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In this study, we present a problem that consists in �attening the curvature associated with an a�ne connection on R2. �is
problem involves distributions and symmetric a�ne connections de�ned on a di�erential manifold M. For rank 1 constant
distributions, we characterize the existence of solutions and get su�cient conditions to solve the problem. �e general statement
of the problem and some illustrative examples are given.

1. Introduction

�e problem referred to as �attening the curvature of an
a�ne connection (PFCAC) is motivated by a special case of
the curvature prescription problem. �e PFCAC arises in
control theory by observing that there are conditions under
which a mechanical system can be locally transformed
(equivalent) to a simpler one and by realizing that the
curvature plays an important role among those conditions.

Writing the equations that describe the dynamics of a
mechanical system, in a speci�c way, sometimes facilitates
solving problems that arise in control theory (controllability,
stabilization, motion planning, trajectory tracking, and
optimal control), as discussed by Bullo-Lewis [1]. For in-
stance, for a subclass of mechanical control system
(Q,∇, D, Y1, . . . , Ym{ }, U), where Q is a smooth n-dimen-
sional manifold (the con�guration space of the system), n is
the number of degrees of freedom, ∇ is an a�ne connection
on Q, D is a regular linear velocity constraint distribution,
having the property that ∇ restricts to D can be de�ned,
Ya: a � 1, . . . , m{ } is a set of vector �elds on Q (the control
forces), taking values in D, and U ⊂ Rm is the control set. In
this case, the equations of motion can be written as follows:

€q
i
� − Γijkv

jvk + uaYia, i � 1, . . . , n{ }. (1)

�ese equations are written in a coordinate chart (U, ϕ)
of Q with coordinates (q1, . . . , qn). Here, one considers a
collection X � X1, . . . , Xn{ } of vector �elds as a basis for
TqQ for each q ∈ U, then (v1, . . . , vn) are the �ber coor-
dinates for TU in the basis X. For a control u: I⟶ U,
I ⊂ R that is locally integrable, for i, j ∈ 1, . . . , n{ },
∇(z/zqi)(z/zqj) is a vector �eld on u. �us, ∇(z/zqi)(z/zqj) �
Γkij(z/zqk) is a linear combination of the vector �elds X on
Q, for n3 uniquely de�ned functions Γkij: U⟶ R,
i, j, k ∈ 1, . . . , n{ }. �e Γkij are called the Christo�el symbols
for ∇ in the chart (U, ϕ), and one de�nes the type (1, 3)
curvature tensor R whose components can be expressed as
Rabc d � (zΓ

a
db/zq

c) − (zΓacb/zqd) + (ΓacmΓmdb − ΓadmΓmcb) for
a, b, c, d ∈ 1, . . . , n{ }. More details are provided in references
[1–3].

On TU, system (1) can be written as follows:

_v � S(v) + uaYlift
a (v), (2)

where v takes values in D, Ylift
a is the vertical lift of Ya in

coordinates Ylift
a � Yia(z/zvi), Yia are the components of Ya,

and S is the geodesic spray for ∇ in coordinates (q, v) on TU,
and it is expressed as follows:

S(v) � vk
z

zqk
− Γkij(v)v

ivj
z

zvk
. (3)
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We initially focus onmechanical systems of form (1) that
are locally equivalent (or transformable) to a 3-dimensional
canonical form with 2 inputs u1, u2:

€x1 � u
1
,

€x2 � u
2
,

€x3 � u
1
x1.

(4)

(is system is sometimes referred to as the extended
chained form (ECF). An interesting point is that equation (4)
is itself a model of controlled mechanical system [4], and
affine control system can be expressed as follows:

_z � S(z) + u
1
Y
lift
1 (z) + u

2
Y
lift
2 (z), (5)

where S is the geodesic spray for ∇ on R3. In coordinates
(x, z) on TR3, it is expressed as follows:

S(z) � 
6

k�4
z

k z

zx
k
. (6)

(e problem of transforming a system of form (2) into
(5) may be viewed as a problem of equivalence under the
relation defined by regular, static state-feedback (RSSF); that
is, two systems are equivalent under RSSF if one can be
transformed into the other via invertible, static state feed-
back of the form (v, u)↦(z, w), where z � φ(v) and u �

α(v) + β(v)w represent, respectively, a coordinate trans-
formation of the state variable and a change of control
coordinates, with φ, a local diffeomorphism; β(v), an in-
vertible matrix for all v ∈ TR3; α, a smooth function. (e
new input components are ui � αi(v) + βij(v)wj, so after the
transformation one gets

_v � S(v) + αi(v) + βij(v)wj Y
lift
i (v), (7)

and applying the change of state variables the system
becomes

_z � S(z) + αi(z) + βij(z)w Y
lift
i (z). (8)

If we label S(z) � S(z) + αi(z)Ylift
i (z) and Y(z) �

βij(z)Ylift
i (z), then equation (8) can be written as ECF:

_z � S(z) + wY(z), (9)

where the new geodesic spray is expressed as follows:

S(z) � _z
k z

zz
k
. (10)

Comparing geodesic sprays (3) and (10), we note that the
Γkij for the ECF are all zero; therefore, for the ECF, the
curvature tensor is identically zero. In addition, one can
observe that, after the transformation, the terms αi(z)Ylift

i (z)

have been added to the geodesic spray S(x) and those terms
take values in the distribution D (space generated by the
input vector fields with coefficients u) so new input coef-
ficients are effectively defined.

Note that Γkij + αk
ij define new functions, which we de-

note by Γkij, this leads us to consider the existence of a new

affine connection ∇ , determined by Γkij and expressed in
terms of the original∇ and the terms αi(z)Ylift

i (z), which can
be naturally associated with a type (1, 2) tensor F on D.

Curvature may be “flattened” by getting rid of the
quadratic force terms related with the Γkij, but it is not an
intrinsic fact because the curvature tensor may be zero even
though the Christoffel symbols are not [4]. (en, by adding
functions αk

ij, one gets Γkij � Γkij + αk
ij; if we require ∇ to be

torsionless, we need to have Γkij � Γkji, but since Γ
k
ij � Γkji, one

gets αk
ij � αk

ji, that is, F must be a symmetric tensor with
respect to its lower indices. A more “intrinsic” approach
would be to determine which D-valued tensor field F yields a
new connection ∇ XY � ∇XY + F(X, Y) with zero curvature,
which we can find out in the following proposition.

Proposition 1. Let Σ be a simple mechanical system that can
be expressed as the ECF via RSSF. 5en there exists a tensor
field F ∈ Γ(D⊗T∗Q⊗2) such that ∇ � ∇ + F has associated a
type (1,3) curvature tensor R ≡ 0.

Proof. Since Σ is transformable to an ECF, there is a local
difeomorphism φ: Q⟶ R3, such that, for every q ∈ Q

there is a neighborhood U of q such that φ(U) is an open
subset of R3 and φ|U: U⟶ φ(U) is a difeomorphism. So
the tangent mapping Tqφ: TqQ⟶ Tφ(q)R

3 is a linear
isomorphism for all q ∈ Q, provided that φ(q) � p. (en, for
every X ∈ Γ(TQ), there is a unique vector field Y ∈ Γ(TR3),
which is φ related to X, that is, Yp � Tqφ(Xq), and the
inverse mapping satisfies (Tqφ)− 1(Yp) � Xq.

Since (Q, gQ) and (R3, gE) are Riemannian manifolds,
then the pullback of gE by φ, denoted by φ∗gE, defines a
Riemannian metric over Q, that is, for every v, w ∈ TqQ:

φ∗gE( q(v, w) � gE( φ(q) Tqφ(v), Tqφ(w) 

� gE( φ(q)(x, y)

� gE ∘φ( q Tqφ 
− 1

(x), Tqφ 
− 1

(y) 

� gQ 
q
(v, w),

(11)

this means that φ∗gE � gQ; therefore, φ is an isometry.
Assuming that ∇ denotes Levi–Civita connection of gQ

and Q that of gE and since φ is an isometry, φ∗( ∇ ) � ∇. On
the other hand, the difference between ∇ and ∇ defines a
tensor, that is, ∇XY − ∇ XY � F(X, Y), where F is a sym-
metric tensor field of the type (1, 2) such that
F ∈ Γ(TM⊗T∗M⊗2) [2]. In particular, if F takes values in D,
that is, F ∈ Γ(D⊗T∗M⊗2), then ∇ � ∇ + F have a curvature
tensor R, which is identically zero, of the type (1, 3).

(en, a problem that consists in getting rid of the
curvature arises; that is, determining if there exists a type
(1, 2) tensor F(X, Y) in order to get a new connection
∇ XY � ∇XY + F(X, Y) with zero type (1, 3) tensor curva-
ture. All the above leads us to think that PFCAC could be
written in a similar way to one kind of curvature pre-
scription. (e goal of this work is to state the PFCAC and to
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solve it in dimension 2 by considering constant rank 1
distributions.

(e statement, details, and analysis of the PFCAC will be
given in the ensuing sections of this work, and the contents
of which are organized as follows: in Section 2, one recalls a
number of basic concepts and notations to be used in the
sequel. Section 3 gives a formulation of the PFCAC, along
with some examples. (e materials and methods for solving
the PFAC are given in Section 4. In Section 5, some results
are presented for dimension 2, along with some illustrative
examples. Finally, concluding remarks and possible future
lines of research are given in Section 6. □

2. Preliminary Notions

(is section includes some conventions and notations that
will be used in the sequel. (e reader may consult references
[1–3, 5–9] for more information.

We use the Einstein summation convention throughout,
and also we consider all geometric objects are smooth (C∞),
unless otherwise specified.

2.1. Vector Fields and Distributions. Given a manifold M of
dimension n, we denote a coordinate chart (U,φ) near a
point x ∈M, with coordinate functions x � (x1, . . . , xn) on
U corresponding to φ. Γ(TM) denotes the set of vector fields
on M. If X ∈ Γ(TM), X assigns, to each p ∈M, a tangent
vector Xp ∈ TpM, where TpM denotes the tangent space to
M at p.

T∗M denotes the cotangent bundle and Γ(T∗M) denotes
the set of 1-forms. If σ ∈ Γ(T∗M), then σ: M⟶ T∗M, and
a 1-form σp ∈ T∗pM is assigned to each p ∈M, where T∗pM

denotes the cotangent space to M at p.
A rank k distribution D on M is a mapping D, which

assigns to each p ∈M, a k-dimensional (vector) subspace
Dp of TpM. D is called smooth if, for every point p ∈M,
there exists a neighborhood U of p and k smooth vector
fields X1, . . . , Xk on U, such that Dx � span X1 . . . , Xk  for
all x ∈ U. A vector field X on M is said to take values in D if
Xp ∈ Dp for all p ∈M. Sometimes we abuse the notation
and write X ∈ D.

2.2. Riemannian Metric. Let g be a Riemannian metric on
M; g is a type (0, 2) symmetric, positive-definite smooth
tensor field.(e tensor gp induces an inner product on TpM

for each p ∈M. (e inner product allows one to define the
notions of length and angle between vectors. In coordinates,
g can be expressed as follows:

g � gijdx
i ⊗ dx

j
, (12)

where gij are the components of a matrix-valued function
with the following properties:

(i) Symmetry: for p ∈M and X, Y ∈ TpM,
gp(X, Y) � gp(Y, X)

(ii) Positive-definite: for p ∈M and X, Y ∈ TpM,
gp(X, X)> 0, whenever X≠ 0

An Euclidian metric g on Rn is expressed in coordinates
as follows:

g
z

zr
i
,

z

zr
j

  � δij, (13)

where (z/zri), (z/zrj) are unit vectors on Rn and matrix
form g � Idn×n.

2.3. Affine Connection. A Riemannian metric defines a
unique Levi-Civita affine connection, but not every affine
connection is the Levi-Civita connection of a metric [2].

An affine connection on a manifold M is defined as a
mapping

∇: Γ(TM) × Γ(TM)⟶Γ(TM),

(X, Y)↦∇XY,
(14)

where ∇XY is the covariant derivative of the vector field Y in
the direction of the vector field X. (e mapping satisfies the
following properties:

(1) ∇X(aY1 + bY2) � a∇XY1 + b∇XY2,
(2) ∇fX1+gX2

Y � f∇X1
Y + g∇X2

Y,
(3) ∇XfY � f∇XY + (Xf)Y, for all a, b ∈ R and

f, g ∈ C∞(M). Here X(f) is the derivative of f in
the direction of X.

An affine connection ∇ can be uniquely represented in
terms of an ordered local frame (z/zxi), by the specification
of n3 functions Γkij for 1≤ i, j, k≤ n, referred to as the
Christoffel symbols, by the following expression:

∇ z/zxi( )

z

zx
j

� Γkij
z

zx
k
, i, j � 1, . . . , n. (15)

If X and Y ∈ Γ(TM) are given in terms of a local frame
(z/zxi), then X � Xi(z/zxi), Y � Yj(z/zxj) and ∇XY can be
written in coordinates as follows:

∇XY �
z

zx
i
Y

k
X

i
+ X

i
Y

jΓkij 
z

zx
k
. (16)

Given an affine connection ∇ on a manifold M, one
readily defines two tensor fields M related to ∇, namely, a
type (1, 2) tensor field T: Γ(TM) × Γ(TM)⟶Γ(TM)

called torsion, with local expression given by

T(X, Y) � ∇XY − ∇YX − [X, Y], (17)

and a type (1, 3) tensor field
R: Γ(TM) × Γ(TM) × Γ(TM)⟶Γ(TM), called curvature
tensor, and given by

R(X, Y, Z) � ∇X ∇YZ(  − ∇Y ∇XZ(  − ∇[X,Y]Z. (18)

An affine connection is called torsion-free (or symmetric),
if T � 0, that is, if

∇XY − ∇YX − [X, Y] � 0, for allX, Y ∈ Γ(TM), (19)

where [X, Y] is the Lie bracket of X and Y [2, 3, 10]. In this
case, the Christoffel symbols are said to be symmetric with
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respect to their lower indices, that is, Γkij � Γkji. In the sequel,
we shall consider only symmetric affine connections and, for
the sake of simplicity, write zi instead of (z/zxi) to denote
the partial derivative with respect to a coordinate xi when
the latter is clear from the context.

3. Problem Statement

Returning to the statement of PFCAC, given a finite di-
mensional manifold M, a distribution D, and a symmetric
affine connection ∇ on M, the main problem to solve is as
follows:

(i) Determine a type (1, 2) symmetric tensor field
F ∈ Γ(D⊗T∗M⊗2) that takes values on D and such
that ∇ XY � ∇XY + F(X, Y) has a curvature tensor R

that is identically zero.

One easily checks that ∇ satisfies conditions (1)–(3) of
the affine connection definition.

Let (z/zxi) for i � 1, . . . , n be a basis for TM, with (dxj)

its corresponding dual base, and D a distribution such that
Dp � span Xl: l � 1, . . . , m  if F takes values in D, that is,
F ∈ Γ(D⊗T∗M⊗2), then F can be expressed as a type (1, 2)

tensor in the coordinate system (U,φ) as follows:

Fp � a
l
ijX

k
l

z

zx
k
⊗ dx

i ⊗ dx
j
. (20)

(us, the new affine connection ∇ can be expressed in
coordinates by the following equation:

∇ z/zxi( )

z

zxj
 

x

� ∇ z/zxi( )

z

zxj
 

x

+ Fx

z

zx
i
,

z

zx
j

 , (21)

where (∇(z/zxi)(z/zxj))x � Γkij(x)(z/zxi) and Fx((z/zxi),

(z/zxj)) � al
rsX

k
l (z/zxk)⊗ dxr ⊗ dxs((z/zxi), (z/zxj));

since dxr(z/zxk) � δr
k one has Fx((z/zxi), (z/zxj)) �

al
rsX

k
l (x)(z/zxk)δr

i δ
s
j, equation (21) is equivalent to

∇ z/zxi( )

z

zx
j

� Γkij + a
l
ijX

k
l 

z

zx
k
. (22)

Hence, ∇ will be determined by the Christoffel symbols
Γkij � Γkij + αl

ijX
k
l for i, j, k � 1, . . . , n, where Γkij are the

Christoffel symbols defining ∇, Xk
l is the k-th component of

the vector field Xl that take values in D, and αl
ij are the

functions to be found. Indeed, the type (1, 3) curvature
tensor components R

a

bc d associated with ∇ are as follows:

R
a

bcd � R
a
bcd + zc αr

dbX
a
r(  − zddαr

cbX
a
r

+ Γμdbα
η
cμX

a
η + αr

dbX
μ
rΓ

a
cμ + αr

dbα
η
cμX

μ
r X

a
η

− Γμcbα
η
dμX

a
η − αr

cbX
μ
rΓ

a
dμ − αr

cbα
η
dμX

μ
r X

a
η,

(23)

for a, b, c, d, μ � 1, . . . , n and r, η � 1, . . . , m. One sees that R

involves only first order partial derivatives, consequently,
solving the PFCAC consists in determining conditions for

the integrability of first-order of PDEs; in turn, this con-
ditions determine the existence of the field F. (e curvature
tensor R has n4 components, of which R

a

bcd � − R
a

bdc and
R

a

bcd � 0 when c � d; therefore, resulting system of PDEs has
only (n2(n2 − 1)/3) independent equations with (m · n(n +

1)/2) unknowns.
For example, in R2 there are 16 equations, but 4 are

independent with 3 unknowns α11, α12 � α21 y α22. In R3

there are 81 equations, 24 of which are independent, with 12
unknown αl

11, α
l
12 � αl

21, α
l
13 � αl

31, α
l
22, α

l
23 � αl

32 and αl
33 for

l � 1, 2. Note that the resulting system of PDEs are over-
determined (in that there are more equations than un-
knowns). In the next section, sufficient conditions to solve
the PFCAC are described.

(e resulting systems of the problem are solved by al-
gebraic manipulation of the equations involved, in analytical
form. Some characteristics related to Γkij and Ra

bcd in the
solutions are identified and based on these, PDE system
integrability conditions are found.

4. Results and Discussions

(e following result gives a sufficient condition for solving
the PFCAC for an affine connection ∇ on Rn.

Proposition 2. Let p ∈ Rn and U ⊂ R be a neighborhood of
p.

If Cx � span (∇(z/zxi)(z/zxj))x: i, j � 1, . . . , n ⊆Dx for
each x ∈ U, then exists a type (1,2) tensor field
F ∈ Γ(D⊗Rn⊗2) such that ∇ XY � ∇XY + F(X, Y) has a
curvature tensor R of type (1,3) identically zero.

Proof. Since U is open and p ∈ U, there exists a neigh-
borhood V of p such that V ⊂ U and there exist vector fields
X1, . . . , Xm ∈ Γ(TV) such that, for all x ∈ V,
Dx � span X1(x), . . . , Xm(x) . (en by Cx⊆Dx, for each
Z ∈ Cx, there are functions aij(x) such that
Z � ar

ij(x)Xk
r(x)(z/zxk), for each i, j � 1, . . . , n, can be

written as a linear combination of X1, . . . , Xm. In coordi-
nates, Z can be written as (∇zi

zj)x � al
ij(x)Xk

l (x)(z/zxk);
on the other hand, we also have (∇(z/zxi)(z/zxj))x �

Γkij(x)(z/zxk), which implies that Γkij(x)(z/zxk) �

al
ij(x)Xs

l (x)(z/zxs). If s � k, then Γkij(x)(z/zxk)− al
ij(x)

Xs
l (x) (z/zxs) � 0. Equivalently, Γkij(x) − al

ij(x)Xs
l (x) � 0

for all x ∈ U. If Fx ≜Fr
ij(z/zxr)⊗dxi ⊗dxj, one has

Fx((z/zxs), (z/zxt)) � al
stX

r
l (z/zxr) ∈ Dx; therefore,

Γkij � Γkij + al
ij(x)Xs

l � 0. (erefore, since all Γkij are identi-
cally null, the curvature tensor R is identically zero.

It is possible to define the vector field F on all of U using
partitions of the unity, as shown in reference [5]. Note that
Proposition 2 only provides sufficient conditions, as we can
see in the following example. □
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Example 1. Consider the ECF described by equation (4) with
the Riemannian metric g defined on M � x ∈ R3: |x2|< 1 ,
which determines the geodesic spray S on R6:

[g]x �

1 0 x2

0 1 0

x2 0 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

S(x) �

x4

x5

x6

x5x6 − x2x3x4

x
2
2 − 1

x4x6

x4x5 − x2x5x6

x
2
2 − 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(24)

S is associated with the affine connection ∇, defined by the
nonzero Christoffel symbols:

Γ112 � Γ121 � Γ323 � Γ332 �
x2

2 x
2
2 − 1 

,

Γ123 � Γ132 � Γ312 � Γ321 � −
x2

2 x
2
2 − 1 

,

Γ213 � Γ231 � −
1
2
.

(25)

Note that ∇ has a nonzero curvature tensor, because

R
1
131 � R

2
123 � R

2
321 � R

3
313 �

x2

4 x
2
2 − 1 

,

R
2
112 � R

2
332 � R

3
113 �

1
4 x

2
2 − 1 

,

R
1
212 � R

3
232 �

x
2
2 + 1

4 x
2
2 − 1 

2,

R
1
223 � R

3
221 �

x2

2 x
2
2 − 1 

2,

(26)

and their respective skew symmetries Ra
bcd � − Ra

bdc. In this
case, we have a system of PDEs with 24 equations and 12
unknowns. To flatten the curvature R, we add a symmetric
field tensor of type (1, 2) F ∈ Γ(D⊗R∗3⊗2) to the connection
∇, here D is a distribution on R3. (e new connection ∇ is
determined by the Christoffel symbols Γkij � Γkij + βl

ijX
k
l ,

where βk
ij are functions to be found and Xk are components

of the vector field that takes values in the distribution D.

(1) With the distribution

Dx � span
z

zx1
 |x,

z

zx2
 |x . (27)

One gets

Fx � β1(x)

1

0

0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ + β2(x)

0

1

0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (28)

with β1(x) � (x5(2x4x2 − x5x3x2 + x5x1−

x6x
2
2 − x6)/x2

2 − 1) and β2(x) � (2x6x4
x4
2 − 2x6x4 − 3x2

5x2 − x2
5x

3
2/2(x4

2 − 1)).
(2) With the distribution

Dx � span
z

zx1
+ x2

z

zx3
 |x,

z

zx2
 |x . (29)

One gets

Fx � β1(x)

1

0

x2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ β2(x)

0

1

0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

β1(x) �
x
2
5 3x1 + 16x3x2 + 3x1x

2
2 + 2x3x

3
2  + x5 6x6x

4
2 − 6x6 

18 x
6
2 − x

2
2 + x

4
2 − 1 

,

β2(x) �
2x6x4x

4
2 − 2x6x4 − 3x

2
5x2 − x

2
5x

3
2

2 x
4
2 − 1 

.

(30)

(3) With the distribution

Dx � span
z

zx1
 |x,

z

zx2
|x + x2

z

zx3
 |x , (31)

it cannot be solved, since the resulting system of EDP is
inconsistent.

Some questions naturally arise, such as why can the
PFCAC be solved for some but not for other distributions?
How much of the geodesic spray can be modified by using
control vector fields that take values in the control distri-
bution, to make the effective curvature vanish? Is there a
smaller-rank distribution D such that F ∈ Γ(D) and the new
Γkij are zero? With a view towards answering these questions,
we perform an analysis in dimension 2, locally, around a
point p ∈ R2 with a constant rank 1 distribution D and a
symmetric affine connections ∇. We refer to this problem as
PFCAC2, by the Frobenius integrability theorem [6], for any
constant rank 1 distribution, we can choose a vector field
X ∈ Γ(D) defined on a neighborhood of p such that
X(p) ≠ 0 and; therefore, there is a coordinate system (U, ϕ)

around p such that X|U � (z/zx1), and so,
Dx � span (z/zx1)|x  for all x ∈ U. Henceforth, we assume
that the affine connection ∇ and the distribution D are
expressed in a system of local coordinates (U, x1, x2) on R2.

In general, solving the PCAC2 is equivalent to solving
the following system of PDEs:
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z2β11 − z1β12( d
1

� R
1
112 + β12z1d

1
− β11z2d

1
+ Γ11mβ12 − Γ12mβ11 d

m

+ Γm21β1m − Γm11β2m( d
1

+ β1mβ21 − β2mβ11( d
1
d

m
,

z2β11 − z1β12( d
2

� R
2
112 + β12z1d

2
− β11z2d

2
+ Γ21mβ12 − Γ22mβ11 d

m

+ Γm21β1m − Γm11β2m( d
2

+ β1mβ21 − β2mβ11( d
2
d

m
,

z2β12 − z1β22( d
1

� R
1
212 + β22z1d

1
− β12z2d

1
+ Γ11mβ22 − Γ12mβ12 d

m

+ Γm22β1m − Γm12β2m( d
1

+ β1mβ22 − β2mβ12( d
1
d

m
,

z2β12 − z1β22( d
2

� R
2
212 + β22z1d

2
− β12z2d

2
+ Γ21mβ22 − Γ22mβ12 d

m

+ Γm22β1m − Γm12β2m( d
2

+ β1mβ22 − β2mβ12( d
2
d

m
,

(32)

where dm is the m-th component of the vector field that
generates the distribution D for m � 1, 2.

In order to find integrability conditions of the PDEs (32),
we start with a simple case, that is, when the Christoffel
symbols Γkij are constant for all i, j, k � 1, 2, we get the
following result.

Proposition 3. If ∇ is determined by Christoffel symbols Γk
ij

such that in the coordinate system (U,φ) all the Γk
ij are

constant, then the PFCAC2 admits a solution.

Proof. Since Γ212 is constant for all x ∈ U, let us first consider
the case where Γ212 ≠ 0. (en, equation (32) is reduced to the
following first-order PDE system:

z2β11 − z1β12 � R
1
112 + Γ212β12 − Γ211β22, (33)

z2β12 − z1β22 � R
1
212 + β11 β22 + Γ122  + Γ222 − 2Γ112 − β12 β12

+ Γ111 − Γ212 β22,

(34)

0 � R
2
112 + Γ211β12 − Γ212β11, (35)

0 � R
2
212 + Γ211β22 − Γ212β12. (36)

Under the stated assumptions, the curvature tensor R

associated with ∇ has components as follows:

R
a
bcd � ΓacmΓ

m
db − ΓadmΓ

m
cb, for a, b, c, d � 1, 2. (37)

In addition, we know that Ra
bcd � 0 when c � d and

Ra
bcd � − Ra

bdc; therefore, the nonzero components of R are as
follows:

R
1
112 � Γ112Γ

2
21 − Γ122Γ

2
11,

R
1
212 � Γ111Γ

1
22 + Γ112Γ

2
22 − Γ121Γ

1
12 − Γ122Γ

2
12,

R
2
112 � Γ211Γ

1
21 + Γ212Γ

2
21 − Γ221Γ

1
11 − Γ222Γ

2
11,

R
2
212 �� Γ211Γ

1
22 − Γ221Γ

1
12.

(38)

Plugging R2
112 and R2

212 into equations (35) and (36), we
get, respectively, as follows:

0 � Γ211Γ
1
21 + Γ212Γ

2
21 − Γ221Γ

1
11 − Γ222Γ

2
11 + Γ211β12 − Γ212β11,

0 � Γ211Γ
1
22 − Γ221Γ

1
12 + Γ211β22 − Γ212β12.

(39)

If β12 � − Γ112 and β22 � − Γ122, then equation (36) is sat-
isfied, replacing β12 and β22 in equation (35), and when
Γ212 ≠ 0, one gets β11 � (1/Γ221)(Γ

2
12(Γ

2
12 − Γ111) − Γ222Γ

2
11); now,

we just need to verify that equations (33) and (34) are
satisfied. Substituting R1

112, R1
212 and given that βij are

constant functions by assumption on Γkij, then equations (33)
and (34) are reduced to

0 � Γ112Γ
2
21 − Γ122Γ

2
11 + Γ212β12 − Γ211β22,

0 � Γ111Γ
1
22 + Γ112Γ

2
22 − Γ121Γ

1
12 − Γ122Γ

2
12 + β11 β22 + Γ122 

+ Γ222 − 2Γ112 − β12 β12 + Γ111 − Γ212 β22,

(40)

in fact, β11, β12; β21, and β22 satisfy these two equations and,
therefore,

Fx �
1
Γ221
Γ212 Γ

2
12 − Γ111  − Γ222Γ

2
11 

1

0
⎛⎝ ⎞⎠x

2
3

− Γ112
1

0
⎛⎝ ⎞⎠ x3x4 + x4x3(  − Γ122

1

0
⎛⎝ ⎞⎠x

2
4.

(41)

Now considering the case where Γ212|U � 0, system (32) is
reduced to

z2β11 − z1β12 � R
1
112 − Γ211β22, (42)

z2β12 − z1β22 � R
1
212 + β11 β22 + Γ122 

+ Γ222 − 2Γ112 − β12 β12 + Γ111β22,
(43)

0 � R
2
112 + Γ211β12, (44)

0 � R
2
212 + Γ211β22, (45)

and the nonzero components of the curvature tensor are as
follows:
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R
1
112 � − Γ122Γ

2
11,

R
1
212 � Γ111Γ

1
22 + Γ112Γ

2
22 − Γ121Γ

1
12,

R
2
112 � Γ211Γ

1
21 − Γ222Γ

2
11,

R
2
212 � Γ211Γ

1
22,

(46)

by replacing R2
112 and R2

212 in equations (44) and (45), one
gets

0 � Γ211Γ
1
21 − Γ222Γ

2
11 + Γ211β12,

0 � Γ211Γ
1
22 + Γ211β22,

(47)

hence, β12 � − Γ112 + Γ222 and β22 � − Γ122. Substituting R1
112,

R1
212, β12, and β22, then equation (19) is satisfied and from

equation (42), one gets

z2β11 � 0. (48)

(erefore, β11 � f(x1) for an arbitrary function
f ∈ C1(U). (us, β11 � f(x1), β12 � − Γ112 + Γ222, and β22 �

− Γ122 is a solution for systems (42)–(45), thus

Fx � f x1( 
1

0
 x

2
3 − Γ112 − Γ222 

1

0
  x3x4 + x4x3( 

− Γ122
1

0
 x

2
4.

(49)

In the following case, the affine connections considered
are determined by their Christoffel symbols Γ2ij such that at
the least one is zero and Γ1ij are all zero. In this case, sufficient
conditions are obtained in the following result. □

Proposition 4. Let an affine connection ∇ determined by Γ2ij,
and suppose there is a pair (i, j) ∈ 1, 2{ }2 such that in the
coordinate system (U, ϕ), Γ2ij|U � 0, and a distribution Dx �

span (z/zx1)|x  for all x ∈ U, and the following identities are
satisfied:

(1) R2
212|U � 0

(2) If Γ212|U ≠ 0 and (z2R
2
112/Γ

2
12)|U � 0

(3) If Γ211|U ≠ 0 and (z2R
2
112/Γ

2
11)|U � 0, then the PFAC2

admits a solution

Proof. Let Dx � span (z/zx1)|x  and ∇ be determined by Γ2ij
in the coordinate (U, ϕ), then system (32) is reduced as
follows:

z2β11 − z1β12 � Γ212β12 − Γ211β22,

z2β12 − z1β22 � β11β22 − β212 + Γ222β12 − Γ212β22,

0 � R
2
112 + Γ211β12 − Γ212β11,

0 � R
2
212 + Γ211β22 − Γ212β12.

(50)

(i) If p ∈ R2, then exists a neighborhood V of p with
V ∈ V(p) and V⊆U such that, for the pair

(1, 1) ∈ 1, 2{ }2, Γ211(x) � 0 for all x ∈ U, then PDE
system (50) is reduced to

z2β11 − z1β12 � Γ212β12, (51)

z2β12 − z1β22 � β11β22 − β212 + Γ222β12 − Γ212β22, (52)

0 � R
2
112 − Γ212β11, (53)

0 � R
2
212 − Γ212β12, (54)

by Assumption 1 and equations (53) and (54), one
gets, respectively,

0 � R
2
112 − Γ212β11 |U,

0 � Γ212β12 |U,
(55)

from these two equations, the following cases are
derived:

(a) If Γ212(x)|U ≠ 0 for all x ∈ U, then β12 � 0 and
β11 � (R2

112/Γ
2
12), and for identity (2), equation

(51) is satisfied and by equation (52), one gets
− z1β22 � (z1Γ212/Γ

2
12)β22, an ordinary equation,

whose primitive is β22 � c0 exp(− (z1Γ212/
Γ212)dx1), where c0 is an integration constant,
and

Fx � β11
1

0
 x

2
3 + β22

1

0
 x

2
4. (56)

(b) If Γ212|U � 0, then R|U ≡ 0; therefore, equations
(51)–(54) admit a trivial solution, namely, βij �

0 for all i, j � 1, 2 and Fx ≡ 0.

(ii) Considering the pair (2, 2) ∈ 1, 2{ }2, Γ222(x) � 0 for
all x ∈ U, then PDE system (50) is reduced to

z2β11 − z1β12 � Γ212β12 − Γ211β22, (57)

z2β12 − z1β22 � β11β22 − β212 − Γ212β22,
(58)

0 � R
2
112 + Γ211β12 − Γ212β11, (59)

0 � R
2
212 + Γ211β22 − Γ212β12, (60)

by Assumption 1 and equations (57) and (58), one
gets, respectively,

0 � R
2
112 + Γ211β12 − Γ212β11 |U,

0 � Γ211β22 − Γ212β12 |U,
(61)

Given these two equations, we have the following
cases:
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(a) If Γ212 and Γ
2
11 are nowhere zero on U, then β12 �

β22 � 0 and β11 � (R2
112/Γ

2
12) satisfy equations

(56)–(58) and by Assumption 2, equation (55) is
satisfied and one gets

Fx �
R
2
112

Γ212

1

0
⎛⎝ ⎞⎠x

2
3. (62)

(b) If Γ212|U � 0 and Γ211(x)|U ≠ 0 for all x ∈ U, then
β22 � 0 and β12 � − (R2

112/Γ
2
11) satisfy equations

(56)–(58) and from equation (55), one gets
z2β11 � − z1(R2

112/Γ
2
12), an ordinary equation,

whose primitive is β11 � − (z1(R2
112/

Γ212))dx2 + c1, where c1 is an integration con-
stant, then

Fx � β11
1

0
 x

2
3 − β12

1

0
  x3x4 + x4x3( . (63)

(c) If Γ211|U � 0, then R|U ≡ 0, and therefore systems
(55)–(58) admit a trivial solution, namely, βij �

0 for i, j � 1, 2 and Fx ≡ 0.

(iii) For the pair (1, 2) � (2, 1) ∈ 1, 2{ }2, Γ212 ∣ U � 0 and
equation (50) is reduced to

z2β11 − z1β12 � − Γ211β22, (64)

z2β12 − z1β22 � β11β22 − β212 + Γ222β12, (65)

0 � R
2
112 + Γ211β12, (66)

0 � R
2
212 + Γ211β22, (67)

From Assumption 1 and equations (66) and (67),
one gets, respectively,

0 � R
2
112 + Γ211β12 |U,

0 � Γ211β22 |U,
(68)

and the following cases are derived:

(a) If Γ211|U ≠ 0, then with β22 � 0 and
β12 � − (R2

112/Γ
2
11), equations (65)–(67) are sat-

isfied and from equation (64), one gets an or-
dinary equation z2β11 � z1(R2

112/Γ
2
12) with

primitive β11 � − (z1(R2
112/Γ

2
12))dx2 + c,

where c is an integration constant, so

Fx � β11
1

0
 x

2
3 − β12

1

0
  x3x4 + x4x3( . (69)

(b) If Γ211|U � 0, then R|U ≡ 0; hence, systems
(64)–(67) admit a trivial solution, this is, βij � 0
for i, j � 1, 2 and Fx ≡ 0.

(e following case is motivated by the previous one but
considering this time that the Christoffel symbols Γ2ij in the
coordinate system (U, x1, x2) are given by smooth arbitrary

functions that depend on x1 and x2 for all i, j � 1, 2. In this
case, there are only some combinations of the Γ2ij, for which
the PFCAC2 admits a solution, and these are mentioned in
the following result: □

Proposition 5. Let D be a distribution and ∇ be an affine
connection on an open subset of R2, and assuming that, for a
coordinate chart (U, ϕ), one has Γ2ij|U � f(x1, x2), where
f ∈ C1(R2) and Dx � span z/zx1  for all x ∈ U. 5en, the
PFCAC2 admits solutions in the following cases:

C1. If Γ222|U � constant ≠ 0, Γ211|U � f1(x1), Γ212|U �

f2(x1) and

(i) If satisfied R2
212|U � 0 and (Γ212z2R2

112−

R2
112z2Γ

2
21)|U � 0.

C2. If Γ2ii|U � Γ2jj|U � xi and Γ2ij|U � xj for i≠ j and
(ii) R212|U � 0 and ziΓ211|U � zjΓ212|U.

C3. If Γ2ij|U � xk for k � 1, 2 and
(iii) R2

112|U � R2
212|U and z1(R2

112/Γ
2
12)|U − z2(R2

112/
Γ212)|U + (R2

112/Γ
2
12)

2|U � 0.
C2. If Γ2ii|U � Γ2jj|U � xi and Γ2ij|U � xj for i≠ j and

(ii) R212|U � 0 and ziΓ211|U � zjΓ212|U.
C3. If Γ2ij|U � xk for k � 1, 2 and

(iii) R2
112|U � R2

212|U and z1(R2
112/Γ

2
12)|U − z2(R2

112/
Γ212)|U + (R2

112/Γ
2
12)

2|U � 0.
(ii) R212|U � 0 and ziΓ211|U � zjΓ212|U.

C3. If Γ2ij|U � xk for k � 1, 2 and
(iii) R2

112|U � R2
212|U and z1(R2

112/Γ
2
12)|U − z2(R2

112/
Γ212)|U + (R2

112/Γ
2
12)

2|U � 0.
C3. If Γ2ij|U � xk for k � 1, 2 and

(iii) R2
112|U � R2

212|U and z1(R2
112/Γ

2
12)|U − z2(R2

112/
Γ212)|U + (R2

112/Γ
2
12)

2|U � 0.
(iii) R2

112|U � R2
212|U and z1(R2

112/Γ
2
12)|U − z2(R2

112/
Γ212)|U + (R2

112/Γ
2
12)

2|U � 0.

Proof. (e PDE system resulting for this case is expressed as
follows:

z2β11 − z1β12 � Γ212β12 − Γ211β22,

z2β12 − z1β22 � β11β22 − β212 + Γ222β12 − Γ212β22,

0 � R
2
112 + Γ211β12 − Γ212β11,

0 � R
2
212 + Γ211β22 − Γ212β12.

(70)

C1. If Γ222|U � constant≠ 0, Γ211|U � f1(x1) and
Γ212|U � f2(x1), then the associated curvature tensor
has components R1

bcd ≡ R2
212 ≡ 0 for b, c, d � 1, 2,

R2
112 ≡ z1f2(x1) − f2

2(x1) − af1(x1) and system (70) is
reduced to

z2β11 − z1β12 � f2 x1( β12 − f1 x1( β22, (71)

z2β12 − z1β22 � β11β22 − β212 + aβ12 − f2 x1( β22, (72)
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0 � z1f2 x1(  − f
2
2 x1(  − af1 x1( 

+ f1 x1( β12 − f2 x1( β11,
(73)

0 � f1 x1( β22 − f2 x1( β12. (74)

From equations (73) and (74), one gets β11 �

(z1f2(x1) − f2
2(x1) − af1(x1)/f2(x1)) + (f1(x1)/

f2(x1))
2β22 and β12 � (f1(x1)/f2(x1))β22, then if

β22 � 0, one gets β12 � 0 and β11 � (z1f2(x1)−

f2
2(x1) − af1(x1)/f2(x1)). Note that equations (71)

and (72) are also satisfied. (erefore, β12 � β22 � 0 and
β11 � (R2

112/Γ
2
12) are solutions for systems (71)–(74),

thus

Fx �
R
2
112

Γ212

1

0
⎛⎝ ⎞⎠x

2
3. (75)

C2. If Γ2ii|U � Γ2jj|U � xi and Γ2ij|U � xj for i≠ j, then the
curvature tensor associated with ∇ has components
R1

bcd ≡ R2
212 ≡ 0 for b, c, d � 1, 2 and R2

112 � x2
j − x2

i .
(us, system (70) is reduced as follows:

z2β11 − z1β12 � xjβ12 − xiβ22, (76)

z2β12 − z1β22 � β11β22 − β212 + xiβ12 − xjβ22, (77)

0 � x
2
j − x

2
i + xiβ12 − xjβ11, (78)

0 � xiβ22 − xjβ12. (79)

From this, it follows that β11 � β22 � xj and β12 � xi

satisfy equations (78) and (79) and by ii equations (76)
and (77) also are met, thus

Fx � xj

1

0
 x

2
3 − xi

1

0
  x3x4 + x4x3(  − xj

1

0
 x

2
4.

(80)

C3. If Γ2ij ∣ U � xk, then ∇ has curvature tensor asso-
ciated with components R1

bc d ≡ 0 and R2
112 ≡ R2

212.
(us, system (70) is reduced as follows:

z2β11 − z1β12 � xk β12 − β22( , (81)

z2β12 − z1β22 � β11β22 − β212 + xk β12 − β22( , (82)

0 � R
2
112 + xk β12 − β11( , (83)

0 � R
2
112 + xk β22 − β12( . (84)

If xk is not zero on U for k � 1, 2, then by equations (83)
and (84), one gets the following equation:

β11 �
2R

2
112

xk

+ β22,

β12 �
R
2
112

xk

+ β22,

(85)

replacing β11 and β12 in equations (81) and (82), one gets,
respectively, as follows:

z2β22 − z1β22 � R
2
112 + z1

R
2
112

xk

  − 2z2
R
2
112

xk

 ,

z2β22 − z1β22 � R
2
112 −

R2
112

xk

 

2

− z2
R
2
112

xk

 .

(86)

(e system has a solution if the following equation is
true:

R
2
112 + z1

R
2
112

xk

  − 2z2
R
2
112

xk

  � R
2
112 −

R2
112

xk

 

2

− z2
R
2
112

xk

 ,

(87)

but by identity (3)), it is satisfied; therefore, systems
(81)–(84) have a solution and depend on k, that is,

(i) If k � 1, then R2
112 ≡ R2

212 � 1 and if x1 ≠ 0, then one
gets

z2β22 − z1β22 � 1 −
1
x
2
1
, (88)

from which it can be deduced that if
β22 � x2 − (1/x1), then β11 � (1/x1) + x2 and β12 �

x2 are solutions for the system and

Fx �
1
x1

+ x2 

1

0
⎛⎝ ⎞⎠x

2
3 + x2

1

0
⎛⎝ ⎞⎠ x3x4 + x4x3( 

+ x2 −
1
x1

 

1

0
⎛⎝ ⎞⎠x

2
4.

(89)

(ii) If k � 2, then R2
112 ≡ R2

212 � − 1 and if x2 ≠ 0, then one
gets

z2β22 − z1β22 � − 1 +
2
x
2
1
, (90)

from which one can deduced that if β22 � x1 − (2/x2
2), then

β11 � x1, β12 � x1 + (1/x2) and, therefore, the system has a
solution, thus

Fx � x1

1

0
⎛⎝ ⎞⎠x

2
3 + x1 +

1
x2

 

1

0
⎛⎝ ⎞⎠ x3x4 + x4x3( 

+ x1 −
2
x
2
2

 

1

0
⎛⎝ ⎞⎠x

2
4.

(91)
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Note that in Propositions 4 and 5, Γ1ij|U � 0; however, if
these are nonzero on (U, ϕ) and if we also consider the
previous cases of Γ2ij, the PFCAC2 has a solution. (en, also
for a connection ∇ defined by Γ1ij arbitrary and Γ2ij as in
Propositions 4 and 5, the PFCAC2 admits a solution as
follows:. □

Proposition 6. Let D be a distribution and ∇ be an affine
connection on R2. If in the coordinate system (U, ϕ), ∇ is
determined by Γ1ij|U � fij(x1, x2) and Γ2ij|U (Propositions 4
and 5) for i, j � 1, 2, and also Dx � span (z/zx1)|x  for all
x ∈ U, then, the PFCAC2 admits a solution.

Proof. Based on the assumptions of the statement, system
(32) is reduced to the following PDE system:

z2β11 − z1β12 � R
1
112 + Γ212β12 − Γ211β22, (92)

z2β12 − z1β22 � R
1
212 + β11 β22 + Γ122  + Γ222 − 2Γ112 − β12 β12

+ Γ111 − Γ212 β22,

(93)

0 � R
2
112 + Γ211β12 − Γ212β11, (94)

0 � R
2
212 + Γ211β22 − Γ212β12. (95)

From Proposition 2, βij � − Γ1ij is one solution for the
case, where ∇ is determined by the only nonzero Christoffel
symbols Γ1ij, with a distribution D � span (z/zx1)|x . In this
case, we have Γ2ij as in Propositions 4 and 5, then we know βij

is a solution, from which one can infer that one solution for
systems (92)–(95) is βij � βij − Γ1ij, and this is verified by
substituting in each equation. By assumption, we know that
the components of the curvature tensor are as follows:

R
1
112 � z1Γ

1
12 − z2Γ

1
11 + Γ112Γ

2
21 − Γ122Γ

2
11,

R
1
212 � z1Γ

1
22 − z2Γ

1
12 + Γ111Γ

1
22 + Γ112Γ

2
22 − Γ121Γ

1
12 − Γ122Γ

2
12,

R
2
112 � z1Γ

2
21 − z2Γ

2
11 + Γ211Γ

1
21 + Γ212Γ

2
21 − Γ221Γ

1
11 − Γ222Γ

2
11,

R
2
212 � z1Γ

2
22 − z2Γ

2
12 + Γ211Γ

1
22 − Γ221Γ

1
12,

(96)

and when replacing in equations (92)–(95), one gets

z2
β11 − z1

β12 � Γ212β12 − Γ211β22, (97)

z2
β12 − z1

β22 � β11β22 − β
2
12 + Γ222β12 − Γ212β22, (98)

0 � z1Γ
2
21 − z2Γ

2
11 + Γ212Γ

2
21

− Γ222Γ
2
11 + Γ211β12 − Γ212β11,

(99)

0 � z1Γ
2
22 − z2Γ

2
12 + Γ211β22 − Γ212β12. (100)

Given that Γ2ij are defined as in Propositions 4 and 5 and
βij is one solution, thus systems (97)–(100) can be solved and
one gets

Fx � βij

1

0
 x

i
x

j
. (101)

(e following examples single out some systems of PDEs
that cannot be solved. (is is made clear by exposing in-
consistencies among the equations. □

Example 2. If ∇ is defined by Γ222|U � x1 and Γ2ij ≡ 0 for
(i, j) � (2, 2) on U, then the curvature tensor associated has
only one nonzero component, namely, R2

212 � 1. (en,
system (32) is reduced to

z11 � z12,

z12 � z22 + β11β22 − β212 + x1β12,

0 � 1,

(102)

in this case, the inconsistency is immediately evident;
therefore, the system has no solution.

Example 3. If ∇ is determined by Γ211|U � a, with a ∈ R,
Γ222|U � x1 and all other Christoffel symbols identically zero
on U, then the curvature tensor has nonzero components. If
a≠ 0, R2

112|U � − ax1 and R2
212|U � 1, but if a � 0, we have the

previous case. (en, assuming that a≠ 0, the resulting
system is

z2β11 − z1β12 � − aβ22, (103)

z2β12 − z1β22 � β11β22 − β212 + x1β12, (104)

0 � − ax1 + aβ12, (105)

0 � 1 + aβ22, (106)

by equations (105) and (106), one gets β12 � x1, β22 � − (1/a)

and when replacing in equation (103), we obtain β11 � 2x2.
Nevertheless, equation (104) is not satisfied because we have
0 � − 2x2, so the system is inconsistent and therefore has no
solution.

(e following example shows a particular type of in-
consistency because the solvability of the system depends on
a constant.

Example 4. If ∇ is determined by Γ211|U � a, Γ212|U � b, for
a, b ∈ R and Γ222|U � x2, then the curvature tensor has a
nonzero component R2

112 � b2 − ax2 and one gets the
system:

z2β11 − z1β12 � bβ12 − aβ22, (107)

z2β12 − z1β22 � β11β22 − β212 + x2β12 − bβ22, (108)

0 � b
2

− ax2 + aβ12 − bβ11, (109)

0 � aβ22 − bβ12, (110)

from equations (109) and (110), it follows that if b≠ 0, then
β11 � (b2 − ax2/b) + (a2/b2)β22 and β12 � (a/b)β22 but
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when replacing in equations (107) and (108), one gets the
following equation:

0 �
a

b
. (111)

If a � 0, systems (107)–(110) have solution β11 � b and
β12 � β22 � 0 (Proposition 4, i(a); otherwise the system is
inconsistent. If b � 0 and a≠ 0, by Proposition 4, the system
is inconsistent as it does not satisfy the identity (3). On the
other hand, with a � b � 0, ∇ has associated a zero curvature
tensor and therefore the system admits trivial solution
βij � 0.

5. Conclusions and Further Research

Although the PFCAC is easy to state, solving it represents an
interesting challenge, as we can see in the PFCAC2. In this
study, we have studied the PFCAC2 and we realized that one
of the difficult parts is to characterize or study the set of
solutions of the resulting PDE system. In addition, PFCAC2
could only be solved for a few cases, with constant rank 1
distributions. (e main results give only sufficient condi-
tions for existence of F; at this point, we are unable to
determine necessary conditions.

As further research, it is intended to make a more
geometric interpretation, consider more general distribu-
tions, look for necessary conditions, and solve the flattening
problem for higher dimensions.
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