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Abstract: Silver and gold nanoparticles were synthesized under environmentally-friendly reaction
conditions by using a biodegradable copolymer and water as a solvent. The triblock copolymer
Pluronic P103 was utilized as a stabilizing agent or soft template to produce Ag and Au nanoparticles
(NPs) of different sizes. Moreover, in the synthesis of Au NPs, the polymer acted as a reducing agent,
decreasing the number of reagents used and consequently the residues produced, hence, rendering
the procedure less complicated. It was observed that as the concentration of the polymer increased,
the size of the metallic NPs augmented as well. However, AgNPs and AuNPs prepared with 1
and 10 wt% Pluronic P103, respectively, showed a significant decrease in particle size due to the
presence of polymeric soft templates. The hybrid materials (metal/polymer) were characterized by
UV-Vis spectroscopy, DLS, and TEM. The pre-synthesized nanoparticles were employed to decorate
anatase-TiO2, and the composites were characterized by DRS, XRD, BET surface area measurements,
the TEM technique with the EDS spectrum, and XPS spectroscopy to demonstrate NPs superficial
incorporation. Finally, methylene blue was used as a probe molecule to evidence the effect of
NPs decoration in its photocatalytic degradation. The results showed that the presence of the NPs
positively affected methylene blue degradation, achieving 96% and 97% removal by utilizing TAg0.1
and TAu10, respectively, in comparison to bare anatase-TiO2 (77%).

Keywords: green synthesis; photocatalysis; gold nanoparticles; silver nanoparticles; triblock copoly-
mer; soft templates; TiO2

1. Introduction

The concept of green chemistry, i.e., green manufacturing, green production, and
clean chemistry, sustainable chemistry, was formally established by Paul Anastas and John
Warner in the 1990s [1]. It was defined as the “design of chemical products and processes
to reduce or eliminate the use and generation of hazardous substances” [1–3], and it can
be applied in all stages of the product’s life cycle, e.g., design, manufacture, and final
disposal [4,5].

Therefore, NPs synthesis through simple methods has acquired great importance.
For instance, triblock copolymers in aqueous solutions have been widely used, since they
act as reductants and stabilizers. In consequence, they decrease the number of elements
involved in a reaction [6]. Recently, triblock copolymer Pluronic P103 has been employed in
AgNPs and AuNPs synthesis due to its hydrophobic character, commercial availability, and
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biocompatibility [7,8]. However, this polymer is very versatile, and a change in temperature
and concentration results in new and attractive arrangements. Therefore, it is a material
with great potential in the synthesis of NPs.

On the other hand, catalysis is one of the most versatile tools of green chemistry,
in that it reduces waste generation and the energy required for transformations while
increasing synthesis selectivity [2,9]. In heterogeneous photocatalysis, semiconductors
are widely used in advanced oxidation processes, such as environmental remediation of
waste-water, due to (a) the ability to generate charge carriers when exposed to radiation
at a determined wavelength [10], (b) their electronic structure [11], and (c) their light
absorption properties [12]. The most used materials in heterogeneous photocatalysis are
semiconductor oxides, e.g., TiO2, ZnO, and SnO2 [13], due to their high oxidizing properties
and stability, together with their low cost and toxicity [12,14]. Although TiO2 has gained
considerable attention in photocatalytic applications [13,15–19], it is essential to improve
its performance [12,14,20]. Its main disadvantages are rapid recombination of electron-hole
pairs and the bandgap values (anatase phase: 3.2 eV, rutile phase: 3.0 eV), which limits its
ultraviolet absorption (λ < 390 nm) [19,21].

Consequently, several strategies have been developed to improve TiO2 visible light
activity, including doping [11], decoration [12,22–24], and doping/decoration [25]. The
semiconductor/metallic junction results in an efficient electron trap that prevents the
recombination of electron-hole pairs due to the Schottky junction [26]. However, the amount
of heterojunctions could affect the transfer of such photoelectrons; thus, it is essential to
possess a proper relationship [27]. Metal NPs improve the photocatalytic performance
due to localized surface plasmon resonance (LSPR) [23,24], which contributes to increased
radiation absorption and the excitation of active charge carriers [26,28,29]. Therefore,
the surface modification of TiO2 with metal NPs improves its photocatalytic properties,
extending its activation range from UV to UV-Visible radiation, which is advantageous
considering that the activation source can be solar energy [12,13,28].

Among the most common metals in nanometer sizes that present LSPR we find Ag, Au,
Pd, and Pt [17]. In addition, both Ag and Au have antibacterial, anticancer, fungicidal, and
catalytical properties [12,14,17,19,30–34]. Gao et al. [22] synthesized Ag- and Au-decorated
TiO2 membranes by two methods: hydrothermal synthesis and photo-reduction. These
authors showed that metallic NPs enhanced the photo-response of the semiconductor in
the visible light region, improving its photocatalytic properties in rhodamine B degradation.
In addition, they observed that the LSPR effect of AgNPs was stronger than that of AuNPs.
Narkburekeau et al. [29] degraded rhodamine B using anatase-phase TiO2 with AgNPs
deposited on its surface by the chemical reduction method followed by a calcination pro-
cess, which led to an increase in crystallinity and photocatalytic efficiency. Ismail et al. [35]
reported a simple synthesis method through the photo-deposition of precious metals onto
mesoporous TiO2 networks utilizing the F127 triblock copolymer as a template. The au-
thors demonstrated that the precious metals/TiO2 nanocomposites were more photoactive
than bare TiO2. Liu et al. [36] presented a simple synthetic method to prepare Au/TiO2
nanocomposite materials. These authors used the amphiphilic block copolymer PEO-b-
PS dissolved in tetrahydrofuran (THF) as a co-template to produce AuNPs with specific
sizes. The nanocomposites demonstrated significantly higher activity in photocatalytic
methanol dehydrogenation.

To our recent knowledge, there are few reports in the literature investigating the
photocatalytic characteristics of Ag/TiO2 or Au/TiO2 systems using triblock copolymers
in a simple synthesis.

Herein, the preparation of a green photocatalyst, i.e., TiO2 decorated with either Ag-
NPs or AuNPs, is reported. The composites were prepared in a simple and environmentally
friendly manner. To start, NPs were synthesized using different concentrations of the
predominantly hydrophobic and biodegradable triblock copolymer Pluronic P103 in an
aqueous solution. This procedure has a relevant effect on particle size. In the synthesis
of AgNPs, NaBH4 was utilized as the reducing agent. Therefore, the amount of polymer
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employed in their fabrication was different from that used in AuNPs synthesis, where only
the polymer was employed. Later, commercial TiO2 was decorated with NPs followed
by calcination at 500 ◦C. The new composites were characterized by DRS, XRD, and BET
surface area measurements, TEM and EDS, and XPS spectroscopy. The photocatalytic
performance of this system was evaluated under ultraviolet and visible-light irradiation
using MB dye, which usually is taken as a representative organic-pollutant molecule, and
compared against the behavior of bare calcined TiO2. It was shown that decoration of the
TiO2 surface with NPs increases the photocatalytic efficiency.

2. Results and Discussion
2.1. Silver Nanoparticles (AgNPs)

The optical properties of NPs such as size, shape, concentration, and agglomeration
state, can be inferred by UV-Vis spectroscopy. Figure 1a displays the UV-Vis spectra of
the sample prepared in the absence of the copolymer (AgNPs P103 0%). As observed, the
spectra exhibit absorption bands between 383 and 394 nm, which are related to the LSPR
of spherical AgNPs with a radius below 20 nm [8,37–39]. An increase in the absorption
intensity is observed at the early stages. Santos et al. [38] proposed that intensity is related
to concentration; consequently, higher intensity means higher concentration. Nevertheless,
intensity later decreases, and the bands present a redshift, suggesting the presence of larger
particles, indicating that the NPs probably agglomerated due to electrostatic interactions
between them [38]. Figure 1b shows the UV-Vis spectra of AgNPs using an aqueous solution
of Pluronic P103 at 0.1 wt% (AgNPs P103 0.1%). The polymer modifies absorption-band
behavior, where less intensity and a redshift are observed. Moreover, band broadening
occurred. In solution, the Pluronic P103 structure changes with increasing concentration,
i.e., monomers-micelles-agglomerates of micelles [8,40] that modify AgNPs formation.
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Figure 1. UV-Vis spectra of the AgNPs using NaBH4: (a) AgNPs P103 0% and (b) AgNPs P103 0.1%, both synthesized at 
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is assigned to a size increase [37]. AgNPs synthesized in aqueous solutions of Pluronic 
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shown in Figure 1b for AgNPs P103 0.1%, the polymer decreases the intensity of absorb-
ance and promotes band broadening, denoting an increase in both nanoparticle size and 

Figure 1. UV-Vis spectra of the AgNPs using NaBH4: (a) AgNPs P103 0% and (b) AgNPs P103 0.1%,
both synthesized at 30 ◦C.

The kinetics of AgNPs formation was evaluated using maximum plasmon resonance
absorbance (Imax) and wavelength at the absorption peak (λmax). Figure 2a presents Imax
vs. time. For AgNPs P103 0%, it can be appreciated that intensity decreases after 60 min
which is assigned to a size increase [37]. AgNPs synthesized in aqueous solutions of
Pluronic P103 at 0.01, 0.1, and 0.5 wt% exhibited similar behavior with Imax changing over
time. As shown in Figure 1b for AgNPs P103 0.1%, the polymer decreases the intensity of
absorbance and promotes band broadening, denoting an increase in both nanoparticle size
and polydispersity [37]. However, for aqueous solutions of Pluronic P103 at 1 wt%, Imax
remains nearly constant during the reaction. Recently, a versatile and inexpensive method
was developed to produce oval-shaped micelles with the capacity to act as a soft template
or nanoreactor where small sized AgNPs were formed [8]. Thus, it is proposed that at
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1 wt% of P103, surface cavities of the soft template allow an orderly process, causing Imax to
remain constant.
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On the other hand, the λmax position is related to the size and shape of NPs [38,41].
Figure 2b shows that for AgNPs P103 0%, λmax remains constant for 30 min, showing an
increase of around 60 min, which is related to a size enlargement [42,43]. It finally reached
a constant value. However, λmax behaves differently when the polymer is used. This takes
place for AgNPs P103 0.01%, AgNPs P103 0.1%, and AgNPs P103 0.5%. During the first
stage, the wavelength decreases, with all samples showing a blueshift, revealing a process
in which the newly formed particles show a decomposition into smaller ones [44]. Later,
the blueshift becomes a redshift, indicating an increase in particle size [8,45]. Finally, after
100 min, λmax remains constant. On the other side, for AgNPs P103 1%, λmax exhibits plateau
stability throughout the reaction, suggesting that soft templates control NPs growth [37].
An increase in polymer concentration enhances λmax. Different authors have reported
that higher amounts of polymer produce larger NPs because polymers form part of the
nanostructure [43,46,47].

Now, to obtain a general idea of the structural changes of AgNPs, DLS was used. DLS
is an excellent tool for micelles with core and swollen corona [48]. Figure 3 exhibits the
particle-size distribution of (a) AgNPs P103 0% and (b) AgNPs P103 0.1%. The intensity
size distribution of AgNPs P103 0% is trimodal: 3, 12, and 79 nm. However, the volume
size distribution exhibits only two peaks (3 and 9 nm), showing a greater frequency of 3-nm
particles. For AgNPs P103 0.1%, there is only one signal, both in intensity and volume,
indicating the presence NPs of 50 nm. This response demonstrates that the polymer used
during the synthesis of NPs greatly affects their size.

The increase in volume size distribution is evident when the polymer concentration is
augmented (0.01, 0.1, and 0.5 wt%), as observed in Figure 4a. The presence of a single peak
may indicate large AgNPs or AgNPs agglomeration [49]. This behavior correlates with
UV-Vis spectroscopy (Figure 2b), in that an increase in polymer concentration promotes a
redshift, indicating an increase in particle size [38,42]. However, for AgNPs P103 1%, the
size decreases, and only one peak is observed near 6 nm. The intensity and width are close
to that of AgNPs P103 0%, suggesting the formation of smaller nanostructures. TEM shows
AgNPs arranged on the surface of a soft template, with a size of 4.2 ± 2.0 nm (Figure 4b).
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2.2. Gold Nanoparticles (AuNPs)

In the synthesis of AuNPs, Pluronic P103 acts as a reducing and stabilizing agent,
which comprises an advantage over AgNPs synthesis. It is considered a green synthesis,
in that it uses few reagents, is affordable, and is practical. AuNPs’ synthesis employing
different concentrations of Pluronic P103 (0.4–5 mM) has been extensively studied because it
is possible to modulate NPs size (8–30 nm) [6,50]. However, our group recently synthesized
AuNPs on the surface of soft P103 templates (10–20 wt%), reporting the formation of tiny
NPs (3-nm in size) [7] that due to their size, are very promising in the area of catalysis.

The absorption spectra of AuNPs utilizing Pluronic P103 aqueous solutions at different
concentrations are displayed in Figure 5. Figure 5a shows the synthesis of AuNPs using
Pluronic P103 at 0.5 wt%. A plasmon peak is evident at 540 nm, inferring the presence
of spherical nanoparticles [47]. An increase in polymer concentration (1.0 wt%) leads to
higher absorbance and a redshift (Figure 5b). The broad plasmonic band indicates that
AuNPs exhibit a large size distribution or aggregation, or both. Surprisingly, an excess of
polymer (10 wt%) shifts the plasmon position to a lower wavelength (530 nm), suggesting
the presence of smaller NPs (Figure 5c). The SPR band becomes less broad and more
symmetric, indicating a narrow size distribution or less aggregation [49].
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Figure 5. UV-Vis spectra of AuNPs using only Pluronic P103: (a) AuNPs P103 0.5%; (b) AuNPs P103 
1%, and (c) AuNPs P103 10%, all synthesized at 30 °C. 

Figure 6a reveals Imax increases in all three colloidal solutions. It was reported that 
increasing the copolymer concentration of the number of produced NPs is favored [47]. 
Concerning λmax (Figure 6b), AuNPs P103 1% increases from 553 to 560 nm, with a consid-
erable standard deviation throughout the reaction. Micellization dynamics could be re-
sponsible for this behavior, due to the structural changes of micelles taking place in two 
different ways: (1) insertion of free copolymers into existing micelles, and (2) melt-frag-
mentation or insertion-expulsion [51]. On the other hand, λmax for AuNPs P103 10% reveals 
a nearly constant wavelength at 530 nm, with a low standard deviation attributed to 
higher stability in the formation of smaller NPs [52]. 

Figure 5. UV-Vis spectra of AuNPs using only Pluronic P103: (a) AuNPs P103 0.5%; (b) AuNPs P103
1%, and (c) AuNPs P103 10%, all synthesized at 30 ◦C.

Figure 6a reveals Imax increases in all three colloidal solutions. It was reported that
increasing the copolymer concentration of the number of produced NPs is favored [47].
Concerning λmax (Figure 6b), AuNPs P103 1% increases from 553 to 560 nm, with a con-
siderable standard deviation throughout the reaction. Micellization dynamics could be
responsible for this behavior, due to the structural changes of micelles taking place in
two different ways: (1) insertion of free copolymers into existing micelles, and (2) melt-
fragmentation or insertion-expulsion [51]. On the other hand, λmax for AuNPs P103 10%
reveals a nearly constant wavelength at 530 nm, with a low standard deviation attributed
to higher stability in the formation of smaller NPs [52].
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Figure 6. Semilog-plot of (a) Imax and (b) λmax as a function of reaction time for AuNPs synthesized
at 30 ◦C and different Pluronic P103 concentrations (wt%): (�) AuNPs P103 0.5%; (•) AuNPs P103
1%, and (N) AuNPs P103 10%. Solid lines are aids to the eye. Error bars indicate standard deviation
for triplicate measurements.

Figure 7 displays the nanoparticle size distribution plots. For AuNPs P103 0.5%, two
peaks (15 and 125 nm) are identified in intensity size distribution, suggesting the presence
of NPs and NP agglomerates. However, a predominant peak (15 nm) in the volume size
distribution is common (Figure 7a). In the case of AuNPs P103 1%, a single peak (~150 nm)
with a broad size distribution is presented (Figure 7b). DLS measurements corroborated the
observations made by UV-Vis spectroscopy (λmax AuNPs P103 1% > λmax AuNPs P103 0.5%,
Figure 6b). For AuNPs P103 10%, two signals are obtained in intensity size distribution,
i.e., 6 and 90 nm. The former signal can be attributed to isolated NPs, and the latter, to
hybrid micelles or soft templates, in which very small size AuNPs are trapped. Regarding
volume size distribution, a predominant signal is obtained at 6 nm (Figure 7c). From the
TEM micrographs, it is observed that tiny AuNPs are arranged on the surface of a soft
template with a size of 1.5 ± 0.35 nm (Figure 7d). As can be observed in Figure 7a,c, both
have similar behaviors; however, when analyzing the UV-Vis spectra, λmax is different (see
Figure 6b), which highlights that the polymer concentration determines the size of the
NPs [7]. As a reference, other researchers, such as Chatterjee and Hazra [49], synthesized
4-nm AuNPs entrapped in Pluronic P123 polymeric templates. Also, Antonisamy et al. [53]
incorporated tiny AuNPs on the surface of polymeric templates formed with the Pluronic
F127 copolymer.
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Figure 7. DLS plots for size distribution profiles of AuNPs synthesized at 30 ◦C with Pluronic P103
at different concentrations (wt%): (a) AuNPs P103 0.5%; (b) AuNPs P103 1%, and (c) AuNPs P103
10%. Intensity size distribution (dashed line), volume size distribution (continuous line). (d) TEM for
AuNPs P103 10%.

Figure 8 shows silver and gold NPs sizes before and after washing and centrifugation.
AgNPs P103 0.1% (Figure 8a) present two sizes, 50 and 142 nm, before and after washing,
respectively. AgNPs P103 1% (Figure 8b) have a size of 8 nm prior to washing, and two
distributions, i.e., 68 and 220 nm, after washing. The increase in size infers the agglomera-
tion of the particles and is attributed to the extreme centrifugation conditions. On the other
hand, the colloidal solution of AuNPs P103 1% (Figure 8c) presents a single size distribution
at 220 nm before and after washing. Similarly, the colloidal solution of AuNPs P103 10%
(Figure 8d) exhibits a minimal change in the size of NPs, suggesting that the polymeric soft
template prevents interaction between the NPs, avoiding their agglomeration [7].

2.3. Characterization of TiO2-AgNPs and TiO2-AuNPs

The centrifuged NPs were used to decorate the TiO2 surface. The decoration technique
decreases the probability of the pair electron-hole recombination of the photo-excited
electrons that are transferred from the conduction band to the NPs deposited on the TiO2
surface [12,23,24].

Figure 9 shows DRS, XRD, TEM, and EDX characterizations for TiO2-AgNPs with
0.1 wt% of P103 (TAg0.1) and for TiO2-AgNPs with 1 wt% of P103 (TAg1). On the one hand,
Figure 9a exhibits the optical response of TiO2 composites. All materials displayed strong
absorption at wavelengths shorter than 400 nm, attributed to the absorption of the TiO2
support. In addition, decorated materials demonstrate a slight increase in absorption, from
400 to 700 nm, due to the LSPR effect of AgNPs [54]. Figure 9b shows the diffractograms
of the prepared TiO2 composites where the observed reflections (25.3◦, 36.9◦, 48.1◦, 53.9◦,
and 55.1◦) are characteristic of the anatase-TiO2 phase, this in good agreement with the
JCPDS card No. 21-1272 [29,54]. No discernible differences were noticed between decorated
and undecorated materials. On the other hand, Figure 9c,d illustrates the TEM images
of the composites where AgNPs (~15 nm) decorating the TiO2 surface were visualized.
Additionally, elemental silver (Figure 9e) is identified through EDS exhibiting a peak
around 3 keV [29,55,56]. The absence of carbon suggests that the polymer (0.1 and 1 wt%)
is removed by heat treatment.
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Figure 9. (a) DRS and (b) DRX of TiO2 and TiO2 decorated with NPs; TEM of (c) TAg0.1 and (d) TAg1;
(e) EDS of TAg0.1.

The optical properties of TiO2-Au composites can be investigated by diffuse reflectance
UV-Vis spectroscopy, because the LSPR peaks of AuNPs are very sensitive to size and aggre-
gation [57]. Decorated materials with AuNPs demonstrate an increase in light absorption
(Figure 10a). TiO2-AuNPs with 1 wt% of P103 (TAu1) exhibit a very broad band, sug-
gesting NPs aggregation. However, TiO2-AuNPs with 10 wt% of P103 (TAu10) present a
well-defined band with an absorption peak located at ~540 nm, the latter proposing better
particle distribution on the support. Figure 10b illustrates the XRD powder patterns of TiO2
composites. Similar to Ag-TiO2 composites, the diffraction peaks are characteristic of the
anatase phase; the diffraction patterns remained unchanged, it is concluded that neither Ag-
NPs nor AuNPs alter the TiO2 crystal structure [57]. Zhang et al. [58] suggest that the sizes
of the AuNPs are too small and the gold content in the composite is lower than the XRD
detection limit. Therefore, TEM micrographs are performed, and the presence of spherical
AuNPs is observed (Figure 10c,d). Here, TAu1 reveals a large nanoparticle (90 nm), while
TAu10 exhibits spherical-shaped particles with a mean diameter of 21 nm. This mean size is
larger than those reported by DLS (Figure 8d), proposing the agglomeration of NPs during
calcination. Finally, elemental gold is identified through EDS, producing strong signals
near 2, 9.5, and 11.5 keV (Figure 10e) [55,59].
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The physical-chemical properties of the photocatalysts were also analyzed using XPS.
As expected, analysis of the Ti 2p signal (Figure 11a) in all samples provides evidence of a
Ti(IV) chemical state (Ti 2p3/2 and Ti 2p1/2 binding energy peaking at 458.4 and 464.1 eV
for all samples) characteristic of titanium oxides [60,61]. Following the analysis carried out
in this work, three characteristic peaks are observed in the O 1s spectra (Figure 11b) for all
samples. The band centered at 532.7 eV is attributed to the adsorbed water, whereas the
peak centered al 531.2 eV corresponds to the hydroxyl species adsorbed on the TiO2 surface
(Ti-OH). Finally, peak binding energy at 529.6 eV is related to the lattice oxygen of TiO2
or the metal-oxygen bond (Ti-O). In the event of a significant modification of the titanium
dioxide structure, the intensity of the peak associated to the crystal lattice oxygen (529.6 eV)
would decrease due to the oxygen vacancies generated by the noble metal incorporation
into the support semiconductor structure as previously reported by [62–64]. However,
the titanium and oxygen XPS results display rather small variations among the samples
(Pure TiO2 vs. Au- or Ag-modified TiO2), revealing similar chemical properties of the
TiO2 component in the materials, indicating that the Au or Ag incorporation on Titania,
carried out in this work, does not modify the TiO2 structure, and therefore we obtain only
a surface modification. In addition, the oxidation state of the noble metals was studied
with XPS (Figure 11c,d). In the case of Au results, constant values of the characteristic
doublet of Au(0) metallic state, signals at 83.0 ± 0.1 eV (Au 4f7/2) and 86.4 ± 0.1 eV (Au
4f5/2), were obtained for TAu1 and TAu10 samples [62,63]. Meanwhile, the TAg0.1 and
TAg1 spectra results displayed values at 367.3 ± 0.1 eV (Ag 3d5/2) and 373.3 ± 0.1 eV
(Ag 3d3/2), which correspond to the Ag(0) oxidation state, while the peak signal value at
377.3 ± 0.1 eV corresponds to the Ag(II) oxidation states [65].
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2.4. TiO2-AgNPs and TiO2-AuNPs Photocatalytic Tests

The photocatalytic activity of TiO2 composites is analyzed by (1) adsorption and
(2) photodegradation of MB, through UV-Vis spectroscopy (Figure 12a,b). Photodegra-
dation occurs through two mechanisms: (1) molecule breakdown (0–10 min), in which
absorption spectra show no change in wavelength of the maximum absorbance peak
(664 nm), and (2) the N-demethylation process (20–60 min), when the absorption spectra ex-
hibit a slight blueshift, suggesting considerable photodegradation activity [58]. Figure 12c,d
demonstrates the photocatalytic performance for bare TiO2, silver and gold composites,
where C0 is the initial concentration without light irradiation and C is the concentration
of MB varied over time. The MB degradation rates are graphically shown in Figure 12e,f.
Degradation reaction kinetics follow a pseudo-first order reaction. The rate constant for
bare TiO2 is k = 0.02167 min−1, TAg0.1 k = 0.05242 min−1, TAg1 k = 0.05009 min−1, TAu1
k = 0.04814 min−1, and TAu10 k = 0.06443 min−1. It is obvious that k of all samples is
larger than that of bare TiO2. Other authors have obtained similar results [66,67]. The
TAu10 photocatalyst has the best photocatalytic activity for degradation of the MB aqueous
solution. It is evident that the amount of polymer used during the synthesis of NPs modifies
its size, and consequently its efficiency as a catalyst.
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reactivity, as evidenced by the increase in degradation as a function of irradiation time. 
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Figure 13 shows MB removal by the produced composites. Figure 13a exhibits Ag-
decorated composites (TAg0.1 and TAg1) and bare TiO2 samples. MB oxidizes via photo-
reactivity, as evidenced by the increase in degradation as a function of irradiation time. The
decorated materials exhibit 96% total removal, demonstrating that NPs affect the result
in the process. Figure 13b presents Au decorated composites (TAu1 and TAu10) and bare
TiO2 samples. Again, and as expected, decorated materials display high degradation in the
photocatalytic process.

Table 1 presents the textural analysis results. Regarding the specific surface area,
no substantial differences were observed between bare TiO2 and the composites. On the
other side, a slight pore-size decrease was detected after the introduction of noble metal
nanoparticles, which was attributed to TiO2 pore blockage by AuNPs or AgNPs [54,68].
Based on the results, it is not feasible to assign a considerable surface area effect of NPs to
the decorated composites.

Bare TiO2 and the composites were characterized by diffuse reflectance spectroscopy in
order to determine their bandgap energy (see Table 1), which was calculated by the Tauc plot
and the Kubelka-Munk function [67,69]. For decorated composites, the band gap energy
was shifted to a slightly lower level than anatase-TiO2, which might be the result of the
size-dependent quantum confinement effect [68]. Due to the small amount of nanoparticles
incorporated onto the TiO2 surface, the nanoparticles do not considerably influence the
UV-Vis absorption spectra (Figures 9a and 10a); therefore, no considerable change in the
bandgap of the materials is observed. However, the homogeneous distribution of the
appropriate amount of metallic nanoparticles on the titania surface is a fundamental factor
in optimizing the photocatalytic properties [66].

In the degradation stage, TAg0.1 and TAu10 composites reached the highest percentage
of dye degradation, that is, 76%, and 80%, respectively, although the material with the
highest percentage of total removal was TAu10 (97%).

Different authors suggest that Au Nps and Ag NPs loaded on semiconductors can ab-
sorb visible light, resulting in the collective oscillation of the electrons (hot electrons). These
hot electrons are injected into the semiconductor conduction band (CB) through the inter-
face between metal and semiconductor, thus, facilitating photogenerated carrier separation
and consequently reducing the pair recombination of electrons and holes [23,24,36,54,70].
Singh et al., propose that Au nanoparticles facilitate the formation of superoxide radicals
(•O2

−) from oxygen molecules. On the other hand, water molecules interacted with holes
and they were converted into hydroxyl radicals (•OH). These reactive species were respon-
sible for the degradation of the MB dye [26]. Matsunami et al. suggest that the degradation
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of MB is carried out by the processes of N-demethylation and the cleavage of C-N and C-S
bonds [71].
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Table 1. BET surface area, band gap, adsorption, degradation, and total removal percentages of MB
in TiO2 composites.

Composites SBET
a

(m2/g)
Pore Size

(nm) Band Gap b Band Gap c

(eV)
Adsorption

(%)
Degradation

(%)
Total Removal

(%)

TAg0.1 9.0 1.29 3.14 3.21 20 76 96
TAg1 13.2 1.30 3.14 3.20 35 61 96
TAu1 8.3 1.08 3.14 3.21 21 73 94

TAu10 9.4 1.13 3.16 3.19 17 80 97
TiO2 9.1 1.33 3.18 3.22 27 50 77

a SBET, BET surface areas calculated by the adsorption/desorption isotherm. b Band gap was calculated by the
Tauc Plot. c Band gap was calculated by the Kubelka-Munk function.
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Similar results were obtained by Messih et al. [66], who achieved 95% degradation
of the MB pollutant model using Ag/TiO2 nanocomposites synthesized through “green”
methods. The incorporation of silver on the surface of titania increased its photocatalytic
reactivity under UV radiation and sunlight, exhibiting better performance than pure titania.
On the other hand, Perera et al. [12] fabricated Au/TiO2 nanocomposites by means of
a green chemical approach. Decoration of the TiO2 surface with AuNPs significantly
increases the MB adsorption capacity of the catalyst, and at the same time increases the
photocatalytic degradation rate constant. Researchers agree that there is a need to migrate
from classical chemical reduction methods to novel, easy, and environmentally friendly
mechanisms to prepare decorated composites. It has been shown that surface decoration of
TiO2 with metallic NPs, such as silver and gold, increases photocatalytic efficiency under UV
irradiation and even on employing visible radiation. The results are promising with model
molecules, which motivates further study, in that it is envisioned that these nanostructures
can be utilized in various applications, such as in environmental remediation, solar cells,
and energy production [12,29,66].

3. Materials and Methods
3.1. Materials

The following materials were used: Tetrachloroauric (III) acid trihydrate (HAuCl4·3H2O,
Aldrich, 99.94%), silver nitrate (AgNO3, Aldrich, 99.9999%), triblock copolymer Pluronic
P103 (PEO17-PPO60-PEO17, BASF), sodium borohydride (NaBH4, Aldrich, ≥98.0%), tita-
nium dioxide (TiO2, J. T. Baker, >99%), and methylene blue (MB) (Hycel, IC 52015 indicator).
The reagents were used directly, without further purification.

3.2. Synthesis of Ag Nanoparticles

Aqueous solutions of the triblock copolymer Pluronic P103 were prepared at different
concentrations (0.0, 0.01, 0.1, and 1.0 wt%). Samples were placed in a water bath at 30 ◦C
for 12 h to ensure stabilization of the different polymeric structures.

The aqueous solutions of the copolymer and the aqueous solution of AgNO3 (1 mM)
were stored in glass vials. A fresh NaBH4 (7 mM) solution was used as a reducing agent. The
mixture ratio of AgNO3, NaBH4 solution, and polymer solution was 1:4:4, respectively [8].
The reactions were carried out at 30 ◦C for 4 h in the presence of visible light. Finally, the
colloidal solutions were washed with water and centrifuged at 19,000 rpm for 30 min at
room temperature. This procedure was repeated three times.

3.3. Synthesis of Au Nanoparticles

The synthesis of AuNPs was performed following the Sakai methodology with some
adaptations [50]. Aqueous solutions of the triblock copolymer Pluronic P103 were prepared
at different concentrations (0.5, 1.0, and 10 wt%). Samples were placed in a water bath at
30 ◦C for 12 h to ensure stabilization of the different polymeric structures. The mixture
ratio of HAuCl4·3H2O (2 mM) and the polymer solution was 1:9. In this case, the triblock
copolymer acted as a reducing and stabilizing agent. Reactions were carried out at 30 ◦C
for 4 h in the presence of visible light. Finally, the colloidal solutions were purified by
washing cycles with water and centrifuging at 19,000 rpm for 30 min at room temperature.
This procedure was repeated three times.

3.4. Synthesis of the TiO2-AgNPs and TiO2-AuNPs Composites

The synthesis of TiO2-AgNPs (TAgX) and TiO2-AuNPs (TAuX), where X represents
the Pluronic P103 concentration, was achieved using 0.5 g of TiO2 with 10 mL of AgNPs
or 30 mL of AuNPs, respectively. The distinct NPs amounts (10 vs. 30 mL of Ag and Au,
respectively) were determined based on the screening of the catalytic experiments since the
higher activity of AgNPs over AuNPs is well-recognized. The suspensions were stirred
in an ultrasonic bath for 5 min to ensure high dispersion of the NPs. Subsequently, they
were dried in an oven at 80 ◦C and were finally calcined in a muffle at 500 ◦C for 30 min.
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Additionally, a reference sample, i.e., bare TiO2, was used under the same conditions to
compare its behavior with the decorated materials.

3.5. Photocatalytic Activity Experiments

The photocatalytic activity study was performed using 0.015 g of TiO2-AgNPs or TiO2-
AuNPs composite powder dispersed in 50 mL of MB (10 ppm). These suspensions were
maintained under dark conditions to achieve an adsorption-desorption equilibrium prior
to irradiation. After 25 min, the photocatalytic systems were irradiated with ultraviolet
and visible light (OSRAM, 15 W, 365–465 nm, OSRAM LED, 30 W, 450–750 nm) for 60 min.
To study the photocatalytic performance, aliquots of the suspensions were removed every
10 min. In this manner, it was possible to monitor the absorption intensity around 664 nm
by UV-Vis spectroscopy. The initial measured pH of the suspension was 6.5, and the pH
was allowed to vary freely during the reaction.

Since the absorbance values are directly proportional to dye concentration, the adsorp-
tion on the catalyst surface (Equation (1)) and the photocatalytic degradation (Equation (2))
allowed calculating the total dye removal (Equation (3)) [11,22,25,66,72,73].

% adsorption =

(
1 − A0

AAM

)
× 100% (1)

% degradation =

(
1 − A60

A0

)
× 100% (2)

% total removal =
(

1 − A60

AAM

)
× 100% (3)

with AAM maximum absorbance of MB, A0 maximum absorbance at t = 0 min, i.e., at the
end of the adsorption on the catalyst surface, and A60 maximum absorbance at t = 60 min.

3.6. Materials Characterization

AgNPs and AuNPs were characterized by UV-Vis spectroscopy and Dynamic Light
Scattering (DLS). These techniques were employed due to their simplicity, sensitivity, selec-
tivity, and short measurement time [74]. The optical properties of the colloidal solutions
were studied and analyzed by UV-Vis spectroscopy using a GENESYS 10S UV-Visible
spectrometer (Thermo Scientific, Waltham, MA, USA) at 30 ◦C. A quartz cell with an
optical path of 1 cm was utilized. The sizes of the NPs were determined by DLS using a
Zetasizer 4000 (Malvern-Panalytical, Worcestershire, UK). The light source was a 5-mW
He-Ne laser at 632.8 nm. The scattering angle was maintained at 90◦ and the measurement
time was 120 s. The sizes and shapes of the NPs were determined by Transmission Electron
Microscopy (TEM) analyses, using a JEOL-JEM-2010 (JEOL, Tokyo, Japan) in conventional
transmission mode, operating at 80 kV. Samples were prepared by placing a drop of the
solution on a carbon-coated Cu grid before air drying the samples.

The decorated material was characterized by DRS, XRD, BET surface area measure-
ments, TEM and EDS. For diffuse reflectance spectroscopy (DRS), a UV Vis-NIR spec-
trophotometer (Cary 5000) equipped with an integrating sphere from Agilent Technolo-
gies was utilized; with KBr as the reference sample. The X-ray diffraction patterns were
obtained in an XRD Bruker D8 Advance diffractometer with an X-ray generator of Cu
(Kλ = 0.15406 nm) and a NaI detector with a scan rate of 0.02◦ min−1, 2θ range from 5◦ to
80◦. Composites were characterized by high angle annular dark field scanning transmission
electron microscopy (HAADF-STEM) using an FEI TECNAI F30 (FEI, MA, USA) Transmis-
sion Electron Microscope (FEG-TEM 300 kV). Samples were dispersed in 2-propanol by
sonication and then dropped on gold coated holey carbon grids for observation. Line-scan
profile energy-dispersive X-ray spectroscopy (EDS) measurements were obtained with
an EDAX detector system. The specific surface area and pore sizes were calculated by
the Brunauer–Emmett–Teller theory. Samples were degassed at 80 ◦C for 360 min, using
a Micromeritics surface area and a pore-size analyzer, model ASAP2020. The XPS spec-
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tra of the samples were recorded using a SPECS® spectrometer with a PHOIBOS® 150
WAL hemispherical energy analyzer with angular resolution (<0.5 degrees), equipped
with sources: an XR 50 Al-X-ray and a µ-FOCUS 500 X-ray monochromator (Alexcitation
line). Samples were first degassed at 10–5 mbar in the pretreatment chamber before being
transferred to the analysis chamber, where residual pressure was maintained at below
5 × 10−9 mbar during data acquisition. The binding energies (BE) were referenced to the
C 1s peak (284.6 eV) to account for charging effects. Surface chemical compositions were
estimated from XP-spectra by calculating the integral of each peak after subtraction of the
“S-shaped” Shirley-type background [75] using the appropriate experimental sensitivity
factors and CASA-XPS (version 2.3.15) software.

4. Conclusions

It is well known that the incorporation of metallic NPs onto the surface of a semicon-
ductor, as in TiO2, improves its photocatalytic properties. However, there is a wide variety
of methodologies for synthesizing metallic NPs.

The simple synthesis of AgNPs and AuNPs with Pluronic P103 copolymer is reported.
AgNPs synthesis considers three reagents, i.e., an AgNO3 solution, a NaBH4 solution as a
reductant, and a triblock copolymer solution (Pluronic P103) at different concentrations
as a stabilizer. However, AuNPs synthesis considers only two reagents: an HAuCl4:3H2O
solution and a triblock copolymer solution, which act as a reductant and stabilizer. Conse-
quently, the method is considered environmentally friendly due to the amount and type of
reagents used, together with the fact that the copolymer presents high biocompatibility and
low bioaccumulation. Additionally, the number of steps was decreased, thus diminishing
the time and residues compared to conventional synthesis procedures. It is worth empha-
sizing that the results herein presented evidence that copolymer concentration modifies the
size of NPs. As the polymer concentration increases, the size of the NPs increases. However,
by further increasing the amount of polymer, it is possible to generate soft templates where
notably smaller particle sizes are generated. The synthesized NPs were utilized to decorate
the TiO2 surface and were evaluated by MB photodegradation. The evaluation results
demonstrated that the copolymer concentration along with its effect on the size and shape
of the NPs, influence MB photodegradation, increasing its photocatalytic activity up to 20%
compared to bare TiO2. By simple methods such as the one presented here, it is possible
to obtain promising materials in various fields, including photocatalysis. For this reason,
the MB dye was used as a probe molecule to demonstrate that the composites were able to
improve anatase-TiO2 activity.
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