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We solve the eigenvalue spectra for two quasi exactly solvable (QES) Schrödinger problems
defined by the potentials V (x; γ, η) = 4γ2 cosh4(x) + V1(γ, η) cosh2(x) + η (η − 1) tanh2(x)
and U(x; γ, η) = −4γ2 cos4(x) − V1(γ, η) cos2(x) + η (η − 1) tan2(x), found by the anti-
isospectral transformation of the former. We use three methods: a direct polynomial
expansion, which shows the relation between the expansion order and the shape of the
potential function; direct comparison to the confluent Heun equation (CHE), which has
been shown to provide only part of the spectrum in different quantum mechanics problems,
and the use of Lie algebras, which has been proven to reveal hidden algebraic structures of
this kind of spectral problems.

Keywords: Quasi-exactly solvable problems, anti-isospectral, polynomial expansion,
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I. INTRODUCTION

In quantum mechanics, a QES spectral problem is one for which it is not possible to obtain
the complete energy spectrum analytically [1, 2]. This class of Schrödinger problems is not limited
to those of single particles, as there are also examples of QES multiple-body problems in one,
two, and higher dimensions [3]. In the literature, there exist three direct methods to find the
solutions of QES quantum-mechanical problems: (i) use of a simple polynomial expansion, (ii)
transforming the Schrödinger equation into a known equation, like the CHE, and (iii) using Lie
algebras. The first method is used to show, in a very simple way, that for some QES problems,
the wave solutions and the potentials share an intimate relation that preclude to fix the latter
and allow for a recursive method to generate the complete spectrum. Secondly, problems where
the Heun equation is used to find the spectra have been shown to be in the QES class, and in
our case we find that the solutions found in the first method turn out to be the same. On the
other hand, the use of Lie algebraic methods have been used to reveal the existence of hidden
algebraic structures in problems which do not show any hidden symmetry properties, a feature
which according to Turbiner [4] was first noticed by Zaslavskii and Ulyanov [5]. In the latter
framework, the comprehensive review by Turbiner [4] emphasises the hidden symmetries involved
and its application to finite difference equations. He was the first to give a detailed list of potentials
for QES problems, while González-López and collaborators further developed these techniques to
a larger list of potentials [6–8]. However, being simpler, the polynomial expansion based on the
Bethe Ansatz method [9] and the CHE transformation that we also use here have been the common
tools in many more recent studies on QES spectral problems [10–16].

On the other hand, hyperbolic and trigonometric type potentials are used in molecular physics
and quantum chemistry, modeling inter-atomic and inter-molecular forces, ranging from Razavy
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[17], Pöschl-Teller [18], Rosen-Morse [19, 20], and Scarf [21] potentials to their modified counter-
parts [9, 22–27]. In quantum chemistry, the area of IR-spectroscopy is particularly interesting,
since double-well potentials (DWP) could describe the ammonia molecule (NH3) [28], chromous
acid (CrOOH) [29] and potassium dihydrogen phosphate (KH2PO4) experimental data [29–31].

For the 1D time independent Schrödinger equation

−d
2Ψ(x)

dx2
+ V (x)Ψ(x) = EΨ(x) ,

with ~2
2m = 1, we study the spectral problem for the hyperbolic potential

V (x; γ, η) = 4γ2 cosh4(x) + V1(γ, η) cosh2(x) + η (η − 1) tanh2(x) , (1)

and its trigonometric counterpart

U(x; γ, η) = −4γ2 cos4(x)− V1(γ, η) cos2(x) + η (η − 1) tan2(x) , (2)

which resembles the symmetric potential used by Sitnitsky to study the inversion vibrational mode
for the ammonia molecule [28]. In a recent article, Dong et al [15], using the CHE approach, find
analytical solutions for the potential V (x; c, k) = c2 sinh4(x) − k tanh2(x), which is a particular
case of the hyperbolic potential (1), when c is written in terms of γ, η, and the polynomial order
N , and k = −η (η − 1). In their work, they only develop the case k > 0 which corresponds to
values 0 < η < 1, but in our case both cases, k < 0 and k > 0, are included, making ours a more
general treatment.

Furthermore, Sitnitsky [29] has shown applications to IR spectroscopy for a particle in a DWP
potential to describe the proton energy states in hydrogen bonds. The model potential is a DW
trigonometric potential, with an asymmetric term whose zero limit is used to describe thermody-
namic features of the experimental data.

This article is organized as follows. In Section II, the direct polynomial expansion solutions
are worked out for the quantum spectral problems corresponding to the potentials (1) and (2). In
Section III, we show that the same solutions can be found by a straight comparison to the CHEs,
and in Section IV, we find the explicit Lie algebraic solutions of these problems. In all cases,
we refer to two main trial eigenfunctions that we introduce in Section II, where two additional
trial eigenfunctions are worked out separately, due to their non-realization with respect to the
anti-isospectral transformation, U(x; γ, η) = −V (ix; γ, η), which relates that part of the spectrum
found for the hyperbolic potential with the opposite sign part of the spectrum of the trigonometric
potential. The selection of these four trial function types becomes evident in Section IV, where
they are related to the four parameter sets of solutions used in previous work by González-López
et al [10].

II. POLYNOMIAL EXPANSIONS

Let us consider the spectral problem for the one-dimensional Schrödinger equation with po-
tentials as given in equations (1) and (2). We first find the solutions provided by the polynomial
expansion of the eigenfunctions. These problems belong to the QES class, and the solvable part of
the energy spectrum is found to depend on the order N of the polynomial.

A. The hyperbolic case

In order to use the Bethe ansatz, we work out two classes of even and odd solutions, called here
trial functions, TF.
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a. TF1. We first look for even solutions in the case of the hyperbolic potential (1), with
eigenfunctions

Ψ1(x) = e−γ cosh
2(x) coshη(x)f(x). (3)

By using the change of variable z = cosh2(x), we can immediately find the CHE equation for the
function f(z),

d2f

dz
+

[
−2γ +

η + 1
2

z
+

1
2

z − 1

]
df

dz
+

[
−1

4 (E + η + 2γ (2η + 1))

z
+

1
4 (E + η − V1 − 2γ (2γ + 1))

z − 1

]
f = 0

(4)

and look for the polynomial expansion solution

f(z) = f0

N∏
i=1

(z − zN,i) . (5)

The solutions found in this way depend on the order N of the polynomial: For N = 0, we can
only find one energy eigenvalue, E0 = −η − 2γ (2η + 1); for N = 1, we find two eigenvalues, E± =

−[3η+6γ+2+4γη]±2
[

(η + 1)2+4γ (γ − η)
]1/2

, and the polynomial roots z1,1 = −2 (2η + 1) /[E±+
η+2γ (2η + 1)], while for N = 2 we obtain a third order equation for the energy eigenvalues, which
we only solve numerically. With the use of Wolfram’s Mathematica, in Table I we give a summary
of the eigenvalues found analytically and numerically, when the parameters are γ = η = 2. In this
case, the polynomial roots are, for N=1, z1,1 = 0.5, 1.25, and for N=2, the three pairs of roots are
(z2,1, z2,2) = (0.294, 0.823), (0.388, 1.612), and (1.124, 2.008).

In all of these cases, the coefficient V1 is found to be V1 = −8γ[N + 1 + (γ + η − 1)/2], whose
dependence on N forbids to scale the solutions of different polynomial expansion orders. Besides,
the polynomial order gives the number of roots in each case, and that fixes to N + 1 the number
of eigenfunctions. Three hyperbolic potentials with their analytic wave functions corresponding to
this case are plotted in Fig. 1, and several analytical and numerical eigenvalues are provided in
Table I.

TF1 TF2

N = 0 N = 1 N = 2 N = 0 N = 1 N = 2

E0 −22.000 −42.000 −68.124 −31.606 −53.922 −84.704

E1 −15.489 −39.323 −67.801 −27.000 −52.798 −84.635

E2 −5.186 −30.000 −54.000 −17.502 −42.265 −65.806

E3 7.489 −19.350 −47.331 −5.773 −33.202 −61.915

E4 22.215 −6.315 −35.875 8.108 −21.011 −50.642

E5 38.772 8.674 −22.557 23.880 −6.822 −38.449

E6 57.008 25.435 −7.300 41.377 9.198 −24.001

E7 76.809 43.837 9.690 60.477 26.900 −7.753
...

...
...

...
...

...
...

TABLE I: Exact (bold type) and numerical eigenvalues for the hyperbolic potential (1), for even (TF1) and
odd (TF2) eigenfunctions, with N = {0, 1, 2}, and for γ = η = 2; these numerical values are also used in
subsequent tables II and III and the figures of the paper.
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FIG. 1: Hyperbolic potentials (1), with γ = 2 and η = 2, and corresponding TF1 eigenfunctions.

b. TF2. We now look for odd solutions of the type

Ψ2(x) = e−γ cosh
2(x) coshη(x) sinh(x)f(x). (6)

The CHE for the function f of variable z = cosh2(x) is given by

d2f

dz2
+

[
−2γ +

η + 1
2

z
+

3
2

z − 1

]
df

dz
+

[− 1
4 (E + 3η + 2γ (2η + 1) + 1)

z
+

1
4 (E + 3η − V1 − 2γ (2γ + 3) + 1)

z − 1

]
f = 0 .

(7)

Again, using the polynomial expansion (5), we find that V1 = −8γ[N + 1 + (γ + η)/2]. Re-
garding the eigenvalues, for N = 0, we get E0 = −η − (2γ + 1)(2η + 1). For N = 1, we find

the eigenvalues E± = −[6γ + 5η + 4γη + 5] ± 2
[

(η + 2)2 + 4γ (γ − η + 1)
]1/2

, and the roots
z1,1 = −2 (2η + 1) / (E± + 2γ (2η + 1) + 3η + 1), which for γ = 2 and η = 2 are z1,1 = 0.388
and z1,2 = 1.612. Finally, for the case N = 2, with γ = 2 and η = 2, the three eigen-
values are E1 = −84.635, E3 = −61.915 and E5 = −38.449, and the pairs of roots are
(z2,1, z2,2)=(0.235,0.335), (2.417,0.663), and (1.983,1.368). We plot the potentials and wave func-
tions in Fig. 2, and give the analytical and numerical eigenvalues in Table I.
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FIG. 2: The same as in the previous figure, but for the TF2 case.

c. TF3. For the first two sets of trial functions, the cases with η < 0 are not forbidden, how-
ever, we consider them separately due to the restriction that will appear when the anti-isospectral
condition is applied, when we turn to the trigonometric case. So, let us consider here the case of

Ψ3(x) = e−γ cosh
2(x) sechη−1(x)f(x). (8)

The exponent of sech(x) is set for convenience, as will be used in Section IV A.
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Using z = cosh2(x), we arrive at the CHE equation

d2f

dz2
+

[
−2γ +

−η + 3
2

z
+

1
2

z − 1

]
df

dz
+

[− 1
4 (E − η + 2γ (3− 2η) + 1)

z
+

1
4 (E − η − V1 − 2γ (2γ + 1) + 1)

z − 1

]
f = 0 .

(9)

The polynomial solutions of order N render the coefficient V1 = −8γ[N + 1 + (γ − η)/2]. The
analytical and numerically found eigenvalues are given in Table II, for N = 0, 1, and 2.

TF3 TF4

N = 0 N = 1 N = 2 N = 0 N = 1 N = 2

E0 5.000 −12.798 −31.606 −3.826 −22.000 −42.000

E1 16.250 −4.544 −27.000 6.000 −15.489 −39.323

E2 29.800 6.798 −17.502 18.447 −5.186 −30.000

E3 45.329 20.417 −5.773 33.021 7.489 −19.350

E4 62.635 35.998 8.108 49.464 22.215 −6.315

E5 81.579 53.346 23.880 67.610 38.772 8.674

E6 102.057 72.325 41.377 87.337 57.008 25.435

E7 123.986 92.833 60.477 108.555 76.809 43.837
...

...
...

...
...

...
...

TABLE II: Exact (bold type) and numerical eigenvalues for the hyperbolic potential (1), for even TF3 and
odd TF4 eigenfunctions.

d. TF4. As said above, we may consider a fourth case, of odd eigenfunctions,

Ψ4(x) = e−γ cosh
2(x) sechη−1(x) sinh(x)f(x) , (10)

which leads to the CHE

d2f

dz2
+

[
−2γ +

−η + 3
2

z
+

3
2

z − 1

]
df

dz
+

[− 1
4 (E − 3η + 2γ (3− 2η) + 4)

z
+

1
4 (E − 3η − V1 − 2γ (2γ + 3) + 4)

z − 1

]
f = 0 .

(11)

For this case, V1 = −8γ[N + 1 + (γ − η + 1)/2] and the analytical and numerical eigenvalues are
given in Table II, for the same three values of N .

B. The trigonometric case

The trigonometric potential (2), can be obtained from the hyperbolic one, eq. (1), via the anti-
isospectral transformation x→ ix. This in turn implies that the trigonometric eigenvalues should
be of opposite sign to those of the hyperbolic cases.

Now we can see that the trial functions TF1 and TF2 can be transformed into regular solutions
of the potential (2), while the trial functions TF3 and TF4 would not render square integrable
eigenfunctions due to the sec(x) term occurring there. Therefore, the trial functions TF1 and
TF2, for η > 0, are the only two which can be used in the trigonometric case. Here we shall only
summarize the results for these functions and present the corresponding plots in Figs. 3 and 4.

a. TF1. For this case, using surmised eigenfunctions of the type

Φ1 = e−γ cos
2(x) cosη(x)f(z) (12)
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with z = cos2(x), we find the CHE

d2f

dz2
+

[
−2γ +

η + 1
2

z
+

1
2

z − 1

]
df

dz
+

[
1
4 (E − η − 2γ (2η + 1))

z
−

1
4 (E − η − V1 + 2γ (2γ + 1))

z − 1

]
f = 0

(13)
and V1 = 8γ[N + 1 + (η+ γ− 1)/2], the same expression as in the case of the hyperbolic potential.
For N = 0, the energy is E0 = η + 2γ(2η + 1); for N = 1, we find E± = 3η + 6γ + 4γη + 2 ±[

(η + 1)2 + 4γ (γ − η)
]1/2

, with z1,1 = −2(2η + 1)/ (−E± + η + 2γ(2η + 1)). In the case N = 2,
one obtains (using Mathematica) the eigenenergies E0 = 35.875, E2 = 54.000, and E4 = 68.124,
with the three pairs of roots (z2,1, z2,2) = (1.124, 2.009), (0.388, 1.612), and (0.294, 0.823).
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FIG. 3: Negative trigonometric potentials, −U(x; γ = 2, η = 2), and corresponding TF1 wave functions in
one period.

b. TF2. For the odd eigenfunctions, we propose

Φ2 = e−γ cos
2(x) cosη(x) sin(x)f(x) (14)

and find that V1 = 8γ[N + 1 + (η + γ)/2], and the CHE

d2f

dz2
+

[
−2γ +

η + 1
2

z
+

3
2

z − 1

]
df

dz
+

[ 1
4 (E − 3η − 2γ (2η + 1)− 1)

z
−

1
4 (E − 3η − V1 + 2γ (2γ + 3)− 1)

z − 1

]
f = 0 .

(15)

For N = 0, the energy is E0 = η + (2γ + 1)(2η + 1); for N = 1, E± = 5 + 5η + 6γ + 4γη ±
2
[

(η + 2)2 + 4γ (γ − η + 1)
]1/2

, with z1,1 = −2 (2η + 1) / (−E± + 2γ (2η + 1) + 3η + 1). In the
case N = 2, after solving numerically the system of equations for η = γ = 2, the three eigenvalues
are E1 = 38.449, E3 = 61.916 and E5 = 84.635 and the three pairs of roots are (z2,1, z2,2) =
(1.368, 2.417), (0.335, 1.983), and (0.663, 0.235). The analytical and numerically found eigenvalues
are displayed in Table III, for the cases with γ = 2 and η = 2, and for N = 0, 1, and 2. Compared to
the results in Table I, one can notice in Table III the eigenvalues of opposite sign for the analytically
found portion of the spectrum as a consequence of anti-isospectrality.

III. MATCHING TERMS IN THE CHE

We shall compare now the analytical solutions found in Section II, with those found matching
all coefficients in equations (4), (7), (9), and (11), for the hyperbolic cases, with the coefficients of
the standard CHE. The general form of the CHE reads [12, 32]

d2H(z)

dz2
+

(
α+

1 + β

z
+

1 + γ∗

z − 1

)
dH(z)

dz
+

(
µ

z
+

ν

z − 1

)
H(z) = 0 (16)
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TF1 TF2

N = 0 N = 1 N = 2 N = 0 N = 1 N = 2

E0 22.000 30.000 35.875 26.400 33.098 38.429

E1 23.394 30.247 35.921 27.000 33.202 38.449

E2 30.368 42.000 54.000 35.979 48.088 59.580

E3 38.656 48.088 57.421 43.351 52.798 61.915

E4 49.195 58.331 68.124 53.703 63.119 73.404

E5 61.911 70.764 79.935 66.299 75.310 84.635

E6 76.716 85.383 94.290 81.020 89.806 98.841

E7 93.576 102.113 110.837 97.822 106.451 115.273
...

...
...

...
...

...
...

TABLE III: Exact (bold type) and numerical eigenvalues for the trigonometric potential (2), for even TF1
and odd TF2 eigenfunctions.
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FIG. 4: The same as in the previous figure, but for the TF2 case.

and possesses the solution

HC (α, β, γ∗, δ, η∗; z) =
∞∑
i=0

vN (α, β, γ∗, δ, η∗) zi , (17)

where

δ = µ+ ν − α

2
(β + γ∗ + 2) (18)

η∗ = −µ+
α

2
(β + 1)− 1

2
(β + γ∗ + βγ∗) (19)

and the coefficients vN are given by the three-term recurrence relation

ANvN = BNvN−1 + CNvN−2 , (20)

with ‘initial conditions’ v−1 = 0, v0 = 1 and

AN = 1 +
β

N
(21)

BN = 1 +
1

N
(β + γ∗ − α− 1)− 1

2N2

[
(β + γ∗ − α)− 2η∗ − β(γ∗ − α)

]
(22)

CN =
α

N2

(
β + γ∗

2
+
δ

α
+N − 1

)
. (23)
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To reduce a confluent Heun function to a confluent Heun polynomial of degree N , we need two
termination conditions that must be satisfied simultaneously:

µ+ ν +Nα = 0 (24)

and the tridiagonal determinant condition, ∆N+1 (µ) = 0, which is∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

µ− q1 (1 + β) 0 . . . 0 0 0

Nα µ− q2 + α 2 (2 + β) . . . 0 0 0

0 (N − 1)α µ− q3 + 2α . . . 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . µ− qN−1 + (N − 2)α (N − 1) (N − 1 + β) 0

0 0 0 . . . 2α µ− qN + (N − 1)α N (N + β)

0 0 0 . . . 0 α µ− qN+1 +Nα

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0 ,

(25)
where qn = (n− 1) (n+ β + γ∗). For comparison, we also need to set z = cosh2(x).

A. The hyperbolic case

a. TF1. We compare the coefficients in eq. (4) to those of the Heun eq. (16) to obtain

α = −2γ, β = η − 1

2
, γ∗ = −1

2
, µ = −E + η + 2γ (2η + 1)

4
, ν =

E + η − V1 − 2γ (2γ + 1)

4
.

With the usage of equations (18), (19), and (24), one finds δ = γ (2N + η + 1), η∗ = 1
8 (2E + 3),

and V1 = −4γ (2N + 1 + γ + η). The wave function reads

ψ(x) = e−γ cosh
2(x) coshη(x)HC

(
α, β, γ∗, δ, η∗; cosh2(x)

)
. (26)

In the case N = 0, one obtains ∆1 = µ − q1 = 0, q1 = 0, and µ = 0. Therefore E0 =
−η − 2γ(2η + 1), as found above. For N = 1, we find that

∆2 =

∣∣∣∣∣µ− q1 1 + β

α µ− q2 + α

∣∣∣∣∣ = 0, with q1 = 0 and q2 = β + γ∗ + 2 = η + 1 ,

then,

µ2 − (η + 1 + 2γ)µ+ 2γ (η + 1/2) = 0 , where µ = −1

4
(E + η + 2γ (2η + 1)) ,

rendering E± = − (3η + 2) (γ + 1) − γ (η + 4) ± 2
[

(η + 1)2 + 4γ (γ − η)
]1/2

, and the expansion
coefficient v1 = (E±+ 2γ + η+ 4γη)/2 (2η + 1) = γ + (E±+ η)/2 (2η + 1), which is just −1/z1,1 in
the polynomial expansion in Section II A.

Meanwhile, for N = 2 we obtain

∆3 =

∣∣∣∣∣∣∣
µ− q1 1 + β 0

2α µ− q2 + α 2 (2 + β)

0 α µ− q3 + 2α

∣∣∣∣∣∣∣ = 0, where q1 = 0, q2 = β+γ∗+2, and q3 = 2 (β + γ∗ + 3) ,
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or q1 = 0, q2 = η + 1, and q3 = 2η + 4 in terms of the parameter η of the potential; so the
determinant equation is

µ3 − (6γ + 3η + 5)µ2 + 2
(
η2 + 8ηγ + 4γ2 + 3η + 10γ + 2

)
µ− 4γ (2η + 1) (2γ + η + 2) = 0 ,

where µ = − (E + η + 2γ (2η + 1)) /4. The expansion coefficients v1 and v2 turn out to be

v1 = γ +
E + η

2 (2η + 1)
, v2 =

4γ

2η + 3
+
E + 4γη + 10γ + 5η + 4

4 (2η + 3)
v1 .

The numerical eigenvalues correspond to those found in Section II A.
b. TF2. For the odd functions (7), matching the terms with those of the standard Heun

equation (16), we obtain

α = −2γ, β = η − 1

2
, γ∗ =

1

2
, µ = −E + 3η + 1 + 2γ (2η + 1)

4
, ν =

E + 3η + 1− V1 − 2γ (2γ + 3)

4
.

Hence, we find that δ = γ (η + 2 + 2N), η∗ = 1
8 (2E + 3) and V1 = −4γ (γ + η + 2N + 2). As for

the wave eigenvalues and eigenfunctions, when N = 0, we find E0 = −η − (2γ + 1)(2η + 1).
For the case N = 1, the determinant is

∆2 =

∣∣∣∣∣µ− q1 1 + β

α µ− q2 + α

∣∣∣∣∣ = 0, where q1 = 0 and q2 = 2 + β + γ∗= η + 2 ,

then,

µ2 − (2γ + η + 2)µ+ γ (2η + 1) = 0 , where µ = −1

4
(E + 1 + 3η + 2γ (2η + 1))

rendering E± = −[5 + 5η+ 6γ+ 4γη]± 2
[

(η + 2)2 + 4γ (γ − η + 1)
]1/2

. The expansion coefficients
v1 = (E± + 2γ + 3η + 1 + 4γη)/2 (2η + 1) are the negative inverse of the roots found in Section
II A, and the eigenvalues coincide with those found therein.

Moving to the N = 2 case, the zero determinant condition is

∆3 =

∣∣∣∣∣∣∣
µ− q1 1 + β 0

2α µ− q2 + α 2 (2 + β)

0 α µ− q3 + 2α

∣∣∣∣∣∣∣ = 0, where q1 = 0, q2 = 2+β+γ∗ and q3 = 2 (3 + β + γ∗) ,

(or q1 = 0, q2 = η + 2, q3 = 2(η + 3)) which gives

µ3 − (6γ + 3η + 8)µ2 + 2
(
η2 + 8ηγ + 4γ2 + 5η + 14γ + 6

)
µ− 4γ (2η + 1) (2γ + η + 3) = 0 ,

where µ = −1
4 (E + 1 + 3η + 2γ (2η + 1)). In this case, the eigenvalues are found numerically, while

the expansion coefficients have the form

v1 = γ +
1

2
+

E + η

2 (2η + 1)
, v2 =

4γ

2η + 3
+
E + 4γη + 10γ + 7η + 9

4 (2η + 3)
v1 .

B. The trigonometric case

Let us now look at the solutions for the trigonometric potential (2).
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a. TF1. Comparing eq. (13) to the CHE (16), we obtain the followings values

α = −2γ, β = η − 1

2
, γ∗ = −1

2
, µ =

E − η − 2γ (2η + 1)

4
, ν = −E − η − V1 + 2γ (2γ + 1)

4

and using µ and ν from eqs. (18), (19), and (24), we obtain δ = γ (η + 1 + 2N), η∗ = 1
8 (−2E + 3)

and V1 = 4γ (2N + 1 + γ + η), as before. This leads for N = 0 to ∆1 = µ − q1 = 0 and q1 = 0;
therefore µ = 0, and so E0 = η + 2γ (2η + 1). For N = 1, with q1 = 0 and q2 = 2 + β + γ∗

(= η + 1), the corresponding determinant condition is µ2 − (2 + β + γ∗ − α)µ − α (1 + β) = 0,

where µ = 1
4 (E − η − 2γ (2η + 1)), rendering E± = 3η+6γ+2+4γη±2

[
(η + 1)2+4γ (γ − η)

]1/2
,

and the expansion coefficient v1 = γ + (−E + η)/(2 (2η + 1). In the case of N = 2, the expansion
coefficients are

v1 = γ +
−E + η

2 (2η + 1)
, v2 =

4γ

2η + 3
+
−E + 4γη + 10γ + 5η + 4

4 (2η + 3)
v1 .

b. TF2. For odd solutions, comparing eq. (15) to eq. (16), we find that

α = −2γ, β = η−1

2
, γ∗ =

1

2
, µ =

E − 3η − 2γ (2η + 1)− 1

4
, ν = −E − 3η − V1 + 2γ (2γ + 3)− 1

4
.

Together with δ = γ (η + 2 + 2N), η∗ = 1
8 (−2E + 3), we get V1 = 4γ (2N + 2 + γ + η). Thus, for

N = 0, we find E0 = η+(2γ+1)(2η+1); for N = 1, we find E± = 5+5η+6γ+4γη±2
[

(η + 2)2 +

4γ (γ − η + 1)
]1/2

, with v1 = (−E±+ 2γ + 3η+ 4γη+ 1)/2 (2η + 1), and for N = 2, the expansion
coefficients are

v1 = γ +
1

2
+
−E + η

2(2η + 1)
, v2 =

4γ

2η + 3
+
−E + 4γη + 10γ + 7η + 9

4 (2η + 3)
v1 .

and solve for the energies numerically to find the same values as in Section II B.

IV. THE LIE ALGEBRA PROCEDURE

We now come to seeking the solutions through the Lie algebra approach. For this goal, we shall
follow the work of Finkel et al [10], where they solve the Lie algebra for the simpler case of the
Razavy potential.

A. The hyperbolic case

We begin by writing the potential function (1) in the form

V (x; γ, η,M) = 4γ2 cosh4(x)− 4γ (η + γ +M) cosh2(x) + η (η − 1) tanh2(x) , (27)

where V1(γ, η,M) = −4γ (η + γ +M), and the parameter M for all four trial functions in Section
II A is given in Table IV. We use the potential function for the QES problem studied by Finkel,

V(x) = A cosh2(
√
κx) +B cosh(

√
κx) + C coth(

√
κx) csch(

√
κx) +D csch2(

√
κx) . (28)

Using κ = 4, we match the equations (27) and (28) obtaining A = γ2, B = −2γ (η +M) and
D = −C = 2η (2η − 1) and some constant which is unnecessary during our procedure. By means
of these constants we obtain the gauge transformation for the hyperbolic potential [6].
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M σ Eigenfunctions

TF1 2N + 1 2η Ψ1 = e−γ cosh2(x) coshη(x) f(cosh2(x))

TF2 2N + 2 2η + 1 Ψ2 = e−γ cosh2(x) coshη(x) sinh(x) f(cosh2(x))

TF3 2N+2 - 2η 1 Ψ3 = e−γ cosh2(x) sechη−1(x) f(cosh2(x))

TF4 2N+3 - 2η 2 Ψ4 = e−γ cosh2(x) sechη−1(x) sinh(x) f(cosh2(x))

TABLE IV: The four types of proposed forms of eigenfunctions for the hyperbolic potential (1). The
parameter σ appears in the gauge transformation function µ̂(z).

Setting ψ(z;σ) = µ̂(z;σ)χ̂(z;σ), and using the gauge transformation function in terms of the
variable z = cosh(2x)

µ̂(z;σ) = (z − 1)
1
4

(
σ−η+ η(η−1)

σ−η−1

)
(z + 1)

1
4

(
σ−η− η(η−1)

σ−η−1

)
e−

γ
2
z (29)

and the sl(2,R) operators

J− = ∂z, J0 = z∂z −
N

2
, J+ = z2∂z −Nz ,

we find that the gauge Hamiltonian may be written as

Ĥg(z;σ) = −4J2
0 + 4J2

− + 4γJ+ − 4 (σ − η +N) J0 + 4

(
η (η − 1)

σ − η − 1
− γ
)
J− + c∗h(σ) , (30)

where c∗h(σ) = −(N + σ − η)2 − 2γ (2N + σ − η + 1) + η (η − 1)− 2γη(η−1)
σ−η−1 .

Following the Lie algebraic method, we only need to look for the orthogonal polynomial solutions

χ̂(z;σ) =

∞∑
k=0

(
σ
2 + η(2η−σ)

2(σ−η−1) + k
)

!

2k
(
σ + η(2η−σ)

σ−η−1 + 2k
)

!

(z + 1)k

k !
P̂k , (31)

where the three-term recurrence relation

P̂k+1 = (E − bk(σ))P̂k − ak(σ)P̂k−1, k ≥ 0 (32)

is satisfied for

ak(σ) = 16γk (k −N − 1)

(
2k − 1 + σ − η +

η (η − 1)

σ − η − 1

)
bk(σ) = −4k (σ − η + k + 2γ)− 2γ (σ − η + 1) + η (η − 1)− 2γη (η − 1)

σ − η − 1
− (σ − η)2 .

Eigenvalues are found by setting P̂k+1 = 0. Two kinds of solutions are found in this way, which
can be divided in two more categories to include negative η’s in Table IV. The corresponding
eigenfunctions are given by

ψ(z;σ) = (z + 1)
1
4

(
σ−η+ η(η−1)

σ−η−1

)
(z − 1)

1
4

(
σ−η− η(η−1)

σ−η−1

)
e−

γ
2
z
∞∑
k=0

(
σ
2 + η(2η−σ)

2(σ−η−1) + k
)

!

2k
(
σ + η(2η−σ)

σ−η−1 + 2k
)

!

(z + 1)k

k !
P̂k .

(33)
We now apply these general results to the first two cases of Table IV, for the hyperbolic case.
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a. TF1. The first case is when σ = 2η and M = 2N+1, and the coefficients in the three-term
recurrence relation (32) become

ak = 16γk (k −N − 1) (2k − 1 + 2η)

bk = −4k (η + k + 2γ)− 2γ (2η + 1)− η .

The even eigenfunctions are

ψ(z) ≡ ψ(z; 2η) = (z + 1)
η
2 e−

γ
2
z
∞∑
k=0

(η + k) !

2k (2η + 2k) !

(z + 1)k

k !
P̂k .

For example, assuming monic polynomials, P̂0(E) = 1, we obtain the following results. For
N = 0, from P̂1(E) ≡ (E − b0) P̂0−a0P̂−1 = 0, the eigenvalue is E0 = −η−2γ(2η+1). For N = 1,
we have

P̂1 = (E + 2γ (2η + 1) + η) P̂0

P̂2 = (E + 2γ (2η + 5) + 5η + 4) P̂1 + 16γ (2η + 1) P̂0

and with the condition P̂2 = 0, we find the eigenvalues E± = −3η − 6γ − 2 − 4γη ± 2[(η + 1)2 +
4γ (γ − η)]1/2. Furthermore, in the case with N = 2, we have

P̂1 = E + 2γ (2η + 1) + η

P̂2 = (E + 2γ (2η + 5) + 5η + 4) P̂1 + 32γ (2η + 1) P̂0

P̂3 = (E + 2γ (2η + 9) + 9η + 16) P̂2 + 32γ (2η + 3) P̂1

and setting P̂3 = 0, we find the eigenvalues that coincide with those given in Section II A.
b. TF2. For the odd solutions of the second case, with σ = 2η + 1 and M = 2N + 2, we

have

ak = 16γk (k −N − 1) (2k + 2η − 1)

bk = −4k (η + 1 + k + 2γ)− 2γ (2η + 1)− 3η − 1

and the eigenfunctions are

ψ(z) ≡ ψ(z; 2η + 1) = (z + 1)
η
2 (z − 1)

1
2 e−

γ
2
z
∞∑
k=0

(η + k) !

2k (2η + 2k) !

(z + 1)k

k !
P̂k .

For N = 0, we have P̂0 = 1 and P̂1 = E + 2γ (2η + 1) + 3η + 1; therefore, the eigenvalue
is E0 = −η − (2γ + 1)(2η + 1). For N = 1, we find P̂1 = E + 2γ (2η + 1) + 3η + 1 and
P̂2 = (E + 2γ (2η + 5) + 7η + 9) (E + 2γ (2η + 1) + 3η + 1) + 16γ (2η + 1), from which we find the
eigenvalues E± = −5− 5η − 6γ − 4γη ± 2[(η + 2)2 + 4γ (γ − η + 1)]1/2.

For N = 2, we obtain three eigenvalues as solutions of the equation

(E + 11η + 2γ (2η + 9) + 25) (E + 7η + 2γ (2η + 5) + 9) (E + 3η + 2γ (2η + 1) + 1)

+ 32γ[(2η + 1) (E + 11η + 2γ (2η + 9) + 25) + (2η + 3) (E + 3η + 2γ (2η + 1) + 1)] = 0 .
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B. The trigonometric case

We now consider the case of the trigonometric potential function (2)

U(x; γ, η,M) = −4γ2 cos4(x) + 4γ (η + γ +M) cos2(x) + η (η − 1) tan2(x) , (34)

where V1(γ, η,M) = 4γ (η + γ +M) and Table V provides M and the eigenfunctions. We shall use
as reference the algebra developed by [8] for the potential function

U(x) = A sin2(
√
κx) +B sin(

√
κx) + C tan(

√
κx) sec(

√
κx) +D sec2(

√
κx) (35)

under the change of variable x → x − π/4 and κ = 4, we match the equations (34) and (35).
Therefore we obtain the values of the constants A = −γ2, B = −2γ (η +M), and C = D =
2η (η − 1). Using these constants, we obtain the gauge transformation function [6]:

µ̂(z;σ) = (1 + z)
1
4

(
σ−η− η(η−1)

σ−η−1

)
(1− z)

1
4

(
σ−η+ η(η−1)

σ−η−1

)
e

γ
2
z (36)

and find the gauge Hamiltonian

Ĥg(z;σ) = 4J2
0 − 4J2

− + 4γJ+ + 4 (σ − η +N) J0 − 4

(
γ − η (η − 1)

σ − η − 1

)
J− + c∗ t(σ) ,

where c∗ t(σ) = −c∗h(σ). Then, for the eigenfunctions ψ(z;σ) = µ̂(z;σ)χ̂(z;σ), we look for the
orthogonal polynomials part

χ̂E(zσ) =
∞∑
k=0

(−1)k

(
σ
2 + η(2η−σ)

2(σ−η−1) + k
)

!

2k
(
σ + η(2η−σ)

σ−η−1 + 2k
)

!

(1− z)k

k !
P̂k (37)

with the same three-term recurrence relation given by (32), same ak(σ), but opposite sign bk(σ).

M σ Trigonometric transformation

1T 2N + 1 2η Φ1 = e−γ cos2(x) cosη(x)f(x)

2T 2N + 2 2η + 1 Φ2 = e−γ cos2(x) cosη(x) sin(x)f(x)

3T 2N+2 - 2η 1 Φ3 = e−γ cos2(x) secη(x) cos(x)f(x)

4T 2N+3 - 2η 2 Φ4 = e−γ cos2(x) secη(x) cos(x) sin(x)f(x)

TABLE V: The same as in the previous Table for the trigonometric potential.

a. TF1. For even functions in this case, we have that σ = 2η and M = 2N + 1.
We solve again for the three cases N = 0, 1, and 2. For N = 0, the identity P̂1 = 0 gives E0 = η+

2γ (2η + 1). For N = 1, when P̂2 = 0 we obtain (E − 2γ (2η + 5)− 5η − 4) (E − 2γ (2η + 1)− η)+
16γ (2η + 1) = 0. In the case N = 2, setting

P̂3 = (E − 2γ (2η + 9)− 9η − 16) (E − 2γ (2η + 5)− 5η − 4) (E − 2γ (2η + 1)− η)

+ 32γ[(2η + 1) (E − 2γ (2η + 9)− 9η − 16) + (2η + 3) (E − 2γ (2η + 1)− η)] = 0

enables us to find the corresponding eigenvalues.
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b. TF2. For the odd solutions in the trigonometric case, we set σ = 2η+1 and M = 2N+2.
For N = 0, the condition P̂1 = 0 gives the eigenvalue E0 = η + (2γ + 1)(2η + 1). For N = 1, the
condition P̂2 = (E − 2γ (2η + 5)− 7η − 9) (E − 2γ (2η + 1)− 3η − 1) + 16γ (2η + 1) = 0 gives the
desired energy eigenvalues, and for N = 2, one can obtain the energy eigenvalues from

P̂3 = (E − 2γ (2η + 9)− 11η − 25) (E − 2γ (2η + 5)− 7η − 9) (E − 2γ (2η + 1)− 3η − 1)

+ 32γ[(2η + 1) (E − 2γ (2η + 9)− 11η − 25) + (2η + 3) (E − 2γ (2η + 1)− 3η − 1)] = 0 .

V. CONCLUSIONS

Using a three-term hyperbolic potential, not previously discussed in the literature, and its anti-
isospectral counterpart, we have shown the equivalence of the three preferred algebraic procedures
to find the exact solutions of QES one-dimensional Schrödinger problems, solving three examples
for the even and odd solutions in each case. In some cases, the analytical values are more directly
found by one of the procedures than the others, as was shown in the Lie algebra approach, in which
the Hamiltonian has been written in a well-settled operatorial form using the gauge functions.
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[23] Y. Wu, On the quantization of the modified Pöschl-Teller potential, J. Math. Phys. 31(11) (1990)

2586-2587.
[24] A.N. Ikot, A.D. Antia, I.O. Akpan, O.A. Awoga, Bound state solutions of Schrödinger equation with

modified Hylleraas plus exponential Rosen Morse potential, Rev. mex. F́ıs. 59 (2013) 46-53.
[25] X.-Y. Gu, S.-H. Dong, Z.-Q. Ma. Energy spectra for modified Rosen-Morse potential solved by the

exact quantization rule, J. Phys. A: Math. Gen. 42(3) (2009) 035303.
[26] I. Prastyaningrum, C. Cari, A. Suparmi, Solution of Dirac equation for modified Pöschl Teller plus
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