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Resumen 
La dieta alta en grasa afecta la memoria a corto plazo en ratones 

 
Una dieta con un aporte excesivo de calorías, grasas, azúcares y baja en fibra dietética, genera 
trastornos metabólicos que conducen a enfermedades como la obesidad. Dicha dieta también 
puede generar un desequilibrio de la microbiota intestinal, conocido como disbiosis. La disbiosis 
inducida por una dieta alta en grasa (DAG) se ha relacionado con enfermedades neurológicas, 
alteraciones del estado de ánimo y del comportamiento, a través del eje intestino-cerebro. En 
este trabajo se indujo un modelo de obesidad mediante DAG  (al 60% de las kcal) durante 16 
semanas en ratones machos y hembras de 8 semanas de edad de la cepa C57BL6/J. Los 
marcadores metabólicos: glucosa, triglicéridos y colesterol no se vieron afectados negativamente. 
Para evaluar el efecto de DAG en la memoria a corto plazo, se realizó la prueba de reconocimiento 
de objetos novedosos (PRON) al final del experimento. Al concluir la DAG, se observó un 
aumento significativo en la ganancia de masa corporal en machos, que no se detectó en las 
hembras, en comparación con sus controles alimentados con una dieta estándar. Además, se 
determinó una disminución significativa en el tiempo de exploración NORT en los machos, pero 
no en las hembras. Nuestros resultados indican que existe una correlación entre la obesidad y 
alteración de la memoria a corto plazo en los machos. 
 
PALABRAS CLAVE. Obesidad, Disbiosis, PRON 
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Abstract 
High-fat diet impairs short-term memory in mice 

 
A diet containing an excessive calorie intake, fat, sugar, and low in dietary fiber, generates 
metabolic disorders leading to obesity, which also can generate an imbalance of the gut 
microbiota, known as dysbiosis. Dysbiosis induced by a high-fat diet (HFD) has been related to 
the development of neurological diseases, mood swings, and behavioral alterations, through the 
gut-brain axis. In this work, an obesity model was induced by the intake of a HFD (at 60% of 
kcals) during 16 weeks in 8-week-old male and female mice of the C57BL6/J strain. According to 
the results, metabolic markers: glucose, triglycerides and cholesterol were not negatively 
affected. To assess the effect of HFD in short-term memory, the novel object recognition test 
(NORT) was performed at the end of the experiment. After treatment with DAG, we observed a 
significant increase in body mass gain with respect to control groups, this increase was more 
marked in male mice than in females. Furthermore, a significant decrease in NORT exploration 
time was determined in males, but not in females. Our results indicate that there is a correlation 
in between obesity and impairment in short-term memory in males. 
 
KEYWORDS. Obesity, Dysbiosis, NORT 
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 High-fat diet impairs short-term memory in mice 

 
 

Introduction 
Obesity and overweight are an abnormal or excessive accumulation of body fat. Obesity is 
caused mainly by environmental factors such as bad nutrition. It has been shown that high-calorie 
diets, including high-fat diet and high-sugars diets, increase the probability of cognitive 
deterioration1–4. In human adults (20-40 years old), overweight is diagnosed using the Body Mass 
Index (BMI) ranging from 25 to 29.9 Kg/m2, whereas obesity is diagnosed with a BMI of 30 Kg/m 
or higher2 5. Obesity is considered a major public health problem and its prevalence has 
increased in the last years worldwide6. In 2020, Mexico reported an incidence of obesity of 31.5% 
and 40.2% for men and women over 20 years old, respectively6,7. Epidemiological studies have 
shown that a high BMI is a risk factor for chronic diseases, such as type 2 diabetes, 
cardiovascular disease, chronic kidney disease, systemic arterial hypertension, various types of 
site-specific cancers, and musculoskeletal disorders8.  

The gut microbiota is a complex ecosystem of microorganisms comprised of bacteria, viruses, 
protozoa, and fungi that modulates its host physiology. In the gut microbiota, bacteria are the 
predominant taxonomic group, which has been estimated to be equivalent of the number to cells 
in the human body9. The composition of the gut microbiota is dynamic, and depends on its host 
factors such as age, genetics, environmental and external factors (i.e., use of drugs), physical 
activity and diet10. There is growing evidence suggesting that a high-fat diet (HFD), comprised of 
more than 30% of the total energy of fat, can provoke quantitative and qualitative imbalances in 
the constitution of the gut microbiota, also known as dysbiosis. Dysbiosis is closely related to the 
development of metabolic disorders, including obesity, type 2 diabetes, high blood pressure, 
systemic inflammation, dyslipidemia, and other diseases11. There is strong evidence that HFD 
promotes changes in the composition of the microbiota in animal models. For instance, HFD led 
to an increase in gram-negative bacteria and a decrease in gram-positive bacteria12–16. 

Interestingly, studies in animals and humans have shown that gut microbiota is associated with 
the central nervous system function17–20. In recent years, emerging evidence proposes a 
bidirectional connection between the gut microbiota and the brain, the so-called “gut microbiota-
brain axis,” which plays an important role in the modulation of cognitive functions and behavior21–

25. Numerous studies have demonstrated that the microbiota plays a pivotal role in neurological 
disorders such as multiple sclerosis, autism, Parkinson’s, and Alzheimer’s disease26–32. In animal 
models, HFD can affect spatial memory and behavior in mice and rats, respectively33,34. In this 
regard, obesity, HFD and dysbiosis can led to a decrease in the concentration of short-chain fatty 
acids (SCFA) produced by the intestinal microbiota. SCFA and butyrate are considered beneficial 
for brain and cognitive activities such as learning, memory, and associative memory35–37. 

Here we focus on understanding whether obesity may contribute to short-term memory 
deterioration in an obesity C57BL6 mouse model, including 12-week-old males and females. In 
this study, we fed mice with 60% HFD or control diet for 16 weeks. Body weight, glucose, 
triglycerides, and total cholesterol were measured every 4 weeks. Subsequently, the evaluation 
of behavior was carried out through the novel object recognition test (NORT).  

 
  Results 

HFD leads to increase mice body weight. To induce obesity, mice were fed with a high-fat diet 
(HDF) for 16 weeks while control group were fed with a standard control diet (SCD), as shown 
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in Figure 1. After 16 weeks of HFD, mice showed significantly, =0.1, higher body weight (two-
way ANOVA test showed effect on time per treatment, p = 0.0059) (FIG. 1A). Body weight gain 
was affected according to sex, since we saw that males gained more body weight than females 
(Figure 2B and Table 1). Body weight increase may be explained because HFD-fed male and 
female mice consumed higher energy intake than the control groups (Fig. 2C).38 These results 
are consistent with what is expected in models of obesity in mice38. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Schematic of the experimental design showing the trial groups, mice fed High Fat Diet (HFD) 
and the Standard Control Diet (SCD). The timeline shows the weeks in which metabolic markers (glucose, 
triglycerides, cholesterol, and body weight) and stool samples were collected at the end of the novel object 
recognition test was performed. Below, the treatment key color is depicted 
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Figure 2. Body weight tracking in male and female mice. A) Body weight in grams between experimental 
groups over time. B) Body weight in grams between experimental groups by sex over time. C) Energy 
intake (Kcals) by sex. SCD (in dark green) and HFD (in light green). The numbers above represent p-
values obtained from t-test analysis between experimental groups.  

 

  
HFD did not affect metabolic markers but increased visceral fat accumulation. Metabolic 
markers including blood glucose, total cholesterol, and triglycerides were measured every 4 weeks 
to determine metabolic changes. However, substantial alterations were not observed in the 
different evaluations (two-way ANOVA test, p-values=0.131, p-values=0.140, p-values=0.971, 
respectively). All-metabolic markers remained within the health interval in mice (Fig 3 A-C, and 
table 1). On the other hand, visceral fat increased substantially in males and females fed with HFD 
(Fig 3D), which correlates with an increased body weight. These results support that obesity was 
induced. 
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Figure 3. Metabolic markers and visceral fat in male and female mice. Mice were fed for 16 weeks with 
HFD or with SCD. A) Glucose concentration in mg/dL. B) Triglycerides in mg/dL. C) Cholesterol in mg/dL. 
D) Visceral fat in grams. SCD (in dark color) and HFD (in light color). Numbers above represent p-values 

obtained from t-test analysis between experimental groups. 
 
 

 

HFD impaired mice’s short-term memory. Mice performance in the NORT was used to evaluate 
the effect of HFD on short-term memory (Figure 1). Exploration time with the novel object (novel) 

decreases significantly in HFD group (p-value=0.006), (Fig. 4A). Males were significantly, =0.1, 
affected (p-value=0.020) but not females (p-value=0.242) during the exploration time (Fig. 4B). 
HFD treatment negatively affected novel object exploration preference (p-value=0.886) in males, 
not the case for females (p-value=0.045), (Fig. 4C). Furthermore, changes in discrimination index 
(DI) were appreciated in males (p-value=0.080), but not in females (p-value=0.884), (Fig. 4D). 
These findings suggest that short-term memory could be impaired in HFD-fed males, but not in 
females. 
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Figure 4. Novel object recognition test by male and female mice fed with HFD or control SCD. A) 
Exploration time in seconds of the familiar object and novel object by treatment. B) Exploration time in 
seconds of the familiar object and novel object by sex. C) Exploration preference of the familiar object and 
novel object by sex. D) Discrimination index (DI) by sex. SCD (in dark color) and HFD (in light color). 
Numbers above represent p-values obtained from t-test analysis between experimental groups. 

 

Discussion  
After 16 weeks in which mice were fed with a HFD, the obesity model was successfully achieved, 
regardless of sex. These results coincide with previous studies using diets with similar percentage 
of fat (60%) 39–44.  Similarly, visceral fat increased significantly regardless of gender, this is due to 
an increase in their calorie intake with HFD. This excess in calories is accumulated in the form of 
adipose tissue, indicating hyperplasia or hypertrophy of the adipose tissue, with an increase in the 
number of adipocytes or an increase in their size, respectively45. Surprisingly, the increase in body 
weight was highly notorious in males compared with females. Our results were similar compared 
with other studies using an alike obesity model in mice, where they found a higher increase in 
body weight in males than in females46,47. However, it also been reported that females are more 
susceptible to body weight gain than males48,49. We hypothesize that there is a correlation 
between body weight gaining and short-term memory, and/or a protective hormonal factor in 
females50. 
 
On the other hand, metabolic markers (glucose, triglycerides, and cholesterol) were not affected 
throughout 16 weeks, since they did not exceed the normal range. We observed an increase in 
glucose in males relative to females over time, but not in the other metabolic markers. Perhaps, 
these markers could be altered if the treatment time were extended, as reported for males51. 
However, the objective of this work was to induce a pattern of obesity, which was confirmed with 
an increase of 15% to 20 g of body weight between the HFD and control groups38. 
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We observed that 16 weeks of HFD consumption affected mice performance on NORT. The novel 
object exploration time was significantly shorter, exploration preference and discrimination index 
were also negatively affected in HFD-fed male mice, which in fact, gained more body weight than 
females. These results are similar to a previous study that used the same obesity model with an 
HFD of 60% fat and showed that HFD decreases short-term memory in the novel object 
recognition test in C57BL6 male mice52. To the best of our knowledge, there is no evidence that 
HFD affects females in the same way. In another study using 15 months old male C57BL6 mice 
fed during three months with HFD (60%) showed deficits in discriminating novel places and special 
learning and showed a decrease in the DI effect in NORT53. There is evidence that performance 
on NORT and similar tests of recognition memory involve hippocampal function54. A recent study 
showed that Wistar rats fed with a HFD of (59.28% energy from fat) over 12 weeks caused 
dysbiosis. This effect was associated with decreased dendritic spine density, elevated ionized 
calcium-binding adapter molecule 1+ cells, increased levels of hippocampal reactive oxygen 
species and apoptosis with cognitive decline55. In another mouse study, it was shown that in young 
mice (3-week-old), HFD suppresses relational memory flexibility, assessed after initial learning of 
simultaneous radial maze spatial discrimination, and decreased neurogenesis51.  
 
Taken together, our results suggest that HFD induced obesity in mice, and that male mice are 
more susceptible to HFD, leading to obesity. Short-term memory, i.e., exploration time is affected 
in males, but not in females. To the best of our knowledge, this is the first study in the literature to 
use female mice in NORT with HFD. These changes in behavior might correlate with weight gain 
and potentially with dysbiosis of the intestinal microbiota, through the gut-brain axis, and this can 
trigger the expression of proinflammatory cytokines, better known as neuroinflammation, which is 
closely related to disorders of the behavior in animals. However, in the next work, we will soon 
elucidate the gut microbiota composition by sequencing the 16s rRNA gene from the stool samples 
obtained throughout this experiment and measure markers of inflammation in plasma and the 
brain. 
 
 
Methods 
Animal model and experimental design. 12-week-old healthy C57BL6 mice of approximately 
20 g in weight were obtained from the Instituto de Neurobiología, Universidad Nacional Autónoma 
de México. Mice were housed in a mouse room at the Instituto Potosino de Investigación Científica 
y Tecnológica.  
A total of 24 mice (12 females and 12 males) were used and divided into four groups: control male 
(n=6), experimental male (n=6), control female (n=6) and experimental female (n= 6).The control 
group was fed with a standard control diet (SCD: Labdiet ® 5001, USA) and the experimental 
group was fed with a high-fat diet (HFD) which provided 60% of total energy from fat (which was 
made in the laboratory) and 5% sucrose in drinking water for 16 weeks, Table 2 shows the 
nutritional composition of both diets. Body weight, food and water consumption were measured 
three times per week. Metabolic markers (blood glucose, cholesterol, and triglycerides) were 
measured every 4 weeks, using one drop of blood for each metabolic marker (see blood sample 
collection). In addition, fecal samples were collected every four weeks for further analysis (see 
below). A behavioral test was also performed at the end of 16 weeks to measure short-term 
memory using NORT (see below).  
All animals were maintained in agreement with the ethical recommendations of the Norma Oficial 
Mexicana de especificaciones técnicas para la producción, cuidado y uso de los animales de 
laboratorio (NOM 062-ZOO-1999). Mice were maintained with light/dark cycles (12h×12h) at a 
temperature of 20-25°C, relative humidity of 30-60%, and housed individually in a polycarbonate 
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cage with grids, with a lid with a HEPA filter. The mouse cage was conditioned with a sterile cob 
litter. The animals underwent a two-week adaptation period before starting the experiment and 
were fed a standard diet for rodents (Labdiet ® 5001, USA) and water ad libitum. 
 
Blood sample collection. For blood sampling, mice were fasted for 12 hours. Punctures in the 
caudal tail vein of mice and three drops of blood were collected. To measure the metabolic 
parameters, the AccuTrend Plus® meter was used with its respective reactive strips. 
 
The novel object recognition test. One day after the 16-week period, each mouse was placed 
in a chamber (40 × 40 × 40 cm). The test consisted of three phases: habituation, familiarization, 
and test phase. In the habituation phase, each animal was allowed to freely explore the chamber 
in the absence of objects (5 minutes). The animal was then removed from the chamber and placed 
in its holding cage. During the familiarization phase, a single animal was placed in the chamber 
containing three identical sample objects and was allowed to freely explore for ten minutes. In the 
test phase, one of the sample objects was exchanged for a new object and the animal was 
returned to the chamber to explore the three objects, two were identical and the third was changed, 
the mouse was allowed to freely explore for another ten minutes. The duration of behavioral 
exploration exhibited by mice was determined with a stopwatch and exploration preference was 
calculated using the formula: (time exploring familiar object)/(time exploring new object + time 
exploring familiar object) or (time exploring familiar object)/(exploring novel object + time exploring 
familiar object). A discrimination index was calculated using the following formula: (time exploring 
novel object − time exploring familiar object)/(time exploring novel object + time exploring familiar 
object) 56. 
 
Statics analysis. To analyze the metabolic markers (weight, glucose, triglycerides, and 
cholesterol), the lm() and anova() functions of the R programming language was used to perform 
ANOVA tests, the post hoc analysis (T.test) were performed by the t_test() function from rstatix 
package. Core Team (2021) test. R: A language and environment for statistical computing. R 
Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org 
 
Animal sacrifice. At week 16 of feeding with HFD, mice received an intraperitoneal injection of 
sodium pentobarbital (30 mg/kg), and once the loss of sensitivity was verified, the heart was 
exposed by opening the cavity chest cavity and perfused with 25 mL of 0.9% sodium chloride. 
One group was used for dissection of tissues of interest and another group was perfused with 35 
mL of 4% paraformaldehyde in 0.1 mM phosphate buffer for subsequent immunohistochemical 
assays. 
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Supporting information 
  

Treatment  Gender  
Time (in 
weeks) variable  n  mean sd 

HFD  Female  0 Weight 6 20.000 1.673 

HFD  Male 0 Weight 6 22.833 2.639 

HFD  Female  4 Weight 6 22.667 2.422 

HFD  Male 4 Weight 6 26.333 3.445 

HFD  Female  8 Weight 6 25.000 2.422 

HFD  Male 8 Weight 6 30.833 5.307 

HFD  Female  12 Weight 6 29.000 7.925 
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HFD  Male 12 Weight 6 35.000 8.672 

HFD  Female  16 Weight 6 31.333 9.459 

HFD  Male 16 Weight 6 38.333 11.961 

SCD Female  0 Weight 6 17.500 3.564 

SCD Male 0 Weight 6 22.500 1.378 

SCD Female  4 Weight 6 19.000 1.673 

SCD Male 4 Weight 6 23.500 1.761 

SCD Female  8 Weight 6 20.000 2.000 

SCD Male 8 Weight 6 24.333 1.966 

SCD Female  12 Weight 6 20.833 0.722 

SCD Male 12 Weight 6 25.500 2.074 

SCD Female  16 Weight 6 20.500 1.378 

SCD Male 16 Weight 6 24.833 2.137 

HFD  Female  0 Glucose 6 196.667 35.613 

HFD  Male 0 Glucose 6 180.167 17.680 

HFD  Female  4 Glucose 6 197.667 29.063 

HFD  Male 4 Glucose 6 211.000 26.556 

HFD  Female  8 Glucose 6 194.000 27.452 

HFD  Male 8 Glucose 6 233.333 52.053 

HFD  Female  12 Glucose 6 191.667 23.441 

HFD  Male 12 Glucose 6 241.833 31.676 

HFD  Female  16 Glucose 6 178.500 27.790 

HFD  Male 16 Glucose 6 235.167 39.005 

SCD Female  0 Glucose 6 176.333 53.444 

SCD Male 0 Glucose 6 160.667 44.523 

SCD Female  4 Glucose 6 177.000 17.065 

SCD Male 4 Glucose 6 214.333 26.546 

SCD Female  8 Glucose 6 162.667 11.793 

SCD Male 8 Glucose 6 216.000 50.323 

SCD Female  12 Glucose 6 176.167 29.233 

SCD Male 12 Glucose 6 199.000 29.086 

SCD Female  16 Glucose 6 183.167 29.034 

SCD Male 16 Glucose 6 199.167 31.154 

HFD  Female  0 Triglycerides 6 75.333 5.086 

HFD  Male 0 Triglycerides 6 104.667 38.370 

HFD  Female  4 Triglycerides 6 77.167 2.401 

HFD  Male 4 Triglycerides 6 89.333 10.652 

HFD  Female  8 Triglycerides 6 95.167 16.916 

HFD  Male 8 Triglycerides 6 103.667 25.633 

HFD  Female  12 Triglycerides 6 97.167 16.302 

HFD  Male 12 Triglycerides 6 99.500 20.345 

HFD  Female  16 Triglycerides 6 101.333 19.086 

HFD  Male 16 Triglycerides 6 116.667 11.147 
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SCD Female  0 Triglycerides 6 93.667 11.483 

SCD Male 0 Triglycerides 6 100.333 13.852 

SCD Female  4 Triglycerides 6 87.167 14.034 

SCD Male 4 Triglycerides 6 73.167 13.167 

SCD Female  8 Triglycerides 6 82.833 7.548 

SCD Male 8 Triglycerides 6 90.667 8.066 

SCD Female  12 Triglycerides 6 86.667 16.367 

SCD Male 12 Triglycerides 6 79.333 8.066 

SCD Female  16 Triglycerides 6 87.167 6.585 

SCD Male 16 Triglycerides 6 95.000 25.908 

HFD  Female  0 Cholesterol 6 160.667 2.422 

HFD  Male 0 Cholesterol 6 159.000 6.229 

HFD  Female  4 Cholesterol 6 160.667 7.174 

HFD  Male 4 Cholesterol 6 164.000 7.874 

HFD  Female  8 Cholesterol 6 159.833 5.307 

HFD  Male 8 Cholesterol 6 162.667 3.670 

HFD  Female  12 Cholesterol 6 164.000 4.290 

HFD  Male 12 Cholesterol 6 161.667 8.524 

HFD  Female  16 Cholesterol 6 158.833 4.665 

HFD  Male 16 Cholesterol 6 157.667 5.203 

SCD Female  0 Cholesterol 6 158.333 4.761 

SCD Male 0 Cholesterol 6 159.500 5.431 

SCD Female  4 Cholesterol 6 159.500 11.309 

SCD Male 4 Cholesterol 6 153.167 25.988 

SCD Female  8 Cholesterol 6 160.333 4.412 

SCD Male 8 Cholesterol 6 162.333 7.174 

SCD Female  12 Cholesterol 6 157.000 5.441 

SCD Male 12 Cholesterol 6 158.667 5.164 

SCD Female  16 Cholesterol 6 154.500 4.506 
SCD Male 16 Cholesterol 6 153.667 3.386 

 
Table 1. Means and standard deviation (SD) of body weight, glucose, triglycerides, and cholesterol of the 
experimental groups. 

 
 

 SCD HFD 

 

Percentage 
(%) 

Grams 
(g) 

Energy 
(Kcals) Percentage 

Grams 
(g) Energy (Kcals) 

Protein 28.50 0.29 0.96 13.84 0.29 1.14 

Fat 13.50 0.13 0.45 63.92 0.58 5.26 

Carbohydrates 58.00 0.58 1.95 22.24 0.46 1.83 

Total 100.00 1.00 3.36 100.00 1.33 8.24 
 
Table 2. Nutritional composition of SCD and HDF. 
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