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Abstract: Toxic heavy metals in soil negatively impact soil’s physical, biological, and chemical char-
acteristics, and also human wellbeing. The traditional approach of chemical analysis procedures for
assessing soil toxicant element concentration is time-consuming and expensive. Due to accessibility,
reliability, and rapidity at a high temporal and spatial resolution, hyperspectral remote sensing within
the Vis-NIR region is an indispensable and widely used approach in today’s world for monitoring
broad regions and controlling soil arsenic (As) pollution in agricultural land. This study investigates
the effectiveness of hyperspectral reflectance approaches in different regions for assessing soil As
pollutants, as well as a basic review of space-borne earth observation hyperspectral sensors. Multi-
variate and various regression models were developed to avoid collinearity and improve prediction
capabilities using spectral bands with the perfect correlation coefficients to access the soil As contami-
nation in previous studies. This review highlights some of the most significant factors to consider
when developing a remote sensing approach for soil As contamination in the future, as well as the
potential limits of employing spectroscopy data.

Keywords: hyperspectral remote sensing; soil As contamination; rice paddy; spectral analysis

1. Introduction of Arsenic Contaminations

Arsenic (As) is a common element that ranks 20th in abundance in the earth’s crust,
14th in seawater, and 12th in the human body [1,2]. As makes up about 0.00005% of the
earth’s crust [3], with an average concentration of 2.0 mg·kg−1 in igneous and sedimentary
rocks. It varies from 0.5 to 2.5 mg·kg−1 in most minerals [4], with higher concentrations in
finer-grained argillaceous sediments and phosphorites [2]. As is found in over 200 different
mineral types in nature, with arsenates accounting for roughly 60%, sulphides and sulfosalts
for 20%, and arsenides, arsenites, oxides, silicates, and elemental As accounting for the
remaining 20% [5]. As is present in different forms of metalliferous deposits in its most
recoverable form. Arsenopyrite is the most abundant As mineral [2]. Soils have higher
levels of As than minerals [6]. Uncontaminated soils typically contain 1–40 mg·kg−1 As,
with the lowest concentrations in sandy soils and those originating from granites and the
highest concentrations in alluvial and organic soils [4]. Even though As is ubiquitous on
the Earth’s surface, long-term interaction with high levels of As can be harmful to human
health [7,8].

Rice is consumed by half of the global population every day, rendering it a significant
source of nutrition for billions of humans. Rice may contain As, which is harmful to
human health, depending on the way it is grown [9,10]. As is a poisonous nonessential
metalloid found in high concentrations in rice grains in some parts of the world, posing
a serious threat to rice yield and quality. As a result, the rice–As interactions have been
extensively studied over the last few decades. Rice is responsible for 60% of human As
toxicity in the Chinese population [11]. If we can solve the As accumulation problem in
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rice, we should be able to reduce As-related diseases in the affected areas. Such diseases are
prevalent in South and Southeast Asia, including Bangladesh and some Indian states [12].
A detailed understanding of the factors that affect the assimilation and translocation of
As from the soil to grains can be useful in addressing this problem and lowering crop As
levels. Rice plant uptake at the root surface is affected by factors such as iron plaque and
radial oxygen loss [13]. Rice contamination is not just a concern in Asia. The Consumers
Union, a consumer advocate organisation headquartered in the United States, reported
alarming levels of As in rice sold in the United States in a 2012 survey.

The world average As concentration in soils is estimated to be around 5–7.5 mg/kg [14,15].
A regulatory limit of 0.2–0.4 mg/kg As in rice is suggested by the United Nations World
Health Organization [10]. Rice grains have been found to have levels as high as 1.8 mg/kg
in previous research [16]. These amounts of As can lead to potentially harmful exposure to
humans and animals, which may cause life-threatening complications [17]. Pinson et al.,
(2015) [18] analysed around 1763 rice strains from around the world. They reported that
certain American rice varieties had slightly lower As concentrations than other rice varieties
cultivated in the same environment. As concentration prediction accuracy is essential for
food safety and precision farming. Carbonell-Barrachina et al., 2009 [19] opined that the
amount of total and inorganic As (t-As and i-As) consumed was dependent on the nature
of drinking and cooking water, as well as the amount of seafood and rice consumed. The
key issues arise in countries with low water quality, where the population relies on rice
for survival. Considering the health risks associated with As in rice, considerable efforts
have been made to assess As pollution in paddy soils [20–23] and establish preventive
strategies to minimise As uptake by rice plants [24–27]. Field sampling accompanied by
wet chemistry methods and interpolation approaches is a popular way of detecting As
contamination, but it is time-consuming and costly [28,29]. Furthermore, as prevention
methods (e.g., silicon fertilisation) are used to regulate As absorption into plant sections,
it is essential to track the level of reductions periodically to ensure that As accumulation
is fully remedied. The use of field sampling and wet chemistry methods for routine mon-
itoring of As absorption at large scales is extremely difficult [30]. Meharg and Rahman
(2003) [16] reported the findings of an As survey of paddy soils obtained for a wide region
of Bangladesh.

As can be found in a wide variety of chemical forms in the environment, with arsenate
(As(V)) and arsenite (As(III)) being the most common and dangerous inorganic forms.
Arsenate, as a phosphate analogue, interacts with phosphate metabolism (phosphorylation
and ATP synthesis) in plants, whereas As(III) relates to sulfhydryl protein molecules,
affecting their structures and/or electrochemical functions [31,32]. Plants exposed to high
concentrations of As suffer from oxidative stress, which has a direct impact on metabolic
activities such as cell division and photosynthetic activity [33–35]. As concentration in rice
plants has been linked to low sensitivity in chlorophyll content, crippled plant growth,
and chlorotic side effects; plants that show these symptoms are commonly referred to as
stressed plants according to recent research [36–38].

The authors of this paper have reviewed the current information and evidence on
hyperspectral remote sensing approaches for soil As contamination measurement in rice
paddy fields. This paper also discusses how hyperspectral remote sensing sensors and
spectroradiometers might be used to assess As pollution in agricultural soils. Figure 1 shows
the As cycle of the environment as well as the conceptual framework for identifying the soil
As contamination in rice paddy fields using the hyperspectral reflectance approach. The As
cycle is a biogeochemical cycle in which As is exchanged naturally and anthropogenically
via soil, the lithosphere, ocean, inland water, and the atmosphere.
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Figure 1. Arsenic cycle of environment and graphical methodology to identify the soil As concen-
tration based on hyperspectral reflectance techniques. 
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The quantity of As in a plant is mostly influenced by how much As it is exposed to. 

Its concentration ranges from less than 0.01 to around 5 µg/g [39]. The physicochemical 
and biological characteristics of soils are affected by As contamination, resulting in rela-
tively low crop yields [40,41]. 

Groundwater polluted with As is not only used for drinking but also for irrigating 
crops, including the staple paddy rice (Oryza sativa). If As levels rise in paddy soils, more 
As would translocate to rice grains, increasing As exposure from food. Through biochem-
ical reactions such as oxidation and reduction activities, soil microorganisms help the de-
toxification of hazardous chemicals such as As [42]. Rice is a semi-aquatic plant with wide-
spread aerenchyma in its roots, analogous to wetlands species. This aerenchyma causes 
O2 to be infiltrated from the shoots for root respiration. To deal with anaerobic conditions 
in underwater soil, rice roots’ aerenchyma releases some O2 to the rhizosphere [43]. The 
rhizosphere is a small area of soil or substrate that is specifically affected by root secretions 
and related soil microorganisms, also known as the root microbiome [44]. 

According to the study by Santra et al., 2013 [45], the highest levels of As concentra-
tion in soil were found in Bangladesh and parts of West Bengal, India, as shown in Table 
1. The highest concentrations of As have also been found in these two places. Figure 2 
shows a flowchart that describes how the soil samples are collected and subsequent steps 
for the identification of As content in agricultural soil. 

Table 1. Concentrations of As in soil, crops, and vegetables cultivated in West Bengal, India, and 
neighbouring countries (adapted from Santra et al., 2013 [45]). 

Country As in Soil 
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(mg/kg) References 

Rice Vegetables 
Bangladesh NA 0.358 0.034 [46] 

West Bengal, India 11.35 0.245 <0.0004–0.693 [47] 
Bangladesh NA NA 0.306–0.489 [48] 
Bangladesh NA NA 0.011–0.103 [49] 
Bangladesh 7.31–27.28 0.04–0.27 0.2–3.99 [50] 

West Bengal, India 7.0–38.0 0.30 NA [51] 

Figure 1. Arsenic cycle of environment and graphical methodology to identify the soil As concentra-
tion based on hyperspectral reflectance techniques.

2. Arsenic Concentration in Rice Plants

The quantity of As in a plant is mostly influenced by how much As it is exposed to. Its
concentration ranges from less than 0.01 to around 5 µg/g [39]. The physicochemical and
biological characteristics of soils are affected by As contamination, resulting in relatively
low crop yields [40,41].

Groundwater polluted with As is not only used for drinking but also for irrigating
crops, including the staple paddy rice (Oryza sativa). If As levels rise in paddy soils,
more As would translocate to rice grains, increasing As exposure from food. Through
biochemical reactions such as oxidation and reduction activities, soil microorganisms help
the detoxification of hazardous chemicals such as As [42]. Rice is a semi-aquatic plant with
widespread aerenchyma in its roots, analogous to wetlands species. This aerenchyma causes
O2 to be infiltrated from the shoots for root respiration. To deal with anaerobic conditions
in underwater soil, rice roots’ aerenchyma releases some O2 to the rhizosphere [43]. The
rhizosphere is a small area of soil or substrate that is specifically affected by root secretions
and related soil microorganisms, also known as the root microbiome [44].

According to the study by Santra et al., 2013 [45], the highest levels of As concentration
in soil were found in Bangladesh and parts of West Bengal, India, as shown in Table 1. The
highest concentrations of As have also been found in these two places. Figure 2 shows a
flowchart that describes how the soil samples are collected and subsequent steps for the
identification of As content in agricultural soil.

Table 1. Concentrations of As in soil, crops, and vegetables cultivated in West Bengal, India, and
neighbouring countries (adapted from Santra et al., 2013 [45]).

Country As in Soil
(mg/kg)

As in Crops and Vegetables
(mg/kg) References

Rice Vegetables

Bangladesh NA 0.358 0.034 [46]
West Bengal, India 11.35 0.245 <0.0004–0.693 [47]

Bangladesh NA NA 0.306–0.489 [48]
Bangladesh NA NA 0.011–0.103 [49]
Bangladesh 7.31–27.28 0.04–0.27 0.2–3.99 [50]
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Table 1. Cont.

Country As in Soil
(mg/kg)

As in Crops and Vegetables
(mg/kg) References

Rice Vegetables

West Bengal, India 7.0–38.0 0.30 NA [51]
China 6.04 0.117 0.003–0.116 [52]

Bangladesh 14.5 0.5–0.8 NA [35]
Nepal 6.1–16.7 0.180 <0.010–0.550 [53]

West Bengal, India 1.34–14.09 0.16–0.58 NA [54]
West Bengal, India 5.70–9.71 0.334–0.451 0.030–0.654 [55]

Bihar, India 0.027 0.019 0.011–0.015 [56]
West Bengal, India NA 0.156–0.194 0.069–0.78 [57]
West Bengal, India NA 0.01–0.64 0.03–0.35 [58]
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these changes to determine plant stress using various statistical approaches (e.g., linear 
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Figure 2. Flowchart for identification of As content in agricultural soil.

3. Use of Remote Sensing

Spectral remote sensing is a valuable technology for estimating agricultural repro-
duction, crop growth, and physical and biological characteristics in a nondestructive man-
ner [59]. For measuring soil As or heavy metal concentrations, remote sensing techniques
offer a low-cost, time-efficient, and environmentally acceptable option, as established by
multiple research studies [60–64]. The majority of these studies have focused on relating
biophysical factors [65,66], leaf biochemical properties [67,68], moisture content [69–71],
and plant stress [72,73] to the spectral response of plants. Hyperspectral remote sensing
has been widely used in plant research and agricultural crop management to measure and
track plant stress caused by a variety of factors, e.g., nutrient and water deficiency, diseases,
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and metal accumulation [74–76]. Plant spectral properties (reflectance and transmittance) at
specific wavelengths are affected by changes in leaf biochemical contents (e.g., chlorophyll)
caused by stress [77]. Predictive models have been constructed using these changes to
determine plant stress using various statistical approaches (e.g., linear regression, partial
least squares regression, and random forests). Extraneous factors, such as soil context
background reflectance, often confound spectral response to the dependent variable; con-
sequently, two or more bands are used to produce vegetative indices (VIs) using ratios,
slopes, or other formulations to minimise their effects [78–80]. The performance of the VIs
varies depending on how resistant they are to parameters such as leaf area per unit ground
surface area (LAI) and soil context reflectance. As a result, when choosing VI, it is critical to
consider the VIs’ vulnerability to variations in plant stress along with their resistance to
external influences [81].

Artificial neural networks (ANN), support vector machines (SVM), and random forests
(RF) are examples of machine learning approaches that could map nonlinear spectral re-
sponses of plants under heavy metal stress. Random forests, a new expansion of decision
tree learning, is often proposed. In several implementations, random forests have outper-
formed other machine learning methods in terms of estimation and classification [82,83].

3.1. Hyperspectral Reflectance Measurement

For environmental monitoring and mapping of different heavy metal soil pollutants,
hyperspectral remote sensing has been acknowledged as an efficient and noncontact detec-
tion approach [61,84]. Soil biochemical parameters (including pH, mineral composition,
and microbial activity) have no impact on utilising hyperspectral data to evaluate As and
heavy metal concentrations in agricultural soil [85]. In the study by Carter, 1993 [73], leaf
spectral reflectances were evaluated to see whether plant stress responses differed depend-
ing on the source of stress and the species. Reflectance at visible wavelengths improved
in stressed leaves from vascular plant species as a result of reduced pigment absorption.
The wavelength ranges of 535–640 nm and 685–700 nm are the most vulnerable to stress
in visible reflectance. Near 670 nm, a sensitivity minimum was consistently observed.
Infrared reflectance was relatively unaffected by stress but increased at 1400–2500 nm in
response to extreme leaf dehydration and reduced water content. As a result, visible re-
flectance, rather than infrared reflectance, proved to be the most accurate measure of plant
stress. The fact that visible reflectance responses to stress were not specific for each stress
factor lends credence to the idea that plant physiological responses to stress are identical
regardless of the source of stress [86]. Visible near-infrared diffuse reflectance spectroscopy
(VisNIR-DRS) is fast becoming a usable, rapid, and noninvasive tool for characterising
multiple soil properties simultaneously from reflectance spectra [87].

Spectral Data Pretreatments

These are commonly used spectral pretreatment methods which are described in
various research articles, as shown in Table 2.

Table 2. Various spectral pretreatment methods with descriptions.

Spectral Pretreatment
Methods Descriptions References

Baseline correction (BC)

The most widely used spectral
pretreatment approach in NIR. This

approach removes the significance of the
lowest level in the spectral range from all
of the variables in each sampling and has

been applied to smoothing and resampling
reflectance spectra.

[88,89]
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Table 2. Cont.

Spectral Pretreatment
Methods Descriptions References

Standard normal variate
(SNV)

A row-oriented spectral treatment that
centres and scales each wavelength to

reduce dispersion effects. In this method,
by splitting the spectral standard deviation

and removing the spectral mean, each
spectrum is transformed.

[89,90]

Multiplicative scatter
correction (MSC)

A spectral data processing approach that
corrects the multiplicative and cumulative
dispersion effects. SNV and MSC are the

same functional criteria, but the main
difference is SNV is used for individual

spectral reflectance, whereas MSC has been
applied for reference spectral reflectance.

[89,91,92]

First and second derivation
(FD and SD)

These significantly reduce background
influences and improve spectral data
inflexion characteristics and spectral

overlapping.

[92]

Continuum removal (CR)

This creates additional spectral information
by splitting a continuum’s envelope curve

on unprocessed reflectance spectra to
develop new reflectance spectra.

[93]

Savitzky–Golay (SG)
smoothing

Applied to the pretreatment of spectra, this
is a common smoothness filtering method.
It is a low-pass filter that smooths spectra
by removing high-frequency noise while
allowing low-frequency signals to pass

through. Before evaluating the FD and SD,
SG smoothing is performed.

[92,94]

log(1/R)

This is one of the most common spectral
pretreatment transformation methods,

where reflectance (R) enacts linearisation
between the spectra and heavy metal

content in soil by highlighting the edges of
absorption bands.

[79,92]

In the study by Chakraborty et al., 2017 [95], soil absorption wavelengths S1 and
S2, with the lowest (2.42 mg/kg) and highest (10.37 mg/kg) t-As concentrations as a
result of t-As heterogeneity, were depicted using continuum-removed spectra to contrast
individual absorption features against a standard baseline, as shown in Figure 3. The high
optical intensity or absorption spectrum in the visible range (350–750 nm) and specific
absorptions near 1400, 1900, and 2200 nm seemed to be similar for both soils. Continuum
removal is used to normalise reflectance spectra so that individual absorption features
can be compared against a standard baseline. The continuum is a convex framework that
fits over the top of a spectrum and connects local spectra peak values using straight-line
segments. The continuum is removed by dividing it into the specific spectrum for each
pixel in the image using Equation (1) [96].

Scr = S⁄C (1)

Scr = Continuum-removed spectra
S = Original spectrum
C = Continuum curve
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where the continuum and spectra align and the first and last bands in the output continuum-
removed data file are equal to 1.0, and where absorption features occur, they are less
than 1.0.
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2017 [95]).

3.2. Spectra Collection

In the previous study, canopy reflectance spectra were collected from rice using an
Analytical Spectral Device (ASD) FieldSpec 3 spectrometer, which has a spectral range
between 350 and 2500 nm with a sampling interval of 1.4 nm in the 350–1000 nm range
and 2 nm in the 1000–2500 nm range. With a sensor height of 1 m above rice canopies,
the ASD field of view was adjusted to 25◦. Both observations were taken at noon between
10:00 a.m. and 2:00 p.m. local time on unclouded clear days. Under the same lighting
conditions, a white Spectralon reference panel was used to measure relative reflectance
spectra by splitting leaf radiance by the reference radiance for each wavelength. At each
point, ten scans were taken and combined to create a single spectrum. A total of 60 spectral
measurements were taken [82].

In the research of Chakraborty et al., 2017 [95], a portable visible NIR spectroradiometer
PSR-3500® was used to measure the spectral reflectance of air-dried and finely ground
(b200 m) soil samples proximally over the VisNIR field (350–2500 nm). The performance
values of the reflectance data became quantised to 10 nm, and the scanning was performed
using a touch probe with a 5 W halogen lamp, which reduced stray light errors. In this
research, the essential spline fitting function of Chakraborty et al., 2014 [97] was used in
R 2.11.0, the statistical computing open-source software (R: The R Project for Statistical
Computing [98]) to handle raw standard reflectance spectra. To create the As prediction
model, they used three different spectral preprocessing methods, i.e., Savitzky–Golay 1D,
2D, and orthogonal signal correction (OSC); one of these, the Savitzky–Golay 1D method,
was taken from Luo et al., 2005 [99].

Figure 4 depicts the curves of various spectral preprocessing approaches as reported
by Han et al., 2020 [100]. A FieldSpec 4 field spectrum analyzer was used to determine the
spectral reflectance of the soil samples in a dark room. The experiments were carried out
in a dark room with a 50 W halogen lamp located 0.3 m away from the selected samples
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and with a zenith angle of 25◦. Before obtaining one of the five samples, the device was
calibrated using the radiance of a white reflection panel. The reflectance spectrum of the
soil samples was measured using the sum of the ten spectral curves for each soil sample.
One of the fundamental stages in spectral preprocessing is spectral resampling, which
has a significant impact on the hyperspectral prediction model’s accuracy. The spectral
data were subjected to first derivation (FD), second derivation (SD), and multiplicative
scatter correction (MSC) to demonstrate the spectral curves’ absorption and reflection
characteristics while removing data redundancy between bands. For smoothing spectral
curves and improving data quality, the digital filtering Savitzky–Golay (SG) algorithm was
used without affecting signal patterns. These spectral transformation approaches were
successfully used in hyperspectral soil science research, with positive outcomes [101–103].
The methods, spectral pretreatment processes, algorithms, and results that were discussed
in the previous study based on hyperspectral approaches for soil As contamination are
summarised in Table 3.
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Figure 4. The spectral reflectance of the soil As contaminant samples, (a) Savitzky–Golay (SG),
(b) first derivation (FD), (c) second derivation (SD), and (d) multiplicative scatter correction (MSC).
(Each curve depicts the spectral profile of a single soil sample) (adapted from Han et al., 2020 [100]).

Table 3. Review of hyperspectral reflectance approach in soil As contamination.

Methods Models’ Algorithm Results Location Conclusion References

Standard Vis-NIR
reflectance

spectroscopy and
indirect—Fe, Fe2O3

approach

Multiple linear
regression (MLR) and

artificial neural
network
(ANN)

Using
MLR-R2 = 0.837,

using
ANN-R2 = 0.858

Near Seville, Spain

Results suggest that by
utilising quick and

cost-effective reflectance
spectroscopy, it is possible
to anticipate heavy metals
in soils affected by mining

residues.

[60]
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Table 3. Cont.

Methods Models’ Algorithm Results Location Conclusion References

Standard Vis-NIR
reflectance and

variations in the
spectral absorption

features of lattice OH
and oxygen on the

mineral surface

Pearson correlation
coefficient R2 = 0.876

Rodalquilar
gold-mining area,

south-eastern Spain

The results suggest that the
variables generated from

spectral absorption
characteristics might be
useful in assessing and

monitoring As heavy metal
concentration.

[61]

Standard Vis-NIR
reflectance

spectroscopy and
indirect Fe2O3

approach

Partial least square
regression (PLSR)

Root mean square
error of

cross-validation
(RMSEcv) = 1.23 and

root mean square
error of prediction
(RMSEP) = 1.65.

Nanjing area, China

The results suggest that
remote sensing data might

be used to map
As-contaminated areas at a

low cost. It is strongly
suggested that future
research using remote
sensing data and field

measurements be carried
out.

[84]

Vis-NIR
hyperspectral

reflectance
spectroscopy along
with FD, SD, and

MSC spectral
resampling

transformation based
on the proposed

model

Partial least squares
regression (PLSR),

support vector
regression (SVR), and

back propagation
neural network

(BPNN)

Using
PLSR-R2 = 0.77, RPD

= 1.89
using SVR-R2 = 0.72,

RPD = 1.03
using

BPNN-R2 = 0.86,
RPD = 2.53

Shangluo and
Weinan, Shaanxi
Province, China

BPNN has the best
modelling accuracy,

according to the data. In
conclusion, estimating soil

AS concentration using
BPNN and hyperspectral

data is possible. The
nonlinear issue between

soil As concentration and
reflectance spectra may be
efficiently solved using the

BPNN model.

[100]

Standard Vis-NIR
reflectance

spectroscopy and
indirect SOC, Fe2O3

approach

Partial least square
regression (PLSR)

R2 = 0.72,
RMSEP = 0.86,

RPD = 1.90

Baguazhou Island,
Jiangsu Province,

China

Reflectance spectroscopy is
a nonanalytical technology
that may be used not only

to anticipate spectral active
components but also trace
components that have no

spectral features.

[104]

Standard Vis-NIR
reflectance spectral

absorption
feature parameters

(SAFPs) and kriging
interpolation

technique are used as
the gridding method

for producing
measured and

predicted As contour
maps.

Stepwise multiple
linear regression

(SMLR) and enter
multiple linear

regression (EMLR)

Using
SMLR-R2 = 0.372,

using
EMLR-R2 = 0.598

Suncheon, Republic
of Korea

The geographic patterns of
As concentration contour

map based on
EMLR-derived values were

comparable to those of a
map based on observed
values, and the EMLR
model showed a better
qualitative prediction

performance than SMLR.

[105]

Diffuse Vis-NIR
reflectance

spectroscopy and
indirect Al2O3,

Fe2O3, TOC
approach

Univariate regression Correlation
coefficient (R) = 0.552

Changjiang River
Delta, China

This research implies that
analysing DRS in the

Visible-NIR region could be
utilised to derive binding

forms and estimate As
heavy metal concentrations

in agricultural soils.

[106]
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Table 3. Cont.

Methods Models’ Algorithm Results Location Conclusion References

Vis-NIR
hyperspectral

reflectance
spectroscopy along

with SG, FD, CR, and
standard normal

variate (SNV)
spectral resampling

transformation based
on hydride

generation atomic
fluorescence
spectrometry

(HG-AFS) analysis

Multiple linear
regression (MLR),

partial least squares
regression (PLSR),

and adaptive neural
fuzzy

inference system
(ANFIS)

Using
MLR-R2 = 0.87,
RMSE = 1.25,

using
PLSR-R2 = 0.88,

RMSE = 1.22,
using

ANFIS-R2 = 0.94,
RMSE = 0.88

Liuxin mining area,
northwest of Xuzhou,

Jiangsu Province,
China

In order to improve public
health, the ANFIS model

and reflectance
spectroscopy can map the
geographic pattern of soil

As concentration.

[107]

Multivariate analysis
Using PLSR and

SVMR,
cross-validation of

Vis-NIR diffuse
reflectance

spectroscopy.

Partial least square
regression (PLSR)

and
support vector

machine regression
(SVMR)

Using PLSR-Cross
Validation

(RMSEPcv) = 2.98,
maximal coefficient

of determination
(R2cv) = 0.61 and

residual prediction
deviation

(RPD) = 1.81,
using

SVMR-RMSEPcv = 1.89,
R2cv = 0.89 and

RPD = 2.63.

Bílina and Tušimice
mine areas, Czech

Republic

The results show that
Vis-NIR reflectance

spectroscopy, in
combination with the first
derivative and SVMR, is a
potential technique for soil
As monitoring in high-risk

areas.

[108]

Lab-based and field-
based reflectance

spectroscopy based
on iteratively

retaining informative
variables (IRIV) and
iteratively retaining

informative variables
coupled

with Spearman’s
rank correlation

analysis (IRIV-SCA)

Partial least squares
regression (PLSR),

Bayesian
ridge regression

(BRR), ridge
regression (RR),

kernel ridge
regression (KRR),

support vector
machine

regression (SVMR),
extreme gradient

boosting (XGBoost)
regression, and
random forest

regression
(RFR)

Best model results
are showing here-
IRIV approach,
for lab spectra

(Bayesian
ridge regression
(BRR)-R2 = 0.79,

RMSE = 0.44, MAE
(mean absolute error)

= 0.36
for field spectra
(random forest

regression
(RFR))-R2 = 0.49,

RMSE = 0.67,
MAE = 0.56.

IRIV-SCA approach,
For lab spectra
(support vector

machine
regression

(SVMR))-R2 = 0.97,
RMSE = 0.22,
MAE = 0.11,

for field spectra
(extreme gradient

boosting
(XGBoost))-R2 = 0.83,

RMSE = 0.35,
MAE = 0.29.

Daye city area of the
Jianghan Plain region,

the southeast of
Hubei Province,

China

The suggested approach
considerably enhances the

effectiveness and
consistency of the inversion

of soil As concentration,
and it may be utilised for
reliable data for decision

making for the remediation
and restoration of As

pollution across a vast
region.

[109]
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Table 3. Cont.

Methods Models’ Algorithm Results Location Conclusion References

Vis-NIR reflectance
spectroscopy based
on the traditional

modelling method
and transfer
component

analysis (TCA)

Partial least squares
regression (PLSR)

Using the traditional
modelling method—
In first pair of study

areas—R2 = 0.02,
RPD = 0.65,

in the second pair of
study

areas—R2 = 0.01,
RPD = 1.0.1,

using transfer
component

analysis (TCA)
method—

in first pair of study
areas—R2 = 0.68,

RPD = 1.54,
in the second pair of

study
areas—R2 = 0.64,

RPD = 1.66

First pair of study
areas—Yuanping in
Shanxi Province and

Baoding in Hebei
Province, China.

Second pair of study
areas—Chenzhou

and Hengyang,
located in Hunan
Province, China

The findings show that
developing future

implementations of
transferable spectroscopic

diagnostic models for
predicting soil As

concentrations in vast areas
at a cheaper cost is a

possible path forward.

[110]

Vis-NIR reflectance
spectroscopy and
CNN model with

convolutional
autoencoder as a

deep learning
method

Convolutional neural
network (CNN),
artificial neural

network (ANN), and
random forest

regression (RFR)

Using
CNN-R2 = 0.82,
RMSE = 0.359,

using ANN-R2 = 0.63,
RMSE = 0.725,

using RFR-R2 = 0.64,
RMSE = 0.564

Geum River
watershed of
South Korea,

Republic of Korea

Deep learning algorithms
can estimate As

concentrations in soil,
according to this study and
the CNN-model-acquired
robust characteristics from

the convolutional
autoencoder, which

disentangled the key
characteristics of several

heavy metal elements and
generated generally

accurate estimations.

[111]

Hyperspectral
reflectance

spectroscopy based
on the stable

competitive adaptive
reweighting

sampling algorithm
(sCARS) and sCARS

coupled with the
successive

projections algorithm
(sCARS-SPA)

approach

Partial least squares
regression (PLSR),

radial basis function
neural network
(RBFNN), and

shuffled frog leaping
algorithm

optimization of the
RBFNN

(SFLA-RBFNN)

Best model results
are shown here-

sCARS algorithm:
for Honghu

area—SFLA-RBFNN
model-R2 = 0.85,

RMSE = 0.96,
MAE = 0.78

for Daye
area—SFLA-RBFNN

model-R2 = 0.84,
RMSE = 0.30,
MAE = 0.25
sCARS-SPA
algorithm,

for Honghu
area—SFLA-RBFNN

model-R2 = 0.88,
RMSE = 0.85,
MAE = 0.72

for Daye
area—SFLA-RBFNN

model-R2 = 0.93,
RMSE = 0.22,
MAE = 0.17

Honghu and Daye,
Hubei Province,

China

The findings of the study
suggest that the

sCARS-SPA-SFLA-RBFNN
model may be used to

analyse the As
concentration of soil. The
model not only minimises
spectral redundancy and

eliminates collinearity, but
it also has a better

prediction performance. It
gives a mechanism for

predicting soil As
concentration on a broad
scale with great accuracy.

[112]

4. Methods for Arsenic Measurement
4.1. Hydroponic Method for Evaluating Leaf and Canopy Reflectance of Stressed Rice Plants for
As Contaminants

The feasibility of using reflectance spectroscopy to monitor As in rice plants was in-
vestigated by Bandaru et al., 2016 [30] with the application of 0, 5, 10, and 20 µmol As·L−1
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sodium arsenate (Na2HAsO4) to hydroponically grown rice plants. This study examined
whether spectral characteristics could be used to monitor As levels in paddy rice crops. The
hydroponic experiments were conducted in an aerated standing nutrient solution [113]. The
reflectance spectra of the upper extended leaves were measured in visible and near-infrared
(NIR) wavelengths. Alternatively, the SAIL model (scattering by arbitrarily inclined leaves)
was used to simulate canopy reflectance for the four As levels for different soil mois-
ture conditions and leaf area indices (LAI). Consequently, the susceptibility of different
vegetative indices (VIs) to As concentrations was investigated. Several measurement
techniques have been reported, such as (i) leaf spectral measurements, (ii) biophysicochem-
ical measurements, (iii) soil reflectance measurements, (iv) simulated canopy reflectance,
and (v) analysis of many vegetation indices evaluated for prediction of As concentration
(NDVI—normalized difference vegetation index [114], (vi) OSAVI—optimized soil ad-
justed vegetation index [115], (viii) MCARI—modified chlorophyll absorption reflectance
index [80], (ix) TCARI—transformed chlorophyll absorption reflectance index [30,116],
and (x) PDR—peaks derivative ratio [117]. Other abiotic (e.g., ambient noise) and biotic
(e.g., pest damage) factors confound reflectance characteristics in the field, so these rela-
tionships should be tested using field data. As-induced plant stress cause major variations
in leaf spectral characteristics, which could help in monitoring As levels in rice using
spectroscopic analysis.

4.2. Estimation of Soil As Using Generated Model and Hyperspectral Remote Sensing

Wei et al., 2020 [112] suggested that heavy metal concentration in the soil can be
effectively monitored using hyperspectral remote sensing. Considering the potential for
a dynamic nonlinear interaction between soil As content and the spectrum, as well as
data redundancy, a reliable model is urgently required. In Daye and Honghu (Hubei
Province, China), 62 and 27 samples were collected from two locations in response to
this requirement. The soil As material was calculated using hyperspectral data and the
two characteristic selection methods of sCARS (stable competitive adaptive reweighting
sampling algorithm) [118,119] and sCARS-SPA (the sCARS coupled with the successive
projections algorithm) [120]. Furthermore, the three modelling methods of PLSR (partial
least squares regression) [121], RBFNN (radial basis function neural network) [122,123],
and SFLA-RBFNN (shuffled frog-leaping algorithm optimization of the RBFNN) were also
used for the algorithm. The As content and spectral reflectance were determined in the
laboratory by spectral calculation as well as through physical and chemical analyses. After
completing the continuum removal (CR), the stability competitive adaptive reweighting
sampling algorithm coupled with the successive projections algorithm (sCARS-SPA) was
used to identify characteristic bands, effectively resolving the issue of data consistency and
collinearity. The findings of the experiment show that the sCARS-SPA-SFLA-RBFNN model
can be used to analyse the spectral quality of soil As. The model not only decreases spectral
information redundancy and removes collinearity, but also has a high prediction accuracy.
It provides a tool for forecasting soil As material on a broad scale with high precision.

Wei et al., 2019, in another study [109], examined soil As content for the transferability
of the prediction method using laboratory and field reflectance spectroscopy. More than
60 soil samples were obtained for this research, which was focused on spectral analysis of
soil samples in the lab as well as in the field using hyperspectral techniques, as shown in
Figure 5. The SVC HR-1024 field spectrometer was used to measure the spectra of the soil
during the field spectral measurement stage (Figure 5b). Field spectral measurements were
taken on a sunny day at noon to maintain a proper solar altitude angle, and the probe’s
field of view angle was 25 degrees. The spectra of the soil samples were measured in
the laboratory using an ASD FieldSpec 3 field spectrometer with a spectral resolution of
1 nm (Figure 5a). A 1000 W halogen lamp with a 25-degree field of view and a 15-degree
irradiation vertical direction angle was used as the light source around 30 cm from the
surface of the soil sample. Before the measurement, both spectrometers were calibrated on
a whiteboard for field or lab measurement.
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Figure 5. Soil reflectance spectra used to estimate the soil As concentration: (a) reflectance spectra in
the lab; (b) reflectance spectra in the field (adapted from Wei et al., 2019 [109]).

Seven different simulation techniques, namely, (i) PLSR (partial least squares regres-
sion) [124], (ii) BRR (Bayesian ridge regression) [125,126], (iii) RR (ridge regression) [127],
(iv) KRR (kernel ridge regression) [128], (v) SVMR (support vector machine regression) [129,130],
(vi) XGBoost (extreme gradient boosting regression) [131], and (vii) RFR (random forest re-
gression) [132,133], were used based on the two different methods of choosing characteristic
bands’ IRIV (iteratively retaining informative variables) and IRIV-SCA (IRIV coupled with
Spearman’s rank correlation analysis) [134,135]. The soil was not air-dried, sieved, ground,
or otherwise processed in the field trial, which was more representative of the real-world
application scenario. The field-based model’s accuracy was lower than the model based
on laboratory-measured spectra. The explanation for this is that the natural environment
affects the retrieval of measured spectral data; furthermore, the model based on ground
spectral data has good stability and actual predictive efficiency, as well as high feasibility.
The proposed approach greatly improves the precision and stability of the inversion of
soil As material, and it may be used to provide reliable data for decision support for the
treatment and recovery of As pollutants over a wide region.

4.3. Visible Near-Infrared Diffuse Reflectance Spectroscopy (VisNIR-DRS) Approach

The VisNIR-DRS method is compact and cost-effective. It also supports high-throughput
and can be used in both proximal and remote sensing applications. Typically, a chemometric
predictive algorithm is developed using a variety of soil parameters and VisNIR spectral
reflectance values. Heavy metals in agricultural soils have also been estimated using the
DRS technique [136,137]. In the research of Chakraborty et al., 2017 [95], the VisNIR-DRS
spectral data were used to estimate the overall As as well as five separate solid As phases
efficiently (Mg, PO4, Ox, HCl, and org pools). A total of 200 surface soil (0–15 cm) samples
were obtained and scanned using VisNIR-DRS from fertile farmland surrounding a contam-
inated landfill site. For estimating soil t-As, the raw reflectance spectra were preprocessed
using three spectral transformations and five extracted pools using partial least squares
regression (PLSR). However, the findings are promising, indicating that VisNIR DRS can
be used for the analysis of As-polluted soils in the future. It is necessary to investigate
its capacity for rapidly screening soil samples for other solid As phases over a larger
geographic region.
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4.4. Fuzzy Overlay and Spatial Anisotropy Approach

A fuzzy overlay was found to be a useful tool for determining which areas were most
likely to be polluted with As at the catchment in Wangsaphung District, Loei Province, in the
north-eastern region of Thailand. Traditional overlay analysis applications in geographic
information systems (GIS), such as site collection and suitability models, are solved using
fuzzy logic. Fuzzy logic is a method of computation that uses “degrees of fact” rather
than the standard “true or false” technique (1 or 0). Instead of only determining whether a
given value is in or out of a set, a variant on set theory allows specifying the probability
that the value is a part of the set [138]. The fuzzy overlay may reveal polluted areas using
data sources such as distance to stream, ground slope, and soil permeability. Collection of
samples and examination of As content and interpolation surface by spatial anisotropic
approach were used to verify high As pollution. A total of 51 soil samples were collected
from the polluted site, which was identified using a fuzzy overlay technique. Soil samples
were collected at a depth of 0.00–1.00 m from the ground level at each site. The possible high
As locations derived from fuzzy overlay outputs were cross-checked from an interpolation
surface using the spatial anisotropic method. The spatial surface anisotropic and fuzzy
overlay mapping outputs were all spatially conformed in a meaningful way. As a result,
the fuzzy overlay has proven to be a simple method for establishing the preliminary site
analysis. This tool may be used to detect any heavy metals or polluted materials in water
flowing through soil media in general [139].

4.5. Multivariate Hyperspectral Vegetation Indices

For monitoring soil As or heavy metal pollution across wide regions, hyperspectral
data are essential. Various research reports have shown that surface-based vegetation
indices can be applied to hyperspectral images [61,62,140]. In hyperspectral remote sensing,
the green (530–580 nm) and red edge (680–760 nm), as well as the NIR spectral bands,
were discovered to be effective for assessing chlorophyll concentration in empirical mod-
els. The vegetation indices are used for estimating the chlorophyll content of rice plant
leaves or canopies because the chlorophyll in leaves and As concentration in soils have
a strong negative correlation [35,141]. In the study by Shi et al., 2016 [142], the canopy
reflectance spectra of rice during the transplanting and harvesting period were used to
develop different vegetation indices for evaluating As levels in agriculture soils, as shown
in Table 4. In Table 4, the published results indicate that the newly developed three-band
vegetation index, (R716 − R568)/(R552 − R568), performed best in assessing soil As con-
centrations. This study also revealed that, for soil As contamination monitoring, both
two-band and three-band vegetation indices, denoted by PRI (photochemical reflectance
index) (R531 − R570)/(R531 + R570) and (R762 − R732)/(R732 − R640) [141,143] and REP (red-
edge position) [144], can be utilised as common vegetation indices. However, according to
Shi et al., 2015 [145], three-band vegetation indices may have a greater estimation accuracy
than two band indices even though the earlier one uses more appropriate and more infor-
mative bands. In the study by Muller, 1969 [146] and Loska et al., 2004 [147], it appeared
that the geo-accumulation index (Igeo), as shown in Equation (2), could be used to assess
the As content in agricultural soils.

Igeo = log2 (CAs/1.5BAs) (2)

where CAs is measured As concentration in the soil and BAs is the geochemical background
value of As.
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Table 4. Estimation of soil As concentration using multivariate vegetation indices with the validation
results, modified from Shi et al., 2016 [142].

Vegetation Indices r RMSE
(mg/kg) References

Two-band
vegetation

indices

{(R792 − R806)/(R792 +
R806)} × 103 0.71 16.24

[142]

(R792/R806) × 103 0.70 16.28

(R876 − R887) × 103 0.63 18.49

Three-band
vegetation

indices

R674/(R352 × R526) 0.33 22.23

{R908/(R860 + R930)} × 102 0.72 16.18

{(R806 − R792)/(R806 +
R770)} × 103 0.62 18.45

(R716 − R568)/(R552 −
R568) 0.75 15.63

(R730 − R812)/(R730 +
R812 − 2R746) 0.72 16.17

Photochemical
reflectance index

(PRI)

(R531 − R570)/(R531 +
R570) 0.67 17.41 [143,148]

(R762 − R732)/(R732 −
R640) 0.52 20.89

[141]

(D752 − D711)/(D711 −
D640) 0.51 21.44

(D732 − D702)/(D732 +
D702) 0.57 19.85

D752/D702 0.51 21.37

Red-edge
position (REP)

700 + 40 [{(R670 + R780)/(2
− R700)}/(R740 − R700)] * 0.62 18.65 [144]

* Rn: reflectance value at n nm; Dn: the first-derivative reflectance value at n nm; the constants 700 and 40 result
from interpolation in the 700–740 nm interval.

Table 5 shows the summary of hyperspectral reflectance application in soil As contam-
ination monitoring for rice paddy fields along with As-related plant stress.

Table 5. Review of hyperspectral reflectance approach in soil As contamination of paddy field along
with rice plants.

Methods Model Algorithm Results Location Conclusion References

Vis-NIR reflectance
spectroscopy with
various vegetative

indices for evaluating
leaf and canopy

reflectance of stressed
rice plants

SAIL (scattering by
arbitrarily inclined

Leaves)

NDVI-R2 = 0.69,
RMSE = 1.99

OSAVI-R2 = 0.73,
RMSE = 1.84

MCARI-R2 = 0.85,
RMSE = 1.23

TCARI-R2 = 0.88,
RMSE = 1.10

PDR-R2 = 0.79,
RMSE = 1.45

TCARI/OSAVI-R2 = 0.89,
RMSE = 1.11

USDA Beltsville
Agricultural Research

Facility, Beltsville,
MD, USA

The combined index,
TCARI/OSAVI, and

red-edge-based Vis-MCARI
and TCARI showed higher
sensitivity to As levels and

better resistance to soil
backgrounds and LAI.

[30]
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Table 5. Cont.

Methods Model Algorithm Results Location Conclusion References

Lab-based and
field-based Vis-NIR

reflectance
spectroscopy with

the data
preprocessing

methods,
Savitzky–Golay

smoothing (SG), first
derivative (FD), and
mean Center (MC)

for the spectral
pretreatment and

normalized
difference spectral

index (NDSI)
approach

Partial least square
regression (PLSR)

Using PLSR—
for laboratory spectra

(FD + SG + MC) − R = 0.64,
RMSEP = 14.7 mg/kg,

RPD = 1.31,
for field spectra

(FD + SG + MC) − R = 0.71,
RMSEP = 13.7 mg/kg,

RPD = 1.43,
using NDSI—

for field
spectra—R = 0.68,

RMSEP = 13.7 mg/kg,
RPD = 1.36

Zhongxiang, Hubei
Province, China

These findings suggest that,
by using the reflectance

spectra of rice plants, it is
possible to detect As

contaminants in
agricultural soils. The

association between As
levels in soils and

chlorophyll a/b levels and
cell structure in rice plant

leaves or canopies might be
the prediction mechanism.

The wavelengths of the
spectra at the canopy level
around 768, 939, 953, 1132,

and 1145 nm are discovered
as critical wavelengths for
forecasting the As content

in agricultural soils.

[79]

Hyperspectral
reflectance

spectroscopy using
random forests

Random forests R2 = 0.84, MSE = 3.97
Suzhou, Jiangsu
Province, China

Hyperspectral remote
sensing and random forests

are effective ways to
quickly estimate As

concentrations in rice
plants.

[82]

The spectral data
pretreatment

methods and indirect
Fe approach. (First

and second
derivatives (FD and

SD), baseline
correction (BC),

standard normal
variate (SNV),

multiplicative scatter
correction (MSC),
and continuum

removal (CR), reused
for the spectral
reflectance data
pretreatments)

Partial least square
regression (PLSR)

No spectral pretreatment–
RRMSE–0.26, R2- 0.55,

FD-RRMSE–0.24, R2- 0.61,
SD-RRMSE–0.25, R2- 0.58,
CR-RRMSE–0.24, R2- 0.62,
BC-RRMSE–0.25, R2- 0.59,

SNV-RRMSE–0.30,
R2- 0.37,

MSC-RRMSE–0.30,
R2- 0.38.

Guiyang suburb on
periphery of the
Baoshan Mine,

southeast Hunan
Province, China

In order to build final
models, wavebands around

460, 1400, 1900, and
2200 nm are essential

spectral variables.

[136]

Proposed three-band
hyperspectral

vegetation index,
normalized

difference vegetation
index (NDVI),
photochemical

reflectance index
(PRI), and red-edge

position (REP)
approach

Successive
projections algorithm

(SPA)

For three-band vegetation
index—R = 0.75,

RMSE = 15.63 mg/kg,
For NDVI–R = 0.71,

RMSE = 16.24 mg/kg,
For PRI–R = 0.67,

RMSE = 17.41 mg/kg,
For REP–R = 0.62,

RMSE = 18.65 mg/kg

Zhongxiang region of
Chinaon, China

The findings suggest that
the newly developed
proposed three-band

vegetation index
(R716-R568)/(R552-R568)

may be used to estimate the
amount of As in the soil in

the study region. For
monitoring soil, As

pollution, PRI and REP may
be utilised as universal

vegetation indices.

[142]

Diffuse Vis-NIR and
MIR reflectance

spectroscopy and
indirect Al2O3,

Fe2O3, TOC
approach

Partial least square
regression (PLSR)

R2 = 0.455, RMSEC (root
mean square error of

calibration) = 1.86,
RMSEP (root mean

squared error of
prediction) = 1.607,

RPD = 1.137

Jiangsu Province, the
Changjiang River

Delta, China

Multivariate regression and
PLSR algorithms for
Vis-NIR spectra have

superior prediction skills
than the related MIR

spectra and show potential
for facilitating harmful

mineral assessment of soil
samples.

[149]
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5. Limitations of Hyperspectral Remote Sensing Data

There are several restrictions in accessing remote sensing space-borne data, but such
a need is yet to be addressed. Several constraints related to data acquisition arise from
climatic conditions as well as the analysis of various surface characteristics from satellite
imagery [150]. The deficiency of appropriate hyperspectral space-borne sensors as well
as the effective use of hyperspectral remote sensing data with lower spatial or spectral
resolution bands has been neglected in cases of heavy metal pollutants monitoring and
mapping [151]. Several issues are encountered in soil As monitoring in hyperspectral
remote sensing, such as that the images produced by airborne or spaceborne sensors and
reflectance captured by spectroradiometer are both weather-sensitive. The utility of satellite
image pixels is impacted when clouds and shadows appear in it; due to this problem,
images need atmospheric corrections [152]. Various researchers have observed that the
reflectance recorded by remote sensors has a spectral mixing problem and offered analytical
methodologies to address this issue. Thus, spectral unmixing remains difficult and requires
further research [153–155].

6. Conclusions

Remote sensing techniques can be used to reduce As and other heavy metals con-
tamination in soil, water, and rice paddy fields as well as rice grains through appropriate
measures on the ground [156]. This innovative approach requires intensive research and
standardisation to provide a long-term solution for reliable As estimation. The high-
resolution images and the high number of bands of hyperspectral sensors might help in
a detailed analysis of soil As concentration study and generate some useful information.
The spectral reflectance of hyperspectral remote sensing data from various soil types can
help to improve the effect of identifying specific wavelengths relevant to soil As concen-
tration [157]. The clearest leaf reflectance reaction to plant stress is increased reflectance
in the visible spectrum. Only when tension has progressed to the point of extreme leaf
dehydration does infrared reflectance react consistently. The review emphasises the need
for high sampling precision across a limited region, which increases interpolation accuracy
while also allowing the study to examine and compare interpolations with high precision.
The approach can help governments, policymakers, businesses, industries, community
members, and residents to understand the optimum sampling and interpolation strategies
for successfully monitoring and controlling As pollution by taking into consideration in-
terpolation methodologies. Table 6 lists different types of spectrometers that have been
used in assessing As contamination for field and laboratory purposes. Table 7 gives the
detailed space-borne hyperspectral sensor specifications which have been used in the iden-
tification of many heavy metals. Soil As pollution and soil characteristics change as a result
of As contamination need enhanced research, particularly in the areas of soil ecosystem
restoration and long-term usage.
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Table 6. Different types of spectrometer instruments for collecting spectra.

Instrument
Names Spectral Range Spectral

Resolution

Sampling
Interval

(Bandwidth)

Scanning
Time FOV Options Weight Measurement

Type
Wavelength

Accuracy
Study

References
Website

References

ASD
FieldSpec 3 350–2500 nm

3 nm @ 700 nm;
10 nm @

1400/2100 nm

1.4 nm @
350–1050 nm; 2

nm @
1000–2500 nm

100 ms
1.5 m fibre optic

(25◦ field of
view)

5.6 kgs (12 lbs)
Ground
truthing;

Remote sensing
0.5 nm [82,109,142] [158]

Portable visible
NIR spectro-
radiometer
PSR-3500®

350–2500 nm

3.5 nm
@350–1000 nm;
9.5 nm @1500

nm; 6.5 nm
@2100 nm

1.5 nm @
350–1000 nm;
3.8 nm @ 1500
nm; 2.5 nm@

2100 nm

100 ms

4, 8, or 14◦

lenses, 25◦ fibre
optic, diffuser,
or integrating

sphere

3.3 kg (7.3 lbs)
Ground
truthing;

Remote sensing
0.5 nm [95] [159]

SVC HR-1024
field

spectrometer
350–2500 nm

≤3.5 nm @ 700
nm; ≤ 9.5 nm @
1500 nm; ≤6.5
nm @ 2100 nm

≤1.5 nm @
350–1000 nm;
≤3.8 nm @

1000–1890 nm;
≤2.5 nm @

1890–2500 nm

1 millisecond

4◦ standard, 8◦

and 14◦ optional
fibre optic, 25◦

optional
armoured fibre

optic

3.3 kgs (7.3 lbs)
Ground
truthing;

Remote sensing
[109] [160]

ASD
FieldSpec 4
Hi-Res NG

350–2500 nm
3 nm @ 700 nm;

6 nm @
1400/2100 nm

1.4 nm @
350–1000 nm;

1.1 nm @
1001–2500 nm

100 ms

1.5 m fibre optic
(25◦ field of

view). Optional
narrower field
of view, fibre

optics available

5.44 kgs (12 lbs)
Ground

truthing; remote
sensing

0.5 nm [100] [161]

ASD
FieldSpec 4

Hi-Res: High
Resolution

350–2500 nm
3 nm @ 700 nm;

8 nm @
1400/2100 nm

1.4 nm @
350–1000 nm;

1.1 nm @
1001–2500 nm

100 ms

1.5 m fiber optic
(25◦ field of

view). Optional
narrower field
of view fibre

optics available

5.44 kgs (12 lbs)
Ground

truthing; remote
sensing

0.5 nm [111] [162]

ASD
LabSpec 4

Hi-Res
350–2500 nm

3 nm @ 700 nm;
6 nm @

1400/2100 nm
N.A. 100 ms N/A 5.44 kgs (12 lbs) Molecular

structure [163]

ASD
FieldSpec Pro

FR
350–2500 nm

3 nm @ 700 nm;
10 nm @ 1500
nm; 10 nm @

2100 nm

1.4 nm @
350–1000 nm; 2

nm @
1000–2500 nm

100 ms

1.4 m in length
with 25◦

full-angle cone
of acceptance
field of view

8 kgs (17.6 lbs)
Ground

truthing; remote
sensing

1 nm [141,164] [165]
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Table 7. Details of hyperspectral space-borne sensors specifications (modified from Transon et al., 2018 [166]).

Instrument
Sensor Hyperion Prisma TianGong-1 HISUI EnMAP-

HYSI SHALOM HyspIRI HypXIM CHRIS MODIS HysIS

Satellite
platform EO-1 Prisma Shenzhou-8 HISUI EnMAP IMS-II HyspIRI HypXIM Proba-1 Terra and

Aqua HysIS

Spectral
range (nm) 357–2576 400–2500 400–2500 400–2500 420–2450 400–2500 380–2510 400–2500 415–1050 400–1400 400–2400

Spectral
bands 220 249 128 185 244 275 214 210 200 36 316

Spatial
resolution

(m)
30 30 30

10
(VNIR)/20

(SWIR)
30 10 30 8 18 250/500/1000 30

Spectral
resolution

(nm)
10 10

10
(VNIR)/23

(SWIR)

10
(VNIR)/12.5

(SWIR)

6.5
(VNIR)/10

(SWIR)
10 10 10 1.3–12

Temporal
resolution

(days)
16–30 7–14 2–60 4–27 4 5–16 3–5 8 2–3

Country
agency USA (NASA) Italy (ASI) China

(CNSA)
Japan

(JAXA)
Germany

(GFZ-DLR)
Italy–Israel
(ASI-ISA)

USA
(NASA)

France
(CNES) UK (ESA) USA (NASA) India (ISRO)

Satellite
mission 2000–2017 2019-present 2011–2018 2019-present 2019-present expected

launch: 2022
expected

launch: 2023
expected

launch: 2021 2001-present 1999-present 2018-present

Data access

USGS-U.S.
Geological

Survey, 2021
[167]

Prisma, 2019
[168]

MSADC,
2021 [169]

Data &
Tools-EnMAP,

2012 [170]

Earth Online,
2021 [171]

MODIS Web,
2021 [172]
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