieron diluciones logarítmicas seriadas y se crecieron en YPD y CAA con 32 µg/ml de FLC. Para la susceptibilidad al H₂O₂, los cultivos saturados de los aislados clínicos se diluyeron en YPD o CAA fresco para que todas las cepas alcanzaran un OD_{600nm} de 0.5 después de siete duplicaciones a 30 °C. Cada cultivo se dividió y se expuso a 50mM y 100mM de H₂O₂. Después del tratamiento, el H₂O₂ se eliminó por centrifugación. Los cultivos se resuspendieron en agua destilada y su OD_{600nm} se ajustó a 0.5. Se hicieron diluciones logarítmicas seriadas y se crecieron en YPD.

Aislados clínicos de la colección AN										
AN021	AN109	AN160	AN236	AN350 AN414		AN484				
AN022	AN111	AN161	AN239	AN351	AN436	AN486				
AN052	AN114	AN171	AN240	AN360	AN437	AN504				
AN054	AN125	AN175	AN262	AN361	AN440	AN505				
AN063	AN126	AN177	AN264	AN362	AN452	AN506				
AN067	AN131	AN184	AN300	AN363	AN453	AN507				
AN070	AN134	AN194	AN302	AN364	AN454	AN508				
AN075	AN140	AN217	AN306	AN365	AN455	AN509				
AN078	AN144	AN221	AN313	AN366	AN458	AN510				
AN080	AN147	AN222	AN323	AN374	AN459	AN959				
AN082	AN150	AN223	AN336	AN376	AN461					
AN083	AN156	AN224	AN337	AN377	AN468					
AN093	AN157	AN231	AN338	AN378	AN469					
AN094	AN158	AN234	AN339	AN400	AN475					
AN099	AN159	AN235	AN340	AN411	AN483					
Aislados	Aislados clínicos de la colección MC									
MC001	MC014	MC029	MC042	MC058	MC070	MC087				
MC002	MC016	MC030	MC043	MC059	MC071	MC088				
MC003	MC017	MC031	MC044	MC060	MC072	MC090				
MC004	MC019	MC032	MC045	MC061	MC073	MC091				
MC005	MC020	MC033	MC046	MC062	MC074	MC099				
MC006	MC021	MC035	MC051	MC063	MC078	MC092				
MC007	MC022	MC036	MC052	MC064	MC080	MC171				
MC008	MC023	MC037	MC053	MC065	MC082					
MC010	MC025	MC038	MC054	MC066	MC083					
MC011	MC026	MC039	MC055	MC067	MC084					
MC012	MC027	MC040	MC056	MC068	MC085					
MC013	MC028	MC041	MC057	MC069	MC086					
Aislados clínicos de la colección NY										
NY012	NY019	NY038	NY052	NY062	NY064	NY066				

Tabla 7. Aislados clínicos de Candida glabrata utilizados en este trabajo

9.4. Análisis del transcriptoma de las cepas de *C. glabrata* BG14, *hst1* Δ , *sum1* Δ y *hst1* Δ *sum1* Δ

A pesar de la cercanía filogenética entre S. cerevisiae y C. glabrata, el HRS-C ha evolucionado para regular una serie de genes distintos entre ambas especies. Hasta ahora, se sabe que este complejo está involucrado en la regulación negativa de los genes PDR1, CDR1, MSN4, CTA1, EPA6, TNA1, TNR1 y TNR2 de C. glabrata, pero se desconoce el impacto que estas tres proteínas tienen como complejo represor. Para identificar los genes regulados por el HRS-C, las cepas de C. glabrata BG14, hst1 Δ , sum1 Δ y la doble mutante hst1 Δ sum1 Δ se crecieron en YPD y se recolectaron tanto en fase logarítmica como en fase estacionaria para la extracción de ARN. Las extracciones fueron utilizadas para secuenciación masiva (RNASeq) y los datos obtenidos se analizaron para determinar qué genes son controlados por el HRS-C. Se realizó un Análisis de Componente Principal para observar la variabilidad de las cepas evaluadas. Las cepas mutantes tienen un comportamiento de expresión distinto al compararse contra la cepa BG14 (Figura17). Se observó también que las cepas *hst1* Δ , *sum1* Δ y la doble mutante *hst1* Δ *sum1* Δ tienen un comportamiento de expresión similar, teniendo alrededor de 1000 genes que aumentan su expresión al menos dos veces y al alrededor de 1000 genes que disminuyen su expresión por lo menos a la mitad (Figura 19 y 20) (Tabla 8). Los datos obtenidos muestran un patrón de expresión similar entre las cepas de C. glabrata evaluadas hst1 Δ , sum1 Δ y la doble mutante hst1 Δ sum1 Δ y este patrón es distinto del observado en la cepa BG14 (Figura 19 y 20).

Dado el alto número de genes que modifican su expresión, extrajimos los datos de expresión para los principales genes de interés *PDR1*, *CDR1*, *MSN4*, *CTA1*, *EPA6*, *TNA1*, *TNR1* y *TNR2* para evaluar su comportamiento, estos genes fueron seleccionados debido a que son los que han sido reportados como genes asociados al HRS-C (Ma et al., 2009; Orta-Zavalza et al., 2013; Vázquez-Franco et al., 2021). Se han incluido los genes del HRS-C como controles para el análisis. En la Tabla 9 podemos observar que *HST1* y *SUM1* tienen cambios logarítmicos en su expresión positivos o negativos que son acordes al genotipo de las cepas utilizadas para este análisis. Por ejemplo, para el caso de *HST1* hay un valor de log2(FC) -4.03 cuando

62

se compara la cepa hst1 Δ contra la cepa BG14, lo que indica que en la primera cepa hay una disminución en la expresión de *HST1* comparada con la cepa parental. En cambio, este mismo gen tiene un log2(FC) 2.24 en la comparación entre la cepa sum1 Δ y la doble mutante hst1 Δ sum1 Δ , esto es un resultado coherente con el genotipo evaluado: la cepa sum 1Δ , que conserva HST1, tiene una "mayor expresión" del gen que en la doble mutante, cepa que carece del gen. En cuanto a RFM1 no se observa ningún cambio en la expresión. Los resultados para los genes TNA1 y TNR1 son concordantes con la literatura existente (Ma et al., 2009), sin embargo, para el caso de los genes PDR1, MSN4, CTA1 y TNR2 los cambios logarítmicos mostrados en la Tabla 9 no coinciden con lo reportado en la literatura previamente, ya que se esperaba un aumento en la expresión (Ma et al., 2009; Orta-Zavalza et al., 2013; Vázquez-Franco et al., 2021). Lo mismo sucede con CDR1, que, aunque sí muestra un aumento en su expresión en células de fase logarítmica (Orta-Zavalza et al.), se observa una considerable disminución en fase estacionaria, lo que no coincide con otros resultados de este trabajo (Vázquez-Franco et al., 2021). Por último, el análisis sugiere que en ausencia de Hst1, EPA6 disminuye su expresión, mientras que en ausencia de Sum1 aumenta su expresión, estos datos tampoco son concordantes con los reportado en este trabajo, donde se observa un aumento en la expresión de EPA6 en ausencia de Hst1 y Sum1 (Vázquez-Franco et al., 2021).

Se realizó un análisis de ontología genética para los genes con un aumento o disminución en su expresión, se utilizó solamente aquellos genes compartidos entre las cepas $hst1\Delta$, $sum1\Delta$ y la doble mutante $hst1\Delta sum1\Delta$. En este análisis observamos que las principales categorías con enriquecimiento significativo (Figura 21A) en fase logarítmica son regulación de procesos biológicos, transporte, organización de organelos y procesos biológicos. Para el caso de las células en fase estacionaria (Figura 21B) las categorías con enriquecimiento significativo son regulación de procesos biológicos, transporte, organización de procesos biológicos, transporte, organización de procesos biológicos, transporte, organización de organelos y procesos biológicos, transporte, organización de organelos y genetabólicos de RNA. Debido a que los resultados del análisis de ontología genética anterior dieron como resultado categorías involucradas en el metabolismo general de las células, se decidió realizar un segundo análisis delimitando las categorías a las siguientes: formación de biopelículas, adhesión celular, gemación

63

celular, organización de la pared celular, homeostasis celular, respiración celular, crecimiento filamentoso, crecimiento de organismos unicelulares como un filamento de células unidas, crecimiento de hifas, proceso metabólico lipídico, patogénesis, crecimiento en pseudohifa, respuesta a químicos, respuesta a fármacos, respuesta al estrés y transporte. Esta selección de categorías se realizó con base a los factores de virulencia que presenta C. glabrata como son la resistencia a fármacos antifúngicos y a estrés oxidante, la capacidad de adherencia y la formación de biopelículas. Se seleccionó, además, aquellas categorías que tuvieran relación con la reproducción de la levadura. Este segundo análisis mostró que las principales categorías con enriquecimiento significativo tanto en fase logarítmica (Figura 22A) como en fase estacionaria (Figura 22B) son: transporte, respuesta a estrés y respuesta a químicos, lo que concuerda con el reporte previo de un aumento en la expresión de CDR1 en ausencia del HRS-C (Orta-Zavalza et al., 2013). Finalmente, comparamos los niveles de expresión de genes involucrados en la categoría de respuesta a fármacos y la de respuesta a estrés oxidante. Los resultados muestran que el patrón de expresión de los genes de las categorías presentadas en las cepas de *C. glabrata hst1* Δ , *sum1* Δ and *hst1* Δ *sum1* Δ es marcadamente distinto del patrón de expresión de la cepa BG14, tanto en células de fase logarítmica (Figura 23A) como células de fase estacionaria (Figura 23B).

Los resultados presentados en esta sección son de carácter general y se sugiere se realice un análisis transcriptómico independiente.

Figura 18. Evaluación de la variación de los transcritos de las cepas de *C. glabrata* BG14, *hst1* Δ , *sum1* Δ y *hst1* Δ *sum1* Δ . Se realizó un análisis de componentes principales para evaluar la variabilidad. wt, BG14; hst1, *hst1* Δ ; sum1, *sum1* Δ ; hst1_sum1, *hst1* Δ *sum1* Δ ; log, fase logarítmica; sta#, fase estacionaria más el número de semanas en esta fase.

Figura 19. (página anterior) Comparación de los niveles de expresión del genoma de las cepas de *C. glabrata* BG14, *hst1* Δ , *sum1* Δ y *hst1* Δ *sum1* Δ . A. Células en fase logarítmica. B. células en fase estacionaria.

Tabla 8. Genes expresados diferencialmente en las cepas $hst1\Delta$, $sum1\Delta$ y $hst1\Delta$ $sum1\Delta$.

	Comparación	NDE	DE	Inducidos	Reprimidos	
LP	<i>hst1</i> ∆ vs BG14	3398	2199	1029	1170	
	<i>sum1</i> ∆ vs BG14	3434	2163	1008	1155	
	<i>hst1∆sum1</i> ∆ vs BG14	3338	2259	1050	1209	
	sum1 Δ vs hst1 Δ	5595	2	1	1	
	hst1 Δ vs hst1 Δ sum1 Δ	5596	1	1	0	
	sum1 Δ vs hst1 Δ sum1 Δ	5596	1	1	0	
SP	<i>hst1</i> ∆ vs BG14	3721	1876	807	1069	
	<i>sum1</i> ∆ vs BG14	3642	1955	843	1112	
	<i>hst1∆sum1</i> ∆ vs BG14	3625	1972	851	1121	
	sum1 Δ vs hst1 Δ	5582	15	4	11	
	hst1 Δ vs hst1 Δ sum1 Δ	5588	9	7	2	
	sum1 Δ vs hst1 Δ sum1 Δ	5596	1	1	0	

LP: Fase logarítmica, SP: Fase estacionaria, NDE: Genes no diferencialmente

expresados, **DE**: Genes diferencialmente expresados

Figura 20. Diagrama de Venn (http://bioinformatics.psb.ugent.be/web 68olos/Venn/) que muestra la superposición entre genes inducidos o reprimidos en las cepas de *C. glabrata hst1* Δ , *sum1* Δ and *hst1* Δ *sum1* Δ . A. Células en fase logarítmica. B. Células en fase estacionaria.

Logarithmic phase cells

Repressed genes:

Figura 21. Categorías por ontología genética con un enriquecimiento significativo en las cepas de *C. glabrata hst1* Δ , *sum1* Δ y *hst1* Δ *sum1* Δ . A. Células en fase logarítmica. B. Células en fase estacionaria. El número de genes por categoría está indicado.

Α

Induced genes:

Logarithmic phase cells

Induced genes: **Repressed genes:** growth as a pseudohyphal hyphal cell adhesion, thread of growth, 22 growth, 15 cell budding, 10 attached cell adhesion, cells, 9 growth as a pseudohypha 14 biofilm biofilm thread of I growth, 7 formation, 19 formation, 22 attached cell budding, cells, 27 hyphal cellular 13 cellular growth, 35 respiration, 4 respiration, pathogenesis, 28 transport, 271 38 transport, 212 cell wall cellular organization, homeostasis, 30 39 pathogenesis, 46 cell wall organization, cellular 59 homeostasis, response to 54 response to response to stress, 166 stress, 196 drug, 65 lipid metabolic lipid response to process, 78 metabolic chemical, 179 process, 67 response to response to chemical, 144 filamentous filamentous drug, 81 growth, 102 growth, 122

В

Α

Stationary phase cells

Figura 22. Enriquecimiento de categorías de interés por ontología genética en las cepas de *C. glabrata hst1*Δ, *sum1*Δ y *hst1*Δ *sum1*Δ. A. Células en fase logarítmica.
B. Células en fase estacionaria. El número de genes por categoría está indicado.

Figura 23. Patrón de expresión de genes involucrados en la respuesta a fármacos y a estrés oxidante en células de fase logarítmica (A) y células de fase estacionaria (B) de *C. glabrata hst1* Δ , *sum1* Δ y *hst1* Δ *sum1* Δ .

	Cepas	HST1	SUM1	RFM1	PDR1	CDR1	MSN4	CTA1	EPA6	TNA1	TNR1	TNR2
LP	<i>hst1</i> ∆ vs BG14	-4.03	-	-	-	4.65	-2.53	-1.77	-1.57	3.28	5.68	-
	<i>sum1</i> ∆ vs BG14	-1.66	-2.35	-	-	4.46	-2.62	-2.07	-	3.38	5.70	-
	<i>hst1∆ sum1∆</i> vs BG14	-3.89	-2.44	-	-	4.68	-2.52	-1.83	-	3.36	5.90	-
	sum1 Δ vs hst1 Δ	2.38	-2.70	-	-	-	-	-	1.23	-	-	-
	hst1∆ vs hst1∆ sum1∆	-	2.79	-	-	-	-	-	-1.21	-	-	-
	sum1∆ vs hst1∆ sum1∆	2.24	-	-	-	-	-	-	-	-	-	-
SP	<i>hst1</i> ∆ vs BG14	-3.78	-	-	-1.84	-4.00	-	-	-	5.24	6.40	-
	<i>sum1</i> ∆ vs BG14	-1.22	-3.99	-	-2.38	-4.49	-	-	-	5.54	6.35	-
	<i>hst1∆ sum1∆</i> vs BG14	-3.72	-3.24	-	-2.20	-4.24	-	-	-	5.74	6.38	-
	sum1 Δ vs hst1 Δ	2.56	-3.69	-	-	-	-	-	1.17	-	-	-
	hst1∆ vs hst1∆ sum1∆	-	2.94	-	-	-	-	-	-1.09	-	-	-
	sum1 Δ vs hst1 Δ sum1 Δ	2.49	-	-	-	-	-	-	-	-	-	-

Tabla 9. Cambio logarítmico en la expresión (log2(FC)) de genes de interés en las cepas $hst1\Delta$, $sum1\Delta$ y $hst1\Delta$ $sum1\Delta$.

LP: Fase logarítmica, SP: Fase estacionaria

9.5. Análisis de la activación de la expresión de CDR1 en rfm1A

Como ya se mencionó, en S. cerevisiae se ha reportado que Sum1 compite con el factor de transcripción activador Ndt80 por los elementos en cis MME y que su fosforilación por la cinasa Ime2 inhibe su actividad represora al no permitir que Hst1 y Rfm1 sean reclutadas para formar el HRS-C (Pak and Segall, 2002; Piekarska et al., 2010). Aunado a esto hemos determinado que el porcentaje de similitud entre las proteínas de ambas especies es de un 55.8 %. Dado que Sum1 evolucionó para regular genes asociados a estrés en C. glabrata, es posible que Rfm1 haya evolucionado paralelamente y se haya adaptado para poder unirse a Sum1 (Lemos et al., 2004; Marsh et al., 2013; Swamy et al., 2021). Por esto, decidimos hacer un alineamiento de CgRfm1 (C. glabrata) y ScRfm1 (S. cerevisiae), y pudimos encontrar dos regiones conservadas entre las proteínas de ambas especies (Figura 24): 1) un dominio putativo localizado hacia el extremo amino con un 65.9% de identidad y 85.4% de similitud, 2) un dominio putativo localizado hacia el extremo carboxilo con un 70.3% de identidad y un 83.9% de similitud. Sin embargo, no fue posible determinar una función para esta proteína al realizar un análisis con la base de datos Conserved Domain Database (https://www.ncbi.nlm.nih.gov/cdd, CDD, National Center for Biotechnology Information, U.S. National Library of Medicine). Para hacer un escrutinio previo del mecanismo de activación del HRS-C y sus implicaciones en la activación de la expresión de CDR1, la construcción pP_{CDR1} ::GFP::3'UTR_{CDR1} se transformó en la cepa *rfm1* Δ de *C. glabrata* y se midió la fluorescencia relativa (Ver Material y Métodos). En la figura 25 podemos observar que aunque el patrón de expresión de 20 clonas distintas de rfm1 Δ :: pP_{CDR1}::GFP::3'UTR_{CDR1} es variable, ya sea que se comporte de manera similar a la cepa $hst1\Delta$ (clonas 1, 2, 3, 10, 12, 13, 15, 19, 20, 22, 28), que se exprese en un nivel intermedio entre la cepa hst1 Δ y la cepa sum1 Δ (clonas 4, 9, 16, 25, 29) o inclusive se exprese más que en la cepa sum 1Δ (clonas 5, 6, 8, 14). Como se mencionó antes en este trabajo, el medio de cultivo modula directamente la actividad del promotor de CDR1, por lo que decidimos realizar estos mismos ensayos con 6 clonas de la mutante $rfm1\Delta$ (Figura 26) utilizando YPD y CAA. Al igual que lo observado en la sección 9.1.2 de este trabajo, se observa un aumento

73

en la actividad del promotor de *CDR1* cuando se utiliza YPD, pero no así en CAA. Esta información corrobora la participación de Rfm1 en la formación del HRS-C, pero no nos permite sugerir el mecanismo de acción de este.

*S. cerevisia*e Rfm1 protein:

C. glabrata Rfm1 protein:

Figura 24. Identificación de regiones similares (posibles dominios) entre *Cg*Rfm1 y *Sc*Rfm1. Las secuencias de aminoácidos para ambas proteínas se alinearon mediante el programa MacVector v15.0.3(34) (© 2016 MacVector, Inc.) y se buscaron regiones similares con ayuda del programa MEGA v7.0.26 (Kumar et al., 2016).

Figura 25. Evaluación de la activación de la expresión de *CDR1* en 20 clonas de la cepa *rfm1* Δ de *C. glabrata.* El ensayo y las mediciones por citometría de flujo se realizaron como fue descrito previamente en la figura 10, utilizando únicamente medio líquido YPD. Los experimentos se realizaron por duplicado. Para el análisis estadístico se utilizó un ANOVA de dos vías con el programa GraphPad Prism.

Α

P_{CDR1}::GFP::T_{CDR1} in CAA

Figura 26. Evaluación de la activación de la expresión de *CDR1* en la cepa *rfm1* Δ de *C. glabrata.* El ensayo y las mediciones por citometría de flujo se realizaron como fue descrito previamente en la figura 10, utilizando únicamente medio líquido YPD

(A) y CAA (B). Los experimentos se realizaron por duplicado. Para el análisis estadístico se utilizó un ANOVA de dos vías con el programa GraphPad Prism.

9.6. La complementación heteróloga con *ScSUM1* y *LkSUM1* aumenta la supervivencia a neutrófilos

Se realizó un ensayo de supervivencia a neutrófilos (ver Material y Métodos) con las cepas de *C. glabrata* BG14, *hst1* Δ (CGM84), *sum1* Δ (CGM1232), *sum1* Δ ::*LkSUM1* (CGM3148), *sum1* Δ ::*ScSUM1* (CGM3192) y *hst1* Δ ::*ScHST1* (CGM3935). El ensayo de confrontación a neutrófilos y el análisis estadístico, se realizó según lo descrito en Materiales y Métodos. Las cepas heterólogas complementadas muestran un mayor crecimiento en lugar de un porcentaje de supervivencia disminuido (*** P < 0.001) (Figura 27). Además, al microscopio (40x) se observan cúmulos de levaduras (Figura 28), sin que se observe floculación en estas cepas. El fenotipo observado es consistente con lo que hemos reportado sobre la divergencia de *CgSUM1*. Es probable que, el aumento en la supervivencia de estas cepas se deba a que la formación de los cúmulos impide la fagocitosis a causa de la formación de complejos estructurales de mayor tamaño que los neutrófilos. Por último, podría sugerir que los elementos en *cis* a los que se une *Sc*Sum1 en *C. glabrata* están presentes en genes no relacionados al HRS-C de la cepa receptora.

Figura 27. Ensayo de confrontación a neutrófilos con las cepas de *C. glabrata* BG14, *hst1* Δ (CGM84), *sum1* Δ (CGM1232), *sum1* Δ ::*LkSUM1* (CGM3148), *sum1* Δ ::*ScSUM1* (CGM3192) y *hst1* Δ ::*ScHST1* (CGM3935). Todas las cepas *de C. glabrata* se crecieron en YPD durante 48 a 30 °C. Los neutrófilos y las cepas de *C. glabrata* se resuspendieron en suero-RPMI-HEPES a una MOI de 1:1 y se incubaron en placas de 96 pozos durante 2 horas. A 37°C en 5 % CO₂. Los neutrófilos se lisaron con agua fría y con el contenido de cada pozo se prepararon diluciones en serie y se platearon en cajas de agar YPD. Las cajas se incubaron a 30°C durante 48 horas. Y se contaron las UFC. El experimento fue realizado por triplicado. Para el análisis estadístico, se realizó la prueba ANOVA de una vía utilizando el software GraphPad Prism versión 8.0. Las cepas heterólogas complementadas muestran un mayor crecimiento en lugar de un porcentaje de supervivencia disminuido (*** P < 0,001).

BG14

hst1∆

Cghst1∆::ScHST1

sum1∆

Cgsum1∆::ScSUM1

$Cgsum1\Delta::LkSUM1$

Figura 28. Micrografía de cepas de *C. glabrata* BG14, *hst*1 Δ (CGM84), *sum*1 Δ (CGM1232), *sum*1 Δ ::*LkSUM*1 (CGM3148), *sum*1 Δ ::*ScSUM*1 (CGM3192) y *hst*1 Δ ::*ScHST*1 (CGM3935). Se observa al microscopio (40X) la formación de cúmulos en las cepas complementadas con los genes *ScHST*1, *ScSUM*1 y *LkSUM*1, estos cúmulos son más abundantes en las cepas con la complementación heteróloga para el gen *SUM*1.

9.7. La complementación heteróloga con *ScSUM1* y *LkSUM1* no modifica el fenotipo de hiperadherencia de *C. glabrata*

Se realizó un ensayo de adherencia a células HeLa con las cepas de *C. glabrata* BG14, *hst*1 Δ (CGM84), *sum*1 Δ (CGM1232), *sum*1 Δ ::*LkSUM*1 (CGM3148), *sum*1 Δ ::*ScSUM*1 (CGM3192) y *hst*1 Δ ::*ScHST*1 (CGM3935). Las cepas mutantes *hst*1 Δ y *sum*1 Δ fueron significativamente diferentes de la cepa parental BG14 que se considera no adherente en las condiciones de crecimiento probadas. Las cepas complementadas con *SUM*1 de *S. cerevisiae* y *L. kluyveri* tienen un fenotipo similar a BG14 (Figura 29). Al igual que en la sección anterior, el fenotipo es consistente con la divergencia de *CgSUM*1.

Figura 29. Ensayo de adherencia a células HeLa con las cepas de *C. glabrata* BG14, *hst1* Δ (CGM84), *sum1* Δ (CGM1232), *sum1* Δ ::*LkSUM1* (CGM3148), *sum1* Δ ::*ScSUM1* (CGM3192) y *hst1* Δ ::*ScHST1* (CGM3935). Todas las cepas de *C. glabrata* se crecieron en YPD durante 48 a 30 °C. Las cepas se añadieron a células HeLa fijadas en placas de 24 pozos y se incubaron durante 2 horas a temperatura ambiente. Las células se recuperaron raspando los pozos y se realizaron diluciones seriadas con agua destilada, se platearon en cajas de YPD y se incubaron a 30 °C durante 48 horas. Los experimentos se realizaron por triplicado. Para el análisis estadístico, se realizó un ANOVA con la prueba múltiple de Dunnetts utilizando el software GraphPad Prism (GraphPad Inc., v. 5.0. San Diego, CA, EE. UU.). Las barras de error representan la desviación estándar (SD). (**** P < 0,0001, * P < 0,05. Menos del 10 % no adherente, 10 % - 20 % ligeramente adherente y 20 % - 45 % hiperadherente.

10. Anexos

Además de la publicación correspondiente a los resultados de este trabajo (Vázquez-Franco et al., 2021), también participé en el siguiente artículo de investigación:

Candida glabrata peroxiredoxins, Tsa1 and Tsa2, and sulfiredoxin, Srx1, protect against oxidative damage and are necessary for virulence. Gutiérrez-Escobedo, G., Hernández-Carreón, O., Morales-Rojano, B., Revuelta-Rodríguez, B., <u>Vázquez-Franco, N.</u>, Castaño, I., De Las Peñas, A., 2019. Fungal Genet. Biol. Este artículo puede ser consultado en la siguiente liga: https://doi.org/10.1016/j.fgb.2019.103287

11. Referencias

- Abbes, S., Mary, C., Sellami, H., Michel-Nguyen, A., Ayadi, A., Ranque, S., 2013. Interactions between copy number and expression level of genes involved in fluconazole resistance in Candida glabrata. Front. Cell. Infect. Microbiol. 3, 74. https://doi.org/10.3389/fcimb.2013.00074
- Ahmad, K.M., Ishchuk, O.P., Hellborg, L., Jørgensen, G., Skvarc, M., Stenderup, J., Jørck-Ramberg, D., Polakova, S., Piškur, J., 2013. Small chromosomes among Danish Candida glabrata isolates originated through different mechanisms. Antonie van Leeuwenhoek, Int. J. Gen. Mol. Microbiol. 104, 111–122. https://doi.org/10.1007/s10482-013-9931-3
- Ahranjani, R.N., Vaghari, H., Jafarizadeh, H., 2020. Yeast Extracts : Production , Properties and Application. 6th Natl. Conf. Strateg. Res. Chem. Chem. Eng. With An Emphas. Indig. Technol. Iran 1-6.
- Ausubel, F.M., 1992. Short protocols in molecular biology. In: A Compendium of Methods From "Current Protocols in Molecular Biology," 2nd ed. John Wiley & Sons
- Baudin, A., Ozier-Kalogeropoulos, O., Denouel, A., Lacroute, F., Cullin, C., 1993.
 A simple and effiient method for direct gene deletion in Saccharomyces cerevisiae. Nucleic Acids Res. 21 (14), 3329–3330. https://doi.org/10.1093/nar/21.14.3329.
- Bligh, E.G. and Dyer, W.J., 1959. Canadian Journal of Biochemistry and Physiology. Can. J. Biochem. Physiol. 37.
- Bradford, M.M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254. https://doi.org/10.1016/0003-2697(76)90527-3
- Brachmann, C.B., et al., 1998. Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCRmediated gene disruption and other applications. Yeast 14, 115–132. https://doi.org/10.1002/(SICI)1097-0061(19980130)14:2<115::AID-YEA204>3.0.CO;2-2.

Briones-Martin-Del-Campo, M., Orta-Zavalza, E., Cañas-Villamar, I., Gutiérrez-

Escobedo, G., Juárez-Cepeda, J., Robledo-Márquez, K., Arroyo-Helguera, O., Castaño, I., De Las Peñas, A., 2015. The superoxide dismutases of Candida glabrata protect against oxidative damage and are required for lysine biosynthesis, DNA integrity and chronological life survival. Microbiol. (United Kingdom) 161, 300–310. https://doi.org/10.1099/mic.0.000006

- Briones-Martin-Del-Campo, M., Orta-Zavalza, E., Juarez-Cepeda, J., Gutierrez-Escobedo, G., Cañas-Villamar, I., Castaño, I., De Las Peñas, A., 2014. The oxidative stress response of the opportunistic fungal pathogen Candida glabrata. Rev. Iberoam. Micol. 31, 67–71. https://doi.org/10.1016/j.riam.2013.09.012
- Byrne, K.P., Wolfe, K.H., 2005. The Yeast Gene Order Browser : Combining curated homology and syntenic context reveals gene fate in polyploid species 1456–1461. https://doi.org/10.1101/gr.3672305.
- Calvin, N.M., Hanawalt, P.C., 1988. High-effiiency transformation of bacterial cells
 by electroporation. J. Bacteriol. 170, 2796–2801.
 https://doi.org/10.1128/jb.170.6.2796-2801.1988.
- Cannon, R.D., Lamping, E., Holmes, A.R., Niimi, K., Baret, P. V., Keniya, M. V., Tanabe, K., Niimi, M., Goffeau, A., Monk, B.C., 2009. Efflux-mediated antifungal drug resistance. Clin. Microbiol. Rev. 22, 291–321. https://doi.org/10.1128/CMR.00051-08
- Castaño, I., Pan, S.J., Zupancic, M., Hennequin, C., Dujon, B., Cormack, B.P., 2005.
 Telomere length control and transcriptional regulation of subtelomeric adhesins in Candida glabrata. Mol. Microbiol. 55, 1246–1258.
 https://doi.org/10.1111/j.1365-2958.2004.04465.x
- Choi, H., Jeong, S., Lee, H., Chin, B., Choi, S., Han, S., Kim, M., Kim, C., Choi, J., Song, Y., Kim, J.M., 2009. Blood stream infections by Candida glabrata and Candida krusei: A single-center experience. Korean J. Intern. Med. 24, 263– 269. https://doi.org/10.3904/kjim.2009.24.3.263
- Cormack, B.P., Falkow, S., 1999. Efficient homologous and illegitimate recombination in the opportunistic yeast pathogen Candida glabrata. Genetics 151, 979–987. https://doi.org/10.1073/PNAS.94.14.7412

Cormack, B.P., Ghori, N., Falkow, S., 1999. An Adhesin of the Yeast Pathogen

Candida glabrata Mediating Adherence to Human Epithelial Cells. Science. 285, 578–582. https://doi.org/10.1126/science.285.5427.578

- Corzo-Leon, D.E., Alvarado-Matute, T., Colombo, A.L., Cornejo-Juarez, P., Cortes, J., Echevarria, J.I., Guzman-Blanco, M., Macias, A.E., Nucci, M., Ostrosky-Zeichner, L., Ponce-de-Leon, A., Queiroz-Telles, F., Santolaya, M.E., Thompson-Moya, L., Tiraboschi, I.N., Zurita, J., Sifuentes-Osornio, J., 2014. Surveillance of Candida spp bloodstream infections: Epidemiological trends and risk factors of death in two Mexican tertiary care hospitals. PLoS One 9, 1–6. https://doi.org/10.1371/journal.pone.0097325
- Cuéllar-Cruz, M., Briones-Martin-del-Campo, M., Cañas-Villamar, I., Montalvo-Arredondo, J., Riego-Ruiz, L., Castaño, I., De Las Peñas, A., 2008. High resistance to oxidative stress in the fungal pathogen Candida glabrata is mediated by a single catalase, Cta1p, and is controlled by the transcription factors Yap1p, Skn7p, Msn2p, and Msn4p. Eukaryot. Cell 7, 814–825. https://doi.org/10.1128/EC.00011-08
- De Las Peñas, A., Pan, S.J., Castaño, I., Alder, J., Cregg, R., Cormack, B.P., 2003.
 Virulence-related surface glycoproteins in the yeast pathogen Candida glabrata are encoded in subtelomeric clusters and subject to RAP1- and SIR-dependent transcriptional silencing. Genes Dev. 17, 2245–2258.
 https://doi.org/10.1101/gad.1121003
- Domergue, R., Castaño, I., De Las Peñas, A., Zupancic, M., Lockatell, V., Hebel, J.R., Johnson, D., Cormack, B.P., 2005. Nicotinic acid limitation regulates silencing of Candida adhesins during UTI 308, 866–870.
- Duggan, S., Essig, F., Hünniger, K., Mokhtari, Z., Bauer, L., Lehnert, T., Brandes, S., Häder, A., Jacobsen, I.D., Martin, R., Figge, M.T., Kurzai, O., 2015.
 Neutrophil activation by Candida glabrata but not Candida albicans promotes fungal uptake by monocytes. Cell. Microbiol. 17, 1259–1276. https://doi.org/10.1111/cmi.12443
- Edgar, R.C., Drive, R.M., Valley, M., 2004. MUSCLE : multiple sequence alignment with high accuracy and high throughput 32, 1792–1797. https://doi.org/10.1093/nar/gkh340

Eggimann, P., Garbino, J., Pittet, D., 2003. Epidemiology of Candida species

infections in critically ill non-immunosuppressed patient. Lancet Infect. Dis. 3, 685–702.

- Ferrari, S., Ischer, F., Calabrese, D., Posteraro, B., Sanguinetti, M., Fadda, G., Rohde, B., Bauser, C., Bader, O., Sanglard, D., 2009. Gain of function mutations in CgPDR1 of Candida glabrata not only mediate antifungal resistance but also enhance virulence. PLoS Pathog. 5. https://doi.org/10.1371/journal.ppat.1000268
- Fuhrmann, M., Hausherr, A., Ferbitz, L., Schodl, T., Heitzer, M., Hegemann, P., 2004. Monitoring dynamic expression of nuclear genes in Chlamydomonas reinhardtii by using a synthetic luciferase reporter gene. Plant Mol. Biol. 55 (6), 869–881. https:// doi.org/10.1007/s11103-004-2150-6.
- Gabaldón, T., Martin, T., Marcet-houben, M., Durrens, P., Bolotin-fukuhara, M., Lespinet, O., Arnaise, S., Boisnard, S., Aguileta, G., Atanasova, R., Bouchier, C., Couloux, A., Creno, S., Cruz, J.A., Devillers, H., Enache-angoulvant, A., Guitard, J., Jaouen, L., Ma, L., Marck, C., Neuvéglise, C., Pelletier, E., Pinard, A., Poulain, J., Recoquillay, J., Westhof, E., Wincker, P., Dujon, B., Hennequin, C., 2013. Comparative genomics of emerging pathogens in the Candida glabrata clade.
- Gallegos-García, V., Pan, S.J., Juárez-Cepeda, J., Ramírez-Zavaleta, C.Y., Martindel-Campo, M.B., Martínez-Jiménez, V., Castaño, I., Cormack, B., Peñas, A. de Las, 2012. A novel downstream regulatory element cooperates with the silencing machinery to repress EPA1 expression in candida glabrata. Genetics 190, 1285–1297. https://doi.org/10.1534/genetics.111.138099
- Gutiérrez-Escobedo, G., Hernández-Carreón, O., Morales-Rojano, B., Revuelta-Rodríguez, B., Vázquez-Franco, N., Castaño, I., De Las Peñas, A., 2020.
 Candida glabrata peroxiredoxins, Tsa1 and Tsa2, and sulfiredoxin, Srx1, protect against oxidative damage and are necessary for virulence. Fungal Genet. Biol. 135, 103287. https://doi.org/10.1016/j.fgb.2019.103287
- Gutiérrez-Escobedo, G., Orta-Zavalza, E., Castaño, I., De Las Peñas, A., 2013. Role of glutathione in the oxidative stress response in the fungal pathogen Candida glabrata. Curr. Genet. 59, 91–106. https://doi.org/10.1007/s00294-013-0390-1

Herrero, E., 2005. Evolutionary relationships between Saccharomyces cerevisiae

and other fungal species as determined from genome comparisons. Rev. Iberoam. Micol. 22, 217–222. https://doi.org/10.1016/S1130-1406(05)70046-2

- Hongay, C., Jia, N., Bard, M., Winston, F., 2002. Mot3 is a transcriptional repressor of ergosterol biosynthetic genes and is required for normal vacuolar function in Saccharomyces cerevisiae. EMBO J. 21, 4114–4124. https://doi.org/10.1093/emboj/cdf415
- Huerta-Cepas, J., Capella-Gutiérrez, S., Pryszcz, L.P., Denisov, I., Kormes, D., Marcet-houben, M., Gabaldon, T., 2011. PhylomeDB v3 . 0: an expanding repository of genome-wide collections of trees , alignments and phylogenybased orthology and paralogy predictions 39, 556–560. https://doi.org/10.1093/nar/gkq1109
- Juárez-Cepeda, J., Orta-Zavalza, E., Cañas-Villamar, I., Arreola-Gómez, J., Pérez-Cornejo, G.P., Hernández-Carballo, C.Y., Gutiérrez-Escobedo, G., Castaño, I., De Las Peñas, A., 2015. The EPA2 adhesin encoding gene is responsive to oxidative stress in the opportunistic fungal pathogen Candida glabrata. Curr. Genet. 61, 529–544. https://doi.org/10.1007/s00294-015-0473-2
- Kalyaanamoorthy, S., Minh, B.Q., Wong, T.K.F., von Haeseler, A., Jermiin, L.S.,
 2017. ModelFinder: Fast Model Selection for Accurate Phylogenetic Estimates.
 Nat. Methods in press, 1–5. https://doi.org/10.1038/nmeth.4285
- Kathiravan, M.K., Salake, A.B., Chothe, A.S., Dudhe, P.B., Watode, R.P., Mukta, M.S., Gadhwe, S., 2012. The biology and chemistry of antifungal agents: A review. Bioorganic Med. Chem. 20, 5678–5698. https://doi.org/10.1016/j.bmc.2012.04.045
- Kaur, R., Ma, B., Cormack, B.P., 2007. A family of glycosylphosphatidylinositollinked aspartyl proteases is required for virulence of Candida glabrata. Proc. Natl. Acad. Sci. 104, 7628–7633. https://doi.org/10.1073/pnas.0611195104
- Kiran, G.S., Priyadharsini, S., Sajayan, A., Ravindran, A., Selvin, J., 2018. An antibiotic agent pyrrolo[1,2-: A] pyrazine-1,4-dione,hexahydro isolated from a marine bacteria Bacillus tequilensis MSI45 effectively controls multi-drug resistant Staphylococcus aureus. RSC Adv. 8, 17837–17846. https://doi.org/10.1039/c8ra00820e

Kuhn, D.M., Vyas, V.K., 2012. The Candida glabrata adhesin Epa1p causes

adhesion, phagocytosis, and cytokine secretion by innate immune cells. FEMS Yeast Res. 12, 398–414. https://doi.org/10.1111/j.1567-1364.2011.00785.x

- Kumar, S., Stecher, G., Tamura, K., 2016. MEGA7 : Molecular Evolutionary Genetics Analysis Version 7 . 0 for Bigger Datasets Brief communication 33, 1870–1874. https://doi.org/10.1093/molbev/msw054
- Kurtzman, C.P., 2003. Phylogenetic circumscription of Saccharomyces, Kluyveromyces and other members of the Saccharomycetaceae, and the proposal of the new genera Lachancea, Nakaseomyces, Naumovia, Vanderwaltozyma and Zygotorulaspora. FEMS Yeast Res. 4, 233–245. https://doi.org/10.1016/S1567-1356(03)00175-2.
- Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., Mcgettigan, P.A., McWilliam, H., Valentin, F., Wallace, I.M., Wilm, A., Lopez, R., Thompson, J.D., Gibson, T.J., Higgins, D.G., 2007. Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947–2948. https://doi.org/10.1093/bioinformatics/btm404
- Lemos, B., Meiklejohn, C.D., Hartl, D.L., 2004. Regulatory evolution across the protein interaction network. Nat. Genet. 36, 1059–1060. https://doi.org/10.1038/ng1427
- Li, Z., Lin, S., Liu, X., Tan, J., Pan, J., Yang, H., 2014. A freshwater bacterial strain, Shewanella sp. Lzh-2, isolated from Lake Taihu and its two algicidal active substances, hexahydropyrrolo[1,2-a]pyrazine- 1,4-dione and 2, 3-indolinedione. Appl. Microbiol. Biotechnol. 98, 4737–4748. https://doi.org/10.1007/s00253-014-5602-1
- Lopez-Fuentes, E., Hernandez-Hern andez, G., Castanedo, L., Guti errez-Escobedo, G., Oktaba, K., De las Penas, A., Castano, I., 2018. Chromatin loop formation induced by a subtelomeric protosilencer represses EPA genes in Candida glabrata. Genetics 210, 113–128. https://doi.org/10.1534/genetics.118.301202
- López-Ramos, J.E., Bautista, E., Gutiérrez-Escobedo, G., Mancilla-Montelongo, G., Castaño, I., González-Chávez, M.M., De Las Peñas, A., 2021. Analysis of Volatile Molecules Present in the Secretome of the Fungal Pathogen Candida Glabrata 1–11.
- Ma, B., Pan, S., Domergue, R., Rigby, T., Whiteway, M., Johnson, D., Cormack,

B.P., 2009. High-Affinity Transporters for NAD 2 Precursors in Candida glabrata Are Regulated by Hst1 and Induced in Response to Niacin Limitation 29, 4067– 4079. https://doi.org/10.1128/MCB.01461-08

- Marchler-Bauer, A., Bryant, S.H., 2004. CD-Search: Protein domain annotations on the fly. Nucleic Acids Res. 32, 327–331. https://doi.org/10.1093/nar/gkh454
- Marsh, J.A., Hernández, H., Hall, Z., Ahnert, S.E., Perica, T., Robinson, C. V., Teichmann, S.A., 2013. Protein complexes are under evolutionary selection to assemble via ordered pathways. Cell 153, 461–470. https://doi.org/10.1016/j.cell.2013.02.044
- Martínez-Jiménez, V., Ramírez-Zavaleta, C.Y., Orta-Zavalza, E., Díaz de León, G.,
 Gutiérrez-Escobedo, G., Ponce de León, A., Sifuentes-Osornio, J., Bobadilla
 del Valle, M., De Las Peñas, A., Castaño, I., 2013. Sir3 Polymorphisms in
 Candida glabrata Clinical Isolates. Mycopathologia 175, 207–219.
 https://doi.org/10.1007/s11046-013-9627-2
- Martínez-Montañés, F., Rienzo, A., Poveda-Huertes, D., Pascual-Ahuir, A., Proft, M., 2013. Activator and repressor functions of the Mot3 transcription factor in the osmostress response of Saccharomyces cerevisiae. Eukaryot. Cell 12, 636– 647. https://doi.org/10.1128/EC.00037-13
- Minh, B.Q., Nguyen, M.A.T., Von Haeseler, A., 2013. Ultrafast approximation for phylogenetic bootstrap. Mol. Biol. Evol. 30, 1188–1195. https://doi.org/10.1093/molbev/mst024
- Monteiro, P.T., Oliveira, J., Pais, P., Antunes, M., Palma, M., Cavalheiro, M., Galocha, M., Godinho, C.P., Martins, L.C., Bourbon, N., Mota, M.N., Ribeiro, R.A., Viana, R., Sá-Correia, I., Teixeira, M.C., 2020. YEASTRACT+: A portal for cross-species comparative genomics of transcription regulation in yeasts. Nucleic Acids Res. 48, D642–D649. https://doi.org/10.1093/nar/gkz859
- NCCLS, 2002. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts ; Approved Standard — Second Edition Serving the World 's Medical Science Community Through Voluntary Consensus.
- Odds, F.C., Brown, A.J.P., Gow, N.A.R., 2003. Antifungal agents: Mechanisms of action. Trends Microbiol. 11, 272–279. https://doi.org/10.1016/S0966-842X(03)00117-3

- Orta-Zavalza, E., Guerrero-Serrano, G., Gutiérrez-Escobedo, G., Cañas-Villamar, I., Juárez-Cepeda, J., Castaño, I., De Las Peñas, A., 2013. Local silencing controls the oxidative stress response and the multidrug resistance in Candida glabrata. Mol. Microbiol. 88, 1135–1148. https://doi.org/10.1111/mmi.12247
- Pak, J., Segall, J., 2002. Regulation of the premiddle and middle phases of expression of the NDT80 gene during sporulation of Saccharomyces cerevisiae.
 Mol. Cell. Biol. 22, 6417–6429. https://doi.org/10.1128/MCB.22.18.6417-6429.2002
- Pappas, P.G., Lionakis, M.S., Arendrup, M.C., Ostrosky-Zeichner, L., Kullberg, B.J.,
 2018. Invasive candidiasis. Nat. Rev. Dis. Prim. 4, 1–20.
 https://doi.org/10.1038/nrdp.2018.26
- Pfaller, M.A., Andes, D.R., Diekema, D.J., Horn, D.L., Reboli, A.C., Rotstein, C., Franks, B., Azie, N.E., 2014. Epidemiology and outcomes of invasive candidiasis due to non-albicans species of Candida in 2,496 patients: data from the Prospective Antifungal Therapy (PATH) registry 2004-2008. PLoS One 3, e10151. https://doi.org/10.1371/journal.pone.0101510
- Pfaller, M.A., Diekema, D.J., 2010. Epidemiology of Invasive Mycoses in North America, Critical Reviews in Microbiology. https://doi.org/10.3109/10408410903241444
- Pfaller, M.A., Diekema, D.J., 2007. Epidemiology of invasive candidiasis: A persistent public health problem. Clin. Microbiol. Rev. 20, 133–163. https://doi.org/10.1128/CMR.00029-06
- Pfaller, M.A., Diekema, D.J., 2004. Rare and emerging opportunistic fungal pathogens: Concern for resistance beyond Candida albicans and Aspergillus fumigatus.
 J. Clin. Microbiol. 42, 4419–4431. https://doi.org/10.1128/JCM.42.10.4419-4431.2004
- Pfaller, M.A., Messer, S.A., Hollis, R.J., Boyken, L., Tendolkar, S., Kroeger, J., Diekema, D.J., 2009. Variation in susceptibility of bloodstream isolates of Candida glabrata to fluconazole according to patient age and geographic location in the United States in 2001 to 2007. J. Clin. Microbiol. 47, 3185–3190. https://doi.org/10.1128/JCM.00946-09

Piekarska, I., Rytka, J., Rempola, B., 2010. Regulation of sporulation in the yeast

Saccharomyces cerevisiae 57, 241–250.

- Polvi, E.J., Li, X., O'Meara, T.R., Leach, M.D., Cowen, L.E., 2015. Opportunistic yeast pathogens: Reservoirs, virulence mechanisms, and therapeutic strategies. Cell. Mol. Life Sci. 72, 2261–2287. https://doi.org/10.1007/s00018-015-1860-z
- Ramana, K. V, Kandi, S., Bharatkumar P, V., Sharada, C., Rao, R., Mani, R., Rao,
 S.D., 2013. Invasive Fungal Infections: A Comprehensive Review. Am. J. Infect.
 Dis. Microbiol. 1, 64–69. https://doi.org/10.12691/ajidm-1-4-2
- Rendra, E., Riabov, V., Mossel, D.M., Sevastyanova, T., Harmsen, M.C., Kzhyshkowska, J., 2019. Reactive oxygen species (ROS) in macrophage activation and function in diabetes. Immunobiology 224, 242–253. https://doi.org/10.1016/j.imbio.2018.11.010
- Rodrigues, C.F., Silva, S., Henriques, M., 2014. Candida glabrata: A review of its features and resistance. Eur. J. Clin. Microbiol. Infect. Dis. 33, 673–688. https://doi.org/10.1007/s10096-013-2009-3
- Rodriguez-Tudela, J.L., 2008. EUCAST definitive document EDef 7.1: Method for the determination of broth dilution MICs of antifungal agents for fermentative yeasts. Clin. Microbiol. Infect. 14, 398–405. https://doi.org/10.1111/j.1469-0691.2007.01935.x
- Roetzer, A., Klopf, E., Gratz, N., Marcet-houben, M., Hiller, E., Rupp, S., Gabaldón, T., Kovarik, P., Schüller, C., 2011. Regulation of Candida glabrata oxidative stress resistance is adapted to host environment. FEBS Lett. 585, 319–327. https://doi.org/10.1016/j.febslet.2010.12.006
- Sanglard, D., Ischer, F., Calabrese, D., Majcherczyk, P. a, Bille, J., 1999. The ATP binding cassette transporter gene CgCDR1 from Candida glabrata is involved in the resistance of clinical isolates to azole antifungal agents. Antimicrob. Agents Chemother. 43, 2753–2765.
- Sanjenbam, P., Vinay Gopal, J., Kannabiran, K., 2014. Isolation and identification of anticandidal compound from Streptomyces sp. VITPK9. Appl. Biochem. Microbiol. 50, 492–499. https://doi.org/10.1134/S0003683814050081
- Seider, K., Brunke, S., Schild, L., Jablonowski, N., Wilson, D., Majer, O., Barz, D., Haas, A., Kuchler, K., Schaller, M., Hube, B., 2011. The Facultative Intracellular

Pathogen Candida glabrata Subverts Macrophage Cytokine Production and Phagolysosome Maturation. J. Immunol. 187, 3072–3086. https://doi.org/10.4049/jimmunol.1003730

- Ser, H.L., Palanisamy, U.D., Yin, W.F., Abd Malek, S.N., Chan, K.G., Goh, B.H., Lee, L.H., 2015. Presence of antioxidative agent, Pyrrolo[1,2-a]pyrazine-1,4dione, hexahydro- in newly isolated Streptomyces mangrovisoli sp. nov. Front. Microbiol. 6, 1–11. https://doi.org/10.3389/fmicb.2015.00854
- Sikorski, R., Hieter, P., 1989. A System of Shuttle Vectors and Yeast Host Strains Designed for Efficient Manipulation of DNA in Saccharomyces cerevisiae. Genetics 122, 19–27.
- Silva, S., Negri, M., Henriques, M., Oliveira, R., Williams, D.W., Azeredo, J., 2012.
 Candida glabrata, Candida parapsilosis and Candida tropicalis: Biology, epidemiology, pathogenicity and antifungal resistance. FEMS Microbiol. Rev. 36, 288–305. https://doi.org/10.1111/j.1574-6976.2011.00278.x
- Skrzypek, M.S., Binkley, J., Binkley, G., Miyasato, S.R., Simison, M., Sherlock, G., 2017. The Candida Genome Database (CGD): Incorporation of Assembly 22, systematic identifiers and visualization of high throughput sequencing data. Nucleic Acids Res. 45, D592–D596. https://doi.org/10.1093/nar/gkw924
- Swamy, K.B.S., Schuyler, S.C., Leu, J.Y., 2021. Protein Complexes Form a Basis for Complex Hybrid Incompatibility. Front. Genet. 12. https://doi.org/10.3389/fgene.2021.609766
- Tamura, N.K., Negri, M.F.N., Bonassoli, L.A., Svidzinski, T.I.E., 2007. [Fatores de virulencia de Candida spp isoladas de cateteres venosos e maos de servidores hospitalares]. Rev. Soc. Bras. Med. Trop. 40, 91–93. https://doi.org/10.1590/S0037-86822007000100021
- Thakur, J.K., Arthanari, H., Yang, F., Pan, S.-J., Fan, X., Breger, J., Frueh, D.P., Gulshan, K., Li, D.K., Mylonakis, E., Struhl, K., Moye-Rowley, W.S., Cormack, B.P., Wagner, G., Näär, A.M., 2008. A nuclear receptor-like pathway regulating multidrug resistance in fungi. Nature 452, 604–609. https://doi.org/10.1038/nature06836
- Trifinopoulos, J., Nguyen, L., Haeseler, A. Von, Minh, B.Q., 2016. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis 44, 232–235.

https://doi.org/10.1093/nar/gkw256

- Vale-Silva, L., Ischer, F., Leibundgut-Landmann, S., Sanglard, D., 2013. Gain-offunction mutations in PDR1, a regulator of antifungal drug resistance in candida glabrata, control adherence to host cells. Infect. Immun. 81, 1709–1720. https://doi.org/10.1128/IAI.00074-13
- Vale-Silva, L.A., Moeckli, B., Torelli, R., Posteraro, B., Sanglard, D., 2016.
 Upregulation of the Adhesin Gene EPA1 Mediated by PDR1 in Candida glabrata
 Leads to Enhanced Host Colonization. mSphere 1, 1–16.
 https://doi.org/10.1128/mSphere.00065-15.Editor
- Vázquez-Franco, N., Gutiérrez-Escobedo, G., Juárez-Reyes, A., Orta-Zavalza, E., Castaño, I., De Las Peñas, A., 2021. Candida glabrata Hst1-Rfm1-Sum1 complex evolved to control virulence-related genes. Fungal Genet. Biol. 159, 103656. https://doi.org/10.1016/j.fgb.2021.103656
- Vermitsky, J.-P., Earhart, K.D., Smith, W.L., Homayouni, R., Edlind, T.D., Rogers, P.D., 2006. Pdr1 regulates multidrug resistance in Candida glabrata: gene disruption and genome-wide expression studies. Mol. Microbiol. 61, 704–722. https://doi.org/10.1111/j.1365-2958.2006.05235.x
- Wingfield, P., 1998. Protein Precipitation Using Ammonium Sulfate. Curr. Protoc. Protein Sci. A.3F.1-A.3F.8. https://doi.org/10.1002/0471140864.psa03fs13
- Winter, E., 2012. The Sum1 / Ndt80 Transcriptional Switch and Commitment to Meiosis in Saccharomyces cerevisiae 1–15. https://doi.org/10.1128/MMBR.05010-11
- Winterbourn, C.C., Kettle, A.J., Hampton, M.B., 2016. Reactive Oxygen Species and Neutrophil Function. Annu. Rev. Biochem. 85, 765–792. https://doi.org/10.1146/annurev-biochem-060815-014442
- Wong, S., Fares, M.A., Zimmermann, W., Butler, G., Wolfe, K.H., 2003. Evidence from comparative genomics for a complete sexual cycle in the "asexual" pathogenic yeast Candida glabrata. Genome Biol. 4. https://doi.org/10.1186/gb-2003-4-2-r10
- Zarei, O., Dastmalchi, S., Hamzeh-Mivehroud, M., 2016. A simple and rapid protocol for producing yeast extract from Saccharomyces cerevisiae suitable for preparing bacterial culture media. Iran. J. Pharm. Res. 15, 907-913.