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ON THE CONTINUOUS FINITE-TIME STABILIZATION OF THE
DOUBLE INTEGRATOR

ARTURO ZAVALA-R{O*, TONAMETL SANCHEZ*, AND GRISELDA I. ZAMORA-GOMEZ*

Abstract. Continuous finite-time stabilization is often treated under the analytical framework
of homogeneity and has been frequently illustrated in the context of the feedback control of the
double integrator. For such a simple system, the simplest considered continuous finite-time controller
is composed of gained (proportional) exponentially weighted position and wvelocity error correction
terms, with the exponential weights generally less than unity and constrained to satisfy a particular
relation among them under homogeneity. What happens for less-than-unity exponential weights that
do not satisfy such a homogeneity-based relation? Does the finite-time stabilization hold? Through
a Lyapunov function based study, we analyze and give more concrete answers to such questions than
those partially provided by previous studies on the topic. We do find a more exhaustive spectrum of
the exponential weights that give rise to finite-time stability of the trivial solution. Other types of
stability properties are further found to take place for less-than-or-equal-to-unity exponential weights.
Moreover, through complementary analysis, local or ultimate behavior of the system solutions is
further characterized. The analytical findings are further illustrated through computer simulations.

Key words. Continuous finite-time control, finite-time stability /stabilization, exponential sta-
bility with respect to a homogeneous norm, double integrator
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1. Introduction. Stabilization achieved in finite time through continuous feed-
back has been a subject of increasing interest in the last decades. Ever since the early
work of [9], such a topic has been often studied and/or illustrated in the context of
the control of the double integrator

(1.1) I=u

The simplest controller considered in such a context is composed by the addition of
suitable nonlinear position and wvelocity error correction actions, namely

(1.2) u = —kysign(x)|z|® — kosign(d)|£]|*? £ ug(x, 1)

k; > 0,7 = 1,2, which proves to render the trivial solution z(t) = 0 globally asymptot-
ically stable for any positive values of the control parameters k;, a;, i = 1, 2. This case
was analyzed within the framework of homogeneity in [5] where, by fixing a specific
relation among a; and as, namely

(1.3) a = —2

:2—a2

a family of dilations with respect to which the resulting closed-loop system turns out
to be homogeneous of degree a; — 1 was proven to exist; the finite-time stabilization
goal was thus concluded to be achieved for any

(1.4) az € (0,1)

irrespective of the (positive) control gain values k;, ¢« = 1,2. This is so since, for a
homogeneous vector field with negative degree of homogeneity, asymptotic stability of
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2 A. ZAVALA-R{O, T. SANCHEZ AND G.I. ZAMORA-GOMEZ

the origin implies finite-time convergence of every solution that it attracts (which actu-
ally concerns every solution for any initial condition). In view of its simplicity, such an
analytical procedure has been applied in other related studies, such as the finite-time
observer design for the output-feedback stabilization of the double integrator devel-
oped in [10], and the particular resulting finite-time-observer-based output-feedback
version of (1.1)—(1.4) for which alternative and supplementary analyses were presented
in [3]. It has been further extended to discontinuous vector fields in [18]. Within the
analytical context of such an extension, system (1.1) controlled by (1.2)-(1.3) tak-
ing as = 0, which gives rise to the so-called twisting controller [14], was proven to
achieve the finite-time stabilization objective under an additional control gain con-
dition (namely k; > ko, which is necessary to render the trivial solution z(t) = 0
asymptotically stable). Moreover, such a discontinuous version of (1.2) was proven
in [18] to state the basis for the design of controllers that lead the closed-loop error
trajectories to zero in finite time even in the presence of input-matching non-vanishing
perturbations. Such a robustness property was thus further shown to be achieved by
a finite-time-discontinuous-observer-based output-feedback approach of the referred
discontinuous version of (1.2) (i.e. with a; = ag = 0) in [19]. Achievement of the
finite-time stabilization goal has been also studied for (1.1)—(1.4) in presence of input-
matching vanishing perturbations satisfying particular growth conditions in [20].

Based on (1.2)—(1.4), other (more complex) finite-time continuous stabilizers for
the double integrator, that render the closed-loop system homogeneous with nega-
tive degree of homogeneity, have been presented in other works. Such is the case
of [6] and [20], which proposed u = ug(¢1(z, &), &) and u = uo(x, &) + ¢2(z, &), re-
spectively, with ug(+,-) as in (1.2), ¢1(z,2) = = + 2_1a2sign(¢)|x'\2*“2, oz, &) =
—kssign (&) |z|@/2|£]?2/2, k3 > 0, and a;, i = 1,2, as in (1.3)-(1.4), for which a family
of dilations with respect to which both resulting closed-loop systems are homogeneous
of degree as — 1 < 0 proves to exist [2, Example 5.5], [20].

Beyond the attributes or benefits that might characterize or show the implemen-
tation of homogeneity-based or homogenous-closed-loop-rendering finite-time contin-
uous control schemes, their design might happen to be restrictive in view of the fixed
relation among the involved exponents; in the specific case of (1.2), this refers to
the fixed relation among a; and as stated through (1.3). What happens for values
of a; € (0,1), ¢ = 1,2, that do not satisfy such relation? Does the finite-time sta-
bilization hold? It is well-known that finite-time stability (i.e. Lyapunov stability
plus finite-time attractivity [7]) of an equilibrium implies non-uniqueness of solutions
(in reverse time) which in turn implies the lack of Lipschitz-continuity of the system
dynamics at the equilibrium. Hence, since with a; € (0,1), i = 1,2, (1.1)-(1.2) lacks
of Lipschitz-continuity at (x,4) = (0,0), could we not expect that finite-time stability
hold even if (1.3) is not satisfied? By continuous dependence (or even differentia-
bility) of the (non-trivial) solutions of (1.1)-(1.2) on parameters [13, Chapter 3], it
seems reasonable to expect that finite-time stability could hold (at least for values of
ay that slightly differ from that fixed through (1.3), given any as € (0,1)). But could
this be the case for any value combination of a; € (0,1), ¢ = 1,2? Since the lack of
Lipschitz-continuity is however not sufficient for non-uniqueness of solutions, having
any a; € (0,1), ¢ = 1,2, could not necessarily guarantee finite-time stability. These
questions show that, beyond the simplicity and beneficial features earned by the de-
sign through (or supported by) homogeneity, we do not yet seem to have the certainty
to have a complete panorama on the continuous-controller-induced finite-time stabi-
lization (or on finite-time stability) studied through the double integrator. Getting
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CONTINUOUS FINITE-TIME STABILIZATION OF THE DOUBLE INTEGRATOR 3

a wider picture on finite-time stability through (1.1)-(1.2), or a broader view on the
stability properties of (1.1)-(1.2) with a; € (0,1), ¢ = 1,2, is important from the
control and dynamical system theories viewpoint, would generate a wider perspective
for control design, and may prove to be useful to expand the capabilities accounted
for closed-loop behavior/performance adjustment or refinement.

A partial answer to the questions formulated above is given in [9] where, through
a particularly original analysis on (1.1)-(1.2) with k; = ko = 1, finite-time stability of
the trivial solution z(¢) = 0 is concluded to be achieved with

a2

1.5 €(0,1) , >
( ) a2 (7) a1 2—(12

However, such a result from [9] turns out to lack of exhaustiveness by developing a
local analysis restricted to finite-time convergent solutions that avoid non-stopping
oscillations during the finite-time transient (before the definitive permanence at zero).
In the own words of the author: “If one wishes to show that a second order system is
finite time, one could search for a contour that prevented trajectories from spiraling
around the origin. It seems natural to search for a contour which is itself invariant.
This idea lies at the core of the next two theorems.” [9, Section 4, p. 764]. Moreover,
the lack of exhaustiveness further encompasses the finite-time convergence aspect in
itself, by limiting the result to conditions that permit (but do not guarantee) such type
of convergence, without strictly ruling out infinite-time convergent solutions (details
about the referred limitations will be given after the presentation of the main result).
As a matter of fact, observe that (1.5) curiously permits values of a; greater than
1 (which partially contradicts the previously commented argument on the lack of
Lipschitz-continuity needed to achieve the finite-time stabilization goal).

This work aims to give answers to the previously formulated questions on the
finite-time stabilization of (1.1)-(1.2), and to actually achieve to give a deeper in-
sight on the stability properties of (1.1)-(1.2) with a; € (0,1], ¢ = 1,2. Through
a Lyapunov-function-based analysis, more exhaustive conditions on a; and as that
guarantee the finite-time stability of the trivial solution z(¢) = 0 are obtained with-
out constraining the analysis or the results to a specific type of finite-time convergent
solutions. Such conditions turn out to include the homogeneity related ones, namely
(1.3)-(1.4) (or equivalently a; € (0,1) and as = a1/(1 + a1)), as a particular case.
Furthermore, other type of stability properties are further shown to arise in the consid-
ered analytical context. The study includes a discussion section where further analysis
addressed to gain insight on the contrast among the results obtained here and those
from [9] is developed, and which complements the Lyapunov-function-based study
with conclusions on the local or ultimate behavior of the system solutions; in par-
ticular, finite-time convergent system solutions ultimately undergoing non-stopping
oscillations are confirmed to be obtainable under the found conditions, while getting
solutions that do not converge in finite time is shown to be possible when the found
conditions are not satisfied. A section with simulation results is further included,
through which the analytical findings are illustrated.

2. Preliminaries. Throughout this work, z; stands for the i*" element of = €
R™. 0, represents the origin of R™. R” is the set of vectors in R™ whose elements
are all positive, i.e. R = {z € R" : 2; > 0,i = 1,...,n}. An n-dimensional closed
ball and an (n — 1)-dimensional sphere, both of radius ¢ > 0, are denoted B? and
Sn—1 respectively, i.e. BY = {z € R": ||z|| < c} and S» ! = {x € R" : ||z]| = c}. A
fundamental fact that will be involved in this study is Young’s inequality [4], i.e. for
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4 A. ZAVALA-R{O, T. SANCHEZ AND G.I. ZAMORA-GOMEZ

any p,q € (1,00) such that % + % =1 and any a,b € R>(, we have that

P B
(2.1) ab< = 4=
p q

For a continuous scalar function V., V will represent its upper-right derivative along
the trajectories of a considered system [23, 22, 7].

2.1. Finite-time stability. Consider an n-th order autonomous system & =
f(z), with f being continuous on an open connected neighborhood D C R™ of the
origin, where the system is considered to have an equilibrium point, i.e. f(0,) = 0,,
and such that the system solutions x(t; xg) are unique in forward time for any initial
condition z(0;xz9) = z9 € D\ {0,}.

DEFINITION 2.1. [8] The origin is a finite-time stable equilibrium if and only if it
is Lyapunov stable and there exist an open neighborhood N' C D of 0, being positively
invariant under f, and a positive definite function T : N — R, called the settling time
Junction, such that x(t;xo) # On, YVt € [0,T(x0)), for every o € N\ {0,}, and
z(t;x9) = 0y, YVt > T(x0), for every zo € N. It is globally finite-time stable if it is
finite-time stable with N' = D = R™.

Remark 2.2. The origin is a globally finite-time stable equilibrium if and only if
it is globally asymptotically stable and finite-time stable. Sufficiency follows from
Definition 2.1 and [8, Lemma 2.2]; it has been straightforwardly stated and involved
in the literature [11, Remark 1]. Necessity is a direct consequence of Definition 2.1
by the implication that global finite-time stability entails of both finite-time stability
and global asymptotic stability [17].

THEOREM 2.3. [7] Suppose there is a positive definite continuous function V :
D — R for which there exist real numbers ¢ >0 and « € (0,1) and an open neighbor-
hood V C D of the origin such that V(z) < —cV(x), Vo € V\ {0,,}. Then the origin
s a finite-time stable equilibrium. Moreover, with N as in Definition 2.1, the settling
time function T is continuous on N and satisfies T'(x) < [V(2)]'=%/[c(1 — a)]. If in
addition D = R™, V is proper and V takes negative values on R™ \ {0,}, then the
origin is globally finite-time stable.

Since finite-time stability turns out to be a particular case of asymptotic stability
(in the sense of Lyapunov’s stability theory [13, Definition 4.1]), an asymptotically
stable equilibrium point which is not reached in finite time by any of the trajectories
that it attracts will be said to have infinite-time attractivity (or to be infinite-time
attractive).

2.2. Local homogeneity. The definitions and results stated in this subsection
are related to family of dilations, defined as 07 (x) = (e"xy --- €™maxy)T, Ve > 0, for
every x € S, withr = (r; -+ r,)T, where the dilation coefficients r;, i = 1,...,n,
are positive scalars.

DEFINITION 2.4. A function V : R" — R, resp. vector field f: > ., fz% (with
fi : R™ = R), is locally homogeneous of degree a with respect to §7 if there exists an
open neighborhood of the origin D, referred to as the domain of homogeneity, such
that, for every x € D and all € € (0,1]: 65(z) € D and V(07 (z)) = e*V(x), resp.
fi(6r(x)) = e*tifi(x) Vi=1,...,n.t

IThe concept of homogeneity in the 0-limit, stated in [1], settles down an alternative definition
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CONTINUOUS FINITE-TIME STABILIZATION OF THE DOUBLE INTEGRATOR 5

Definition 2.4 is a refined (equivalent) version of [24, Definition 2.1], stated in
(and reproduced from) [25]. A function or vector field satisfying Definition 2.4 for a
given 7 € R’} will (for simplicity) be equivalently said to be locally r-homogeneous
of degree o. 1t turns out to be homogenous (in the conventional sense) if its domain
of homogeneity D = R™. By a function, resp. vector field, referred to as (locally)
homogenous of degree a, it will be meant that there is r € R’} for which the function,
resp. vector field, is (locally) r-homogeneous of degree c.

LEMMA 2.5. [2/] Suppose that, for every i = 1,2, V; is a scalar continuous
function being locally r-homogeneous of degree o; > 0, with domain of homogene-
ity D; C R™. Suppose further that V1 is positive definite on D1. Let D = D1 N Dy and
¢ >0 be such that S?~1 C D. Then, for every x € D,

a[Vi(@)]*2/® < Va(z) < eaVa ()] o2/

with ¢; < [min, g gn-1 Vo(2)] - [max_ g gn-1 Vi(2)]72/* and ¢y > [max, c gn-1 V2(2)] -
[min, cgn—1 Vi(z)] @2/,

Remark 2.6. Observe that if V5 happens to be positive (resp. negative) definite,
then ¢; and ¢y in Lemma 2.5 are both positive (resp. negative) constants.

2.3. Exponential stability with respect to a homogeneous norm.

DEFINITION 2.7. [15] Given r € R}, a continuous function mapping x € R™ to
R, denoted ||x||,, is called a homogeneous norm with respect to the family of dilations
O if ||lz||r > 0, Ve € R™, with |||, =0 < z = 0,, and ||67(z)||, = €||z|| for any
x € R™ and all € > 0.

A function satisfying Definition 2.7 for a given » € R will (for simplicity) be
equivalently said to be an r-homogeneous norm. Note that it turns out be a positive
definite continuous function being r-homogeneous of degree 1. By a function referred
to as a homogenous norm, it will be meant that there is r € R’} for which the
function is an r-homogeneous norm. A special subset of homogenous norms is defined
as follows.

DEFINITION 2.8. [12] Givenr € R, an r-homogeneous p-norm (p > 1) is defined
as [lellp = [ i)

For the sake of generality, in the rest of this subsection, definitions and results are
stated under the consideration of the generalized n-th order (unforced) state equation
i = f(t, ), representing both autonomous and non-autonomous systems. The vector
field f is considered to be continuous in & on an open connected neighborhood D C R™
of the origin, where the system is assumed to have an equilibrium point, and such that
the system solutions x(¢; t, zo), or simply z(¢) whenever convenient or clear from the
context, are unique in forward time for any initial state x(to;to, o) = o € D \ {0, }
at initial time tg € [0,00). In the time-varying case, f is additionally considered to
be piecewise continuous in ¢ on [0, c0).

of local homogeneity which turns out to be more attached to the notion of locality generally used
in control theory (that is, a function or vector field homogeneous in the 0-limit approximates a
homogeneous one in a sufficiently small neighborhood of the origin). Definition 2.4 (above) is based
on the idea that a function or vector field be permitted to be identical to a homogenous one in
a neighborhood of the origin, which permits the statement and use of results such as Lemma 2.5.
Actually, local homogeneous functions or vector fields, in the sense of Definition 2.4, are homogenous
in the 0-limit (the inverse is not necessarily true).

This manuscript is for review purposes only.
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6 A. ZAVALA-R{O, T. SANCHEZ AND G.I. ZAMORA-GOMEZ

DEFINITION 2.9. [15, 12] The origin is exponentially stable with respect to the r-
homogeneous norm ||- ||, for a given r € R}, if there exist a neighborhood of the origin
U C D and constants a > 1 and b > 0 such that ||z(t;to, x0)|l» < al|zol|,e~0Ft0),
YVt >ty >0, Voo € U. If this is satisfied with U = D = R"™, then the origin is globally
exponentially stable with respect to the r-homogeneous norm || - ||,

For simplicity, an equilibrium point satisfying Definition 2.9 for a given r € R}
will be equivalently said to be r-exponentially stable.?

Remark 2.10. Although norm is involved in the denomination stated through
Definition 2.7, by noting that such a definition does not strictly define a particular
type of norm (the triangle inequality is not asked to be satisfied and the considered
scaling property differs to the one involved in the conventional definition of a norm;
such an imprecision on the referred denomination was highlighted for Definition 2.8
in [21, Remark 5]), Definition 2.9 is corroborated to state a notion of exponential
stability that differs from the conventional one, without necessarily keeping a logical
relation among them (i.e. without necessarily one of them implying the other). In
particular, if an r-homogeneous p-norm is involved, Definition 2.9 is noted to become
the conventional definition of exponential stability when the elements of r are all equal
to unity. For any other r = (ry ... 7,)T € R, it is proven in [12] that r-exponential
stability does not necessarily imply exponential stability (in the conventional sense),
by showing that for an r-exponentially stable equilibrium point, the (p) norm of
trajectories with initial condition sufficiently close to it have an exponentially-decaying
bound that depends nonlinearly on the norm of the initial state vector; more precisely
|2t to, z0)|| < @||ao||"m/ ™™ e~ rm(E=t0) for positive constants a’ and b/, with r,, =
min;{r;} and rp; = max;{r;} (this is stated for p = 2 in [12] but the extension to
any p > 1 follows from the equivalence of p-norms). Such a nonlinear dependence of
the referred exponentially-decaying bound on the norm of the initial state vector is
further shown in [12] (through an illustrative example) to be indispensable.

THEOREM 2.11. Let V : [0,00) X D — R be a continuous function such that

(2.2) allzlli < V(E, ) < cofl|7

(2.3) V(t,x) < —csl]|7

V(t,z) € [0,00) x D, where c;, i = 1,2,3, and a are positive constants, and r € R'}.
Then, the origin is r-exponentially stable. If the assumptions hold globally, then the
origin is globally r-exponentially stable.

The proof of Theorem 2.11 follows along the lines of the proof of [13, Theorem
4.10] by simply replacing (the conventional norm) || - || by (the r-homogeneous norm)
|| - |l-- The following corollary, generated as part of this work, will prove to be instru-
mental in the proof of the main result (presented in the next section).

COROLLARY 2.12. Under the assumptions of Theorem 2.11, let us additionally
suppose that there is a continuous function W : [0,00) x Dy — R such that

(2.4) callzl|z < Wt 2) < cslzfl

W(t,x) = —cell

2Definition 2.9 has previously adopted different (short) alternative designations, namely A-
ezponential stability in [12], p-exponential stability in [15], and d-exzponential stability in [25].

This manuscript is for review purposes only.
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CONTINUOUS FINITE-TIME STABILIZATION OF THE DOUBLE INTEGRATOR 7

for allt > 0 and all x in an open connected neighborhood of the origin Dy C D, where
¢, 1 =4,5,6, and ag are positive constants. Then, the origin is r-exponentially stable
with infinite-time attractivity. If the assumptions of Theorem 2.11 hold globally, then
the origin is globally r-exponentially stable with infinite-time attractivity.

Proof. Following a procedure analogous to that of the proof of [13, Theorem 4.10],
we get W > —(cg/cy)W. Then, by the comparison principle [23, Theorem 4.2], we
have that W (t, z(t)) > W (to, zo)e(¢6/c0)(t=t0) ¢t > ¢, From this and (2.4), we get

25) [e@ll, > [

. a1
W (t, () %> W (to, wo)e e (¢t | ™0
Cs - Cs

1
7C—G(t7t0) ag a1
cal|zol[7oe” < cg') o — 258 (t—to)
> = Toll, e caco Yt >t
- [ cs s ” OHT = Lo

This expression reveals that the system solution cannot reach zero in finite time,
whence the r-exponential stability of the origin is concluded to be infinite-time at-
tractive. If the assumptions of Theorem 2.11 hold globally, then there is a finite time
t1 > to such that xz(t) € Dy, Vt > t1, and consequently (2.5) holds with ¢y and xg
replaced by t; and x(¢1), respectively, whence the r-exponential stability with infinite-
time attractivity is concluded to hold for any initial condition zg € R™ at initial time
to > 0. d

3. Main result. Consider the double integrator dynamics (1.1) in closed-loop
with the control law (1.2), i.e.

(3.1) & = —kysign(z)|x|*t — kosign()|z|*?

with k; > 0 and a; € (0,1], Vi € {1,2}. Let

2
(3.2) ro = (“{”) € R

The main result of this work is stated next.

THEOREM 3.1. The trivial solution x(t) =0 of system (3.1) is
1. globally finite-time stable if

(3.3) O<a;<as<l1

2. globally asymptotically stable and (locally) ro-exponentially stable with infini-
te-time attractivity if 0 < a; < ag = 1.

Proof. The proof is divided into four stages. The first stage shows global asymp-
totic stability of the trivial solution z(¢) = 0 through a non-strict Lyapunov function
involving the invariance theory [16, Section 7.2]. The second stage develops a local
analysis through a strict Lyapunov function that proves to be essential in the rest of
the proof. Finally, based on the results obtained in the first two stages, the third and
fourth stages prove items 1 and 2 of the theorem, respectively.

First stage: global asymptotic stability. Consider the following continuously dif-
ferentiable positive definite radially unbounded function

kl |£Z' | Itay j]z

This manuscript is for review purposes only.
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8 A. ZAVALA-R{O, T. SANCHEZ AND G.I. ZAMORA-GOMEZ

Its derivative along the system trajectories is obtained, after basic developments, as
(3.5) Vo(x, &) = —kola|' 142

whence one sees that Vp(z,4) <0, V(z,4) € R?, and Vy(z,4) =0 <= & = 0. Since
z(t) =0 = &(¢t) =0 and, from (3.1), Z(t) = 2(t) =0 = —kysign(z(t))|z(t)|* =
0 < z(t) = 0 (i.e. z(t) = 0 is the only system solution along which Vj re-
mains permanently zeroed), one concludes, by the invariance theory [16, Section 7.2]
(more precisely, by [16, Corollary 7.2.1]), that the trivial solution x(t) = 0 is globally
asymptotically stable (note that this intermediate conclusion holds for any a; > 0,
i=1,2).

Second stage: local analysis. For any p > 0, let us consider the 2-dimensional ball
of radius p, B2. Observe that (z,4) € B} = max{|z|,|¢]} < p. In the rest of the
proof, we shall consider that a;, ¢ = 1, 2, satisfy the following inequality

(36) O0<a; <ay <1
Let
(3.7) Vi(z, i) = VP (z, i) + exd

where V} is defined in Eq. (3.4), while 8 and ¢ are positive constants such that

(3.8a) 1< B < By £ min{B, B2} < B3

3 — as 34+ a1

a1 + ao .
2 *83_2(1+a1)

(3.8b) fr= "

) 62

(one can verify that (3.6) = 1 < Sy, and Sy < 5 < max{f1, B2}, Va;, > 0,i=1,2)
and

(3.9a) € < g9 £ min{ey, e9,e3}

gy it -01/0) 17 by p2-l1/ (B0 ]
N TR I N TR
(3.9D)
21 by Bks

k2(b2 _ l)pa2b2/(b2—l)—25+l—a2 + b2p3—25—a2

Eq =
3 kapb2—1-a1 1/(b2—1)
k1ba

with b; and by being positive constants such that

(3.10) by € [(1—1—@1)6, 26261]
(3.11) by € [1+a1 1+ Qﬁai 1]

(one can verify, from expressions (3.8), that 1 < § < By < 3 = 1+ a3 <
(I1+a)p<28/(286—1)and 1 < <[y <f1 = 1+a1 <1+ay/(28-1)).
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CONTINUOUS FINITE-TIME STABILIZATION OF THE DOUBLE INTEGRATOR 9

Note, on the one hand, that

B
Vi(w, &) > V{ (w,) — e (| 1/P)i]/?)

(3.12)

(3.13)

where

(3.14)

|z|t/B by — 1)|x-b1/(ﬁ(b11)))5
_|_

Z ‘/Oﬁ(x?‘j:) - 6( b] bl

> VP (x,3) — b% Dx‘(bl/ﬁ)fwl 2|19 4 (by — 1)|¢|[b1/<6<b171>>172¢2}B

1
>V (@, @) — WY (2,8) 2 Wi(w, @) V(z,i) € B

. el/p .
Wo(a, ) = = [p0/D 7 a5 g (b — 1)/ G252

(one can verify that (3.10) = (b1/8 > 14 a1) A [b1/(B(by — 1)) > 2]) and Young’s
inequality has been applied (taking p = b3 and ¢ = b1/(by — 1) in (2.1)) to get
(3.12). Notice further that Vi (z,&) — W (z,3) > 0 < V{(z,i) > Wl (z,i) <

Vo(z, &) > Wo(z, &) <= Vo

, &) — Wy(z, &) > 0. Hence, by proving that Vy(x, ) —

T
Wo(z, @) > 0, Y(z, %) € B;\{(0,0)}, positive definiteness of Wy (x,) in (3.13) —and
7)—

consequently of Vi (x, &) i 1n (3.

(3.15)

(on B2) is concluded. In this direction, let us define

Ky p(bl/ﬁ)—l—al
1 + a1 B b1

1 by — 1) plor/(B(b1—-1))]-2
ﬁmzzf—(l )p e/

2 b1

L 1/B

Rm1 =

and let us further note that, from expressions (3.9), one may corroborate, after basic
developments, that € < eg <61 = kKpm1 >0and e < eg < g3 = Ko > 0. From
this, and the expressions defining Vy(z, ) and Wy(x, &), we have Vy(z, ) —Wo(z, &) =
1 [T +Rmod? > 0, V(x, &) € B2\{(0,0)}, whence positive definiteness of V; (z, &)
is concluded.

Note, on the other hand, that following a similar procedure we get

B
Vi(z,z) < Voﬁ(x,i) +€<|x\1/ﬁ|jz|1/5>

(3.16)

where

(3.17)

b1/B by — 1)|4]01/(B(br1—1)) B
< Voﬂ(q;,i‘) +5(|$|b1 + (by )|xl|)1 )

k1|$|1+a1 ~2 B
( 1+a1 )
|x|(b1/6)—1—a1|x|1+a1 (b1—1)|g‘c|[b1/(5(b1—1))]—2¢2 B
—|—<€< + )

bl bl
< wy(z, &) < Wa(x, 1) V(z, 1) € Bz

IN

B
wo(z, %) = (1 +¢) (/le\x|1+“1 + /i’MQ:'c2)

B
= (1 + 8) (HM1|LL‘|1+a1 + 53\42|i~‘3*23*a2|i}|2571+a2)
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with
Ky pbr/B)—1-as

KMl_maX{l—i—al’ 5 }

(3.18)
, 1 (b — 1)pl/(Ba—1))-2

Ko = max {2 , b1 }

and
B

(3.19) Wa(z,z) = (1+¢) (KJM1|$|1+(M + K/M2|:t|26—1+a2)
with
(320) Kpo = KM2p3_2B—012
(one can verify, from expressions (3.8), that 1 < 8 < 8y < B3 = 1+ as <

286—14a2 <2 = 3—-28—ay >0).
The derivative of V7 along the system trajectories is obtained, after basic devel-
opments, as

(3.21) Vi(z, i) = BVE Ha, @) Vo(x, &) + ei? — eky|z|' 9 — ekox sign(d)| ]2

Under the consideration of (3.4), (3.5) and (3.8a), we further get

. k
Vi(z, i) < —%MW*H“Z + ei? — ek |zt
+eky (7020 g]) (P2 D02 ]2)
k
(322) < _255721 26102 | 52 oy |z
—(b2—1) | p|b2 _ . 1agbs/(ba—1)
g |z (b2 — 1)y|#|
k
+e€ 2( by + by
—(ba—1)|n|b2—1—a
< —5<k1 . oy~ 27|72 1>|x|1+a1
bo
Bk .13-28-a
- <2[3—1 —ela e
_ chg(by — 1)y|d[la202/(b2m I 26 1 ~as |28 1oz
ba
(323) < -Ws(z,&) V(z,i) € B
where
(3.24) Wi(z,3) = ehp |29 + Rppg || 2P 122
with
k bzflfal
Rt = k1 — Z‘Pbi Ly (b2=1)
2
(3.25)

- €k2(b2 — l)p[a2b2/(b2*1)]72ﬁ+17a2

_ Bka 3 25
Km2 = 981 Ep 2 — by Y

This manuscript is for review purposes only.
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CONTINUOUS FINITE-TIME STABILIZATION OF THE DOUBLE INTEGRATOR, 11

(one can verify that (3.11) = (b2 > 1+ a1) Afazbe/(by — 1) > 28 — 1 + az] and, as
previously noted, that (3.8) = 14+ a3 <260—-14+a3<2 = 3-28—ay >0), v
is a positive constant such that

, [ Epphetma\ V2D bz({fﬁ _ 5p372ﬂ7a2> X
(B.26) v =\ T, ST Talbs — 1) pleabs /e D254 1as M

(one can verify, from expressions (3.9), that ¢ < g <e3 = ~u > V) and Young’s
inequality was applied (taking p = by and ¢ = ba/(bs — 1) in (2.1)) to get (3.22).
One can further verify, after basic developments, that (3.26) = R, > 0, i = 1,2,
whence Ws(z, %) is corroborated to be positive definite —and consequently V;(z, &)
is concluded to be negative definite— (on B7). Moreover, from (3.19) and (3.24), by
taking

=20 rg= — 20 r=("
" Tva 0 P 28—1+4ay T2

for any ag > 0, we have, for any z = (z )" € B2 and all € € (0,1], that: §7(z) €
B2 (since [|07(2)]| < ||z]| < p for any z € B and all € € (0,1]), Wa(e" z,e™i) =
€Ws(x, ) and Wo(e"z,e2d) = e*PWy(z, &), i.e Wa and W3 are locally r-ho-
mogeneous of degree as = apf and a3 = ag, respectively, both with domain of
homogeneity Bi. Thus, by Lemma 2.5 and Remark 2.6 (under the consideration
of the positive definiteness of Wy and W3), there is a positive constant ¢ such that
Wa(z, i) > c[Wo(x, &)]28/%2, V(x, &) € B2, and consequently, by (3.16) and (3.23), we
have that Vi (z, %) < —Ws(z,2) < —c[Wa(x, &)]*0/ (@08 < —c[Vy(x,%)]"/?, i.e.

(3.27) Vi(x, &) < —c[Vi(z,2)]"/°

V(x, i) € B2.

Third stage: finite-time stability. Note, from expressions (3.8), that (3.3) =
Bo > 1. Thus, if 0 < a3 < ag < 1 then, by taking 8 € (1, 8y), we have 1/8 € (0, 1),
and consequently, from (3.27), we conclude, by Theorem 2.3 and Remark 2.2 (recalling
the first stage), that the trivial solution z(¢) = 0 is globally finite-time stable. Ttem 1
of the theorem is thus proven.

Fourth stage: ro-exponential stability with infinite-time attractivity. Let us now
suppose that 0 < a3 < as = 1. Under this assumption, we have, from expressions
(3.8), that By = 1. Thus, if 0 < a; < az = 1, then, by taking 5 =1, we have 1/8 =1,
whence, for any z = (z &) € B, (and recalling (3.2)), we have: from (3.13)~(3.15),
that

(3.28) Vi(@,&) > K|zt + Km2d? > K l2)17, 2
with Ky, = min{km1, Km2 tas=p=1 > 0; from (3.16)—(3.20), that
(3.29) Vi(z, ) < (1+¢)(hala["™ + kar2d?) < wurll2)2, 0
with kar = (14 ¢) max{rap1, ka2 fay=p=1; from (3.23)—(3.25), that

(3.30) Vi(2,2) < =R |z|'TH — Rppad? < f/_im|\z||§072

This manuscript is for review purposes only.
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12 A. ZAVALA-R{O, T. SANCHEZ AND G.I. ZAMORA-GOMEZ

with Ry, = min{eRm1, Rm2}a,=p=1 > 0; and from (3.21), under the consideration of
(3.5) and Young’s inequality (with p = ¢ =2 in (2.1)), that

Vi(z, &) > —koi? — eky || — ekola|| 2]

k
—6k‘1|$|1+a1 — k‘gi‘2 — 872(.’132 + .232)

>
- 2
k, 170,1
> —¢ k1+& |z — Ky 142 )42
2 2
> Rzt — Rapd?
(3.31) > —Rarllzl7, 0
with .
kopt ™ €
I€M1:€<k1+2p2) s I€M2:k2<1+2>

and Ry = max{Ra,Rm2}as=p=1- Thus, from these expressions, we conclude, by
Theorem 2.11 and Corollary 2.12 (recalling the first stage), that the trivial solution
z(t) = 0 is globally asymptotically stable and (locally) ro-exponentially stable with
infinite-time attractivity, which proves item 2 of the theorem. ]

Remark 3.2. From (3.2) and Remark 2.10, when a1 = as = 1, the stability of the
trivial solution, stated through item 2 of Theorem 3.1, becomes exponential (in the
conventional sense). Moreover, since with a; = ag = 1 system (3.1) becomes linear,
the exponential stability of the trivial solution is global.

Remark 3.3. Note from (3.8a) that under (3.6), which includes all the cases of
the two items of Theorem 3.1, by taking 8 =1, for any z = (z )T € Bi, we have:
from (3.13)—(3.15), that

Vi(@, &) > Kmala™ 0 + kmad? > o [|2]17,
with ], = min{km,1, Kma =1 > 0; from (3.16)—(3.18), that

Vi(e, @) < (1+¢) (ranlal ™ + w)pd?) < wiyll2]7, 2

with &, = (1 + ¢) max{ra1, Ky} s=1; and from (3.23)—(3.25), that

Vl(:c,:c) < —Rm1|z|TTY — R T2 = Ry |2|MTY — Rppod|®2 2
< —ERm @] = Rmap®'d?
< =R ll2l7, 2

with &/, = min{eR,,1, Kmap®?~}s=1 > 0. Thus, from these expressions, we conclude,
by Theorem 2.11 (recalling the first stage), that (whatever are the values that a;,
1 = 1,2, take satisfying (3.6)) the trivial solution x(¢; 02) = 0 is globally asymptotically
stable and (locally) ro-exponentially stable, whether the (non-trivial) system solutions
x(t; 20), 20 € R?\ {02}, converge to the origin in finite time or not. This includes the
case when 0 < a; = ag < 1, the only one permitted by (3.6) for which the analytical
context developed here has not been able to conclude on finite-time stability or infinite-
time attractivity of the trivial solution. For the complementary case 0 < as < a1 <1,
not encompassed by (3.6), global asymptotic stability is the best conclusion obtained
here, from the first stage of the proof of Theorem 3.1.

This manuscript is for review purposes only.
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CONTINUOUS FINITE-TIME STABILIZATION OF THE DOUBLE INTEGRATOR 13

4. Discussion. The conditions for finite-time stability of the trivial solution
x(t) = 0 of (3.1), stated through (3.3), can be alternatively expressed as az € (0,1)
and a; € (0,a2), or equivalently a; € (0,1) and as € (a1,1). Notice that az/(2—az) €
(0,a2), Vas € (0,1), resp. 2a1/(1+a1) € (a1,1), Vag € (0, 1), whence one corroborates
that (3.3) indeed extends the conditions obtained through homogeneity. With respect
to the conditions obtained in [9], more precisely stated through [9, Corollary 1] and
expressed here through the expressions in (1.5), one observes that, for any as € (0, 1),
the choices on a; are significantly different, extending the lower values and limiting
the upper ones. There are two reasons that explain such differences. The first of
such reasons is the restriction of the (local) analysis from [9] to finite-time convergent
solutions that avoid non-stopping oscillations during the finite-time transient, while
no restriction to any specific type of finite-time convergent solutions is considered or
formulated in the analysis developed here. Such a restriction in [9] is motivated by
[9, Theorem 1] which —for a particular type of systems (that include (3.1)) with a
finite-time stable equilibrium at the origin— characterizes the way in which (locally
or ultimately) non-oscillating finite-time convergent solutions head towards zero. But
in view of an imprecision in the proof of [9, Theorem 1] (details are given in Appendix
A), the referred theorem inaccurately states that such a characterization applies to
every solution that reaches the origin in finite time, thus generating the inexact idea
that finite-time convergent solutions cannot reach the origin while swinging. This is
counter-argued as follows. Consider (3.1) with a3 = a2 = 1 and control gains k;,
i = 1,2, such that k2 — 4k; < 0. The resulting differential equation corresponds to a
linear system whose (non-trivial) solutions converge to zero oscillating asymptotically
in time. By continuous dependence (or even differentiability) of the solutions on
parameters [13, Chapter 3], a sufficiently small decrease on the values of a;, i = 1,2,
resulting in the satisfaction of (3.3), would imply that the convergence of the non-
trivial solutions become finite-time, but their oscillating nature could not abruptly
change. On the contrary, this should be kept up to a significant change on a;, i =
1,2. Moreover, since the result from [9, Corollary 1] excludes finite-time convergent
solutions that do not stop oscillating during the finite-time transient, this is the type
of solutions that must take place from the extension on the choices of a; furnished
through (3.3), or more precisely with a; € (O,ag/(2 - ag)) for any as € (0,1). This
is more precisely corroborated through the following refined version of the analysis
developed in [9]. From (3.1) and the fact that & = di&/dt and & = dz/dt, we get

. ar . ay : S\ |5 a2
(4.1) &= —kysign(x)|z|™ — kosign(z) ||

The relations among x and & that satisfy (or are defined by) this differential equation
give rise to the trajectories generated by (3.1) on the phase plane (with z and & as the
system states). As precisely pointed out in [9], the trajectories that converge to the
origin (locally) heading towards it, must (ultimately) approach it from the interior
of a quadrant where x and & have opposite signs. This is so since the opposite signs
imply that |x| decreases (along the trajectories), approaching zero, while in the other
quadrants, where x and & have the same sign, |z| increases, moving away from zero.
In such a (final) phase of the trajectories, since the motion of |z| is monotonically kept
decreasing, & keeps a functional relation with z: & = h(x), V|z| < Z, for a sufficiently
small positive value Z, with zh(z) < 0 (or equivalently sign(h(z)) = —sign(z)),
Va # 0, and h(0) = 0 (since the trajectories converge to the origin; note that such
properties imply continuity of h at = 0, thus lim,_,oh(z) = h(0) = 0). Hence,
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502 under such considerations and assertions, (4.1) becomes

dh

503 (4.2) h(m)d—(:c) = —kysign(z)|x|** + kosign(x)|h(x)|*?
x
504 which determines the existence and forms of solutions that converge to the origin
505 (locally or ultimately) heading towards it. By further involving the following approx-
506 imation:
507
dh h —h h —h
508 lim —(x) = lim lim hw +v) = hz) = lim lim ha +v) = hiz)
z—0 dx z—0v—0 v v—=0x—0 14
h h

509 = lim M = lim ﬂ
510 v—=0 U z—0 X

511 d.e. (dh/dz)(z) ~ h(z)/z in a sufficiently small interval around z = 0, we get that
512 (4.2) can be approached as

513 (4.3) h%(x) + kp|z|* T = ko|x||h(z)|*2

514 V|z| < Z, for a sufficiently small (positive) Z. Observe that functions h(z) (with the
515 above mentioned properties) that solve (4.3) shall satisfy ko|z||h(x)|%> > h?(x) and

516 kalx||h(z)|* > ki|z|'T* which, for any as € (0,1], can be equivalently rewritten as
k 1/a2 Y
517 (4.4) (]{;1) |x|a1/a2 < |h(z)] < k;/@ 2)|x|1/(27a2)
2

518 Thus, trajectories that converge to the origin (locally or ultimately) heading towards
519 the origin shall adopt the form of functions (with the above mentioned properties)
520 that satisfy (4.4) in a sufficiently small region around x = 0. A simple analysis on the
521 (upper and lower) bounds from (4.4) shows that, for any ay € (0, 1], this is feasible
522 on {|z| < z} for a sufficiently small (positive)

1/(2 kQ 1/a2 1/[(a1/a2)_1/(2—a2)]
2 z < [ky'" ‘%)(k)
1

ut
[\]

524 provided that a1 > as/(2 — az), while if a1 < a2/(2 — az), there is no function h(x)
525 satisfying (4.4) in a neighborhood of = 0. In other words, with as € (0, 1] and a1 >
526 a2/(2 — ag), trajectories that (locally or ultimately) head directly towards the origin
527 do exist and they are all within the curve segments defined by the lower and upper
528 bounds from (4.4) in a sufficiently small interval around x = 0, while with as € (0, 1]
520 and a; < ag/(2—as), such type of trajectories cannot take place. Furthermore, in view
530 of the invariance of the trajectories (due to the uniqueness of the non-trivial system
531 solutions), the existence of trajectories that head directly towards the origin exclude
532 that of trajectories that converge spiraling around it and vice versa. Consequently, we
533 conclude that with as € (0,1] and a; > aa/(2 — ag) the system trajectories converge
534 to the origin (locally or ultimately) avoiding spiraling around it, while with ay € (0, 1]
535 and a1 < ag/(2—as) the system solutions shall converge to zero oscillating (undergoing
536 an infinite number of zero crossings before the definitive permanence at zero). It
537 is worth noting that the just concluded assertions do not depend on the specific
538 (positive) value of the control gains k;, ¢« = 1,2. On the contrary, for any as € (0, 1],
539 if a1 = a2/(2 — ag2) (the homogeneity-related case), the type of (oscillating or non-
54

0 oscillating) convergence does depend on the control gains. Indeed, a simple analysis
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on the (upper and lower) bounds from (4.4) shows that if a1 = a2/(2 — ag), for
any ap € (0,1), then (ky/ks)Y/® < k%/@_a?), or equivalently k3 > k2”2, becomes a
necessary condition for trajectories to converge to the origin avoiding spiraling around
it, and consequently, k3 < kf_‘” turns out to be a sufficient condition for the system
solutions to converge to zero oscillating throughout the settling time; a more refined
(alternative) analysis that leads to a more precise condition on the control gains k;,
i = 1,2, accurately stating the dividing point among oscillating and non-oscillating
solutions in the homogeneity-related case will be developed and reported in a future
communication. In the more particular case when a; = a2 = 1 (the linear system
case), one corroborates directly from (4.3) that the former (non-oscillating) case takes
place with k2 > 4k, while the latter (oscillating) one arises with k3 < 4k;.

The second reason on the differences among the result obtained for finite-time
stability in [9, Corollary 1], with respect to that presented here, is the unexhaustive
search (carried out in [9]) related to the finite-time convergence in itself, leading to con-
ditions that permit such type of convergence without strictly ruling out infinite-time
convergent solutions, while the analysis developed here leads to sufficient conditions
that guarantee the finite-time convergence. Indeed, as pointed out in [9], finite-time
stability of the origin (in the previously referred state space) may be concluded as
long as the functional relation held among = and & in the considered non-oscillating
final stage of the system trajectories, & = h(z), defines a first-order differential equa-
tion with finite-time stable equilibrium at x = 0. With this in mind, the search for
related conditions, carried out in [9], focuses on the system trajectories that (locally
or ultimately) finish up by being close to the upper and lower bounds from (4.4). By
forcing the exponent in the upper bound to be less than unity, the corresponding so-
lutions were concluded to achieve the finite-time convergence, which led to conclude
that such a convergence is achieved with as < 1, omitting any further analysis on
the lower bound. Through such a condition, finite-time convergence of the system
trajectories is indeed made possible, but the referred omission turns out to addition-
ally permit conditions (namely, those giving rise to an exponent in the lower bound
from (4.4) being higher than unity) through which solutions that converge to zero
asymptotically in time take place (for instance, those that finish up by being close to
the lower bound from (4.4)). As a matter of fact, in order to guarantee the finite-time
convergence, one must additionally force the exponent in the lower bound to be less
than unity too. This forces all the functions h(x) in the region defined through (4.4)
(for sufficiently small values of |z|) to have the required form (in order for & = h(x)
to define a first-order system with finite-time stable equilibrium at = 0). Such a
complementary consideration in the analysis turns out to state the supplementary
condition a; < ag. Thus, for any as € (0, 1), the limitation of the upper choices on a
stated through the result obtained here, in relation to that from [9, Corollary 1], turns
out to guarantee (and not just permit) the finite-time stability of the trivial solution
z(t) = 0, thus ruling out infinite-time convergent solutions that may take place with
a1 > az. The assertions concluded from the analysis and discussion developed in this
section will be corroborated through simulations in the next section.

Remark 4.1. From the analysis developed in this section, one can see that in the
ro-exponential stability with infinite-time attractivity case stated through item 2 of
Theorem 3.1, i¢.e. when 0 < a; < ag = 1, the system solutions converge ultimately
oscillating, since 0 < a3 < a3 =1 = 0 < a1 < az/(2 — az) = 1, while in the ro-
exponential stability and asymptotic stability cases arisen with 0 < a1 = az < 1 and
0 < as < ag < 1, respectively (recall Remark 3.3), the solutions converge ultimately
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ki =0.1, ky =1 w107 a1 =05, ay =0.8 41017 a3 =0.7, ay =0.8
2 1y
— =05, a, =0.8 \
81 - =a;=0.7, ay =0.8 A
82 0 8 0 L R
0
0 100 200 300
-1 -1
t 57.95 ¢ 58 149 1495 t 150
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Fic. 1. System responses taking k1 = 0.1 and ko = 1. Upper graphs: a2 = 0.8, a; = 0.5 <
2/3 = ab (finite-time stability with ultimate oscillation), and az = 0.8, a1 = 0.7 > 2/3 = al
(finite-time stability avoiding ultimate oscillation). Center graphs: a1 = 0.9, a2 = 1 ((20/19,1)-
ezponential stability with infinite-time attractivity), and a1 = a2 = 1 (exponential stability with
infinite-time attractivity). Lower graphs: a1 = az = 0.7 ((20/17,1)-ezponential stability), and
a1 = 0.8 > 0.6 = az (asymptotic stability). Right-hand graphs: zooms of the responses included in
their corresponding left-hand graph.

avoiding oscillations, since 0 < a; = a3 <1 = 0 < a2/(2 —a2) < a1 < 1 and
O0<ars<a1 £1 = O<a2/(2—a2)<a1§1.

5. Simulation results. In this section, we illustrate the analytical findings of
Section 3 and corroborations from Section 4 through computer simulations. In this di-
rection, it is important to keep in mind that the goal here is not to evaluate closed-loop
performance from a control viewpoint, where some sort of optimization or improve-
ment is aimed. We have rather implemented the system dynamics (3.1) with several
combinations of control parameter values selected so as to make as clear as possible the
referred illustrations. Subsequently, we denote a, i € {1,2}, the homogeneity related
value of a; for a given az_; € (0,1), i.e. a? = ay/(2 — az) for a given ay € (0,1), resp.
al = 2a1/(1 + a;) for a given a; € (0,1). Recall further (3.2). All the simulations
were run up to 300 seconds, taking initial values 2(0) = (0) = 1.

Figure 1 shows simulation results obtained taking k1 = 0.1 and ks = 1 with
different combinations of a;, i = 1,2; note that k3 = 1 > 0.4 = 4k, satisfying the non-
oscillating solution condition of the exponential stability with infinite-time attractivity
case, i.e. with a; = ag = 1. More particularly, Figure 1 shows results obtained with
az = 0.8 and a; = 0.5 < 2/3 = a} (finite-time stability with ultimate oscillation),
ag = 0.8 and a; = 0.7 > 2/3 = a} (finite-time stability avoiding ultimate oscillation),
a; = 0.9 and ag = 1 ((20/19, 1)-exponential stability with infinite-time attractivity),
a1 = az = 1 (exponential stability with infinite-time attractivity), a1 = a2 = 0.7
((20/17,1)-exponential stability) and a; = 0.8 > 0.6 = ay (asymptotic stability).
Note that while the system response obtained with as = 0.8 and a; = 0.7 > 2/3 = al
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Fic. 2. System responses taking k1 = 1 and ko = 0.1. Upper graphs: a2 = 0.8, a1 = 0.5 <
2/3 = ai” (finite-time stability with ultimate oscillation), and a2 = 0.8, a1 = 0.7 > 2/3 = a{b
(finite-time stability avoiding ultimate oscillation). Center graphs: a1 = 0.9, az = 1 ((20/19,1)-
exponential stability with infinite-time attractivity), and a1 = a2 = 1 (exponential stability with
infinite-time attractivity). Lower graphs: a1 = a2 = 0.7 ((20/17,1)-exponential stability), and
a1 = 0.8 > 0.6 = az (asymptotic stability). Right-hand graphs: zooms of the responses included in
their corresponding left-hand graph.

converges heading directly towards the equilibrium and reaching zero at about 149.6
seconds where it remains thereafter, that gotten with a; = 0.8 and a; = 0.5 < 2/3 =
al converges ultimately experiencing non-stopping oscillations to finish up converging
at around 57.975 seconds remaining at zero thereafter. Observe on the other hand
that the system solution obtained with (a1,as) = (0.9,1) converges quicker than
that gotten with (a1,a2) = (1,1) and that it does converge ultimately experiencing
oscillations (recall Remark 4.1). Note further that the system responses corresponding
to the rg-exponential stability and asymptotic stability cases, respectively obtained
with a1 = a2 = 0.7 and a; = 0.8 > 0.6 = a9, are both corroborated to converge
avoiding oscillations (recall Remark 4.1). Moreover, these cases are observed to keep
on approaching to zero by the end of the simulation time.

Figure 2 shows further simulation results obtained taking this time k; = 1 and
ko = 0.1 with the same precedent combinations of a;, ¢ = 1,2; note that in this
case k3 = 0.01 < 4 = 4k, satisfying the oscillating solution condition of the ex-
ponential stability with infinite-time attractivity case (a; = az = 1). Note that in
spite of the oscillating start of the finite-time convergent solutions involved in Figure
2 (contrarily to those involved in Figure 1), the response obtained with as = 0.8
and a; = 0.7 > 2/3 = a? ultimately stops oscillating to head directly towards the
equilibrium, reaching zero in a settling time close to 112.8835 seconds where it re-
mains thereafter, while that gotten with az = 0.8 and a; = 0.5 < 2/3 = a? keeps on
oscillating up to its settling time at around 120.58 seconds remaining at zero there-
after. Observe on the other hand that the solutions obtained with (ay,az2) = (0.9,1)
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Fic. 3. System responses taking homogeneity related values a’f = 2/3 and az = 0.8 with:

k1 = 0.1 and k2 = 1 (widely satisfying the homogeneity related non-oscillating response necessary
condition); k1 = 1 and k2 = 0.1 (satisfying the homogeneity related oscillating solution sufficient
condition). Right-hand graphs: zooms of the responses included in their corresponding left-hand
graph.

and (a1,as) = (1,1) are corroborated to converge experiencing oscillations, while
no important difference is observed among their convergence rate this time. Fur-
thermore, one notes that the system responses corresponding to the rg-exponential
stability and asymptotic stability cases, respectively obtained with a; = ao = 0.7 and
a1 = 0.8 > 0.6 = aq, are again both corroborated to converge avoiding oscillations.
In particular, the asymptotic stability case is clearly observed to keep on approaching
the equilibrium by the end of the simulation time.

Finally, Figure 3 shows further simulation results obtained taking this time the
homogeneity related values a; = 2/3 (= a?) and ap = 0.8, with the two precedent
different combinations of control gains k;, ¢ = 1,2, namely (k1,k2) = (0.1,1) and
(k1,k2) = (1,0.1); notice that in the former control gain case we have that k3 =
1> 01> kI, Vay € (0,1), and in the latter one that k3 = 0.01 < 1 = kI 2,
Yas € (0,1), widely satisfying the non-oscillating response necessary condition and the
oscillating solution sufficient condition of the homogeneity related case, respectively
(as exposed in Section 4). One observes from the figure that with (kq, k2) = (1,0.1) the
system response indeed converge in finite time oscillating, while with (kq, k2) = (0.1,1)
it turns out to converge in finite time avoiding oscillations.

6. Conclusions. The double integrator fed back by an additive composition
of gained (proportional) exponentially weighted position and wvelocity error correc-
tion terms turns out to possess multiple stability properties and give rise to mul-
tiple response behaviors. In particular, global finite-time stability of the trivial so-
lution is proven to arise for any less-than-unity exponential weights with that re-
lated to the position error correction term, ai, lower than that of the velocity er-
ror one, asz, i.e. for any 0 < a; < az < 1. The homogeneity related exponential
weights, namely a; = af £ a2/(2 — az) € (0,a2) for any as € (0,1), or equivalently
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as = al £ 2a,/(1+4 a1) € (ay,1) for any a; € (0,1), thus turn out to be a particu-
lar case over the referred richer spectrum of exponential weight values giving rise to
finite-time stability of the trivial solution. Actually, such homogeneity related expo-
nential weights happen to constitute the dividing point among finite-time convergent
system solutions that ultimately keep/induce or avoid non-stopping oscillations before
the definitive permanence at zero, independently of the control gain values; namely
az € (0,1) with: a; € (a%,az) giving rise to the ultimately non-oscillating behavior
and a; € (0,a?) for the ultimately oscillating one, or equivalently a; € (0,1) with:
as € (a1, ak) for the ultimate non-oscillation case and az € (a4, 1) for the ultimate os-
cillation one. Curiously, both oscillating and non-oscillating behaviors can take place
in the homogeneity related case depending on the control gain values, with k3 < ki~ %2
proven to be a sufficient condition for the former (oscillating) behavior and k3 > ki~ 2
a necessary condition of the latter (non-oscillating) one, when as € (0,1). The con-
ventional and a homogeneous-norm-related exponential types of stability turn out to
additionally arise when 0 < a7 < ag < 1. Actually, for any such combinations of ex-
ponential weights, the trivial solution happens to have the homogeneous-norm-related
exponential type of stability, becoming the conventional type when a; = a; = 1, with
additional infinite-time attractivity in this case and when 0 < a; < az = 1, and
sharing the finite-time stability property when 0 < a; < as < 1. For the comple-
mentary exponential weight condition 0 < as < a; < 1, global asymptotic stability
is the best conclusion that can be drawn for the trivial solution through the analysis
developed here. For this asymptotic stability case and the homogeneous-norm-related
exponential stability one arisen with 0 < a; = a2 < 1, no analytical certainty about
the type of convergence, among finite- and infinite-time, could be obtained. It re-
mains to discover if the analytically obtained finite-time stability sufficient condition,
0 < a1 < ag < 1, is additionally necessary, or if there is an analytical way to know
the type of convergence (among finite- or infinite-time) that does or may arise when
0<a; =as <1and when 0 <as <ay <1.

Appendix A. About [9, Theorem 1]. [9, Theorem 1] claims that, for systems
z = g(z), z € R", with a finite-time stable equilibrium at z = 0,, and g being a
continuous vector field that is continuously differentiable on R™ \ {0,} and has a
component g;(z) that is Lipschitz-continuous at z = 0,, for some i € {1,...,n}, the
solutions that reach the origin in finite time do so such that lim;_,7 z;(¢)/|2(¢)|| = 0,
with T being the settling time. By denoting z(¢; po) a system solution with z(0; pg) =
po and considering that z(T;po) = 0, the proof begins by invoking the mean value
theorem, through which it is claimed that there exists ¢ € [0,7] such that 0 =
zi(T;po) = 2:(0;po) + Tgi(2(q; po)). By further considering the dependence of T' and
q on the initial state and denoting p a generical initial condition along the trajectory
going through po, i.e. p = 2(t;po), t € [0,T(po)], the previous equation is more
generally rewritten as

(A1) 9i(2(q(p)ip)) 1

2;(0; p) B T'(p)
for any such p. At this point, the author claims that, in view of the smoothness of
z;(t;p) in t and its vanishing at t = T'(p):

zi(q(p); p)
zi(0;p)
and involves such a limit to support the rest of the proof. Nevertheless, such a limit
does not hold (and does not even necessarily exist) if ¢ is not unique. Indeed, in a

(A.2) lim

p—0n

-
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general context where z;(t) can converge to zero undergoing non-stopping oscillations
(giving rise to an infinite number of zero crossings) during the settling time or avoiding
oscillations (for instance, depending on the value of parameters involved in the system
dynamics), the limit may be valid for the latter (non-oscillating) case. But in the
former (oscillating) case, there would be a multiple (actually infinite) number of mean
times ¢ satisfying (A.1) for every p, and each one of such mean times, subsequently
denoted ¢;, j = 1,2,..., would generally state different relations of z;(¢;(p);p) and
2i(0;p), i.e. different values of z;(g;(p); p)/2i(0;p) for each j =1,2,...; in particular,
by considering that g¢;, (p) > g¢;,(p) for any ji > jo: ¢;(p) — T(p) as j — oo, and
consequently lim;_, o 2;(¢;(p); p)/2:i(0;p) = 0 for every p. This shows that in the
oscillating case —and consequently, in the more general context where no assumption
is made on the type of (oscillating or non-oscillating) convergence— the left-hand side
limit in (A.2) does not have a defined value, and more particularly that (A.2) does not
generally hold. Consequently, [9, Corollary 1] does not really apply to every finite-
time convergent solution. It may however be considered to apply to solutions whose
component z; converge to the origin in finite time (locally or ultimately) avoiding
oscillations.
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