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POSGRADO EN CONTROL Y SISTEMAS DINÁMICOS
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Notation

C Complex numbers set
R Real numbers set
N Natural numbers set
Z Integer numbers set
∅ Empty set
Ac Complement set of A
T ∣A Restrictions of T to the set A
T −1(A) Pre-image of the set A under the transformation T
T ′(x) Derivative of T with respect to x
Cn Set of n−times differentiable functions
T n n-th iteration of the transformation T
µ≪ ν Measure µ being absolutely continuous with respect to the measure ν
∣ ⋅ ∣ Absolute value
∣∣ ⋅ ∣∣ Norm L1

∣∣ ⋅ ∣∣p Norm Lp

Disclaimer about gender-neutral language
Whenever we cite the work of an author throughout this thesis, we will deliberately

refer to them by utilizing the gender-neutral pronoun “they” in order to avoid using
a pronoun they do not identify with.
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Resumen

Invariant densities, intermittency, and phase-transition phenomenon in random
maps in the interval.

Palabras clave: transición de fase, mapeos del intervalo, medida invariante
absolutamente continua (m.i.a.c.), operadores de Perron-Frobenius, decaimiento de
correlaciones, exponente de Lyapunov, mapeos conectados.

En esta tesis proponemos una definición del fenómeno de transición de fase con
respecto a un parámetro, en el sentido de la existencia o no existencia de una medida
invariante absolutamente continua respecto a la medida de Lebesgue, en mapeos en
el intervalo, y mostramos algunos ejemplos deterministas muy conocidos en los que
sucede. Más adelante, definimos una clase de mapeos aleatorios en el intervalo que
están constituidos, cada uno, por una colección de cardinalidad no numerable de
mapeos no expansivos, y de otros estrictamente expansivos, cuya probabilidad de
incidencia posee dependencia continua en un parámetro γ. A partir de esta inter-
acción entre mapeos expansivos y contractivos surgen condiciones para las cuales
se presentan reǵımenes en promedio expansivos o contractivos. Para esta clase de
sistemas mostramos evidencia numérica donde se observa a través de densidades
emṕıricas, exponentes de Lyapunov, coeficientes de autocorrelación, entre otras,
cómo cambia la dinámica resultante de la interacción entre mapeos no expansivos
y expansivos, y da lugar al fenómeno de transición de fase, en el sentido de la no
existencia a la existencia de una m.i.a.c. en función del parámetro caracteŕıstico del
sistema. Después presentamos un resultado que establece las condiciones necesarias
y suficientes para la existencia de una m.i.a.c. en esta clase de mapeos aleatorios, aśı
como un procedimiento para encontrar el valor cŕıtico del parámetro que caracteriza
la incidencia este fenómeno.
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Abstract

Invariant densities, intermittency, and phase-transition phenomenon in random
maps in the interval.

Keywords: phase transition, maps in the interval, absolutely continuous invari-
ant measure (a.c.i.m.), Perron-Frobenius operators, decay of correlations, Lyapunov
exponent, connected maps.

In this thesis, we propose a definition of the phase transition phenomenon with
respect to a parameter, in the sense of non-existence or existence of an absolutely
continuous invariant measure with respect to the Lebesgue measure, in maps in the
interval, and we show some well-known deterministic examples of its occurrence.
Later on, we define a class of random maps in the interval, which are individually
conformed by a collection of a continuum non-expansive of maps, as well as strictly
expansive maps, whose weighting probabilities has a continuous dependence on a
parameter γ. From this interplay between expanding and contracting dynamics, the
conditions for the arising of expanding in mean or contracting in mean regimes take
place. For this class of systems we present numerical evidence, where the reader
can observe by means of empirical densities, Lyapunov exponents, autocorrelation
coefficient, among others; how the resulting dynamics of the interplay between non-
expansive and strictly expansive maps changes, and gives rise to the phenomenon
of phase transition, in the sense of the non-existence to the existence of an a.c.i.m.
as a function of the characteristic parameter of the system. Next, we present a
result that establishes the sufficient and necessary conditions for the existence of an
a.c.i.m. in this class of random maps, as well as a method for computing the critical
value of the parameter that characterizes the incidence of this phenomenon.
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Chapter 1

Introduction

A dynamical system is a mathematical representation of the movement, or change
present in a kinetic physical entity during a window of time. For its analysis, it
is necessary to study how will it behave under a certain rule of evolution, and
broadly speaking, we can identify two main outcomes for its asymptotic state: it
will stop or “stabilize” in a determined regular behavior (a fixed point, periodic
orbits or a limit cycle), or it will evolve in such a way that for increasingly longer
time frames it is erratic or virtually unpredictable (due to lack of computational
power or time). For the case where it does not stabilizes, and when it is required to
know its typical behavior (or if there is one), we can study the evolution of a typical
initial condition for very large times; or we can study the evolution of a “large” set
of initial conditions, that is, the study of the statistical behavior of its orbits. In the
case of ergodic systems, these two approaches are equivalent. This is a fundamental
result in measure theory, referred to as the Birkhoff’s pointwise ergodic theorem (we
go into further details ahead in Chapter 2.6).

In this thesis, our main focus are the maps in the interval, specifically, discrete
time transformations of the unit interval [0,1], which is our state space. The main
topic that is discussed here is that of under what conditions in general, the orbits
of a map will typically and asymptotically (or for almost every initial condition)
distribute according to a certain distribution (or probability density) function. The
study of these dynamical systems implies the study of the evolution of an initial
density, which is attained by defining the action of an operator in the set or space of
density functions, and this resulting progression or sequence of functions represents
the dynamics in the state space. Therefore, to establish the existence of an invariant
measure with respect to the dynamics is equivalent to find a fixed point for this
action [6]. This action is defined as an operator on a space of functions, known
as the Perron-Frobenius operator. The existence of this invariant measure sets the
starting point for studying the statistical properties of the dynamical systems.

One of the first works regarding the existence of a stationary density associated
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CHAPTER 1. INTRODUCTION

to the dynamics of a map in the interval, is the result published in [2], in which
the existence of an absolutely continuous (with respect to the Lebesgue measure)
invariant measure for a class of piecewise expansive maps in the interval is proven.
The central idea around this is to prove that the Perron-Frobenius operator asso-
ciated to the dynamical system has a fixed point in a determined subspace of the
continuous functions, which is the bounded variation functions space (see Chapter
2.4 for further details), given that in this subspace the operator is contractive, and
therefore it is possible to prove this utilizing nowadays-classical techniques related
to fixed point theorems.

The expansive maps in the interval have posed a big topic of interest regarding
the study of dynamical systems, particularly about their statistical properties, due
to the fact that these systems exhibit a wide variety of behaviors, which arises
from dynamics represented through relatively simple equations. This is specially
useful for the modeling and analysis of complex physical phenomena, for instance,
the modeling the phenomenon of turbulence in fluids dynamics [1]. A nowadays
classical example of almost-everywhere expansive dynamics within the interval [0,1]
(except for one point) are the Manneville-Pomeau maps. This family of maps was
defined by Manneville and Pomeau as a relatively simple model for the study of
the phenomenon of intermittency [1], and it has a continuous dependency on a real-
valued parameter, i.e., it is defined for the values of its characteristic parameter
α ≥ 0, and it is defined by the following expression:

Tα(x) = {
x(1 + 2αxα), 0 ≤ x ≤ 0.5
2x − 1, 0.5 ≤ x ≤ 1.

This system has an indifferent fixed point at x = 0, and the trajectories get
“stuck” near this point, meaning they tend to perform long excursions due to the
weak expansiveness around this region of the state space.

The change of the statistical behavior of this system as a function of α undergoes
different dynamical regimes. For example, it is known that it has an absolutely
continuous invariant measure for 0 < α < 1, whose density is a power-law function
[3]; a constant function corresponding to an uniform distribution for α = 0, and it has
a δ-distribution (i.e., the orbit accumulates in one point) for some initial conditions
like x = 1 and x = 0, and it is also the limit distribution as α → ∞. In this sense,
we say that a phase transition phenomenon is present here (see Chapter 3 for the
definition and further discussion), since the system experiences a major change in
the asymptotic distribution of its orbits.

As we will see in Chapter 2.7, for systems that exhibit a non-stable behavior
in which we cannot specify the exact point of landing of an initial condition for
sufficiently large times, we work with measures that quantify the incidence of tra-
jectories along every region in the state space, and allows us to establish a certain
probability of re-entry in a region of the state space. Thus, it is clear that we are
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CHAPTER 1. INTRODUCTION

dealing with uncertainty. And although the orbits of these systems can be under-
stood and mathematically treated as independent random variables (mostly when
speaking of mixing dynamics (see Chapter 2.8)), they are not, since every state of
the trajectory is directly dependent on the previous one. However, the statistical
behaviors that we mentioned before (specifically the existence of an a.c.i.m.), that
are main subjects for research in dynamical systems theory, can be retrieved in a way
that entails the action of well-defined independent random variables (see Chapter
4.3) involving relatively simple expressions, through the study of random dynamical
systems. This constitutes an advantage in the sense that brings the possibility to
transfer a major portion of the difficulty of analysis to the probabilistic realm, which
is by no means simpler, but offers a whole other set of tools [37, 38].

The research around the existence of an a.c.i.m. in random dynamical systems
is relatively new, but rather extensive. Concerning the random maps in the in-
terval, it includes semi-Markov piecewise linear maps with probability dependent
probabilities [4, 5], generalizations to skew and pseudo-skew products [9, 14, 15],
random β−transformations [29], systems equipped with a continuum of transforma-
tion [16, 20] and even goes further around the question of the existence of S.R.B.
measures [19] (see Chapetr 4.3.5) and the development of methods for computing the
set of attainable densities according to the weighting probabilities of the dynamics
([5]). In this thesis, our work is focused in exploring under what conditions a class
of random maps in the interval can exhibit the phenomenon of phase transition, in
the sense of non-existence to existence of an a.c.i.m. (or viceversa). Here, we recall
two families of random maps we proposed in a previous work [17], with the goal of
obtaining relatively simple models characterized by a single real-valued parameter
that affects the probability component of the system, that assimilate some of the
previously mentioned statistical properties, like the existence of an a.c.i.m, a phase
transition or intermittency. The main contribution in this proposal lies in defining a
clsss of systems that allow non-strictly expansive components, and that can exhibit
a phase transition phenomenon in the sense we brought up earlier on (i.e., having
an absolutely continuous invariant measure). We further study this phenomenon in
a class of dynamical systems knows as connected maps, for which we provide the
formal definition later on. The remainder of this thesis is organized as follows.

In Chapter 2 we introduce the fundamental concepts related to the basic tools of
analysis involved in our work. We retrieve some theory about the function spaces Lp

and of bounded variation, as well as the definition of the Perron-Frobenius operator
and concepts related to the statistical properties of dynamical systems, like ergod-
icity, mixing, decay of correlations and Lyapunov exponents. Furthermore, and we
briefly discuss the nowadays classic Lasota-Yorke theorem.

Next, in Chapter 3 we give the formal definition of the phase transition phe-
nomenon that we are proposing, as well as a definition for the critical value involved
in the occurrence of this phenomenon in maps in the interval. Then, we cite a few
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CHAPTER 1. INTRODUCTION

examples of deterministic maps in the interval that present the phase transition phe-
nomenon and provide brief discussions about the nature of the behavior observed in
their dynamics.

In Chapter 4 we establish the context about random dynamics theory in which
our investigation lies. We provide a definition of random maps in the interval along
with the general expression for the random Perron-Frobenius operator associated
to it. We also present the zero-one probability laws of Borel-Cantelli and Hewitt-
Savage, and gather some of the most important results concerning the existence of
an a.c.i.m. in random dynamics in one-dimensional systems. At the end of this
chapter we discuss the numerical data we obtained from simulations of the systems
we proposed that helped us establish the questions we give an answer to here.

In Chapter 5 we define the class of random maps in the interval for which later,
we provide sufficient conditions for the existence of a.c.i.m., with an approach based
on the Lasota-Yorke’s theorem. Later, from a probabilistic approach we establish a
set of sufficient conditions for this class of random maps to have an a.c.i.m., as well
as another sufficient and necessary conditions to not have it. These two joint results
conform our main theorem, in which we prove that this class of random maps in the
interval experiences a phase transition phenomenon in the sense of non-existence to
existence of an a.c.i.m. (or viceversa).

Later on, we describe and briefly discuss an original work in progress in Chapter
6, which is the setting for a new type of deterministic dynamical system, in which
we have found numerical evidence of the occurrence of the phenomenon of phase
transition with respect to a parameter. This setting aims to explore the result-
ing behavior derived form the interaction of two dynamical systems with mutually
contrasting behavior.

Finally, we address in Chapter 7 some possible perspectives for the future of
our work, considering the limitations that our theoretical results have. We also
discuss briefly an original work in progress on a deterministic system equipped with
a parameter α. We found that for an infinite but countable values of α, all the
points in its state space are part of an n−cycle dynamics.

After the concluding remarks, there is a list of our publications, participation in
congresses, preprints and attendance to math schools.
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Chapter 2

Preliminaries

A dynamical system is a pair (X,T ), where X is the state space, equipped with a
transformation T of the space X on itself, that acts as a temporal evolution. From
now on, it will be denoted by the couple (X,T ). Here, X will be a compact metric
space.

In this thesis we will restrict ourselves to discrete dynamics, that is, we will
consider a map with evolution in discrete time. Let T ∶ X → X be a function that
determines the new state of the system in one time-step. If x0 ∈X is the state of the
system at time zero, then the state at the first time-step is x1 = T (x0), and more
generally, the state at the time-step n is recursively given by iteration xn = T (xn−1).
This often is written as xn = T n(x0) with T n = T ○T ○ ...○T (n times), where ○ is the
symbol for function composition: (T ○g)(x) ≡ T (g(x)). The sequence {T n(x0)}n∈Z+
is known as the forward orbit of the trajectory of the initial condition x0; and if the
inverse function of T exists, then the orbit is as well defined for negative n. For
further details, on dynamical systems, see [7].

2.1 Maps in the interval

The focus of our work is centered in dynamical systems defined on the interval
X = [0,1], whose image is on itself. Despite their relative simplicity, the maps
in the interval do exhibit a wide variety of behaviors. Some of these behaviors of
interest are intermittency, period-doubling regimes and chaos, and have been widely
studied through, now iconic examples, as the logistic map, the Manneville-Pomeau
maps, or the tent maps. A basic, general class of dynamics in the interval, which is
very relevant in research, are the expansive maps in the interval.

Definition 2.1 (expansive maps in the interval). Let X = [0,1], and 0 = a0 < a1 <
⋯ < aK = 1 be a sequence of numbers in the interval ai ∈ [0,1] For every i = 0, . . . ,K,
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CHAPTER 2. PRELIMINARES

such that they conform a partition of [0,1]. The transformation T ∶ [0,1]→ [0,1] is
said to be a expansive map in the interval if it satisfies:

1. The map T restricted to each element of the partition, Ti ∶= T ∣[ai,ai+1] is such
that Ti ∈ C2.

2. There exists a constant Λ > 1 such that infx∈[0,1]∣T ′(x)∣ ≥ Λ > 1.

One of the classic and simplest examples of deterministic maps in the interval is
the doubling map, or , (Figure 2.1):

Example 2.1. The map in the interval xn+1 = 2xn (mod 1) is defined as

T (x) = 2x (mod 1) ∶= { 2x, 0 ≤ x ≤ 0.5
2x − 1, 0.5 < x ≤ 1. (2.1)

Figure 2.1: Transformation in the interval T (x) = 2x (mod 1) (left) and a sample
of eighty iterations of its typical trajectory (right).

As we can see, the map in this example is piecewise C2 in the partition given by
{a0 = 0, a1 = 0.5, a2 = 1} which defines the intervals {[0,0.5], (0.5,1]}. And since it
is a linear map, the constant Λ = 2.

Example 2.2. Given the rational map (Figure 2.2)

T (x) = { 5 (1 − 2
x+2
) , 0 ≤ x ≤ 0.5

3 (1 − 1
x+0.5
) , 0.5 < x ≤ 1, (2.2)

as the previous example, it is piecewise C2 in the partition given by {a0 = 0, a1 =
0.5, a2 = 1}, and from its derivative, we can determine that the constant Λ equals 4

3 .

The maps in these examples show an “erratic” or “unpredictable” behavior of
the trajectories for almost any initial condition. Nonetheless, for Example 2.1, it

6



CHAPTER 2. PRELIMINARES

Figure 2.2: Transformation in the interval from the example 2.2 (left) and a sample
of eighty iteration of its typical trajectory (right).

is known that almost every orbit (with respect to the uniform distribution) under
the action of this system becomes uniformly distributed all over the interval [0,1]
(see [6], Chapter 3), which is a characteristic of the uniformly distributed stochastic
processes. As for Example 2.2, it is a completely different distribution. Notice that
for these previous examples, every point has two pre-images, therefore the maps are
not invertible.

These two systems in Examples 2.1 and 2.2 exhibit the type of unstable behavior
we mentioned earlier, and these dynamics are representative of the fact that studying
the behavior of a particular orbit can be a hefty task if one is trying to predict the
exact position of the trajectory at a given time (mostly large times). Yet, it is
only natural to ask if there exists a big-scale behavior, intrinsic to the dynamics. In
other words, if an inherent distribution of the points in the orbit arises when n→∞.
We will give further details below, but we need first to provide some preliminary
definitions.

One way to explore empirically the statistical or probabilistic properties of these
dynamical systems is through the construction of histograms, made by the compu-
tational calculation of a large number of iterations of the system. These histograms
can help to visualize the asymptotic frequency of the trajectories landing in different
regions of the state space [8]. This is implemented in the following way. The state
space [0,1] is divided in j disjoint discrete intervals such that describe a partition
and the i-th interval is (the extreme point x = 1 is omitted):

[i − 1
j
,
i

j
) i = 1, ..., j

Then, given a initial state of the system x0 the orbit is computed for large N

x0, T (x0), T 2(x0), ..., TN(x0),
where N represents the size of the sample utilized for plotting it, with N ≫ 2j
[8]. A histogram computed for a partition of the space state sufficiently fine and a

7



CHAPTER 2. PRELIMINARES

sufficiently large number of iterations, can reveal the approximate shape that the
invariant density function associated to a dynamical system asymptotically takes,
whenever it possesses one. Considering the doubling map in Example (2.2), we can
observe in Figure 2.3 how the asymptotic frequency eventually shapes itself into
the invariant density function associated with the map in the interval, which, as
demonstrated later on, it actually is.

Figure 2.3: Histograms for the transformation T (x) = 2x (mod 1), for 2× 104 (left),
1 × 105 (center) and 1 × 107 iterations, where the interval [0,1] being divided into
j =1000 bins. These, gradually approximate a uniform density function which is
known to be invariant under this system (see [6], Chapter 3).

Due to the fact that in a histogram the state space is divided into j equal
intervals, and the height of each bar quantifies the relative incidence of the orbit in
that interval; the empirical measure m̂(A) of a subset A of [0,1] is given by:

m̂ (A(x)) = 1

j

j

∑
i=1

ĥ(x)χ∆i
(x),

where ĥ(x) is the height of each bar, χ∆i
(x) is the indicator function corresponding

to the subdivision ∆i, and by dividing by j the histogram is normalized for the
whole state space to have a total sum of 1. The indicator function takes value of 1
for all x ∈ ∆i and 0 otherwise. All the histograms shown in this thesis are plotted
considering a sample size of N = 1 × 107 and a value of j = 1000 for uniformly sized
bins.

As we can see, if we had an infinite number of segments ∆i, the empirical measure
given by a histogram would be a probability measure. We provide further details
about measures and space measures in the following section.

8



CHAPTER 2. PRELIMINARES

2.2 Measure and measure spaces

By convenience, in the following, we will include some general concepts about mea-
sure, measure spaces and measurable dynamical systems. This content is a compi-
lation about the most relevant topics necessary to make this thesis self-contained.
This preliminary theory is standard and one can look deeper on any particular topic,
in [6], [7], [8], [37] or [28] for instance.

Definition 2.2 (σ-algebra). Let X be an arbitrary non-empty set. One class of
subsets Σ of X is called σ-algebra on X if it satisfies the following conditions:

1. If A ∈ Σ implies Ac ∈ Σ, where Ac ≡ {x ∈X ∶ x ∉ A} is the complement of A in
X.

2. If An ∈ Σ, n = 1,2, ... implies that the union ⋃∞n=1An ∈ Σ.

3. X ∈ Σ.

Definition 2.3 (Measure). A non-negative function of sets µ to real values (includ-
ing possibly ∞) defined on a σ-algebra Σ is called measure if

� µ(∅) = 0.

� µ (⋃∞n=1An) = ∑∞n=1 µ(An),

for any finite or infinite sequence {An} of pair-wise disjoint sets of Σ, i.e., Ai∩Aj =
∅, i ≠ j.

Definition 2.4 (Measure space). The ordered triplet (X,Σ, µ) is called a measure
space if a σ-algebra is given Σ over a set X and a measure µ defined on Σ. If the
measure is not explicitly expressed, the ordered pair (X,Σ) is called a measurable
space and any A ∈ Σ is called Σ-measurable set, or simply, measurable set.

Definition 2.5 (σ-finite space). A measure space (X,Σ, µ) is said to be σ-finite if
X is a measurable union of of its subsets with finite measure, namely:

X =
∞

⋃
n=1

An, An ∈ Σ, µ(An) <∞, n = 1,2, ...

Definition 2.6 (Finite measure space). A measure space (X,Σ, µ) is said to be
finite if µ(X) <∞. Particularly, if µ(X) = 1, then the measure space is known as a
probability space or normalized space measure.

Definition 2.7 (Measurable function). Let (X,Σ, µ) be a measure space. A real-
valued (or complex-valued) function f ∶X → R (C resp.) is said to be measurable if
f−1(G) ∈ Σ for every open set G ⊂ R (or C), where f−1(G) ≡ {x ∈ X ∶ f(x) ∈ G} is
the inverse image of G by f .

9
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Remark 2.1. More generally, a transformation X → Y from a measurable space
(X,Σ) to a measurable space (Y,A), is said to be measurable if T −1(A) ∈ Σ for each
A ∈ A. Thus, a measurable function f is a measurable transformation from (X,Σ)
to (R,B), where R is the set of the real numbers and B a Borel-σ-algebra. If X1

and X2 are topological spaces with their respective Borel σ−algebras B1 and B2, then
a continuous transformation T ∶X1 →X2 is a Borel-measurable transformation. In
particular, a continuous function on a topological space is a measurable function.

One of the most relevant mathematical objects in this thesis is the density func-
tion associated to the distribution of the orbits, and before defining it, we need to
define the concept of random variable. For a transformation T , a T−invariant prob-
ability density function is commonly associated to an absolutely continuous (with
respect to the Lebesgue measure) invariant measure in the sense that their existence
provide a statistical analysis tool for the study of dynamical systems.

Definition 2.8 (Random variable). A random variable is a transformation ξ from
the sample space X to the real numbers set, namely

ξ ∶X → R,

such that for any real number x ∈ R, and any σ-algebra Σ of X

{ω ∈X ∶ ξ(ω) ≤ x} ∈ Σ,

i.e., ξ−1 is measurable whenever it is defined.

Definition 2.9 (Probability density function). A random variable ξ is said to have
a density function F (x), where F is a Lebesgue-integrable function, if the density of
ξ with respect to the reference measure µ is given by

ν(ξ ∈ A) = ∫ χ
ξ−1(A)(x)dν(x) = ∫

A
F (x)dµ(x),

where ν is the measure of the probability density function of ξ on a set A, for any
measurable set A ∈ Σ.
Definition 2.10 (Measure-preserving transformation). Let (X,Σ, µ) measure space.
A measurable transformation T ∶ X → X is said to be measure-preserving µ, or
alternatively, the measure µ is said to be T -invariant, if

µ(T −1(A)) = µ(A), ∀A ∈ Σ.

Remark 2.2. In practice, it is hard to verify that a transformation is measure-
preserving for every measurable set on the previous definition, in application, if
µ(T −1(A)) = µ(A), is verified for every measurable set on a subclass π which is
closed under the intersection operation of its members, and is Σ-generating, that
is, Σ is the smallest σ−algebra that contains π, then µ is invariant under T . The
subclass π with this property is known as a π−system [6].

10
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With the purpose of spatial average of certain functions, or their expected value
with respect to the invariant measure of the system, it is important to establish the
following definition.

Definition 2.11 (Simple function). A measurable function f ∶ X → [0,∞) on a
measurable space is called simple function if its range is conformed by a finite amount
of points. In other words, f is a simple function if

f =
n

∑
i=1

αi
χ
Ai
, Ai ∈ Σ,

where αi are the distinct values the function can take and χAi
is the indicator func-

tion of Ai.

For physical measurements, quite often a probability distribution of a physical
quantity is considered. Let (T,X) be a dynamical system, and letX be a phase space
with finite measure µ(X) <∞ and let A be a subset of X. Instead of distinguishing
the deterministic properties of the individual orbits, the probabilistic properties are
considered by observing the frequencies of the first n terms of the orbit {T n(x)} of
an initial point x which enters A for every natural numbers n. In order to calculate
the frequencies. Let χA be the indicator function of A ⊂X:

χ
A(x) = {

1, if x ∈ A
0, if x ∉ A.

Then, the frequency for a given n is exactly 1
n ∑

n−1
i=0

χ
A(T i(x)).

Definition 2.12 (Asymptotic frequency of A ∈ Σ). Consider a subset A ∈ Σ, the
asymptotic frequency or time average of A is given by the limit

lim
n→∞

1

n

n−1

∑
i=0

χ
A(T i(x)),

which, in case it exists, measures how frequently the orbit visits A, or the time
average for which the dynamics circulates by A.

The limit mentioned in this definition exists under specific circumstances, given
by the Birkhoff’s pointwise ergodic theorem; which states as well, that for a T -
invariant ergodic measure µ, this limit is equivalent to the spatial mean given by
that measure µ.

One of the most important concepts in this thesis are the absolutely continuous
measures, which we define in the following.

11
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Definition 2.13 (Absolutely continuous measure). Let µ be a measure on a σ-
algebra Σ and let ν be an arbitrary measure on Σ; ν can be positive, real or complex.
The measure ν is said to be absolutely continuous with respect to µ and we write

ν ≪ µ

if ν(A) = 0 for each A ∈ Σ such that µ(A) = 0. If ν ≪ µ and µ ≪ ν both hold, then
the measures ν and µ are said to be equivalent, written as µ ≅ ν.
Theorem 2.1 (Radon-Nikodym theorem, [6]). Let (X,Σ, µ) be a measure space σ-
finite and let ν be a measure real-valued (or complex-valued) such that it is absolutely
continuous with respect to µ. Then, there exists a unique function f ∶ X → R (or
C), µ-integrable such that

ν(A) = ∫
A
f(x)dµ(x), ∀A ∈ Σ. (2.3)

f is referred to as the Radon-Nikodym derivative and is denoted by dν
dµ .

Remark 2.3. If a determined property that involves the points in the measure space
is preserved except for a set of zero measure, then this property is said to be true
almost everywhere (a.e.). The notation µ-a.e. (or simply a.e.) when µ is implicit,
is sometimes utilized if the property holds almost everywhere with respect to the
measure µ [6].

2.3 L(µ) spaces

Since we will study the behavior of densities with respect to the evolution of dy-
namics, it is important to establish the space where this evolution occurs, that is,
spaces of functions. To get started, the concept of variation is fundamental for
the definition of compactness on L1 spaces, which in turn takes relevance since the
Perron-Frobenius operators are defined on them.

Definition 2.14 (Lp and L∞ spaces). Let (X,Σ, µ) be a finite-measure space. Let
p be a real number such that 1 ≤ p <∞. The family of all functions µ-measurable of
real-valued (or complex-valued) f ∶X → R (o C) satisfying

∫
X
∣f ∣pdµ <∞,

is denoted by Lp. The space L∞(X,Σ, µ) is defined as the family of all measurable
µ-a.e. functions.

Definition 2.15 (Lp norm). The number ∣∣f ∣∣p = (∫X ∣f ∣pdµ)
1/p

is called Lp norm of
f ∈ Lp for p < ∞; and the number ∣∣g∣∣∞ = ess supx∈X ∣g(x)∣ is referred to as the L∞

norm of g ∈ L∞.

12



CHAPTER 2. PRELIMINARES

Definition 2.16 (Essential supremum). The ess supx∈X of an arbitrary function
f ∈ Lp is the supremum of a function µ-a.e.:

ess sup
x∈X

f(x) = inf{M ∶ µ({x ∶ f(x) >M}) = 0}

Under the characteristics of Definition 2.15, Lp(X,Σ, µ) is a Banach space,
namely, it is a complete, normed space [6].

The dual space, or simply, dual, by definition is the space of all bounded linear
functionals [6]. The next theorem characterizes the dual space of Lp.

Theorem 2.2 ([6]). Let 1 ≤ p < ∞. The dual of Lp(X,Σ, µ) is isomorphic to
Lq(X,Σ, µ), where 1/p + 1/q = 1, for p > 1 and q =∞ if p = 1.

The dual relationship between f ∈ Lp and g ∈ Lq is given by

⟨f, g⟩ ≡ ∫
X
fgdµ,

which satisfies the Cauchy-Hölder inequality

∣⟨f, g⟩∣ ≤ ∣∣f ∣∣p∣∣g∣∣q, ∀f ∈ Lp, g ∈ Lq.

Remark 2.4. Sometimes one can write Lp instead of Lp(X,Σ, µ) when the measure
space stays implicit, Lp(X), Lp(µ) or Lp(Σ) when the respective elements of the
measure space are inferred.

2.4 Bounded variation

Another important concept for the class of dynamics considered in this thesis is the
concept of bounded variation. And the subclass of functions defined on a closed
interval X = [a, b], of a normed space satisfying the bounded variation property.

Definition 2.17 (Variation). Let f be a real-valued or complex-valued function de-
fined on an interval [a, b]. The variation of f on [a, b] is the non-negative number
(it can be infinite)

⋁
[a,b]

f = sup{
n

∑
i=1

∣f(xi) − f(xi−1)∣ ∶ a = x0 < x1 < ... < xn = b} ,

where the supremum is taken for all the possible partitions of [a, b]. If ⋁[a,b] f <∞,
f is said to be of bounded variation on [a, b].

Definition 2.18 (Variation on L1). Let f ∈ L1([a, b]). Then, its variation on [a, b]
is defined as

13
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⋁
[a,b]

f = inf
⎧⎪⎪⎨⎪⎪⎩
⋁
[a,b]

g ∶ g(x) = f(x),∀x ∈ [a, b], µ − a.e.
⎫⎪⎪⎬⎪⎪⎭
,

If ⋁[a,b] f <∞, then f is said to be of bounded variation on [a, b].

Example 2.3. The variation in [0,1] for the density function

h(x) = χ[0, 1
4
)(x) +

1

3
χ
[ 1
4
, 1
3
)(x) + 3χ[ 1

3
, 1
2
](x) +

4

9
χ
[ 1
2
,1](x),

is computed choosing x0 = x ∈ [0, 14), x1 = x ∈ [14 , 13), x3 = x ∈ [13 , 12), and x4 =
x ∈ [12 ,1]. Given that it is a simple function, we can see that the supremum is
attained by the choice of this set of xi, otherwise some of the differences will be zero.
Therefore:

⋁
[0,1]

f = ∣1 − 1

3
∣ + ∣1

3
− 3∣ + ∣3 − 4

9
∣ = 44

9
.

2.5 Compactness and quasi-compactness

An important result for the class of expansive maps on the interval utilizes a theorem
of fixed point of an operator applied on a dense subset of space of functions L1, and a
required condition for the existence of the fixed point in this aforementioned theorem
is compactness. It is defined in the following.

Definition 2.19 (Strong precompactness and compactness). Let (X,Σ, σ) be a mea-
sure space and let F be a subset of L1(X). The set F is said to be strongly precom-
pact if for every sequence {fn} ⊂ F there exists a subsequence {fni

} of {fn} such
that

lim
i→∞
∣∣fni
− f̄ ∣∣ = 0

for some f̄ ∈ L1. Moreover, if F is closed in L1, then F is said to be compact.

Definition 2.20 (Weak topology). The weak topology of measures is a topology of
weak convergence of a sequence of measures {µn} to a measure µ if and only if

∫
X
gdµn → ∫

x
gdµ,

where g ∶X → R with the norm

∣∣g∣∣C ∶= sup
x∈X
∣f(x)∣ .

This is also sometimes referred to as vague convergence.
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Definition 2.21 (Precompactness and weak compactness). The set F is said to be
weakly precompact if every sequence {fn} ⊂ F contains a subsequence {fni

} that
weakly converges to some f̄ ∈ L1(X), i.e.,

lim
i→∞
⟨fni

, g⟩ = ⟨f̄ , g⟩,∀g ∈ L∞(X).

Moreover, if F is closed in the weak topology of L1(X), then F is said to be weakly
compact.

Let P ∶ V → V be a linear bounded operator on a Banach space (V, ∣∣ ⋅ ∣∣V ).

Definition 2.22 (Compactness). A linear bounded operator P is said to be compact
if it maps bounded sets to precompact sets.

Definition 2.23 (Quasi-compactness). P is said to be quasi-compact if there exists
a positive integer r and a compact operator K such that

∣∣P r −K ∣∣V < 1.

In this thesis, one of the main tools we utilize for the study of the evolution
of density functions under the action of a transformation, is the Perron-Frobenius
operator, which, in general is not compact in L1 [6]. The following theorem is a
classic and fundamental result, which states sufficient conditions for guaranteeing the
quasi-compactness of bounded linear operators in L1. As we will see, this property
is fundamental for proving the existence of a fixed point of the Perron-Frobenius
operator, which in turn translates to the existence of an invariant density for the
respective system associated to it.

Theorem 2.3 ([2], Ionescu-Tulcea and Marinescu). Let Ω be a bounded region of
RN , and let (V, ∣∣ ⋅ ∣∣V ) be a Banach space such that V is a dense vector subspace of
L1(Ω). Let T ∶ V → V be a bounded linear operator with respect both to the norm
∣∣ ⋅ ∣∣V and the norm ∣∣ ⋅ ∣∣. Assume that

(i) if fn ∈ V for n = 1,2, ..., f ∈ L1(Ω), limn→∞ ∣∣fn − f ∣∣ = 0, and ∣∣fn∣∣V ≤ M for
n, then f ∈ V and ∣∣f ∣∣V ≤M , where M is a constant;

(ii) supn≥0 {∣∣T nf ∣∣ /∣∣f ∣∣ ∶ f ∈ V, f ≠ 0} <∞;
(iii) there exist k ≥ 1, 0 < α < 1, and β <∞ such that

∣∣T kf ∣∣V ≤ α∣∣f ∣∣V + β∣∣f ∣∣, ∀f ∈ V ;

(iv) if V0 is a bounded subset of (V, ∣∣ ⋅ ∣∣V ), then T kV0 is precompact in L1(Ω).
Then, Λ (the set of the eigenvalues of T with modulus 1) has only a finite number

of elements, D(λ) = {f ∈ V ∶ Tf = λf} (the eigenspace of T associated with eigen-
value λ) is finite dimensional for each λ ∈ Λ, and T ∶ (V, ∣∣ ⋅ ∣∣V ) → (V, ∣∣ ⋅ ∣∣V ) is
quasi-compact.
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Definition 2.24 (Markov operator). A linear operator P ∶ L1(µ) → L1(µ) if it is
closed under the set of density functions D ∶= {f ∈ L1(X,Σ, µ) ∶ f ≥ 0, ∣∣f ∣∣ = 1} in
L1(µ). Namely, if PD ⊂ D.

The following result is a widely known and powerful tool utilized for determining
the convergence of a sequence of the iterates of Markov operators P ∶ L1 → L1.

Theorem 2.4 ([2],Kakutani-Yosida abstract ergodic theorem). Let (X,Σ, µ) be a
measure space and let P ∶ L1 → L1 be a Markov operator. If for a given f ∈ L1, the
sequence of {Anf} of the Cesáro averages (Anf = 1

n ∑
n−1
i=0 P

if) is weakly precompact
in L1, then it converges strongly to some f∗ ∈ L1, which is a fixed point of P , that
is,

lim
n→∞
∣∣Anf − f∗∣∣ = 0

and Pf∗ = f∗. Furthermore, if f is a density function, then so it is f∗, so that f∗

is a stationary density of P .

Therefore, if a Markov operator (in particular, the Perron-Frobenius operator) is
quasi-compact, it maps bounded sets to precompact sets, and the implication from
this last theorem is that the sequence {Anf} converges strongly to a fixed point.
These last notions about compactness and precompactness are necessary to provide
a comprehensive extent on the proof of a classic result about the existence of a fixed
point for the Perron-Frobenius operator on the Lasota-Yorke maps in the interval.

2.6 Ergodicity and mixing

The chaotic discrete dynamic systems do satisfy, by the definition of Devaney, the
property of transitivity. This concept, in turn, is related to the idecomposibility of
the transformation [6]; i.e., the restriction of the dynamics to a subset of the state
space will eventually this subset.

If for a measure-preserving transformation T ∶ (X,Σ, µ)→ (X,Σ, µ) there exists
a non-trivial set A ∈ Σ different fromX such that T −1(A) = A (i.e., it is T−invariant),
then T −1(Ac) = Ac. Therefore, we have that the dynamics of T can be decomposed
in two: T ∣A ∶ A → A and T ∣Ac ∶ Ac → Ac. If this cannot happen, then for T the
property of ergodicity holds [6].

Definition 2.25 (Ergodicity). Let (X,Σ, µ) be a measure space. A measurable
transformation T ∶ X → X is said to be ergodic if every invariant set A ∈ Σ of T is
such that µ(A) = 0 or that µ(Ac) = 0. In other words, T is ergodic if and only if its
invariant sets or their complements are equivalent to the empty set a.e. Such sets
are known as the trivial subsets of X.
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Theorem 2.5. [6] Let (X,Σ, µ) be a measure space and let T ∶ X → X be a non-
singular transformation. Then T is ergodic if and only if for every bounded measur-
able function f ∶X → R,

f(T (x)) = f(x), ∀x ∈X µ − a.e

implies f(x) is a constant function (a.e.).

An alternate equivalent condition for egodicity is given by the next theorem:

Theorem 2.6. [6] Let (X,Σ, µ) be a probability measure space and let T ∶ X → X
be measure preserving. Then, S is ergodic if and and only if for all A,B ∈ Σ

lim
n→∞

1

n

n−1

∑
i=0

µ (T −i(A) ∩B) = µ(A)µ(B).

The definitions of mixing and weak mixing provide the most robust notions about
the unpredictability for large times for deterministic dynamics, regarding how much
the system can “spread” all over the state space any measurable set under its action.
Or in other words, what is the likeliness of the points in any given set to visit any
other given set, with respect to the invariant probability measure of the system.

Definition 2.26 (Mixing). Let (X,Σ, µ) be a probability measure space and let
T ∶ X → X be a measure preserving transformation. T is said to be mixing if for
every A,B ∈ Σ,

lim
n→∞

µ(T −n(A) ∩B) = µ(A)µ(B).

Definition 2.27 (Weakly mixing). Let (X,Σ, µ) be a probability measure space and
let T ∶ X → X be a measure preserving transformation. T is said to be weakly
mixing if for every A,B ∈ Σ,

lim
n→∞

1

n

n−1

∑
i=0

∣µ(T −i(A) ∩B) − µ(A)µ(B)∣ = 0.

Theorem 2.7 (Birkhoff’s Point-wise ergodic theorem). Let µ be a probability mea-
sure on X which is invariant under a transformation T ∶ X → X. Then, for any
integrable function f defined on X and almost every x ∈X, the time average

lim
n→∞

1

n

n−1

∑
i=0

f(Ti(x)),

exists and is denoted by f̂(x). Also

f̂(T (x)) = f̂(x),∀x ∈X µ − a.e.

Moreover, if T is ergodic, then f̂ is the constant function ∫X fdµ.
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Next, we show an example of a system with an invariant measure that is ergodic
but not mixing.

For further details about this result, see Chapter 3 in [6].

Example 2.4. Consider the map T (x) = x + 1
3 (mod 1):

T (x) = { x + 1/3, 0 ≤ x ≤ 2
3

x − 2/3, 2
3 < x ≤ 1.

(2.4)

It is known to have a 3-cycle for every initial condition (see Example 3.1.2 in
[13]), and one can also check that the third iterate T 3(x) is equal to the iden-
tity function. Then, the invariant measure µ1(A), induced by the density function
f1(x) = 1

3
χ
{x0}(x) + 1

3
χ
{T (x0)}(x) + 1

3
χ
{T 2(x0)}(x) can be expressed as

µ1(A) = ∫
A
f1(x)dm,

where m is the Lebesgue measure. The measure µ1 of the only invariant set E =
{(x0), T (x0), T 2(x0)} is exactly 1, and we can check that µ1(Ec) = 0. Therefore µ1

is T -ergodic.
We can check that µ1 is not mixing by considering Definition 2.27: the limit on

the left hand side of the expression:

lim
n→∞

µ(T −n(A) ∩B) = µ(A)µ(B)

does not exists, given that for every A ∈ Σ and every n ∈N, T −3n(A) = A. Thus, the
equality does not hold.

Remark 2.5. In general, a system is not inherently ergodic, but with respect to its
invariant measures. That is, if a system has more than one invariant measure, not
all of them could be ergodic (or mixing).

The next ergodic theorem expresses the concepts of ergodicity, weak mixing and
mixing in a functional form. This is useful in order to confirm if the mixing properties
hold for a specific transformation [6].

Theorem 2.8. [6] Let (X,Σ, µ) be a probability measure space and let T ∶ (X,Σ, µ)→
(X,Σ, µ) be a measure-preserving transformation

1. The following expressions are equivalent:

(a) T is ergodic

(b) For every f , g ∈ L2(µ),

lim
n→∞

1

n

n−1

∑
i=0
∫
X
(f ○ T i)gdµ = ∫

X
fdµ∫

X
gdµ.
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(c) For every f ∈ L2(µ),

lim
n→∞

1

n

n−1

∑
i=0
∫
X
(f ○ T i)fdµ = (∫

X
fdµ)

2

.

2. The following expressions are equivalent:

(a) T is weakly mixing

(b) For every f , g ∈ L2(µ),

lim
n→∞

1

n

n−1

∑
i=0

∣∫
X
(f ○ T i)gdµ − ∫

X
fdµ∫

X
gdµ∣ = 0.

(c) For every f ∈ L2(µ),

lim
n→∞

1

n

n−1

∑
i=0

∣∫
X
(f ○ T i)fdµ − (∫

X
fdµ)

2

∣ = 0.

(d) For every f ∈ L2(µ),

lim
n→∞

1

n

n−1

∑
i=0

[∫
X
(f ○ T i)fdµ − (∫

X
fdµ)

2

]
2

= 0.

3. The following expressions are equivalent:

(a) T is mixing

(b) For every f , g ∈ L2(µ),

lim
n→∞
∫
X
(f ○ T n)gdµ = ∫

X
fdµ∫

X
gdµ.

(c) For every f ∈ L2(µ),

lim
n→∞
∫
X
(f ○ T n)fdµ = (∫

X
fdµ)

2

.

2.7 Perron-Frobenius operator

Let (X,Σ, µ) be a measure space and let T ∶ X → X be a non-singular transforma-
tion. Given a function f ∈ L1, we can define a real-valued measure

µf(A) = ∫
T−1(A)

fdµ,∀A ∈ Σ.

Since T is non-singular, µ(A) = 0 implies µf(A) = 0. Thus, the Radon-Nikodym

theorem implies that there exists a unique function f̂ ∈ L1, such that

µf(A) = ∫
A
f̂dµ,∀A ∈ Σ.
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Definition 2.28 (Perron-Frobenius operator). The operator P ∶ L1 → L1 defined by

∫
A
Pfdµ = ∫

T−1(A)
fdµ, ∀A ∈ Σ, ∀f ∈ L1,

is known as the Perron-Frobenius operator associated to T , also denoted by PT .

An explicit expression for the Perron-Frobenius operator associated to maps on
the interval, whose computation and proof can be read in [6], is the following:

PTf(x) =
d

dx ∫T−1([a,x]) fdm, x ∈ [a, b], a.e.,

where m denotes the Lebesgue measure. Likewise, the Perron-Frobenius operator
can be seen as a combination of an integral operator with a differential operator.
Additionally, if the transformation T ∶ [a, b]→ [a, b] is differentiable and monotonic,
from the previous equation, we obtain:

PTf(x) = f(T −1(x)) ∣
d

dx
T −1(x)∣ ,

or [7]:

PTf(x) = ∑
y, T (y)=x

f(y)
∣T ′(y)∣

If a particular system is applied on a density as initial condition, instead of an
individual point, then the successive densities are given by a linear integral operator,
the Perron-Frobenius operator [8].

Example 2.5. Recalling Example 2.1 (equation (2.2)), one can observe the evo-
lution of the densities according to the successive iteration of the Perron-Frobenius
operator asocciated to the transformation (piecewise monotonic and C2) T (x) = 2x
(mod 1).
We have

T −1(x) = 1

2
x, ∀x ∈ [0,0.5], T −1(x) = x + 1

2
, ∀x ∈ [0.5,1],

and with P 0
Tf(x) as f̂(x) = 1−x, the first iteration of the Perron-Frobenius operator

results as

PTf(x) =
1

2
(1 − 1

2
x) + 1

2
(1 − x + 1

2
) = 3

4
− 1

2
x = f̂2(x).

By repeating the procedure with f̂(x) = f̂2(x) in order to compute the second iteration
P 2
Sf(x), we obtain f̂2(x) = 5

8 − 1
4x = f̂3(x). Then, by mathematical induction, we can

compute an explicit expression for P n
S f(x):
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First, lets assume

P n
T f(x) =

2n + 1
2n+1

− x

2n
.

We can verify it for the first natural numbers:

P 0
ST (x) = 1 − x, PTf(x) =

3

4
− 1

2
x, P 2

Tf(x) =
5

8
− 1

4
x.

Now we assume P n
T f(x) and calculate P n+1

T f(x):

P n+1
T f(x) = 1

2
(2

n + 1
2n+1

− 1

2n
(1
2
x)) + 1

2
(2

n + 1
2n+1

− 1

2n
(x + 1

2
))

= 2(2n + 1) − 1
2n+2

− 2x

2n + 2 ,

which can be rewritten as

P n+1
T f(x) = 2(n)+1 + 1

2(n+1)+1
− x

2(n)+1
,

which proves, in turn, that P n
T f(x) is correct. Then, by computing the limit when n

goes to infinity we get:

lim
n→∞

P n
T f(x) =

1

2
⋅ χ[0,1](x),

which corresponds to a uniform density distribution.

Remark 2.6. This computation illustrates what can be seen empirically through
histograms estimation we mentioned in Chapeter 2.1, and in Figure 2.3, the evolu-
tion of an initial density, coincides in the limit with the invariant density function
associated to T (x) = 2x (mod 1), which is a constant function.

It is worth mentioning that in the previous example, any constant density func-
tion is an invariant density associated to the map T (x) = 2x (mod 1), being a fixed
point to the Perron-Frobenius operator PT , that is, a function which satisfies the
equation PTf∗ = f∗.

In order to illustrate the convergence of the Perron-Frobenius operator, according
to Theorem 2.9, we show in Figure 2.4 the first ten iterations of the Perron-Frobenius
operator applied to the initial function P 0

Tf(x) = 1 − x.
For the general case of the expansive maps on the interval, we will discuss a classic

result on the existence of a invariant density under the action of the Perron-Frobenius
operator. The proof if this result requires an argument of quasi-compactness of the
operator from and a the fixed point theorem, when the operator acts on a particular
subspace of L1(µ).
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Figure 2.4: Sequence of functions obtained through successive iterations of the PF
operator on the function P 0

Tf(x) (in red) associated to the map in Example 2.1.

Theorem 2.9 (Lasota-Yorke theorem, 1973 [2]). Let T ∶ [0,1]→ [0,1] be a C2piece-
wise function such that inf ∣T ′∣ > 1. Then, for any f ∈ L1, the sequence

1

n

n−1

∑
k=0

P k
T f

converges in norm to a function f∗ ∈ L1. The limit function has the following
properties:
(1) f ≥ 0, then f∗ ≥ 0.
(2) ∫

1

0 f
∗dm = ∫

1

0 fdm.
(3) PTf∗ = f∗ and consequently, the measure dµ∗ = f∗dm is T -invariant.
(4) The function f∗ is of bounded variation; also, there exists a constant c,

independent of the choice initial f such that the variation of f∗ satisfies the inequality

⋁
[0,1]

f∗ ≤ c∣∣f ∣∣. (2.5)

The outline of the proof follows first from Theorem 2.3 (Ionescu-Tulcea and
Marinescu), from which the quasi-compactness of the operator PT is given. Then,
by applying Theorem 2.4 (Kakutani-Yosida) the existence of a fixed point f∗ ∈ L1

such that PTf∗ = f∗ is guaranteed.
The type bound we see in (2.5) is widely known, and it also has been utilized in

the proof of further generalizations of this classic result, as we will recall later on in
Chapter 4.3.

2.8 Decay of correlations

Let (X,Σ, µ) be a probability measure space and let T ∶ X → X a non-singular
transformation. Given two adequate functions f and g from a space of functions,
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which are frequently, in this context referred as observables. The differences

∫
X
(g ○ T n)fdµ − ∫

X
fdµ∫

X
gdµ

are called correlation functions of the observables f and g. If T preserves µ and it
is mixing, then the correlation function decays up to zero when n goes to infinity.
The rate of decay of correlations measures the speed at which the dynamics of the
system, determined by T and µ, becomes independent if the initial conditions [6].

Definition 2.29 (Correlation coefficient). Let µ be an invariant probability measure
for a non-singular transformation T ∶ X → X and let n be a positive integer. For
any f ∈ L1(µ) and g ∈ L∞(µ) the quantity

Cor(f, g, n) = ∣∫
X
(g ○ T n)fdµ − ∫

X
fdµ∫

X
fdµ∣ (2.6)

is referred to as the n-th correlation coefficient.

In practice, the measure µ is generally unknown, and therefore, it is not possible
to determine the correlation coefficient analytically. In [7], an expression for the
correlation coefficient is provided, which is known as correlogram:

Ĉor(f, g, n, k) ∶= 1

n

n−1

∑
i=0

f(T i(x))g(T i+k(x)) − 1

n

n−1

∑
i=0

f(T i(x)) ⋅ 1
n

n−1

∑
i=0

g(T i(x)) (2.7)

For an ergodic system, (2.7) is a consistent estimator for (2.6) [6, 7]. That is,
Ĉor(f, g, n, k)→ Cor(f, g, n) µ-a.s.

Example 2.6. Consider the map of the interval T (x) = 3x (mod 1). Setting f =
g = χ[0,1/3], one can compute the decay of correlations with (2.7) (see Figure 2.5).

2.9 Lyapunov exponents

Another important property to know about the chaotic systems is whether or not
their trajectories depend in a very sensitive way on the initial conditions. Namely,
if we start with two typical initial conditions (with respect to the typical invariant
measure, if it exists), the distance between its orbits grows exponentially over time.
The phenomenon about the growth of small errors is known as sensitive dependence
on the initial conditions [7]. It is important to note that throughout this thesis we
consider the space state X as a subset of the real numbers R.

Closely related with the sensitive dependence on initial conditions, is the concept
of hyperbolicity, which characterizes the notion of unstable and stable fixed points.
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Figure 2.5: Coefficient of correlation for the map T (x) = 3x (mod 1), with f =
g = χ[0,1/3](x). One can observe how it resembles a exponentially decaying curve,
which is expected, since this transformation is known to be exponentially mixing
with respect to the Lebesgue measure.

Given that the dynamics are locally directed by the first derivative of a system near
a fixed point (see [7] for further details), in a hyperbolic system, some sets of points
are exponentially expanded (or contracted) fast by successive iterates of the map.
The following definitions state the corresponding expressions for this concept.

Definition 2.30 (Hyperbolic fixed point). The point x0 is a hyperbolic fixed point
of the map T if T (x0) = x0 and ∣T ′(x0)∣ ≠ 1.

Definition 2.31 (Attracting or repelling hyperbolic fixed point). There are two
types of hyperbolic fixed points. A fixed point is said to be hyperbolic attracting if

∣T ′(x0)∣ < 1.

A fixed point is said to be hyperbolic repelling if

∣T ′(x0)∣ > 1.

Remark 2.7. A hyperbolic system, that is, with hyperbolic fixed points, is character-
ized by the predictability of its orbits (say if they converge to a fixed point, periodic
cycles or to infinity), regardless of initial conditions. In a repelling hyperbolic sys-
tem, two orbits cannot stay arbitrarily close to each other [7]. And in a attracting
hyperbolic system, the orbits converge to the fixed point, for sufficiently large times.

The following lemma, whose proof can be found in [7], ensures that in a hy-
perbolic dynamical system, the distance between two non-identical orbits at some
iteration grows exponentially fast.

Lemma 2.10. Consider a hyperbolic dynamical system. There is an ϵ > 0 such that
the following is true. Let {xn} and {yn} be any two orbits. Then either xk = yk for
all n, or there is at least one k for which ∣xk − yk∣ ≥ ϵ.
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Remark 2.8. In a compact system, the orbits can only separate some finite amount.
That is why it is also important consider a rate of divergence between arbitrarily close
points.

Definition 2.32 (expansive transformation). A transformation T ∶ X → X is said
to be expansive, if for every element in its space state x ∈X, the following holds:

inf
x∈X
∣T ′(x)∣ > 1.

The quantity λ defined by:

λ ∶= lim
n→∞

1

n
log ∣ d

dx
(T n(x))∣ = ∫ log ∣T ′(⋅)∣dµ, (2.8)

is known as the Lyapunov exponent of the transformation T for the measure µ.
Frequently, the Lyapunov exponent is interpreted as a quantitative indicator of the
sensitive dependence on the initial conditions on specific chaotic systems [7]. From
Birkhoff’s theorem and the expression for the Lyapunov exponent [7], we obtain the
following expression, which will be referred later on Chapter 4:

λ = lim
n→∞

1

n
log ∣ d

dx
(T n(x))∣ = lim

n→∞

1

n

n−1

∑
j=0

log ∣T ′(T j(x))∣.

Example 2.7. Consider the system

T (x) = { 2x, 0 ≤ x ≤ 0.5
x − 0.5, 0.5 < x ≤ 1,

which has invariant probability density function f∗(x) = 4
3
χ
[0,1/2](x) + 2

3
χ
(1/2,1](x),

which induces the measure µf(A) =m(A) ⋅f∗(x), for every subset A of [0,1], where
m is the Lebesgue measure. Then, we can compute analytically its Lyapunov expo-
nent with (2.8), which yields:

λ = ∫
1/2

0

4

3
log(2)dm + ∫

1

1/2

2

3
log(1)dm = 2

3
log(2) ≈ 0.46209...

Therefore, having a strictly positive Lyapunov exponent, one can expect to observe
the phenomenon of sensitive dependence on initial conditions, as we can see on
Figure 2.6.
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Figure 2.6: The first iterations of two arbitrary orbits for T (x), {xn} and {yn}, with
∣x0 − y0∣ ≤ 0.001. We can see how these orbits stay relatively near to each other for a
few iterations, but eventually they separate and display an asynchronous behavior,
as expected in a system with a positive Lyapunov exponent.

In this previous example, if any two trajectories start arbitrarily close to the
fixed point x = 0, we can compute that they tend to separate exponentially, at
a rate of 2n. However, since the branch in (1/2,1] maps every incidence back to
[0,1/2] without any further expanding (since it has derivative equal to 1), their
eventual rate of separation is lower and is given by the Lyapunov exponent. It
is important to note here that although the orbits considerably deviate from each
other after a few iterations, they can eventually get relatively close, given that
this dynamical system occurs in a compact set. The Lyapunov exponent is not a
measure of separation between close initial conditions; it actually gives us the rate
of separation of infinitesimally close arbitrary points.

Having defined the concepts and definitions we require in this thesis about de-
terministic dynamics (and maps on the interval in general), we will approach in
the following chapter, definitions and results on random dynamics, concerning the
exposition and discussion of the Chapter 4.
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Chapter 3

Phase transition phenomenon

Within a physical or experimental context, the phenomena that can be modeled
by means of a map in the interval, can undergo an abrupt change of physical or
chemical properties, after which, its nature may change completely from the one
that was present in its former state (see Chapter 1.2 in [6]). That is why, in the
context of the dynamical systems, the expressions that model physical phenomena
replicate this event in such a way that it is carried over as some type of singularity,
usually understood as a sudden change of dynamical or statistical properties, which
consequently reflect a relevant part of the nature of the physical phenomenon that
a system under study system models.

In this chapter, we provide some context about the phase transition phenomenon
in maps in the interval. The type of phase transition we are interested in, is that
in which a map in the interval undergoes a major change in the statistical behavior
of its orbits as a function of a characteristic parameter defined in its equations.
We define this change as the transition from the existence to the non-existence (or
viceversa) of an invariant density function with support on a set of positive Lebesgue
measure, and therefore, of an a.c.i.m. In this scenario, the dynamics of the systems
transits from a “stable” behavior, i.e., one that distributes the orbit over a finite set
of points in the interval [0,1], into a type of behavior that distributes the trajectories
on relatively large portions of the interval, or usually referred to as “chaotic”, being
the case that they converge to a chaotic attractor. This phenomenon can also take
place the other way around, having the transition from existence of the a.c.i.m. to
the non-existence situation. We propose the following definitions to describe the
phenomenon we study in this thesis:

Definition 3.1 (Phase transition). Consider a dynamical system T ∶ (X,Σ) →
(X,Σ), with a continuous dependence on a real-valued parameter γ ∈ F and two
disjoints sets G,H ⊂ F such that m(G∪H) =m(F ). If T has an absolutely invariant
measure (with respect to the Lebesgue measure) for the values of γ in either G or H,
but it does have an acim for the values in the other set, then the dynamical system
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T is said to experience a phase transition in the sense of non-existence to existence
of an a.c.i.m.

From this definition, it is sufficient to identify two regions of values of the param-
eter where the acim exists, and where it does not exist to point out the occurrence
of the phase transition phenomenon. Furthermore, given that the dynamic behavior
of T is continuously dependent on γ, is implied that there exists a critical region
where this transition occurs. We define it as follows:

Definition 3.2 (Critical region). If a system T as described in Definition 3.1 experi-
ences a phase transition, and there exists a region of values of the parameter γ, such
that it conforms the boundary set of both G and H,i.e. γc ∶= {γ ∈ F ∶ γ ∈ (∂G ∪ ∂H)},
then the set γc is said to be a critical region of the parameter associated to the phase
transition in the dynamics of T .

Our main interest lies in the study of the set of conditions that lead to the
manifestation of the phase transition phenomenon in random maps in the inter-
val. Nonetheless, we need to point out that up to our knowledge, and concerning
random maps in the interval, there is no literature registering the incidence of this
phenomenon, nor have been provided some conditions that yield to its occurrence
in some class of random dynamics. On the other hand, this phenomenon, in the
way we defined it, has been observed and reported in deterministic dynamics (not
only maps in the interval). Therefore, we will cover in the following pages some of
the most widely-known deterministic systems in one dimension which are known to
exhibit this phenomenon.

3.1 Logistic map

A classic and well-known example that can illustrate the richness of behaviors that
a map in the interval can exhibit, is the logistic map. This map, defined as Tµ(x) =
µx(1 − x) shows a behavior as a function of its characteristic parameter µ, where
Tµ(x) ∶ [0,1] → [0, µ4 ]. The dynamics of Tµ(x) changes as the parameter µ passes

through each of the values 1,2,3,1 +
√
6, . . . , called the bifurcation points [6], and

the quantity, location and nature of the fixed or the periodic points changes when
µ passes through each of them.

When µ > 1 +
√
6, the 2-cycle present in the dynamics for lower values, becomes

repellent and a attracting 4-cycle is generated in its place. Actually, there exists a
sequence {µn} of the period-doubling bifurcation values for the parameter µ, with
µ0 = 3, and µ1 = 1 +

√
6, such that if µn−1 < µ ≤ µn, then Tµ(x), has two repelling

fixed points, one repelling 2k-cycle for k = 1,2, . . . , n−1, and one attracting 2k−cycle
[6], see Figure 3.1.
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Figure 3.1: Bifurcation diagram for Tµ(x) = µx(1 − x).

A fact that is very significant in the analysis of this system too, is the following
limit, from the work of Feigenbaum ([31]):

lim
n→∞

µn = 3.561547 . . . ,

which is known as the Feigenbaum number for the logistic family of maps in the
interval. Moreover, the sequence of ratios

lim
n→∞

rn =
µn − µn−1

µn+1 − µn

≈ 4.6692016091...,

denoted here as {rn} converges, as n →∞, to a quantity known as the Feigenbaum
constant [6]. In this case, when the emergence of an infinite sequence of period
doubling cascades as a function of a parameter occurs, it is generally associated
with chaotic behavior, given that through the observation of bifurcation diagrams,
an intermingling of period-doubling cascades is detected [31], for higher values of µ
which yields into chaotic behavior at a specific value of this parameter.

This dynamical system belongs to a class of unimodal maps defined by G. Keller
in [34], where they proof that this class of systems has an a.c.i.m. of positive entropy
if and only if its Lyapunov exponent is strictly positive. Thus, one can propose a
large number of transformations that undergo this phase transition and compute its
Feigenbaum number. Given that continuous unimodal maps have a critical point
where its derivative equals zero, they also are characterized for a contracting region
near this point, and for values of its parameter for which this region contains a fixed
point, they will be trivially stable.

Here, we consider that the phase transition phenomenon is occurring at each
value of µ for which the change in the typical distribution of the trajectories imply
that the dynamics underwent a transition from the non-existence to the existence of
an a.c.i.m (or vice versa). For example, when µ ≈ 3.56995 the oscillations perceived
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in the trajectories are no longer of finite period, and it is considered to be the end of
a period-doubling cascade [30], and the system experiences a phase transition in the
direction of the non-existence to the existence of an a.c.i.m., according to Definition
3.1.

Thus, we will discuss next two families of transformations that have no contract-
ing regions but also they do not satisfy the conditions of the Lasota-Yorke theorem
and nonetheless, experience the phenomenon of phase transition (in the way we
propose it) in an asymptotic manner.

3.2 W-maps

In [22] a family of ‘W’- shaped maps whose behavior changes as according to the
parameter a is considered. As the family approaches a limit W map, the dynamics
are either be described by a probability density function or by a singular point
measure.

This family of W-maps they have an a.c.i.m. supported on the whole interval,
with the particularity that its limiting dynamical behavior is captured by a singular
measure as the parameter a gets arbitrarily close to the zero value. Consider the
family {Wa ∶ 0 ≤ a} of maps [0,1]→ [0,1] defined by

Wa(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 − 4x, x ∈ [0,1/4)
(2 + a)(x − 1/4), x ∈ [1/4,1/2)
1/2 + a/4 − (2 + a)(x − 1/2), x ∈ [1/2,3/4)
4x − 3, x ∈ [3/4,1].

(3.1)

In their article, only relatively small values of a > 0 are considered, as their interest
lies in the limiting behavior of Wa as a → 0. For every value of a > 0, the map is
piecewise linear, piecewise expansive and with minimal modulus of the slope equal
to 2 + a (Figure 3.2).

Figure 3.2: Map W0(x) (left), and a map Wa(x) (a = 0.1), with a short cobweb
diagram for the trajectory of x = 1/2 (right).
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Figure 3.3: Normalized invariant densities for Wa(x), with a = 0.1, a = 0.05 and
a = 0.01 (from left to right).

Their main result is the following theorem, which establishes the weak conver-
gence of the invariant measure µa to the measure µ0 as a → 0. The measure µ0 has
the density function

h0 = {
3
2 , x ∈ [0,1/2)
1
2 , x ∈ [1/2,1].

Theorem 3.1. [22] As a→ 0, the measures µa converge weakly to the measure

2

3
µ0 +

1

3
δ 1

2
,

where δ 1
2
is the Dirac measure at the point x = 1/2.

This theorem implies that the invariant probability density functions for the
Wa(x) are a combination of an absolutely continuous and a singular measure, and
in turn as a → 0, it is noticeably the growing resemblance of this invariant density
to a Dirac measure giving in some sense, the spirit of a phase transition in the sense
of existence to non-existence of an a.c.i.m., but only as an asymptotic phenomenon,
as we can see in Figure 3.3.

In this case, there is no doubling-period cascade transition, given that for all
values of a here considered, Wa(x) is expansive, and therefore, there is no attracting
set of points to which the trajectories can converge. Rather, this occurred because
of the existence of diminishing invariant neighborhoods of the critical point. And
the standard bounded variation methods for proving the quasi-compactness of the
Perron-Frobenius operator cannot be applied in this family of maps, due to the slopes
are not uniformly bounded away from 2, and since this is a system with stochastic
perturbations, the theory behind the Lasota-Yorke theorem is not applicable. For
further details, see [23].
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3.3 Manneville-Pomeau maps

There exists another very well-known example of maps in the interval with an in-
teresting dynamical transition as a function of one parameter; it has been widely
studied as a model that presents the phenomenon of intermittency as defined in
[1]. This phenomenon exhibits a transition from a “well-behaved” or regular peri-
odic behavior into a chaotic or “turbulent” one in dissipative dynamical systems for
larger values of α.

The most iconic model of maps in the interval that display such behavior, is the
family of Maneville-Pomeau. These maps are characterized by a parameter α > 0,
and one of the key particularities is that this map is always expansive, except at a
neutral fixed point, where hyperbolicity is lost (because T ′α(0) = 1). The equations
defining this maps are:

Tα(x) = {
x (1 + (2x)α) , x ∈ [0,1/2)
2x − 1, x ∈ [1/2,1],

Figure 3.4: Manneville Pomeau map, with two different values of α (top) and a
sample of its typical trajectory (bottom).

where α is the characteristic parameter, for which different ranges of values, imply
a distinct asymptotic behavior of the dynamics in Tα(x). For α = 0, this map is
equivalent to the doubling map, for which it is known to preserve the Lebesgue mea-
sure, and the uniform distribution as its invariant density. When α ∈ (0,1), Tα(x)
has an finite invariant measure, which is commonly associated to the ergodicity and
positivity of its typical Lyapunov exponent [32]; however, the Dirac measure at x = 0
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is invariant as well [3]. And for α ≥ 1, there are no absolutely continuous invariant
probability measures, whereas one still has a σ−finite, absolutely invariant measure.

As the value of α is increased, for the branch in [0,1/2), the limit map as α →∞
is the identity map. For this reason, the trajectories in this range of values of α tend
to perform long excursions in [0,1/2) (see Figure 3.4), associated to a laminar regime
near x = 0 which coexists with a expansive or turbulent behavior near sufficiently
away from x = 0 [32]. In this scenario, Tα(x) has a diverging invariant measure µ(x)
near their indifferent fixed points, its invariant density h(x) behaves as h(x) ∼ bx−α
near x = 0, with b is a positive real number and it is nonergodic [10]. We can see
in Figure 3.5, how the limit density of Tα(x) as α → ∞ is the delta density in one
point in x ∈ [0,1/2). Again, there is no doubling-period cascade transition here, and
the phase transition in the sense of existence to non-existence of an a.c.i.m., only
occurs in asymptotic manner. However, it is known that the decay of correlations
is exponential for α = 0 and polynomial for α ∈ (0,1) (when the a.c.i.m. exists) and
the convergence in Central Limit Theorems (CLTs) has been established [33], and
the study of thermodynamic properties like Rényi entropy and topological pressure
in [10] has shed light about the criticality of the values of these quantities at α = 1,
which is consistent at every instance with the change of the nature of the invariant
density as the Manneville-Pomeau maps transit from and ergodic regime to a non-
ergodic one. For further details, see the articles here cited and the references therein.

Figure 3.5: Empirical invariant densities hα(x) for Tα(x), with α = 0.01, α = 0.75
and α = 5 (from left to right). Due to the finite amount of iterations, the density for
when α = 5 appears to be a delta distribution. However, it is actually a power-law-
like density near the origin; the delta distribution is the limit measure as α →∞.

In the next chapter we will introduce the necessary concepts and notions about
random dynamics in order to proceed towards the study of the phase transition
phenomenon in random maps in the interval.
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Chapter 4

Random dynamics

In order to model physical processes from “simple” models, a class of dynamical
systems subject to a perturbations has been defined, due to the fact that, gener-
ally, the real physical phenomena are subject to noise, which in practice, or during
implementation is often hard to quantify with certainty.

One way to introduce uncertainty and model this type of phenomena in pursuit
of relatively simpler equations, is by means of random maps, which are discrete-
time dynamical systems that are composed by a number of transformations, each
equipped with a well-defined chance of occurring after every single iteration, given
by a probability distribution. For more general cases and further details, we refer
the reader to [12, 8].

First, we introduce in the following some basic notions regarding stochastic pro-
cesses and probability theory. The measure space in this section is referred to as a
probability space and the notation used in this section to describe it will be (Ω,F ,P),
for the result space that takes vales in R, the σ-algebra and the probability measure,
respectively.

Definition 4.1 (Stochastic process). For a probability space (Ω,F ,P), a stochastic
process is a collection of random variables {Xt ∶ t ∈ Θ} parameterized by a set Θ,
known as parametrical space, where the variables take values in Ω, known as the
space state.

Definition 4.2 (Independence). Given a set of data {ωi} ⊂ F , with F = ⋃n
i=1Fi,

and i = 1,2, ..., n for each ωi ∈ Ω, where Fi are the elements of the σ−algebra F , and
i = 1,2, ..., n on a probability measure space (Ω,F ,P), and if

P(Fn ∩ Fm) = P(Fn)P(Fm), n ≠m

then the set of data is said to be independent.

That is, the probability of observing two values ω1 and ω2 is simply the proba-
bility of observing ω1 times the probability of observing ω2. The random component
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when we define the random dynamical systems will only be considering independent
identically distributed processes, since it is a natural way to model perturbations,
and for the sake of simplicity.

Due to the fact that in the context of random variables we are dealing with a
lot more of uncertainty than in deterministic sets of data, it is very important to
distinguish on what terms we say that a random variable is “well behaved” in the
sense of its convergence or divergence. We provide here some fundamental definitions
on this regard.

Definition 4.3 (Almost sure convergence). We say that a sequence of random vari-
ables {Xn}n≥1 converges almost surely to a random variable X if

N = {ω ∶ lim
n→∞

Xn(ω) ≠X(ω)} and P(N) = 0.

Where N is referred to as a null set, or a negligible set. Usually, almost sure
convergence is abbreviated by writing

lim
n→∞

Xn =X P − a.s.

Definition 4.4 (Convergence in probability). We say that a sequence of random
variables {Xn}n≥1 converges in probability to X if for any ϵ > 0 we have

lim
n→∞

P ({ω ∶ ∣Xn(ω) −X(ω)∣ > ϵ}) = 0.

This is also written
lim
n→∞

P (∣Xn −X ∣ > ϵ) = 0.

The weakest type of convergence of random variables, but also the most com-
monly found in practice, is the convergence in distribution (also known as conver-
gence in law); but it is also fundamentally relevant for the discussion of the Central
Limit Theorem (CLT).

Definition 4.5 (Cumulative distribution function). If a random variable has a prob-
ability density function fX(ω), then its corresponding cumulative distribution func-
tion (c.d.f.) FX(ω) is the area under the probability density function (p.d.f.) denoted
by

FX(ω) = P(X ≤ x) = ∫
{ω∈Ω∶ω≤x}

fX(ω)dP

Definition 4.6 (Convergence in distribution). We say that a sequence of random
variables {Xn}n≥1 converges in distribution to X if

lim
n→∞

FXn(ω) = FX(ω),

for all ω ∈ Ω at which F is continuous.
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A fundamental result of probability theory that, roughly speaking, helps to jus-
tify our intuitive notions of probability is the large numbers law (LNL), which states
that in the limit of infinite data n → ∞ the mean of the sample converges to the
expected value E(Xj), which is the same of each j, given that it is identically dis-
tributed. Namely, with a large enough quantity of data, the approximations increase
their precision [38].

Theorem 4.1 (Strong Law of Large Numbers). Let {Xn}n≥1 be an independent,
identically distributed (i.i.d.) process with law P, defined on the same space with ,
with finite expected value µ̃ = E(Xj) and variance σ2 = σ2

Xj
∞. Let Sn = ∑n

j=1Xj.
Then

lim
n→∞

Sn

n
= lim

n→∞

1

n

n

∑
j=1

Xj = µ̃, P-a.s.

When dealing with dynamical systems, the strong large numbers law closely resem-
bles the Birkhoff ergodic theorem, given that in this case, the time mean (equation
2.7) is analogous to the expected value in a stochastic process. When the conver-
gence occurs in probability, we are dealing with the Weak Law of Large Numbers
[37].

Another key result in probability theory is the central limit theorem (CLT), which
helps to understand the rare of convergence of a random variable; from which a key
observation needs to be noted: the only assumption about the distribution of the
random variable {Xn}n≥1 in question is that is has a finite variance. Therefore, if one
is allowed to understand or redefine this random variable as the sum of many i.i.d.
random variables with finite variances, it is possible to deduce that its distribution
is approximately Gaussian, which opens the door to a more extensive estimations
of its most important quantities.

Theorem 4.2 (Central limit theorem). Let {Xn}n≥1 be i.i.d. with E (Xj) = µ̃ and
Var((Xj) = σ2 for all j, with 0 < σ2 <∞. Let Sn = ∑n

j=1Xj, and let Yn = Sn−nµ̃
σ
√
n
.

Then, Yn converges in distribution to Y , where L(Y ) = N(0,1) is the Gaussian
distribution with µ̃ = 0 and σ2 = 1 ∶

N(µ̃, σ2) ∶= f(ω) = 1

σ
√
2π
e−(ω−µ̃)

2/2σ2

.

It is proven in a slightly weaker version of the CLT that in the limit, for
sufficiently-large sample sizes, there is convergence in distribution of Sn/n towards µ̃
at a rate of

√
n (see [?, 37]), meaning that roughly speaking, the rate of convergence

of the LNL is
√
n.
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4.1 Zero-One probability laws

We need to provide some probabilistic results that are going to be necessary in
this thesis for proving some of the results ahead. These zero-one laws provide the
characteristics that a infinite sequence of random variables need to have in order to
determine if a certain event (or subset of this sequence) has probability 0 or 1 of
happening.

Lemma 4.3 (Borel-Cantelli I). Let (Ω,F , P ) be a probability space and An ∈ F ,
n = 1,2, ... If ∑∞n=1P(An) <∞ then P(An i.o.) = 0. “i.o.” stands for infinitely often.

Let B∞ denote the Borel σ−field of subset of R∞ = {(x1, x2, ...) ∶ xi ∈ R1} gener-
ated by events depending on finitely many coordinates. For example: for a random
variable defined by the sum of two random variables X1,2 ∈ [0,1], B∞ = [0,1]× [0,1].

Lemma 4.4 (Hewitt-Savage zero-one law). Let X1,X2, ... be an i.i.d. sequence of
random variables. If an event A = {(X1,X2, ...) ∈ B}, where B ∈ B∞, is invariant
under finite permutations (Xi1 ,Xi2 , ...) of terms of the sequence (X1,X2, ...), that
is, A = {(Xi1 ,Xi2 , ...) ∈ B} for any finite permutation (i1, i2, ...) of (1,2, ...), then
P(A) = 1 or 0.

In general, it is relatively easy to determine if an event in these type of infinite
sequence of random variables satisfies the conditions for this results. What turns
out to be more complicated is to point out which, 0 or 1, is the value that it will
actually take [28].

4.2 Random maps

In [8] there are results about a type of dynamics where a non-singular deterministic
transformation T is considered, and at each instant of (discrete) time the state x
moves with probability (1−ϵ) to the next location T (x), and with probability ϵ that
the new state is given by the action of a random variable. They also define its Perron-
Frobenius operator and proved its asymptotic stability as well as its convergence and
uniqueness of its fixed point. They also treated the case of stochastic perturbations
being constantly applied to a system; their result (see [8, 11]) implies that for a
very broad class of transformations (including non-singular ones), the addition of
a stochastic perturbation will cause the limiting sequence of densities to become
asymptotically periodic, as a type of noise-induced order. This type of dynamics
with a stochastic element taking part in its evolution provided a strong foundation
for the proposition, formalization and study of the concept of random maps. In
this thesis we are concerned with the study of one-dimensional random maps in the
interval [0,1].
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For our setting, we consider S to be an index set, and consider the family Γ ∶=
{τk ∶ for k ∈ S} of measurable transformations of the interval into itself, that is,
τk ∶ I → I for every k ∈ S. Consider also a sequence of S-valued random variables
{ξn}∞n=1 which are independent and identically distributed (i.i.d.) with probability
law P on the space (Ω,F ,P).
Definition 4.7 (Random maps in the interval). A random map in the interval
which we denote by Tξ,Γ, is a time discrete dynamical system in which, the state of
the system at step n+1 is given by one of the transformations τk selected with respect
to the random variable ξn. That is, given ω a realization of the random variable ξ,
the trajectory corresponding to the initial condition x ∈ I is given by,

T n
ξ (x) = τωn ○ ⋯ ○ τω1(x). (4.1)

Theorem 2.9 is a result of existence of the absolutely continuous measure for
expansive maps in the interval, nonetheless, it does hold for completely deterministic
dynamics. A natural question that arises is that if is it valid a random version of
this theorem. This question is, in general, not completely answered. Nonetheless,
there are several valid results for distinct forms of perturbations.

4.2.1 Random Perron-Frobenius operator

One can study this class of random maps in a more general framework of the skew-
product (see for instance [26, 12]), but here for simplicity restrict ourselves to this
particular situation. Next, if we consider (Ω,F ,P) to be a discrete finite probability
space, with ∣Ω∣ = K. The probabilities are given by P(ξ = i) = pi. With ∑K

i=1 pi = 1.
Then we say that the measure µ defined on I, is invariant under the random map
Tξ if for every measurable set A, one has that,

µ(A) =
K

∑
i=1

piµ(τ−1i A). (4.2)

In the case that (Ω,F ,P) is set to be a continuous probability space (i.e., when
the cardinality of Ω is non-numerable), then the measure µ defined on I is said to
be invariant under the random map Tξ if for every measurable set A one has that

µ(A) = ∫
Ω
µ(T −1ξ (A))dP.

Next, as we have done in the deterministic case, one can define the Perron-
Frobenius operator associated to the random map Tξ. Which, for the discrete case
one has that for every f ∈ L1(µ), the operator is given by

PTξ
f(x) =

K

∑
i=1

pi(τ−1i (x))f(τ−1i (x))
∣τ ′i(τ−1i (x))∣

,
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and an analogous expression can be defined for the case of Ω to be a continuous
probability space, which is the following

PTξ,Γ
f(x) = 1

θ − γ ∫
θ

γ

f(τ−1ξ (x))
∣τ ′ξ(τ−1ξ (x))∣

χ
τξ(I)(x)dΩ,

where γ, θ ∈ {ξn}∞n=1 are parameters which will set the boundaries in which the
realization of ξ associated to the random map Tξ,Γ, occurs.

4.3 Existence of invariant densities associated to

a random map

In this section we recall some of the most relevant results concerning the existence
of an a.c.i.m in the setting of dynamical systems equipped with a random compo-
nent. These results include settings which range from random transformations with
position-dependent probabilities, skew-product transformations and a condition of
mean expansiveness, expansive β-transformations and homeomorphisms in the cir-
cle. In these references there is a diverse range of techniques and considerations for
the analysis of these type of transformations. However, in none of these settings is
considered a case for the occurrence of a explicit change in the nature of the dy-
namics, namely, the conditions for a phase transition in the sense of non-existence
to the existence of an a.c.i.m.

4.3.1 Position-dependent random maps

We present first a theorem from [4] for determining the existence of an abso-
lutely continuous invariant measure associated to random maps in the interval [0,1]
on itself, that are piecewise one to one, nonsingular transformations on a parti-
tion P of the state space X, equipped with a function of weighting probabilities
pk(x) which makes them position dependent. These random maps are also con-
formed by a finite number of transformations {τk}Kk=1. Moreover, Góra and Bo-
yarsky propose a method, briefly described here, from [4] for computing the in-
variant densities of piece-wise linear semi-Markov (this concept is properly defined
later on) and position-dependent random maps. A position-dependent random map
T=T(Γ,P ), where Γ = (τ1, τ2, ..., τK) is a collection of K maps in the interval and
P = (p1, p2, ..., pK) is a collection of the corresponding probabilities that are position-
dependent, one has that pk(x) ≥ 0 for k = 1,2, ...,K and ∑K

k=1 pk(x) = 1, for all x ∈ I.
Thus, after each iteration, the random map T comes from point x to τk(x) with
probability pk(x). For a fixed collection of maps Γ, T can have distinct invariant
probability density functions, depending on the choice of the weighting probabilities
P [5].
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Theorem 4.5 ([4]). Let T(Γ,P ) be the random map for which the following assump-
tions hold:

� There exist partitions P = {I(k)1 , ..., I
(k)
qk }, k = 1,2, ...,K, such that each τki =

τk∣I(k)i
, with i = 1, ..., qk, k = 1,2, ...,K

1. is monotonic,

2. C2,
3. ∣τ ′ki ∣ ≥ σ > 1, for some universal constant σ, for all i, and

4. the functions assigning probabilities to each map τk, pk(x), k = 1,2, ...,K
are piece-wise C1 functions.

Let δ = min{λ(I(k)i ) ∶ i = 1, ..., qk, k = 1,2, ...,K} and βk = supx∈I pk(x), k = 1,2, ...K,
then for each f ∈ BV (I),

⋁
I

(PTf) ≤ A⋁
I

f +B ∫
I
∣f ∣dλ,

where

A = 2(β1 + β2 + ... + βK)
σ

, B = 2(β1 + β2 + ... + βK)
σδ

+ max
k=1,2,...,K

sup
I
∣(pk
τ ′k
)
′

∣.

If A < 1, then the random map T has an absolutely continuous invariant density
(a.c.i.m.) µ. Moreover, the operator PT is quasi-compact.

The proof of this theorem can be found in [4].
Now, the method for computing the invariant densities of random maps is specific
for the piece-wise linear semi-Markov maps, and it is a generalization of the matrix
solution to the inverse Perron-Frobenius problem for the deterministic version of
these maps proposed by the same authors in [35]. We recall here the definition they
provide:

Definition 4.8 (Piece-wise linear semi-Markov map). A map τ is a piece-wise linear
semi-Markov map on a partition P = {I1, I2, ..., Iq} if any interval Ii can be further

partitioned into subintervals {J(i)1 , ...J
(i)
ri } such that τ ∣

J
(i)
r

is linear and its image is

a union of a number of intervals of {I1, I2, ..., Iq}.

4.3.2 Obtaining the invariant densities associated to the
random map

For the piece-wise linear semi-Markov map τ , the Perron-Frobenius operator consists
on a matrix M = (mi,j)1≤i,j≤q, with

mi,j =
1

∣τ ′∣
J
(i)
r
∣
⋅ δ(i, r, j),
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where δ(i, r, j) = 1 if τ(J(i)r ) ⊃ Ij and 0 otherwise. The invariant density of a piece-
wise linear semi-Markov map is represented by a vector f = [f1, f2, ..., fq], fi = f ∣Ii ,
which is normalized by the requirement ∑q

i=1 fi = q. Similarly, each weight assigned
to the probabilities are assumed to be constant on the elements of the partition P
and are represented by p = [p(1), p(2), ..., p(q)], pi = p∣Ii , 0 ≤ p(i) ≤ 1. Under this
notation, the T−invariant density is

f =
K

∑
k=1

M
�

kdiag(pk)f, (4.3)

where “�” denotes the transposed operator and diag(pk) is a diagonal matrix
with elements pk(1), pk(2), ..., pk(q) in its diagonal. Given a fixed collection of
piece-wise linear semi-Markov maps Γ = (τ1, ..., τK) and considering the set of at-
tainable densities Apc

Γ as the set of functions f such that there exists a vector
P = (p1(x), p2(x), ..., pK(x)) that assigns a weigth to the probabilities, so f is an
invariant density of the random map T(Γ,P ). In [5] it is proven that Apc

Γ is convex
and in the same paper, a method for computing its extreme points is given after
assigning a vector of probabilities P constituted by zeros and ones. The theorem is
presented as follows.

Theorem 4.6 (Extreme points in the set of attainable densities [5]). Let Γ =
(τ1, ..., τK) be a fixed collection of piece-wise linear semi-Markov maps defined on
a common partition P. Let Apc

Γ the set of attainable densities that is being consid-
ered assigning constant weighting-probabilities on elements of P. If f is an extreme
point of Apc

Γ , then f corresponds to a weighting-probability pk = [pk(1), ..., pk(q)], k =
1, ...,K, where the components of each pk are 0 or 1.

For the proof, we refer to the reader to [5]. The next case, taken from the same
paper, exemplifies Theorem 4.5:

Example 4.1. Considering the two piece-wise linear semi-Markov maps τ1, τ2 that
preserve the Lebesgue measure, such that the position-dependent random map con-
structed with these has more than one invariant density. Let τ1, τ2 defined on [0,1]
with a Markov partition P = {[0,1/2], [1/2,1]} and their corresponding Perron-
Frobenius matrices

M1 = (
1
3

2
3

2
3

1
3

) , M2 = (
1
2

1
2

1
2

1
2

) .

For the probabilities p1 = (p1(1), p1(2)) = (s, t), p2 = (1−p1(1),1−p1(2)) the invariant
density f = (f1,2 − f1) is obtained, normalized by the condition f1 + f2 = 2 ∶

f1 =
8 − 2t
8 − t − s, f2 = 2 − f1.
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Figure 4.1: Possible representation of the configuration of the maps τ1 and τ2, based
on their Perron-Frobenius matrices. The thick lines delimit the elements of P.

Note that f1 can assume any value in the interval [6/7,8/7], with f1((1,0)) = 6/7
and f1((0,1)) = 8/7.

Remark 4.1. The results of the Theorems 4.5 and 4.6, and of the proposed method
in [5] for obtaining the invariant densities hold for maps that are piecewise linear
semi-Markov, piecewise C2 and piecewise monotonic, and that are equipped with
weighting-probabilities functions assigned by their position in the state space.

We need to precise that this result for the existence of acims in random maps,
as well as some of the ones here presented, only consider random maps conformed
by a finite set of transformation to choose from.

4.3.3 Random maps as a projection of skew-products

Given a measure preserving transformation T and an ω-valued random variable, ξ
on a probability space (Ω,F ,P), and considering a model of a random dynamical
system whose time evolution is given by

xn+1 = τξn+1(ω)(xn) for n ≥ 1,
where ξn = ξ ○ σn−1. The systems that of T. Morita works with in [14] are known as
a skew-product transformation, T on I ×Ω, defined by

T (x,ω) = τξ1(ω)(xn) for (x,ω) ∈ (I ×Ω)

Given that projI○T n(x,ω) = τξn(ω)○τξn−1(ω) ○...○τξ1(ω)(x), they investigate the asymp-

totic behavior of the dynamical system (T,m × P) instead of the one-dimensional
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random dynamical system. They show that {ξn}∞n=1 is a stationary set of dependent
random variables, the skew product transformation has a number of (m×P)-acims,
according to the spectral decomposition of the set of random variables {ξn}∞n=1.

Their main theorem in [9], states a result about the existence of a number of
(T,m×P)-acims, and about the ergodicity of these measures. The major assumption
from which it follows is, one of expansiveness in mean, taking into account the
respective probabilities of the constituting maps, from which is evident that even if
a very contractive map conforms the random transformation, having a small enough
weight probability may not make it contractive in mean.

This result, just like Theorem 4.7 next, does not impose restrictions on the deriva-
tive of the maps, other than being greater than zero, in absolute value. Nonetheless,
they provide only sufficient conditions for the existence of the acim; besides, it only
allows the Lebesgue measure of the intervals of monoticity being greater than zero.

4.3.4 Random maps with constant probabilities

S. Pelikan in [15] explores the behavior in dynamical systems on the unit square
[0,1]×[0,1], by representing them through randommaps of [0,1]. This construction,
is understood as a pseudo-skew product. They provide sufficient conditions for a
random map of one dimension to have an acim. The random maps they work with
are Lasota-Yorke type, defined as in the classic Theorem 2.9 of 1973.

The random maps they study are similarly defined to those in [5], with the
difference that the maps conforming it have position-dependent probabilities, and
the ones in the work of S. Pelikan allow the absolute value of the derivative of the
maps to be less than one. Their result is stated as follows:

Theorem 4.7 (Existence of an acim [15]). Let T (x) = Ti(x) (with probability pi),
i = 1, ...,M be a random map of [0,1], where each Ti is a Lasota-Yorke map, and
σ ∈ R+. If for all x ∈ [0,1],

M

∑
i=1

pi
∣T ′i (x)∣

≤ σ < 1, (4.4)

then for all f ∈ L1 ([0,1],m):
1. The limit

lim
n→∞

1

n

n−1

∑
j=0

P j
T (f) = f∗ exists in L1,

2. PT (f∗) = f∗,
3. ⋁1

0 f
∗ ≤ C ∣∣f ∣∣1 for some constant C > 0 which is independent of f.

This result, along with those published by P. Góra [5] are for random maps
equipped with a finite set of transformations to choose from, in contrast with the
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ones included in the next reults of existence, and the class of maps we are interested
in.

Is it worth noting that based on this theorem, we proved in [17] that a non-
uniformly expansive random map with a parameter of probability has an acim but
for a single value of its parameter α ∈ [0,1]. We will provide more details ahead.

4.3.5 Existence of S.R.B. measures in random maps

The concept of a S.R.B. (Sinai-Ruelle-Bowen) measure has been proposed, formal-
ized and studied for the analysis of local instability of attractors in dissipative sys-
tems [36]. Given the fact that a large number of dynamical systems admit more
than one ergodic measure [7], it is logical to investigate which one is more impor-
tant and whether it is “typical” under the consideration that most observable events
are positive Lebesgue measure sets; or if the dynamics in a given system is better
understood by events of zero Lebesgue measure sets (see [36] for extensive details).
For random dynamical systems, a S.R.B. measure is defined as follows.

Definition 4.9 (S.R.B. measure). A probability measure µ is S.R.B. on X for a
random dynamical system, if for P-almost all ω ∈ Ω, the set Bω(µ) of points x ∈ X
such that

1

n

n−1

∑
k=0

δf
Tk−1ω○⋅⋅⋅○fω(x)

→ µ vaguely, as n→∞

has positive Lebesgue measure, being Bω(µ) known as the random basin of µ [7].

A sequence of measures {µn}∞n=1 on a measure space (Ω,F) is said to converge
vaguely to a measure µ if ∫Ω gdµn → ∫Ω gdµ for all continuous functions vanishing
at infinity, i.e., g(ω)→ 0 as ω →∞.

In [19], they provide the proof to a theorem on the existence of S.R.B. measures
for random Lasota-Yorke transformations f ∶ [0,1] → [0,1], specifically, random
β−transformations f(x) = βx (mod 1), where β is distributed accordingly to any
stationary stochastic process in (1,∞). They define the stationary process as fn+1 =
f ○ T n, where T is an automorphism of the probability space (Ω,F ,P), and δx the
Dirac measure at a point x.

Theorem 4.8. Let µ1, ..., µr be the finite collection of all ergodic a.c.i.m.’s for the
skew-product F on Ω × [0,1]. Define νi as the projection on [0,1] of the acim
µi. Then each νi is an absolutely continuous S.R.B. measure. Moreover, P-almost
surely, the union of their basins has total Lebesgue measure.

In other words, this result states that the union of a finite number of S.R.B.
measures on [0,1] contains P-almost every orbit of F , conformed by the union of
their respective basins. While this theorem provides the conditions for a class of
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random Lasota-Yorke interval maps to admit finitely many ergodic absolutely con-
tinuous invariant probability measures, they also posed a question: “Under what
assumptions one can obtain quasi-compactness of the Perron-Frobenius (PF) opera-
tor of the random β-transformation?” And this question was answered by Góra and
Bahsoun in [29], for β ∈ (1,∞) giving the following lemma.

Lemma 4.9 (Quasi-compactness of PF operator for random β-transformations).
Let I = [0,1] and τβ ∶ I → I be a β−transformation with β ∈ (1,∞), we have

⋁
I

Pτβ ≤ A⋁
I

f + δ∣∣f ∣∣1,

where A = 2/β and δ = 1.

With this lemma, they obtained a bound for the Perron-Frobenius operator which
depends uniquely on β. Thus, the Perron-Frobenius operator is quasi-compacteness
and it admits a fixed point in the space of bounded variation functions BV (I).

4.3.6 Random maps equipped with a continuum of trans-
formations

In [16], they prescind of the skew-product setting, and consider a class of random
maps in the interval τt ∶ X → X , equipped with a random parameter t ∈ W , whose
space is allowed to have cardinality of continuum. In each iteration, a transformation
is selected from a set {τt ∶ t ∈W}, determined by this random parameter and by the
probability density function p(t, x) ∶ W × X → [0,∞), which makes them position-
dependent. The maps τt considered in this paper are assumed to be non-singular
piece-wise monotone transformations t-measurable for every x ∈ X .

They allow as well, the interval [0,1] to be partitioned into subintervals by using
a set of subindexes Λ.

Let Λ be a countable or finite set and let Λt ⊆ Λ for each t ∈ W , such that
int(It,i)∩int(It,j)= ∅, with (i ≠ j) and being m the Lebesgue measure, we have
m ([0,1] ∖⋃i∈Λt

It,i) = 0.
With this considerations, and being (W,B, ν) a σ−finite measure space the pa-

rameter space, and T = {τt, p(t, x),{It,i}i∈Λ ∶ t ∈ W} the denomination for the class
of random maps that T. Inoue works with, the function g(t, x) is set to be:

g(t, x) = { p(t, x)/∣τ
′
t(x)∣, x ∈ ⋃i int(It,i)

0, x ∈ [0,1] ∖⋃i int(It,i)

Thus, for their main result they assume the following conditions:

(a) supx∈[0,1] ∫W g(t, x)νdt ≤ α < 1;
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(b) There exists a constant M such that ⋁[0,1] g(t, ⋅) for ν-a.s. t ∈ W , that is,
there exists a ν−measurable set W0 ⊂ W such that ∫W p(t, x)νdt = 1 and

⋁[0,1] g(t, ⋅) <M for all t ∈W0.

Theorem 4.10. Let T = {τt, p(t, x),{It,i}i∈Λ ∶ t ∈W} be a random map. Assume that
the random map T satisfies conditions (a) and (b) above. Then T has an invariant
probability measure which is absolutely continuous with respect to Lebesgue measure.

Similarly to the results in [5], [2], they prove the quasi-compactness of the Perron-
Frobenius operator for this class of systems by classical techniques of bounded vari-
ation, and further, declaring Theorem 4.10 to be a generalization of these previous
results. Moreover, analogously to the results in [9], given that the condition (a) is
automatically satisfied if infx∈[0,1] ∣τ ′t(x)∣ > 1, it can be understood as a condition of
expansiveness in mean, that can also be met for infx∈[0,1] ∣τ ′t(x)∣ < 1, if a suitable
probability density function p(t, x) is chosen.

4.3.7 Invariant measures on iterated function systems

Regarding a class of iterated function systems consisting of uncountably many home-
omorphisms of the circle, and in a similar tenor that in [19] and [16], given that pre-
viously to this result it was assumed that the systems contained at most countably
many transformations, G. Luczynska in [?] proved the existence of a unique invariant
measure associated to the Markov operator P corresponding to the aforementioned
iterated function system.

Let (S1, d) be a metric space where S1 denotes a unit circle with counterclockwise
orientation. For x, y ∈ S1, the distance between x and y is given by d(x, y) ∶=
min{d[x, y], d[y − x]}.

Let Ψ = {Sλ}λ∈[0,c] be a family of orientation preserving homeomorphisms in the
circle, such that Sλ ∶ S1 → S1 for every λ ∈ [0, c], where c ∈ (0,∞) is fixed. The
family Ψ = {Sλ}λ∈[0,c] defines an action of the semigroup of all compositions of the
form Sλn,...,λ1 ∶= Sλn ○ Sλn−1 ○ ⋅ ⋅ ⋅ ○ Sλ1 .

Let p ∶ [0, c]→ [0,1] be a probability density function; i.e., ∫
T

0 p(λ)dλ = 1 and

P(λ ≤ t) = ∫
t

0
p(u)du, for all t ∈ [0, c]

for the random variable λ on a probability space (Ω,F ,P) with values in [0, c].
They call the pair (Ψ, p), an iterated function system.

The e-property for Markov operators is introduced by the following definition.

Definition 4.10. The Markov operator P satisfies the e−property if for every Lip-
schitz function f ∶ S → R and every x ∈ S it holds

lim
y→x

sup
n∈N
∣Unf(x) −Unf(y)∣ = 0,
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where U is such that P is its dual.

Definition 4.11. Let the family Ψ = {Sλ}λ∈[0,c] be given. Let p be a probability
density function on [0, c]. We say that the family Ψ acts minimally if for every
non-empty set A ∈ B(S1), if it holds that Sλ(A) ⊂ A for P−a.e λ, then Ā = S1.

The minimality of the family Ψ is utilized to prove the e-property in [?] and the
uniqueness of an invariant measure for a relevant Markov operator. They establish
this dependence in the following theorem.

Theorem 4.11. Let Ψ−1 ∶= {S−1λ }λ∈[0,c] act minimally and let p be a probability
density function on [0, c]. Then the operator P corresponding to the iterated function
system (Ψ, p) satisfies the e-property and admits a unique invariant measure.

Their main result is the theorem which relates the minimality of the action
and the uniqueness of the invariant measure for the corresponding iterated function
system.

Theorem 4.12. Let Ψ = {Sλ}λ∈[0,c] act minimally and let p be a probability den-
sity function on [0, c]. Then the iterated function system (Ψ, p) admits a unique
invariant measure.

In [?] the space S1 is chosen for the sake of simplicity. They assure that instead
of S1, it could have been considered any other 1−dimensional compact manifold with
an order.

Once we outlined the state of the art about the existence of an invariant mea-
sure in a discrete-time system equipped with random dynamics, we recall next, the
numerical evidence we obtained in two cases of study (see [17]) of random maps in
the interval where a phase transition phenomenon takes place.

4.4 Random maps in the interval with no spon-

taneous phase transition

As we mentioned earlier, a setting regarding random transformations in which the
phenomenon of phase transition in the sense of the non-existence to the existence of
an a.c.i.m. takes place, has not been reported in the literature up to our knowledge.
Our aim is to slightly widen the insight in which these systems are being studied.
Analogously to the deterministic examples we recalled in the previous section, where
the transition can be identified as a function of a single parameter, we propose here
a setting where a single parameter γ determines the nature of random component
of the dynamics. In this case, this random component will be the range of the
different maps conforming the transformation, which for simplicity, is considered to
be uniform.
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Figure 4.2: Graphs of τ1 and τ2.

In [17], we study a family of random maps in the interval exhibiting a phase
transition phenomenon in the sense of non-existence to existence of an invariant
density, and we presented two families of random maps in the interval that exhibits
this phenomenon.

For our first case of study (a random map in the interval conformed by two
transformations), let (Ω,F ,P) be the discrete probability space with Ω = {1,2} and
P be a Bernoulli distribution such that, for each realization of the random process,
we fix an α ∈ [0,1], and the probability of choosing the symbol 1 (p1) is α and 1−α
for the symbol 2 (p2). We consider Γ = {τ1, τ2} the set of maps in the interval which
constitute T1, our first case of random map in the interval. The maps τ1 and τ2 are
defined as

τ1(x) = {
x, 0 ≤ x ≤ 0.5
2x − 1, 0.5 < x ≤ 1 , τ2(x) = {

2x, 0 ≤ x ≤ 0.5
2x − 1, 0.5 < x ≤ 1. (4.5)

For an arbitrary initial condition, each map is applied with probability p1 and
p2, respectively. We determine α to be a parameter of probability, and we study
how the dynamics of T1 change along with the value of α. Note that for the extreme
values of α (0 and 1), the behavior is completely deterministic, being respectively τ1
the doubling map, which is known to preserve the Lebesgue measure; and τ2 being
a transformation which contains the identity map on [0, 12], displays a δ density

centered at one point on [0, 12], depending on the initial condition.
Therefore, given that this is a non-uniformly (due to the presence of the iden-

tity map in τ1(x)) expansive random transformation for α ∈ (0,1], it is natural to
ask if this random dynamics has an a.c.i.m., and in [17] we proved that it has no
spontaneous phase transition, and thus we obtain the following theorem:

Theorem 4.13. Let us consider the random map defined by the random composition
of τ1 and τ2, as in (4.5), selected by a Bernoulli processes with parameter α ∈ [0,1].
This random map has an a.c.i.m. for all α ≠ 1, and thus, it has no phase transition.
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Proof. We use the theorem (4.7). Therefore, we need to compute ∑2
i=1

pi
∣τi′(x)∣ . We

have only two different maps and since the maps are piecewise linear, the slope is
constant for both maps in two intervals. Then, for x ∈ [0,0.5], we have ∑2

i=1
pi

∣τi′(x)∣ ≤
α+1
2 , and for x ∈ (0.5,1], the sum ∑2

i=1
pi

∣τi′(x)∣ = 1/2. In both cases it is strictly less
than 1 whenever α ≠ 1, and thus the random map T1 has an a.c.i.m. for all values
of α except for α = 1. Thus, the random map T1 has an a.c.i.m. for all values of α,
except for α = 1.

Moreover, after proving the map T1 has an acim for all values of α ∈ [0,1), we
used the method proposed in [5] for obtaining the invariant density explicitly, despite
not explicitly being applicable, because of the non-uniformly expansive nature of
T1. Nevertheless, one can obtain the explicit expression for the density function
associated to T1, for α ∈ [0,1). It is known that the invariant density of a piecewise
linear Markov map is piecewise constant on the partition defined for the random
map, and in the case of T1, is clearly seen that this partition P = {I1 = [0,0.5], I2 =
(0.5,1]}, the way are defined in [5], is common for τ1 and τ2. We give the details
about this computation as follows next.

The corresponding Perron-Frobenius operator for T1 is a matrix given by

mij =
1

∣τ ′ I ∣Ii ∣
⋅ δ(i, j),

where the delta function is one if Ij ⊂ τ(Ii), and zero otherwise. The density vector
will be given by f = [f1, f2]�, such that f1 + f2 = 2. Then, given that the matrices
M

�
i and diag(pk) are

M
�
1 = [

1 1/2
0 1/2 ] , M

�
2 = [

1/2 1/2
1/2 1/2 ] , diag(pk) = [

α 0
0 1 − α ] ,

we are ready to compute the invariant densities for T1, by the use of the equation
(4.3), which yields

f1 =
2

2 − α, f2 =
2 − 2α
2 − α .

These expressions are completely consistent with the numerical simulation of the
dynamics of T1, due to the density represented by the histograms (Figure 4.3) con-
verges to the expected invariant density prescribed by the method as a function of
the number of iterations performed in each realization (see Figure 4.4).

Furthermore, we also verified that the associated measure induced by this density
to be actually invariant under the random map T1 as shown next, by using the
equation (4.2).

µf(A) =
2

2 − αm(A1) +
2(1 − α)
2 − α m(A2), (4.6)
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Figure 4.3: Empirical density function associated to the random map T1 in the
interval, for three different values of α.

Figure 4.4: Convergence of the empirical density to the expected density function
fi on I1 (top) and I2 (bottom) for 20 values of α. The empirical density (crosses)
converges to the density function obtained by the Góra-Boyarsky method (solid
black line) as N , the number of iterations is increased.

51



CHAPTER 4. RANDOM DYNAMICS

where m denotes the Lebesgue measure, and Ai ∶= A ∩ Ii for i = 1,2. Thus, we
proceed to present the proof that (4.6) is preserved under the action of the random
map of T1, for α ∈ [0,1).

Proposition 4.1. Let the random map be defined as considered in Theorem 4.13.
Then, the measure given by (4.6) is invariant under T1. That is, the density f
obtained by the Góra-Boyarsky method is indeed, its invariant density.

Proof. Let A ⊂ [0,1] be any Lebesgue measurable set. Let us define Bk,i = τ−1k (A)∩Ii,
where Ii are the elements of the partition of the interval, I1 = [0,1/2] and I2 =
(1/2,1]. Observe that, using the definition of µf given by (4.6), for each map τk,
one has that

µf(τ−1k (A)) =
2

2 − αm(Bk,1) +
2(1 − α)
2 − α m(Bk,2).

We want to check the invariant condition in the random case, which is given by
(4.2). Since the weighting probabilities are α and 1 − α for τ1 and τ2, respectively,
we have

2

∑
k=1

pkµf(τ−1k (A)) = αµf(τ−11 (A)) + (1 − α)µf((τ−12 (A))

= α[ 2

2 − αm(B1,1) +
2(1 − α)
2 − α m(B1,2)] + (1 − α)[

2

2 − αm(B2,1) +
2(1 − α)
2 − α m(B2,2)].

Observe that from the definition of the maps τk’s and the definition of Ai, since
they are a partition for the set A, one has that m(B1,1) =m(A)∩ I1 = A1, m(B1,2) =
1
2m(A) = 1

2m(A1) + 1
2m(A2), and m(B2,1) = m(B2,2) = 1

2m(A) = 1
2m(A1) + 1

2m(A2).
And then, by plugging this expressions into the last equation one has that

2

∑
k=1

pkµf(τ−1k (A)) =
2

2 − αm(A1) +
2(1 − α)
2 − α m(A2) = µf(A).

Which finishes the proof.

4.5 Random maps on the interval with sponta-

neous phase transition

Next, we present our second example, a family of random maps equipped with an
uncountable quantity of maps to choose from at each iteration.

Let us consider a real number γ ∈ [0,2]. Once γ is fixed, it determines the
random map by means of a set Γ1, which contains the range of maps for the chosen
value of the parameter γ. This set is defined by Γ1 ∶= {τβ ∶ β ∈ [γ,2]}, and each
transformation τβ ∶ I → I is given as follows,
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τβ(x) = {
βx, 0 ≤ x ≤ 0.5
2x − 1, 0.5 < x ≤ 1. (4.7)

Figure 4.5: Representation of the random family with γ = 0. Here β is allowed by
the value of γ to take values in the whole interval [γ,2] = [0,2].

The value β ∶= β(ω) is considered to be a realization of the random process {ξn},
as in Definition 4.1. Thus, our random maps are described by Tξ and its itinerary
is given by the equation (4.1). We set the probability distribution P for {ξn} to
be the uniform distribution on [γ,2]. For this family, the extreme cases are: on
one side, when γ = 2, in this case the map is exactly the dyadic transformation
xn+1 = 2xn (mod 1). Namely, it is the only map that can be chosen by the law P,
with β ∈ {[γ,2]} = 2. On the other side, when γ = 0 then the probability distribution
P is the uniform distribution on the whole interval [0,2] and the first branch of the
maps are all the linear transformations with slope β, with values from 0 to 2.

For this family of random maps, we identify the phenomenon of phase transi-
tion as a consequence of an interplay of contracting and expansive transformations,
being that the former induce the orbits to concentrate in a region or point in the
interval, and the latter inducing the orbits to distribute all along the state space.
In our setting for T2, we determine the parameter γ to control this interplay. In the
following, we show some numerical simulations that exhibit the occurrence of this
phase transition for the random map that took place from the random composition
of the maps given by (4.7), as a mean to estimate its invariant density.

4.5.1 Numerical estimation of the invariant measure

Our first approach stood on the study about the existence of an invariant density
for T2. We can remit ourselves to existent results [19, 29], for values of γ ≥ 1, given
that, albeit the dynamic is guided by a random process, it is with probability 1.
Therefore, we are interested in exploring the nature of the dynamics when there
exists, almost surely, a permanent influence of the uncountable contracting maps
against the expansive ones.
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We calculated the typical empirical density for several vales of γ by obtaining
orbits of N = 2.5 ∗ 107 iterations, in order to estimate the invariant density associ-
ated with the random map. We plotted this data in histograms of 1000 uniformly
spaced bins. We could observe from these simulations that there exist a range of
values of γ ∈ [0,0.27] for which the empirical density approaches typically to the δ
function centered at 0. This suggests that the interaction between contracting and
expansive maps is overweighted by the former, and the trajectories are almost cer-
tainly concentrated around the fixed point x∗ = 0. For larger values of γ a different
empirical density shows up, one that distributes the orbit all along the unit interval.
The important phenomenon that occurs here, is the apparent sudden change from
non-existence to existence of the empirical density that becomes more uniformly
distributed as the parameter γ increases in value. This motivates us to estimate the
critical value γc for which the, ‘so called’, phase transition appears (see Figure 4.6).

Figure 4.6: Typical empirical densities for different values of γ. Note that for
γ = 0.26 and 0.27 we have zoomed in at [0,0.1] in order to make visible the density
concentrating at 0. For γ = 0.27 the density starts to spread out all along the unit
interval. This phenomenon is visible for γ = 0.34 for instance.

This behavior is replicated in the obtained numerical results of the empirical
densities for several initial conditions and many realizations of the process {ξn}, and
for many and each of values of γ above the critical value. We give some examples
in Figure 4.7.

In the next pages, we provide a summary of mostly numerical approaches by
which, we explored how to estimate the critical value γc; which include the cal-
culation of the Lyapunov exponent, an operator condition we took from [15] and
accommodated to this case, the empirical measure computed from the histograms,
a mean expansiveness condition we took [9] and also adapted to our case, and the
decay of correlations. We performed this numerical exploration as a function of the
change of the parameter γ.
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Figure 4.7: Typical empirical densities for different values of γ above the critical
value. The densities gradually tend to an uniform distribution as expected.

4.5.2 Lyapunov exponent

The Lyapunov exponent is often interpreted as a quantitative measure of the ex-
ponential separation of orbits, given a transformation T , the Lyapunov exponent
associated to T is given by

λ ∶= lim
n→∞

1

n

n−1

∑
j=0

log∣T ′(T j(x))∣.

Here we use this definition to estimate the value of λ associated to our random
map T2. We introduce the following estimator, given by

λ̃N(Tξ) ∶=
1

N

N−1

∑
j=0

log∣T ′ξ(T j
ξ (x))∣. (4.8)

We computed an estimation of the Lyapunov exponent for the random map T2
with an accuracy of N = 2 × 106 iterations, using expression (4.8). We performed
this for 200 values of γ uniformly drawn from [0,2]. In Figure 4.8, for each γ the
plot shows the average of 100 realizations of 4.8. This quantity happens to display
a change of sign; from negative to positive around γ ≃ 0.26, as its value is increased.
It keeps growing for higher values of the parameter, up to λ̃N(Tξ) = ln 2, as expected
for γ = 2.

In order to obtain a more thorough estimation of γc, we have estimated the
Lyapunov exponent for 200 different values of γ in the reduced interval [0.26,0.27]
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Figure 4.8: Average of (4.8) as a function of γ for 100 realizations. The curve in
the left hand side displays the average of the estimator of the Lyapunov exponent
for γ = 0 up to γ = 2. On the right hand side, we have zoomed in around γc ≈ 0.263.
The data tip is pointing at the last negative value of the parameter for which the
Lyapunov exponent is negative.

as well. The plot in the right hand side in Figure 4.8 shows the average of 100
realizations of λ̃N(Tξ), for each of the selected γ. Since a negative value of the
Lyapunov exponent indicates that the trajectories of the systems do not tend to
separate, or a sensitive dependence on initial conditions, its estimation gave us a
bound for the value of γc ≈ 0.2625, consistent to the numerical evidence of the
invariant density in the previous section.

4.5.3 An operator condition

As shown previously, in [15], they give a sufficient condition for the existence of the
a.c.i.m. in a random map equipped with finitely many Lasota maps. Similarly to
the condition of expansiveness in [2], from the classic Lasota-Yorke theorem, the
expression 4.4 ahead, is related to the definition of the Perron-Frobenius.

m

∑
i=1

pi
∣T ′i (x)∣

≤ σ < 1,

We adapted this condition to our case with T2, by approximating it by an in-
creasing quantity of transformations this map can be equipped with; and as seen
early, m is the number of maps conforming the random map, and pi the probabil-
ity to chose τi with an uniform probability distribution. Here the slope of each of
the τi is given by βi ∶= i(2−γ)

m + γ, for i = 1, . . . ,m. Consider Γ1 of finite cardinal-
ity m, and thus pi = 1/m for the map τi. We have done the estimation of (4.4)
with m = 1,3,5,10,20,50,100,1000,103,104,105,106, each considering 200 values of
γ. For each of this estimations we plotted the results in Figure 4.9. From this
condition, we obtained an upper bound of γc ≈ 0.42, which goes in accordance with
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what we expected, but it is worth noting that it is a bound higher than the other
estimations provided us.

Figure 4.9: Estimation of condition (4.4) for m = 3,100 and 1000000 of maps con-
sidered. The data tips point at the largest value of γ for which the approximation
of the sum in (4.4) is greater than 1. This gives us an upper bound of γc ≈ 0.42.

4.5.4 Empirical measure of I2

As a signature of the existence of an invariant density, one would have the appear-
ance of mass at the state space, or inside intervals with positive Lebesgue measure,
for typical realizations of the random map. For this reason, we did estimate the
empirical probability for the trajectory of the random map to be in the interval
I2 = [1/2,1] (where the random interactions between contracting and expansive
maps does not occur); taking into consideration 200 normalized histograms, which
are a representation of the the empirical density function ĥγ. Using this empirical
density, we calculated the following quantity

∫
I2
ĥγdm = P̂γ([1/2,1]). (4.9)

In Figure 4.10, we show how the probability Pγ([1/2,1]) changes as γ increases.
For values of γ ⪅ 0.27, the probability of incidence of the orbit in that region is
practically equal to zero. And it increases up to 1/2 when γ = 1/2, when the
invariant density is expected to be uniform. As an estimation for the critical value
γc, we searched for the smallest value of γ for which the probability to be in I2 is
strictly positive, which is γ ≈ 0.28. This remains consistent with all of our numeric
results until now.

4.5.5 An expansiveness condition

The example 8.1 in [9] is a form of a random tent map, and since the main result
in this paper provides a necessary and sufficient condition for the existence of the
invariant density but in a skew-product setting, we tried to adapt their mean expan-
siveness condition to our case with T2. We present here the results of this numeric
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Figure 4.10: Estimation of condition (4.9) as function of γ. We look for the γ for
which for the first time the density in the second half is positive, which is γ ≈ 0.28
(within the red circle).

test. As we have seen previously, this condition is true for a finite number of linear
transformations in the interval. The condition, adjusted to T2, is the following. If

K

∏
k=1

βk
pk > 1,

then the random map has an invariant density [9]. As before, βk denotes the slope of
the linear transformation τk and pk its corresponding probability of being selected.

So, for our purposes we did not used directly this condition; we estimated γc
using a version of this condition when the transformations are all the linear maps
with derivative β ∈ [γ,2]. It considers the infimum of all the possible slopes, and
since it can only be attained only in the interval I1 = [0,1/2) of the maps, then we
have the condition

1

2 − γ ∫
2

γ
logβdβ > 0.

After solving this integral, we found an equation for the critical value γc, this yields:

1

2 − γ [2(log 2 − 1) + γ(log γ − 1)] = 0,

whose solution, numerically obtained, is γ∗ ≈ 0.2625828284... This gives us an upper
bound for the critical value γc, which ultimately, is in conformity with the empirical
estimations presented previously. Observe that this condition becomes singular when
γ = 2, and in that case, the probability distribution can only select the map τβ(x) =
2x.
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4.5.6 Decay of correlations

Another important statistical quantity we estimated for T2, was the decay of corre-
lations, using the equation (2.7). As we seen before in section 2.8, the expression
for computing the correlation coefficient for a determined system and set of “test
functions”, or “observables”, is closely related with the expression for quantifying
the mixing property [6]. For T2, we explored how the change in the decay of corre-
lations varies with the value of γ, in order to determine if there exist a relation in
this change around the critical value γc.

Let µ be an invariant probability measure for a non-singular transformation
T ∶ X → X and n a positive integer. Let ϕ ∈ L1 and ψ ∈ L∞, then the k−th
correlation coefficient of these test functions is given by,

Cor(ϕ,ψ, k) = ∣∫
X
(g ○ T k)fdµ − ∫

X
ϕdµ∫

X
ψdµ∣ ,

it is clear that if T preserves µ and is mixing, then the correlation function goes
to zero when k tends to infinite. Also, one can determine how fast the trajectories
become independent of the initial conditions, by the rate of decay of the correlations.
In other words, a fast decay in this rate is expected to be detected when we can
see the “same kind” of typical trajectories, not being important what the initial
conditions were. We remit the reader to [7, Chapter 5] for further details.

For practical issues, we estimated this rate of decay of correlations given finite
samples of the dynamics. For this reason, we present here the definition of an
estimator for the correlation coefficient, as a function of the number of iterations k.
We consider actually, the auto-correlation function estimator, which for a given test
observable ϕ, and a sample of length N , it is defined by

Ĉor(ϕ,N, k) = 1

N

N−1

∑
i=0

ϕ(T i(x))ϕ(T i+k(x)) − 1

N

N−1

∑
i=0

ϕ(T i(x)) ⋅ 1
N

N−1

∑
i=0

ϕ(T i(x)).

The convergence of Ĉor(ϕ,N, k) to the auto-correlation function as N goes to
infinite, is assured by the Birkhoff ergodic theorem and should be because of the
invariance of µ. Here we computed the auto-correlation function estimator, as a
function of k, and we computed it for several values of γ, wanting to detect notable
changes in its behavior. We considered N = 107 −k iterations for k = 1,2, ...,∆, with
∆ = 3000. We made use of two test functions: ϕ1(x) = T (x) the actual state of the
system, and ϕ2 = χA, the indicator function of a given interval A, which in this case
we chose to be A = [0,0.05].

Through this numerical approach, we identified three different regimes for both
of the auto-correlation estimators Ĉor(ϕ1,N, k) and Ĉor(ϕ2,N, k) as we gave higher
values of the parameter. We provide the details of this scope, next.
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First, for values of the parameter γ ≤ γc the auto-correlation function estimator,
for each observable ϕ1 and ϕ2, goes rapidly to zero, at a rate non-identifiable as
power-law-like nor exponential, but rather irregular. But this is expected, due to
the random nature of the random map itself, and that its trajectories go to zero. For
values of the parameter around the critical value, γ ≈ γc, the empirical estimator
of the auto-correlation function exhibits another rate of decay. In this situation,
the rate of decay of the correlations resembles a power-law-like behavior (see Figure
4.11), for each observable ϕ1 and ϕ2. We plot the linear-linear and the log-log
graphics. For the log-log graphic we adjust the curve to obtain the power law
given by Ĉor(ϕ1, k) ∼ c

kη for a positive c and η ≈ 0.4258 and for ϕ2 the exponent is
η ≈ 0.00247.

Figure 4.11: Linear-Linear plots for the auto-correlation estimator for observables
ϕ1 (a) and ϕ2 (b) and its corresponding log-log plots in (c) and (d), respectively.
The fitted line in the case of observable ϕ1 has slope approximately 0.4258 and for
the observable ϕ2 is approximately 0.00247.

Lastly, for values of γ > γc, we expect an exponential rate of decay of correlations.
First, since for γ > 1 all the transformations are expansive and thus the operator for
each of them has the spectral gap property which implies the exponential decay of
correlations. Here we shows the test for γ = 0.3, which we plot in Figure 4.12. Notice
that the decay seems to be slightly faster than in the previous plot for γ = 0.265. This
behavior sharpens for larger γ’s. With this evidence we show, at least numerically
for two particular test functions, that this systems experiments a change in its rate of
decay of correlations, around the critical value γc. Namely, the statistical properties
of the system are altered at the phase transition point.

60



CHAPTER 4. RANDOM DYNAMICS

Figure 4.12: Exponential-like behavior for the auto-correlation estimator for each
observable ϕ1 (left) and ϕ2 (right).

Thus, having established the concepts and existing results concerning to a.c.i.m.s
in random maps, we will present in the following chapter our results regarding the
existence and non-existing of a.c.i.m.s for a certain class of random maps in the
interval, being our motivation, the two cases of study we explained here.
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Theoretical results

Next, we give two original results, concerning the first one, to the class of random
maps defined in the previous section, states a set of sufficient conditions for this
to have an a.c.i.m. as a function of its characteristic parameter γ. Under some
additional conditions, the second theorem will prove how, as a function of γ, the
map Tξ,Γ has an a.c.i.m., and therefore, a phase transition in the sense of non-
existence to existence of an a.c.i.m..

5.1 Setting

Now we will define the class of random maps for which we will prove the existence
an a.c.i.m., as well as the expression for its Perron-Frobenius operator, and the
sufficient conditions for this to occur.

Consider a random map in the interval Tξ,Γ(x) ∶ [0,1] → [0,1], satisfying the
following conditions:

i) There exists a partition of I = [0,1]; 0 = a0 < a1 < ... < ar−1 < ar = 1 such that
the restriction of Tξ,Γ(x) to the sub-interval (ai−1, ai) = Ii is a C2 function, denoted
by Tξ(x)∣Ii = Tξi(x).

ii) Each Tξi(x) is a family of functions with continuous dependence on a real-
valued parameter γ, that is, {τiβ}θβ=γ, is a continuous sequence of functions; where τiβ
corresponds to the i-th realization of the random variable ξ, defined on a continuous
probability space (Ω,F ,P). If for some i, τi is not dependent on β, the restriction
of the map to this Ii is deterministic.

iii) For all β, there is a constant s <∞ such that
τ
′′
iβ
(x)

[τ
′
iβ
(x)]2
≤ s

iv)P is considered to be an uniform distribution density; therefore P(τiβ) = 1
θ−γ .

v) The functions 1
∣τ ′
β
(x)∣ are of bounded variation λ(x)-a.e, and we define ϕi(β) ∶=

infx∈Ii{∣τ ′β(x)∣}
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It is well known that the Perron-Frobenius operator for random maps in the
interval with #(Γ) =K <∞ is expressed as

PTξ,Γ
f(x) =

K

∑
k=1

f(τ−1k (x))pk(τ−1k (x))
∣τ ′k(τ−1k (x))∣

χ
τk(I)(x),

and considering an uniform distribution for the maps τk ∈ Γ, one obtains

PTξ,Γ
f(x) = 1

K

K

∑
k=1

f(τ−1k (x))
∣τ ′k(τ−1k (x))∣

χ
τk(I)(x).

In this case, since the Γ is an uncountable set of transformations, we can prove
that defining for the discrete case βk = γ+ k

K (θ−γ), asK →∞, we can remit ourselves
to the classical definition of integrals, thus, we can express PTξ,Γ

f(x) as

PTξ,Γ
f(x) = 1

θ − γ ∫
θ

γ

f(τ−1β (x))
∣τ ′β(τ−1β (x))∣

χ
τβ(I)(x)dβ, β ∈ (γ, θ] ⊂ R.

Remark 5.1. By the definition of the conditions that Tξ,Γ hold and the construc-
tion of its Perron-Frobenius operator, it is necessary to point out that we do not
assume conditions on the derivative of each 1

τiβ
, other than its variation. That is,

for this setting it could be possible to include random transformations equipped with
a continuum of maps with contracting direction.

5.2 Lasota-Yorke’s approach

In the following, we take the nowadays classic bounded variation approach from [2]
to prove the quasi-compactness of the Perron-Frobenius operator corresponding to
the class of random maps in the interval T(ξ,Γ), which in turn, implies the existence of
the fixed point of the operator, and the existence of an a.c.i.m., and as we will show
in the following, one of the sufficient conditions for this result (the expansiveness in
mean), is stated as a function of the parameter γ.

5.2.1 Existence theorem

Theorem 5.1. Let Γ be an uncountable set of transformations in the interval, let
T(ξ,Γ)(x) ∶ [0,1] → [0,1] be a random map satisfying the i) − v) conditions, and let
PT be the Perron-Frobenius operator associated with T(ξ,Γ)(x). Then, for all density
functions f ∈ L1(I),

⋁
I

P n
T f(x) ≤ Q⋁

I

f(x) + R

1 −Q, ∀n ∈ N, (5.1)
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with

R = 2Pmax
1≤i≤r
{∫

θ

γ
[s + 1

m(Îi)
dβ]} , if Q = 2Pmax

1≤i≤r
{∫

θ

γ

dβ

ϕi(β)
} < 1.

Proof. Consider the variation of PT :

⋁
I

PTf(x) =⋁
I

P
r

∑
i=1
∫

θ

γ

f(τ−1βi
(x))

∣τ ′β(τ−1βi
(x))∣

χ
τβi(I)
(x)dβ.

By properties of variation, the Yorke inequality, and setting Îi = τβi
(Ii) we have

⋁
I

PTf(x) ≤ P
r

∑
i=1
∫

θ

γ
⋁
Ii

f(τ−1βi
(x))

∣τ ′β(τ−1βi
(x))∣

χ
Îi
(x)dβ

≤ 2P
r

∑
i=1
∫

θ

γ

⎛
⎝⋁Îi

f(τ−1βi
(x))

∣τ ′β(τ−1βi
(x))∣ +

1

λ (Îi)
∫
Îi

f(τ−1βi
(x))

∣τ ′β(τ−1βi
(x))∣dx

⎞
⎠
dβ

≤ 2P
r

∑
i=1
∫

θ

γ

⎛
⎝
sup
x∈Îi

{ 1

∣τ ′β(τ−1βi
(x))∣}⋁

Îi

f(τ−1βi
(x)) + ∫

Îi

f(τ−1βi
(x))

d
dx ∣τ ′β(τ−1βi

(x))∣
dx

+ 1

λ (Îi)
∫
Îi

f(τ−1βi
(x))

∣τ ′β(τ−1βi
(x))∣dx

⎞
⎠
dβ.

By condition iii), setting y = τ−1βi
(x), and ϕi(β) ∶= infx∈Ii{∣τ ′β(x)∣}

⋁
I

PTf(x) ≤ 2P
r

∑
i=1
∫

θ

γ

dβ

ϕi(β)
⋁
Ii

f(y) + 2P
r

∑
i=1
∫

θ

γ
([s + 1

m(Îi)
]∫

Ii
f(y)dy)dβ

≤ 2Pmax
1≤i≤r
{∫

θ

γ

dβ

ϕi(β)
}⋁

I

f(y) + 2Pmax
1≤i≤r
{∫

θ

γ
[s + 1

m(Îi)
]}∫

I
f(y)dy

= Q⋁
I

f(y) +R.

Thus, under the assumptions stated in Theorem 2.1, (5.1) holds, and the random
maps on the interval T(ξ,Γ)(x) have an a.c.i.m., as a standard consequence of an
inequality of this type.
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5.3 Probabilistic approach

Since we are dealing with random transformations, featuring a well-defined prob-
ability law in its dynamics, we proceed on its analysis about the existence and
non-existence of an a.c.i.m. with probability theory. Next, we present our results
on this regard.

5.3.1 Non-existence theorem

The following result is based on the probability that the trajectories of the random
map accumulate on a delta distribution, centered at a fixed point. The next two
lemmas will be useful when we prove this.

Lemma 5.2. Let T(ξ,Γ) be a random map, which satisfies the i) − v) conditions,
having a fixed point x∗ such that τβi

(x∗) = x∗, ∀βi ∈ (γ, θ]. Then,

∣ d
dx
(τβk
(x) ○ τβj

(x))∣
x=x∗ ∣ = ∣

d

dx
(τβk
(x))∣x=x∗ ∣ ⋅ ∣

d

dx
(τβj
(x))∣

x=x∗ ∣ .

Proof.

∣ d
dx
(τβk
(x) ○ τβj

(x))∣
x=x∗ ∣ = ∣

d

dx
(τβk
(x)) ⋅ d

dx
(τβj
(x)) ○ (τβk

(x))∣
x=x∗ ∣

= ∣ d
dx
(τβk
(x))∣x=x∗ ∣ ⋅ ∣

d

dx
(τβj
(x))∣

x=x∗ ∣ .

Now, we want to determine the asymptotic hyperbolicity of the n−th composition
of the random map T(ξ,Γ) evaluated a the fixed point that for all β, the τβk

(x) share.
In other words, we want to compute what is probability that the fixed point x∗ is
stable. We have

P(∣ d
dx
(τβ1(x) ○ . . . ○ τβn(x))∣x=x∗ ∣ < 1) , (5.2)

which, by Lemma 5.2, (5.2) can be rewritten as

P(
n

∏
k=1

∣ d
dx
(τβk
(x))∣x=x∗ ∣ < 1) .

Then, taking the natural logarithm in both sides of the inequality yields:

P(
n

∑
k=1

ln ∣ d
dx
(τβk
(x))∣x=x∗ ∣ < 0) . (5.3)
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This means that if the probability in expression (5.3) is equal to 1, the fixed
point x∗ is P-almost certainly stable.

Next, we define a random variable Yk(β)

Yk(β) ∶= ln ∣
d

dx
(τβk
(x))∣x=x∗ ∣ .

From this, we have that (5.3) is the probability of the sum of the random variable
Yk(β) being strictly less than zero. Given that the expected value of the sum of n
independent random variables is equal to the sum of the expected values of these
random variables [39]. Considering Yk(β) to be identically distributed for every
iteration k, we have:

E(
n

∑
k=1

Yk(β)) = nE (Yk(β)) . (5.4)

Now, we proceed to state the following theorem, which considers a different class
of random maps T(ξ,Γ) that Theorem 5.1 considers. In this case, the systems here
considered will almost certainly exhibit a “stable” behavior, in the sense that all
trajectories will converge to a fixed point.

Theorem 5.3. Consider the random maps T(ξ,Γ), satisfying the i)− iii) conditions.
Assume the maps τbetak are i.i.d. from a stochatic process with a law of finite vari-
ance. Furthermore:

a) For only one τβ(x)∣Ii there is only one x∗ ∈ Ii such that, τβ(x∗) = x∗, ∀β ∈
[γ, θ], with x∗ ≠ ai−1, ai,∀i ≠ 0, r

b) Considering the random variable Yk(β), there exists one value γ1 ∈ [γ, θ] such
that

Eγ1 (Yi(β)) < 0,

where Eγ1 denotes the expected value of Yk(β) for γ1.
Then, the trajectories of T(ξ,Γ) will almost certainly converge to x∗, thus, the

invariant density is a delta distribution centered at this point for every value of the
parameter γ such that Eγ ≤ Eγ1.

Proof. From the Central Limit Theorem, we have that the sum Sn = (∑n
k=1 Yk(β))

converges in distribution to a random variable with Gaussian distribution and ex-
pected value nEγ1 (Yi(β)) < 0.

Then, since Sn is a sum of random variables, the event of Sn being strictly
less than zero an infinitely number of times is invariant under a finite number of
permutations. Therefore, from the Hewitt-Savage zero-one law, its probability is
either 0 or 1.
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Finally, given that Eγ1(Sn) < 0, we have P(Sn < 0) > 0, then it is almost surely
1, which implies that the n-th composition of the random map, has almost certainly
has a derivative with absolute value strictly lower than 1 evaluated in its fixed point.
So the trajectories will converge to x∗ with probability of one. And with this, the
proof is complete.

Remark 5.2. In the condition a) we state that x∗ can be either equal to a0 or ar,
since d

dx (τβ(x))∣x=x∗=a0,ar is always equal or greater than 0, which implies that there

exists a δ > 0, such that, ∀δ̂ ∈ (0, δ], we have that (x + δ̂) ∈ I0, Im(τβ(x + δ̂)∣I0) ⊂ I0,
and given (x − δ̂) ∈ Ir, Im(τβ(x − δ̂)∣Ir) ⊂ Ir. For i ≠ 0, r this does not hold, and

therefore the dynamics of the random map end up lying outside the element of the
partition Ii, and the almost certain convergence of the trajectories to x = x∗ is not
guaranteed.

Remark 5.3. Additionally, we need to investigate the nature of the dynamics of the
random map if there were more than one interval Ii with one fixed point holding b)
and c) conditions, or a countable number k of fixed points in Ii, which hold b) and
c) conditions.

5.3.2 Existence theorem

Analogously, we state a result for the existence of the a.c.i.m. based on Theorem
5.3, but with conditions for having, almost certainly an expansive map, i.e.,

P(∣ d
dx
(τβ1(x) ○ . . . ○ τβn(x))∣x=x∗ ∣ > 1) = 1,

for some γ2 such that Eγ2 (Yi(β)) > 0 holds. This means we are considering now
a condition that sets the n-th composition of the random map in Theorem 5.3 as
expansive, with derivative greater than 1, in absolute value; from which we can state
the following corollary.

Corollary 5.3.1. Consider the random maps T(ξ,Γ), satisfying the conditions in
Theorem 5.3 but for Eγ2 (Yi(β)) being strictly positive instead negative. Then, almost
certainly, the map T(ξ,Γ) has an a.c.i.m. for all γ such that Eγ (Yi(β)) ≥ Eγ2 (Yi(β));
by Theorem 2.9.

It is clearly seen that for a random map satisfying Theorem 5.3 and Corollary
5.3.1, there exists a critical value (or range of values) γc for which a phase transi-
tion, in the sense of non-existence to existence, takes place. Therefore, we give the
following result.

68



CHAPTER 5. THEORETICAL RESULTS

Corollary 5.3.2. If for a random map T(ξ,Γ) exist values γ1 and γ2 such that it sat-
isfies Theorem 5.3 and Corollary 5.3.1, then there exist γc such that Eγ1 (Yi(β)) <
Eγc (Yi(β)) < Eγ2 (Yi(β)) and Eγc (Yi(β)) = 0; which is the critical value of γ asso-
ciated to the phase transition in the dynamics of the random map T(ξ,Γ).

5.3.3 Examples

Example 5.1. Let us consider the family of random maps considered in subsection
4.5. In the following, we show what is the range of values for which the random map
in the interval (4.7) has and does not have an a.c.i.m.

Since the distribution of the maps in the system (4.7) is uniform, we have that
the probability density function of the random variable τβ(x) is fX(β) = 1

2−γ
χ
[γ,2](β),

which has a cumulative distribution function P(β ≤X) = x−γ
2−γ

χ
[γ,2](x).

Then, we compute the transformation Y ∶=X → ln(X). Thus, we have

P(β ≤X) = P(ln(β) ≤ ln(X)) = e
y − γ
2 − γ

χ
[ln(γ),ln(2)](y) = P(y ≤ Y ).

Which is the cumulative distribution function of the random variable Y (β). From
this we can obtain its probability density function fY (β) = ey

2−γ
χ
[ln(γ),ln(2)](β) and

compute its expected value

E(Y (β)) = 1

2 − γ ∫
ln(2)

ln(γ)
yeydy = 2(ln(2) − 1) − γ(ln(γ) − 1)

2 − γ .

Now, setting E(Y (β)) = 0 we have the conditions of Corollary 5.3.2, and we obtain
the value of γc ≈ 0.2625828..., which is the value associated to the phenomenon of
phase transition as in Definition 3.1.

Therefore, for values of γ < γc the trajectories converge to the almost-surely stable
fixed point x∗ = 0. And for values of γ > γc the random map (4.7) has almost surely
an a.c.i.m., which is consistent with the numerical evidence we presented earlier.

In the setting of Theorem 5.3 we are allowed to consider any distribution of the
random maps from an i.i.d. process with finite variance. In the next example we
consider this situation.

Example 5.2. Consider the family of random maps in the previous example, with
a triangular distribution of the maps, given by

fX(β) =
2(x − γ)

(2 − γ)(c − γ)
χ
[γ,c)(β) +

2(2 − x)
(2 − γ)(2 − c)

χ
[c,2](β),

where c is the mode of this distribution; which has a c.d.f.
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P(β ≤X) = 2

(2 − γ)(c − γ) (
x2 + γ2

2
− γx)χ[γ,c)(x)

+ 2

(2 − γ)(2 − c) (
c2 − x2

2
+ 2(x − c))χ[c,2](x).

Then, we compute the transformation Y ∶=X → ln(X). Thus, we have

P(y ≤ Y ) = 2

(2 − γ)(c − γ) (
e2y + γ2

2
− γey)χ[ln(γ),ln(c))(y)

+( 2

(2 − γ)(2 − c) (
c2 − e2y

2
+ 2(ey − c)) + (1 − (2 − c)

2 − γ ))
χ
[ln(c),ln(2)](y).

From this we can obtain its probability density function

fY (β) =
2

(2 − γ)(c − γ) (e
2y − γey)χ[ln(γ),ln(c))(y)

+ 2

(2 − γ)(2 − c) (2e
y − e2y)χ[ln(c),ln(2)](y),

which has an expected value

E(Y (β)) = 2

(2 − γ) (c − γ) (0.25 (c
2 (2 ln (c) − 1) − γ2 (2 ln (γ) − 1)))

− 2

(2 − γ) (c − γ) (γ (c (ln (c) − 1) − γ (ln (γ) − 1)))

+ 2

(2 − γ) (2 − c) (2 (2 (ln (2) − 1) − c (ln (c) − 1)) − 0.25 (4 (ln (4) − 1) − c
2 (2 ln (c) − 1))) .

Setting E(Y (β)) = 0 will give us an explicit expression for γc as a function of c.

In the next example, we compute first ϕi(β) for the criterion for Theorem 5.1,
and we compare it to the criterion for the setting with Theorem 5.3 and Corollary
5.3.1.

Example 5.3. Consider the map, defined for γ ∈ (−0.5,0.75], and β ∈ [γ,0.75],
which has a fixed point in x = 1/3:

Tξ(x) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

x + 3
4 , 0 ≤ x ≤ 0.25 (I1)

6βx(x − 1
3) + x, 0.25 < x ≤ 0.5 (I2)

x − 0.5, 0.5 < x ≤ 1 (I3),
(5.5)
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which has a derivative given by

T
′
ξ(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1, 0 ≤ x ≤ 0.25 (I1)
12xβ − 2β + 1, 0.25 < x ≤ 0.5 (I2)
1, 0.5 < x ≤ 1 (I3).

Therefore, for uniformly distributed β ∈ [γ,0.75], we have ϕ1(β) = ∣12xβ − 2β + 1∣x= 1
3
=

∣2β + 1∣. Then, we compute Q:

Q = 2Pmax
1≤i≤r
{∫

θ

γ

dβ

ϕi(β)
}

= 1

0.75 − γ ∫
0.75

γ

dβ

2β + 1 =
1

0.75 − γ ln( 1.25

γ + 1/2),

Q < 1 if γ > 0.28579...
This criterion provides us only an upper bound for γc, which we can calculate

exactly for the criterion established by Theorem 5.3 and Corollary 5.3.1. We know
that:

ϕ1(β) = ∣2β + 1∣ ∈ [2γ + 1,2.5].
Then, following the steps as the previous examples, we obtain an exact expression
to compute γc from the probability density function of the random variable Y ∶=
ln (ϕ1(β)) ∶

E(Y ) = 0⇐⇒ 1

2.5 − (2γ + 1) ∫
ln(2.5)

ln(2γ+1)
yeydy = 0, then:

2.5 (ln(2.5) − 1) − (2γ + 1)(ln(2γ + 1) − 1)
2.5 − (2γ + 1) = 0.

Therefore, γc ≈ − 0.473399915...

It is worth recalling that despite the noticeably relaxed bounds that the criterion
from Theorem 5.1 yields, with respect to the criterion established by Theorem 5.3
and Corollary 5.3.1; these two results consider a different class of random maps.
Theorem 5.1 does not need to assume there is only one fixed point, nor that the
random action of the system occurs only in one of the elements of the partition Ii.
On the other hand, the probabilistic approach of Theorem 5.3 allows us to consider
the distributions of the maps to be any discrete or continuous distribution of an
i.i.d. process with finite variance, not only uniform distributions necessary for the
result of Theorem 5.1.
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Chapter 6

Phase transition phenomenon in
connected maps

In this chapter, we describe a type of dynamical systems we are proposing. This work
in progress tackles on the topic of the phase transition phenomenon of an absolutely
continuous measure of dynamical systems connected through a hole. The dynamics
of systems with holes terminates when the orbit falls in the holes, therefore, its most
known results are on the study of the invariant sets on this systems. A particularly
transparent survey of results for dynamical systems with holes is [40]. For the type
of dynamics we propose, the orbit does not terminate after landing in one of the
holes, instead, it continues with a different transformation.

For the setting, let I = [0,1] and consider two maps T1, T2 ∶ I → I. Associated
to each map, we define two closed intervals H1 = HT1 ⊂ I and H2 = HT2 ⊂ I which
we call holes. We are interested in the dynamics that arises in the following way:
we iterate an initial condition taken from a uniform distribution on I in one of the
two maps, say T1, until the trajectory visits its respective hole H1. Then, the value
is taken to the hole corresponding to the other transformation H2 by means of the
linear transformation τ1 ∶H1 →H2 given by:

τ1(x) =min(H2) +
(max(H2) −min(H2))(x −min(H1))

max(H1) −min(H1)
,

and we iterate now the map T2 with initial condition τ1(x) until the value of the
iteration falls on H2. When this happens, we take that value and apply the linear
map τ2 ∶H2 →H1 given by:

τ2(x) =min(H1) +
(max(H1) −min(H1))(x −min(H2))

max(H2) −min(H2)
.

We continue this way, changing the iterated map when the trajectory visits the hole
that corresponds to each map.
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Under this setting, we found cases where the associated absolutely continuous
measure (depicted only numerically by the histograms we present here) may experi-
ence a phase transition phenomenon as in Definition 3.1 at a specific location and/or
size of the holes; or at specific values of parameters of the transformations involved.
We have explored this systems numerically, with the idea of analyzing the resulting
behavior of two systems with contrasting dynamics.

For instance, one of the most notable configurations we explored is the one
conformed by the family of Manneville-Pomeau maps T1(x) and a contracting map
in the interval T2(x), defined as:

T1(x) =
⎧⎪⎪⎨⎪⎪⎩

x(1 + (2x)α), x < 0.5
2x − 1, x ≥ 0.5

T2(x) =
x

2
+ 1

4
.

As we mentioned in Chapter 3, T1(x) has an ergodic regime for 0 < α < 1, and
tends to accumulate almost every orbit near x = 0 for α > 1. For T2(x) all orbits are
trivially stable due to the contractive fixed point x = 0.5. We decided to connect
their dynamics in order to explore what kind of behavior arises as an outcome of
their interplay.

One notable behaviors here takes place when H1 is placed in the interval [0,0.5).
In this setting, due to the contracting nature of T2(x), H2 can only be placed in
such a way that it contains the fixed point x∗ = 0.5, otherwise the trajectories will
be trivially and asymptotically accumulated at this equilibrium point.

For every realization we fixed H1 and H2. Then, we explored the change in
the resulting dynamics for different values of the parameter α for T1(x). Here,
an interesting phenomenon arises, in which the histogram for the dynamics of this
connected system shows that for a range of values of α, the existence of a density
function with support in all the interval [0,1]. As we increased further the value
of α, this density experiences an abrupt change, and it becomes a couple of delta
functions; one centered at a point in H1, and the other centered at x = 1

2 , typical of
a 2-cycle. In the following we show an example of this phenomenon.

We set H1 = [0.005,0.015], and H2 = [0.495,0.505]. For values of α < 0.43 the
histograms show the existence of a density function with support in all the interval
[0,1]. The system experiences a sudden change of the density, for values of α ≥ 0.44
(see Figure 6.1c). This sudden change in the dynamics as a function of α, lead us
to think that there is a “critical value” for α ∈ [0.43,0.44], which we will refer to as
αc.

This same phenomenon is also observed for different placements and sizes of
H1 ⊆ [0,0.5); such that for lesser values of α, the histograms exhibit a density
function which implies the existence of a absolutely continuous measure (with respect
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(a) α = 0.09 (b) α = 0.43 (c) α = 0.44

Figure 6.1: Densities for the connected system conformed by the Manneville-Pomeau
map for three values of α and a contracting system. We can note how the orbits
accumulate in [0,0.5) for α < 0.44 and at the contracting fixed point, but still pre-
serving incidence on the rest of the state space. As α approaches 0.44 the incidence
increases in a set of points in [0,0.5) ans in x = 0.5. For α > 0.44 the density becomes
one pair of delta functions centered at a point in H1 and the fixed contracting point
x = 0.5.

to the Lebesgue measure), and once α is increased up to a certain “critical value”,
this density function becomes a density conformed by two delta distributions in
likely, a 2-cycle.

This aforementioned “criticality” of the parameter, according to our simulations,
is dependent on the placement of H1, given that for placements of H1 closer to the
point x = 0, the critical value for α is lower. This is expected, since for the determin-
istic setting of the Manneville-Pomeau maps, the trajectories tend to accumulate
progressively more near x = 0, as α > 0 keeps increasing. This is evidence that in
this setting of connected systems, there exists a value of α for which almost surely,
the trajectories being returned from H2 to T1(x) will hit H1 right after the first
iteration, which in turn, makes them come back to T2(x), originating therefore this
2-cycle. We noticed as well, that for smaller sizes of H1, the critical value of α is
higher, which is expected by this reasoning.

From these observations, we propose the following conjecture.

Conjecture 6.0.1. Considering the connected dynamical system conformed by the
Manneville-Pomeau maps T1(x) with parameter α > 0, and the contracting map
T2(x) = x

2 + 1
4 , and the holes:

H1 ⊆ [0,0.5)
H2 = [a, b], a < 0.5 < b

There exists a critical value of α, “αc” such that for every H1 ⊆ [0,0.5) and every
α < αc the connected dynamical system has an absolutely continuous measure with
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respect to the Lebesgue measure, and for every α > αc it has not an a.c.m. Therefore,
it experiences a phase transition phenomenon, in the sense of the existence to the
non-existence of an a.c.m., as in Definition 3.1.

Along with setting, we have observed a similar phase transition phenomenon
by connecting two systems with an stable 3-cycle, where the abrupt change in the
associated density function occurs as a function of the placement of one the holes.
However, the details of this work in progress goes beyond the reach of this thesis.
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Chapter 7

Open problems

In Chapter 5 we showed two original results. Theorem 5.1 considers a class of random
dynamical systems equipped with an uncountable set Γ of uniformly distributed
transformations {τβi

}∞i=1. In Example 5.3 we compared the upper bound that yields
from Theorem 5.1, to the exact expression that Theorem 5.3 and Corollary 5.3.1
provide for the value of γc. Thus, it seemed as if the results from Theorem 5.3
and Corollary 5.3.1 were more powerful; however, this is not the case, since the
conditions of Theorem 5.3 require the random dynamics to occur in only one of the
elements Ii of the partition of the state space, as well as the existence of only one
fixed point in Ii, shared by every τβi

. Therefore, regarding random maps equipped
with a continuum of transformations, the following questions naturally arise:

1. Is it possible to prove the existence of the phase transition phenomenon for a
class of random maps where the random dynamics occur in more than one of
the of the elements Ii of the partition of the state space, and have a probability
distribution other than the uniform?

2. If the random dynamics occur in more than one of the of the elements Ii
and there is more than one fixed point that the maps τβi

share, satisfying the
conditions of Theorem 5.3, at which one of these fixed points the trajectories
will converge and what is the probability for each?

3. Is there a set of conditions for random maps in the interval with no fixed
points that guarantees its convergence to a stable periodic n−cycle? Or that
guarantees the existence of an a.c.i.m. (other than for homeomorphisms of the
unit circle)?

4. What is the asymptotic behavior of the dynamics of random maps with a
fixed point whose position has a continuous dependence on the realization of
the random variable that defines the distribution of all the τβi

?
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5. What is the asymptotic behavior of the dynamics of random maps that satisfy
the conditions of Theorem 5.3 without condition a), i.e., if we allow x∗ =
ai−1, ai,∀i ≠ 0, r? What additional conditions will it require for the orbits to
remain as almost surely convergent to x∗?

6. Can another versions of the Central Limit Theorem be applied to our setting
in order to further generalize our results (e.g., considering a CLT for non i.i.d.
processes)?

There is as well another open problem we are working on, outside the context of
dynamical systems operating with more than one transformation. We describe it in
the following.

For the deterministic map in the interval I = [0,1], equipped with a parameter
α ∈ [0,2] ∶

T (x) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

τ1(x) = α(x − 0.5) + 1, 0 ≤ x ≤ 0.5
τ2(x) = (2 − α)(x − 0.5), 0.5 < x < 1
0, x = 1,

(7.1)

we have the following theorem:

Theorem 7.1. Consider the system (7.1). Then, the (n + 1)-th composition T n(x)
built as T (n+1)(x) = τn1 (x) ○ τ2(x) is equal to the identity function, for the values of
the parameter α ∉ {0,2} which are positive real roots of the polynomial:

xn =
n−1

∑
i=0

xi (7.2)

Proof.

τ1(x) = αx − α
2
+ 1

τ 21 (x) = α2x − α
2

2
+ α
2
+ 1

τ 31 (x) = α3x − α
3

2
+ α

2

2
+ α
2
+ 1

⋮

τn1 (x) = αnx − α
n

2
+ 1

2

n−1

∑
i=0

αi + 1.

Then,

τn1 (x) ○ τ2(x) = αn ((2 − α)(x − 0.5)) − α
n

2
+ 1

2

n−1

∑
i=0

αi + 1

= x (2αn − αn+1) + α
n+1

2
− 3

2
αn + 1

2

n−1

∑
i=0

αi + 1.
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Thus, we set τn1 (x) ○ τ2(x) = x + 0, and obtain two equations

αn+1

2
− 3

2
αn + 1

2

n−1

∑
i=0

αi + 1 = 0, (7.3)

and
x (2αn − αn+1) = x. (7.4)

The polynomial in terms of α in equation (7.3) can be rewritten as

1

2
(α − 2)(αn −

n−1

∑
i=0

αi = 0) ,

and after dividing equation (7.4) by x, it can be rewritten as

2αn = αn+1 + 1,
which is an alternative form of (7.2), that can be obtained by manipulating it as
follows:

(xn+1) = x(
n−1

∑
i=0

xi)

xn+1 + 1 =
n

∑
i=1

xi + 1

= xn +
n−1

∑
i=0

xi

= 2xn.

Therefore, T n(x) = x holds only if the value of the parameter α is the (n−1)−th
multinacci number, for all n ∈N, and every point in I is part of a n−cycle.

For this system, we computed an invariant density, for m-almost every α. This
density function is given by the expression

f∗(x) = (α − 1)
(ln ( α

2−α
)) (x (α − 1) + 1 − 0.5α)

,

which is a fixed point for its Perron-Frobenius operator, i.e., PTf∗(x) = f∗(x). With
this, we computed its Lyapunov exponent

λ = ∫
I
log ∣T ′(⋅)∣f∗(x)dm = 0.

Having a zero Lyapunov exponent is at least, uncommon for a system with an
invariant density with support on a set with positive Lebesgue measure. Thus, we
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want to explore why is this the case. Moreover, we want to build a generalization of
this system one-to-one, with no fixed points, and with one expanding branch and a
contracting one, where the discontinuity is at any point in I, in order to determine
under what conditions (if there are any) the behavior observed in system (7.1) can
be retrieved and further studied.
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Chapter 8

Concluding remarks

In this thesis, we discussed the topic of the existence of an a.c.i.m. for a class
of random maps in the interval. This question has been addressed in the variety
of settings we presented here. Nonetheless, the conditions for the incidence of the
phenomenon of phase transition in the sense of Definition 3.1 have not been discussed
in the literature. Our two original results here, consider a class of systems with
a continuous dependence on parameter that determines the range of the possible
transformations to choose from. This setting allows us to provide a method for
computing, either a bound for the critical value of the parameter at which the
place transition takes place, or its exact value. With this, we establish a first step
into the research of the incidence a phase transition phenomenon with respect to a
probabilistic parameter, in random maps in the interval.
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