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ON THE CONTINUOUS FINITE-TIME STABILIZATION OF THE1

DOUBLE INTEGRATOR2

ARTURO ZAVALA-ŔıO∗, TONAMETL SANCHEZ∗, AND GRISELDA I. ZAMORA-GÓMEZ∗3

Abstract. Continuous finite-time stabilization is often treated under the analytical framework4
of homogeneity and has been frequently illustrated in the context of the feedback control of the5
double integrator. For such a simple system, the simplest considered continuous finite-time controller6
is composed of gained (proportional) exponentially weighted position and velocity error correction7
terms, with the exponential weights generally less than unity and constrained to satisfy a particular8
relation among them under homogeneity. What happens for less-than-unity exponential weights that9
do not satisfy such a homogeneity-based relation? Does the finite-time stabilization hold? Through10
a Lyapunov function based study, we analyze and give more concrete answers to such questions than11
those partially provided by previous studies on the topic. We do find a more exhaustive spectrum of12
the exponential weights that give rise to finite-time stability of the trivial solution. Other types of13
stability properties are further found to take place for less-than-or-equal-to-unity exponential weights.14
Moreover, through complementary analysis, local or ultimate behavior of the system solutions is15
further characterized. The analytical findings are further illustrated through computer simulations.16

Key words. Continuous finite-time control, finite-time stability/stabilization, exponential sta-17
bility with respect to a homogeneous norm, double integrator18
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1. Introduction. Stabilization achieved in finite time through continuous feed-20

back has been a subject of increasing interest in the last decades. Ever since the early21

work of [9], such a topic has been often studied and/or illustrated in the context of22

the control of the double integrator23

(1.1) ẍ = u24

The simplest controller considered in such a context is composed by the addition of25

suitable nonlinear position and velocity error correction actions, namely26

(1.2) u = −k1sign(x)|x|a1 − k2sign(ẋ)|ẋ|a2 , u0(x, ẋ)27

ki > 0, i = 1, 2, which proves to render the trivial solution x(t) ≡ 0 globally asymptot-28

ically stable for any positive values of the control parameters ki, ai, i = 1, 2. This case29

was analyzed within the framework of homogeneity in [5] where, by fixing a specific30

relation among a1 and a2, namely31

(1.3) a1 =
a2

2− a2
32

a family of dilations with respect to which the resulting closed-loop system turns out33

to be homogeneous of degree a2 − 1 was proven to exist; the finite-time stabilization34

goal was thus concluded to be achieved for any35

(1.4) a2 ∈ (0, 1)36

irrespective of the (positive) control gain values ki, i = 1, 2. This is so since, for a37

homogeneous vector field with negative degree of homogeneity, asymptotic stability of38
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2 A. ZAVALA-ŔıO, T. SANCHEZ AND G.I. ZAMORA-GÓMEZ

the origin implies finite-time convergence of every solution that it attracts (which actu-39

ally concerns every solution for any initial condition). In view of its simplicity, such an40

analytical procedure has been applied in other related studies, such as the finite-time41

observer design for the output-feedback stabilization of the double integrator devel-42

oped in [10], and the particular resulting finite-time-observer-based output-feedback43

version of (1.1)–(1.4) for which alternative and supplementary analyses were presented44

in [3]. It has been further extended to discontinuous vector fields in [18]. Within the45

analytical context of such an extension, system (1.1) controlled by (1.2)-(1.3) tak-46

ing a2 = 0, which gives rise to the so-called twisting controller [14], was proven to47

achieve the finite-time stabilization objective under an additional control gain con-48

dition (namely k1 > k2, which is necessary to render the trivial solution x(t) ≡ 049

asymptotically stable). Moreover, such a discontinuous version of (1.2) was proven50

in [18] to state the basis for the design of controllers that lead the closed-loop error51

trajectories to zero in finite time even in the presence of input-matching non-vanishing52

perturbations. Such a robustness property was thus further shown to be achieved by53

a finite-time-discontinuous-observer-based output-feedback approach of the referred54

discontinuous version of (1.2) (i.e. with a1 = a2 = 0) in [19]. Achievement of the55

finite-time stabilization goal has been also studied for (1.1)–(1.4) in presence of input-56

matching vanishing perturbations satisfying particular growth conditions in [20].57

Based on (1.2)–(1.4), other (more complex) finite-time continuous stabilizers for58

the double integrator, that render the closed-loop system homogeneous with nega-59

tive degree of homogeneity, have been presented in other works. Such is the case60

of [6] and [20], which proposed u = u0
(
φ1(x, ẋ), ẋ

)
and u = u0(x, ẋ) + φ2(x, ẋ), re-61

spectively, with u0(·, ·) as in (1.2), φ1(x, ẋ) = x + 1
2−a2 sign(ẋ)|ẋ|2−a2 , φ2(x, ẋ) =62

−k3sign(ẋ)|x|a1/2|ẋ|a2/2, k3 > 0, and ai, i = 1, 2, as in (1.3)-(1.4), for which a family63

of dilations with respect to which both resulting closed-loop systems are homogeneous64

of degree a2 − 1 < 0 proves to exist [2, Example 5.5], [20].65

Beyond the attributes or benefits that might characterize or show the implemen-66

tation of homogeneity-based or homogenous-closed-loop-rendering finite-time contin-67

uous control schemes, their design might happen to be restrictive in view of the fixed68

relation among the involved exponents; in the specific case of (1.2), this refers to69

the fixed relation among a1 and a2 stated through (1.3). What happens for values70

of ai ∈ (0, 1), i = 1, 2, that do not satisfy such relation? Does the finite-time sta-71

bilization hold? It is well-known that finite-time stability (i.e. Lyapunov stability72

plus finite-time attractivity [7]) of an equilibrium implies non-uniqueness of solutions73

(in reverse time) which in turn implies the lack of Lipschitz-continuity of the system74

dynamics at the equilibrium. Hence, since with ai ∈ (0, 1), i = 1, 2, (1.1)-(1.2) lacks75

of Lipschitz-continuity at (x, ẋ) = (0, 0), could we not expect that finite-time stability76

hold even if (1.3) is not satisfied? By continuous dependence (or even differentia-77

bility) of the (non-trivial) solutions of (1.1)-(1.2) on parameters [13, Chapter 3], it78

seems reasonable to expect that finite-time stability could hold (at least for values of79

a1 that slightly differ from that fixed through (1.3), given any a2 ∈ (0, 1)). But could80

this be the case for any value combination of ai ∈ (0, 1), i = 1, 2? Since the lack of81

Lipschitz-continuity is however not sufficient for non-uniqueness of solutions, having82

any ai ∈ (0, 1), i = 1, 2, could not necessarily guarantee finite-time stability. These83

questions show that, beyond the simplicity and beneficial features earned by the de-84

sign through (or supported by) homogeneity, we do not yet seem to have the certainty85

to have a complete panorama on the continuous-controller-induced finite-time stabi-86

lization (or on finite-time stability) studied through the double integrator. Getting87
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CONTINUOUS FINITE-TIME STABILIZATION OF THE DOUBLE INTEGRATOR 3

a wider picture on finite-time stability through (1.1)-(1.2), or a broader view on the88

stability properties of (1.1)-(1.2) with ai ∈ (0, 1), i = 1, 2, is important from the89

control and dynamical system theories viewpoint, would generate a wider perspective90

for control design, and may prove to be useful to expand the capabilities accounted91

for closed-loop behavior/performance adjustment or refinement.92

A partial answer to the questions formulated above is given in [9] where, through93

a particularly original analysis on (1.1)-(1.2) with k1 = k2 = 1, finite-time stability of94

the trivial solution x(t) ≡ 0 is concluded to be achieved with95

(1.5) a2 ∈ (0, 1) , a1 >
a2

2− a2
96

However, such a result from [9] turns out to lack of exhaustiveness by developing a97

local analysis restricted to finite-time convergent solutions that avoid non-stopping98

oscillations during the finite-time transient (before the definitive permanence at zero).99

In the own words of the author: “If one wishes to show that a second order system is100

finite time, one could search for a contour that prevented trajectories from spiraling101

around the origin. It seems natural to search for a contour which is itself invariant.102

This idea lies at the core of the next two theorems.” [9, Section 4, p. 764]. Moreover,103

the lack of exhaustiveness further encompasses the finite-time convergence aspect in104

itself, by limiting the result to conditions that permit (but do not guarantee) such type105

of convergence, without strictly ruling out infinite-time convergent solutions (details106

about the referred limitations will be given after the presentation of the main result).107

As a matter of fact, observe that (1.5) curiously permits values of a1 greater than108

1 (which partially contradicts the previously commented argument on the lack of109

Lipschitz-continuity needed to achieve the finite-time stabilization goal).110

This work aims to give answers to the previously formulated questions on the111

finite-time stabilization of (1.1)-(1.2), and to actually achieve to give a deeper in-112

sight on the stability properties of (1.1)-(1.2) with ai ∈ (0, 1], i = 1, 2. Through113

a Lyapunov-function-based analysis, more exhaustive conditions on a1 and a2 that114

guarantee the finite-time stability of the trivial solution x(t) ≡ 0 are obtained with-115

out constraining the analysis or the results to a specific type of finite-time convergent116

solutions. Such conditions turn out to include the homogeneity related ones, namely117

(1.3)-(1.4) (or equivalently a1 ∈ (0, 1) and a2 = a1/(1 + a1)), as a particular case.118

Furthermore, other type of stability properties are further shown to arise in the consid-119

ered analytical context. The study includes a discussion section where further analysis120

addressed to gain insight on the contrast among the results obtained here and those121

from [9] is developed, and which complements the Lyapunov-function-based study122

with conclusions on the local or ultimate behavior of the system solutions; in par-123

ticular, finite-time convergent system solutions ultimately undergoing non-stopping124

oscillations are confirmed to be obtainable under the found conditions, while getting125

solutions that do not converge in finite time is shown to be possible when the found126

conditions are not satisfied. A section with simulation results is further included,127

through which the analytical findings are illustrated.128

2. Preliminaries. Throughout this work, xi stands for the ith element of x ∈129

Rn. 0n represents the origin of Rn. Rn+ is the set of vectors in Rn whose elements130

are all positive, i.e. Rn+ = {x ∈ Rn : xi > 0, i = 1, . . . , n}. An n-dimensional closed131

ball and an (n − 1)-dimensional sphere, both of radius c > 0, are denoted Bnc and132

Sn−1c , respectively, i.e. Bnc = {z ∈ Rn : ‖z‖ ≤ c} and Sn−1c = {x ∈ Rn : ‖x‖ = c}. A133

fundamental fact that will be involved in this study is Young’s inequality [4], i.e. for134
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4 A. ZAVALA-ŔıO, T. SANCHEZ AND G.I. ZAMORA-GÓMEZ

any p, q ∈ (1,∞) such that 1
p + 1

q = 1 and any a, b ∈ R≥0, we have that135

(2.1) ab ≤ ap

p
+
bq

q
136

For a continuous scalar function V , V̇ will represent its upper-right derivative along137

the trajectories of a considered system [23, 22, 7].138

2.1. Finite-time stability. Consider an n-th order autonomous system ẋ =139

f(x), with f being continuous on an open connected neighborhood D ⊂ Rn of the140

origin, where the system is considered to have an equilibrium point, i.e. f(0n) = 0n,141

and such that the system solutions x(t;x0) are unique in forward time for any initial142

condition x(0;x0) = x0 ∈ D \ {0n}.143

Definition 2.1. [8] The origin is a finite-time stable equilibrium if and only if it144

is Lyapunov stable and there exist an open neighborhood N ⊆ D of 0n, being positively145

invariant under f , and a positive definite function T : N → R, called the settling time146

function, such that x(t;x0) 6= 0n, ∀t ∈
[
0, T (x0)

)
, for every x0 ∈ N \ {0n}, and147

x(t;x0) = 0n, ∀t ≥ T (x0), for every x0 ∈ N . It is globally finite-time stable if it is148

finite-time stable with N = D = Rn.149

Remark 2.2. The origin is a globally finite-time stable equilibrium if and only if150

it is globally asymptotically stable and finite-time stable. Sufficiency follows from151

Definition 2.1 and [8, Lemma 2.2]; it has been straightforwardly stated and involved152

in the literature [11, Remark 1]. Necessity is a direct consequence of Definition 2.1153

by the implication that global finite-time stability entails of both finite-time stability154

and global asymptotic stability [17].155

Theorem 2.3. [7] Suppose there is a positive definite continuous function V :156

D → R for which there exist real numbers c > 0 and α ∈ (0, 1) and an open neighbor-157

hood V ⊆ D of the origin such that V̇ (x) ≤ −cV α(x), ∀x ∈ V \ {0n}. Then the origin158

is a finite-time stable equilibrium. Moreover, with N as in Definition 2.1, the settling159

time function T is continuous on N and satisfies T (x) ≤ [V (x)]1−α/[c(1− α)]. If in160

addition D = Rn, V is proper and V̇ takes negative values on Rn \ {0n}, then the161

origin is globally finite-time stable.162

Since finite-time stability turns out to be a particular case of asymptotic stability163

(in the sense of Lyapunov’s stability theory [13, Definition 4.1]), an asymptotically164

stable equilibrium point which is not reached in finite time by any of the trajectories165

that it attracts will be said to have infinite-time attractivity (or to be infinite-time166

attractive).167

2.2. Local homogeneity. The definitions and results stated in this subsection168

are related to family of dilations, defined as δrε (x) = (εr1x1 · · · εrnxn)T , ∀ε > 0, for169

every x ∈ Sn−11 , with r = (r1 · · · rn)T , where the dilation coefficients ri, i = 1, . . . , n,170

are positive scalars.171

Definition 2.4. A function V : Rn → R, resp. vector field f :
∑n
i=1 fi

∂
∂x (with172

fi : Rn → R), is locally homogeneous of degree α with respect to δrε if there exists an173

open neighborhood of the origin D, referred to as the domain of homogeneity, such174

that, for every x ∈ D and all ε ∈ (0, 1]: δεr(x) ∈ D and V
(
δrε (x)

)
= εαV (x), resp.175

fi
(
δrε (x)

)
= εα+rifi(x) ∀i = 1, . . . , n.1176

1The concept of homogeneity in the 0-limit, stated in [1], settles down an alternative definition
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Definition 2.4 is a refined (equivalent) version of [24, Definition 2.1], stated in177

(and reproduced from) [25]. A function or vector field satisfying Definition 2.4 for a178

given r ∈ Rn+ will (for simplicity) be equivalently said to be locally r-homogeneous179

of degree α. It turns out to be homogenous (in the conventional sense) if its domain180

of homogeneity D = Rn. By a function, resp. vector field, referred to as (locally)181

homogenous of degree α, it will be meant that there is r ∈ Rn+ for which the function,182

resp. vector field, is (locally) r-homogeneous of degree α.183

Lemma 2.5. [24] Suppose that, for every i = 1, 2, Vi is a scalar continuous184

function being locally r-homogeneous of degree αi > 0, with domain of homogene-185

ity Di ⊂ Rn. Suppose further that V1 is positive definite on D1. Let D = D1 ∩D2 and186

c > 0 be such that Sn−1c ⊂ D. Then, for every x ∈ D,187

c1[V1(x)]α2/α1 ≤ V2(x) ≤ c2[V1(x)]α2/α1188

with c1 ≤ [minz∈Sn−1
c

V2(z)] · [maxz∈Sn−1
c

V1(z)]−α2/α1 and c2 ≥ [maxz∈Sn−1
c

V2(z)] ·189

[minz∈Sn−1
c

V1(z)]−α2/α1 .190

Remark 2.6. Observe that if V2 happens to be positive (resp. negative) definite,191

then c1 and c2 in Lemma 2.5 are both positive (resp. negative) constants.192

2.3. Exponential stability with respect to a homogeneous norm.193

Definition 2.7. [15] Given r ∈ Rn+, a continuous function mapping x ∈ Rn to194

R, denoted ‖x‖r, is called a homogeneous norm with respect to the family of dilations195

δrε if ‖x‖r ≥ 0, ∀x ∈ Rn, with ‖x‖r = 0 ⇐⇒ x = 0n, and ‖δrε (x)‖r = ε‖x‖r for any196

x ∈ Rn and all ε > 0.197

A function satisfying Definition 2.7 for a given r ∈ Rn+ will (for simplicity) be198

equivalently said to be an r-homogeneous norm. Note that it turns out be a positive199

definite continuous function being r-homogeneous of degree 1. By a function referred200

to as a homogenous norm, it will be meant that there is r ∈ Rn+ for which the201

function is an r-homogeneous norm. A special subset of homogenous norms is defined202

as follows.203

Definition 2.8. [12] Given r ∈ Rn+, an r-homogeneous p-norm (p ≥ 1) is defined204

as ‖x‖r,p =
[∑n

i=1 |xi|p/ri
]1/p

.205

For the sake of generality, in the rest of this subsection, definitions and results are206

stated under the consideration of the generalized n-th order (unforced) state equation207

ẋ = f(t, x), representing both autonomous and non-autonomous systems. The vector208

field f is considered to be continuous in x on an open connected neighborhood D ⊂ Rn209

of the origin, where the system is assumed to have an equilibrium point, and such that210

the system solutions x(t; t0, x0), or simply x(t) whenever convenient or clear from the211

context, are unique in forward time for any initial state x(t0; t0, x0) = x0 ∈ D \ {0n}212

at initial time t0 ∈ [0,∞). In the time-varying case, f is additionally considered to213

be piecewise continuous in t on [0,∞).214

of local homogeneity which turns out to be more attached to the notion of locality generally used
in control theory (that is, a function or vector field homogeneous in the 0-limit approximates a
homogeneous one in a sufficiently small neighborhood of the origin). Definition 2.4 (above) is based
on the idea that a function or vector field be permitted to be identical to a homogenous one in
a neighborhood of the origin, which permits the statement and use of results such as Lemma 2.5.
Actually, local homogeneous functions or vector fields, in the sense of Definition 2.4, are homogenous
in the 0-limit (the inverse is not necessarily true).
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Definition 2.9. [15, 12] The origin is exponentially stable with respect to the r-215

homogeneous norm ‖·‖r, for a given r ∈ Rn+, if there exist a neighborhood of the origin216

U ⊆ D and constants a ≥ 1 and b > 0 such that ‖x(t; t0, x0)‖r ≤ a‖x0‖re−b(t−t0),217

∀t ≥ t0 ≥ 0, ∀x0 ∈ U . If this is satisfied with U = D = Rn, then the origin is globally218

exponentially stable with respect to the r-homogeneous norm ‖ · ‖r.219

For simplicity, an equilibrium point satisfying Definition 2.9 for a given r ∈ Rn+220

will be equivalently said to be r-exponentially stable.2221

Remark 2.10. Although norm is involved in the denomination stated through222

Definition 2.7, by noting that such a definition does not strictly define a particular223

type of norm (the triangle inequality is not asked to be satisfied and the considered224

scaling property differs to the one involved in the conventional definition of a norm;225

such an imprecision on the referred denomination was highlighted for Definition 2.8226

in [21, Remark 5]), Definition 2.9 is corroborated to state a notion of exponential227

stability that differs from the conventional one, without necessarily keeping a logical228

relation among them (i.e. without necessarily one of them implying the other). In229

particular, if an r-homogeneous p-norm is involved, Definition 2.9 is noted to become230

the conventional definition of exponential stability when the elements of r are all equal231

to unity. For any other r = (r1 . . . rn)T ∈ Rn+, it is proven in [12] that r-exponential232

stability does not necessarily imply exponential stability (in the conventional sense),233

by showing that for an r-exponentially stable equilibrium point, the (p) norm of234

trajectories with initial condition sufficiently close to it have an exponentially-decaying235

bound that depends nonlinearly on the norm of the initial state vector; more precisely236

‖x(t; t0, x0)‖ ≤ a′‖x0‖rm/rM e−b
′rm(t−t0), for positive constants a′ and b′, with rm =237

mini{ri} and rM = maxi{ri} (this is stated for p = 2 in [12] but the extension to238

any p ≥ 1 follows from the equivalence of p-norms). Such a nonlinear dependence of239

the referred exponentially-decaying bound on the norm of the initial state vector is240

further shown in [12] (through an illustrative example) to be indispensable.241

Theorem 2.11. Let V : [0,∞)×D → R be a continuous function such that242

(2.2) c1‖x‖ar ≤ V (t, x) ≤ c2‖x‖ar243

244

(2.3) V̇ (t, x) ≤ −c3‖x‖ar245

∀(t, x) ∈ [0,∞) ×D, where ci, i = 1, 2, 3, and a are positive constants, and r ∈ Rn+.246

Then, the origin is r-exponentially stable. If the assumptions hold globally, then the247

origin is globally r-exponentially stable.248

The proof of Theorem 2.11 follows along the lines of the proof of [13, Theorem249

4.10] by simply replacing (the conventional norm) ‖ · ‖ by (the r-homogeneous norm)250

‖ · ‖r. The following corollary, generated as part of this work, will prove to be instru-251

mental in the proof of the main result (presented in the next section).252

Corollary 2.12. Under the assumptions of Theorem 2.11, let us additionally253

suppose that there is a continuous function W : [0,∞)×D0 → R such that254

(2.4) c4‖x‖a0r ≤W (t, x) ≤ c5‖x‖a0r255

256
Ẇ (t, x) ≥ −c6‖x‖a0r257

2Definition 2.9 has previously adopted different (short) alternative designations, namely ∆-
exponential stability in [12], ρ-exponential stability in [15], and δ-exponential stability in [25].
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for all t ≥ 0 and all x in an open connected neighborhood of the origin D0 ⊆ D, where258

ci, i = 4, 5, 6, and a0 are positive constants. Then, the origin is r-exponentially stable259

with infinite-time attractivity. If the assumptions of Theorem 2.11 hold globally, then260

the origin is globally r-exponentially stable with infinite-time attractivity.261

Proof. Following a procedure analogous to that of the proof of [13, Theorem 4.10],262

we get Ẇ ≥ −(c6/c4)W . Then, by the comparison principle [23, Theorem 4.2], we263

have that W (t, x(t)) ≥W (t0, x0)e−(c6/c4)(t−t0), ∀t ≥ t0. From this and (2.4), we get264

265

(2.5) ‖x(t)‖r ≥
[
W (t, x(t))

c5

] 1
a0

≥

[
W (t0, x0)e−

c6
c4

(t−t0)

c5

] 1
a0

266

≥

[
c4‖x0‖a0r e

− c6c4 (t−t0)

c5

] 1
a0

=

(
c4
c5

) 1
a0

‖x0‖r e−
c6
c4a0

(t−t0) ∀t ≥ t0267

268

This expression reveals that the system solution cannot reach zero in finite time,269

whence the r-exponential stability of the origin is concluded to be infinite-time at-270

tractive. If the assumptions of Theorem 2.11 hold globally, then there is a finite time271

t1 ≥ t0 such that x(t) ∈ D0, ∀t ≥ t1, and consequently (2.5) holds with t0 and x0272

replaced by t1 and x(t1), respectively, whence the r-exponential stability with infinite-273

time attractivity is concluded to hold for any initial condition x0 ∈ Rn at initial time274

t0 ≥ 0.275

3. Main result. Consider the double integrator dynamics (1.1) in closed-loop276

with the control law (1.2), i.e.277

(3.1) ẍ = −k1sign(x)|x|a1 − k2sign(ẋ)|ẋ|a2278

with ki > 0 and ai ∈ (0, 1], ∀i ∈ {1, 2}. Let279

(3.2) r0 =

(
2

1+a1

1

)
∈ R2

+280

The main result of this work is stated next.281

Theorem 3.1. The trivial solution x(t) ≡ 0 of system (3.1) is282

1. globally finite-time stable if283

(3.3) 0 < a1 < a2 < 1284

2. globally asymptotically stable and (locally) r0-exponentially stable with infini-285

te-time attractivity if 0 < a1 ≤ a2 = 1.286

Proof. The proof is divided into four stages. The first stage shows global asymp-287

totic stability of the trivial solution x(t) ≡ 0 through a non-strict Lyapunov function288

involving the invariance theory [16, Section 7.2]. The second stage develops a local289

analysis through a strict Lyapunov function that proves to be essential in the rest of290

the proof. Finally, based on the results obtained in the first two stages, the third and291

fourth stages prove items 1 and 2 of the theorem, respectively.292

First stage: global asymptotic stability. Consider the following continuously dif-293

ferentiable positive definite radially unbounded function294

(3.4) V0(x, ẋ) =
k1|x|1+a1

1 + a1
+
ẋ2

2
295
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Its derivative along the system trajectories is obtained, after basic developments, as296

V̇0(x, ẋ) = −k2|ẋ|1+a2(3.5)297298

whence one sees that V̇0(x, ẋ) ≤ 0, ∀(x, ẋ) ∈ R2, and V̇0(x, ẋ) = 0 ⇐⇒ ẋ = 0. Since299

ẋ(t) ≡ 0 =⇒ ẍ(t) ≡ 0 and, from (3.1), ẍ(t) ≡ ẋ(t) ≡ 0 =⇒ −k1sign(x(t))|x(t)|a1 ≡300

0 ⇐⇒ x(t) ≡ 0 (i.e. x(t) ≡ 0 is the only system solution along which V̇0 re-301

mains permanently zeroed), one concludes, by the invariance theory [16, Section 7.2]302

(more precisely, by [16, Corollary 7.2.1]), that the trivial solution x(t) ≡ 0 is globally303

asymptotically stable (note that this intermediate conclusion holds for any ai > 0,304

i = 1, 2).305

Second stage: local analysis. For any ρ > 0, let us consider the 2-dimensional ball306

of radius ρ, B2ρ. Observe that (x, ẋ) ∈ B2ρ =⇒ max{|x|, |ẋ|} ≤ ρ. In the rest of the307

proof, we shall consider that ai, i = 1, 2, satisfy the following inequality308

(3.6) 0 < a1 ≤ a2 ≤ 1309

Let310

(3.7) V1(x, ẋ) = V β0 (x, ẋ) + εxẋ311

where V0 is defined in Eq. (3.4), while β and ε are positive constants such that312

(3.8a) 1 ≤ β ≤ β0 , min{β1, β2} ≤ β3313

314

(3.8b) β1 =
a1 + a2

2a1
, β2 =

3− a2
2

, β3 =
3 + a1

2(1 + a1)
315

(one can verify that (3.6) =⇒ 1 ≤ β0, and β0 ≤ β3 ≤ max{β1, β2}, ∀ai > 0, i = 1, 2)316

and317

(3.9a) ε < ε0 , min{ε1, ε2, ε3}318

319

ε1 =

[
k1b1ρ

1+a1−(b1/β)

1 + a1

]β
, ε2 =

[
b1ρ

2−[b1/(β(b1−1))]

2(b1 − 1)

]β

ε3 =
21−βb2βk2[

k2ρb2−1−a1

k1b2

]1/(b2−1)
k2(b2 − 1)ρa2b2/(b2−1)−2β+1−a2 + b2ρ3−2β−a2

(3.9b)320

with b1 and b2 being positive constants such that321

(3.10) b1 ∈
[
(1 + a1)β ,

2β

2β − 1

]
322

323

(3.11) b2 ∈
[
1 + a1 , 1 +

a2
2β − 1

]
324

(one can verify, from expressions (3.8), that 1 ≤ β ≤ β0 ≤ β3 =⇒ 1 + a1 ≤325

(1 + a1)β ≤ 2β/(2β − 1) and 1 ≤ β ≤ β0 ≤ β1 =⇒ 1 + a1 ≤ 1 + a2/(2β − 1)).326
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Note, on the one hand, that327

V1(x, ẋ) ≥ V β0 (x, ẋ)− ε
(
|x|1/β |ẋ|1/β

)β
328

≥ V β0 (x, ẋ)− ε
(
|x|b1/β

b1
+

(b1 − 1)|ẋ|b1/(β(b1−1))

b1

)β
(3.12)329

≥ V β0 (x, ẋ)− ε

bβ1

[
|x|(b1/β)−1−a1 |x|1+a1 + (b1 − 1)|ẋ|[b1/(β(b1−1))]−2ẋ2

]β
330

≥ V β0 (x, ẋ)−W β
0 (x, ẋ) ,W1(x, ẋ) ∀(x, ẋ) ∈ B2ρ(3.13)331332

where333

(3.14) W0(x, ẋ) =
ε1/β

b1

[
ρ(b1/β)−1−a1 |x|1+a1 + (b1 − 1)ρ[b1/(β(b1−1))]−2ẋ2

]
334

(one can verify that (3.10) =⇒ (b1/β ≥ 1 + a1) ∧
[
b1/(β(b1 − 1)) ≥ 2

]
) and Young’s335

inequality has been applied (taking p = b1 and q = b1/(b1 − 1) in (2.1)) to get336

(3.12). Notice further that V β0 (x, ẋ)−W β
0 (x, ẋ) > 0 ⇐⇒ V β0 (x, ẋ) > W β

0 (x, ẋ) ⇐⇒337

V0(x, ẋ) > W0(x, ẋ) ⇐⇒ V0(x, ẋ)−W0(x, ẋ) > 0. Hence, by proving that V0(x, ẋ)−338

W0(x, ẋ) > 0, ∀(x, ẋ) ∈ B2ρ \ {(0, 0)}, positive definiteness of W1(x, ẋ) in (3.13) —and339

consequently of V1(x, ẋ) in (3.7)— (on B2ρ) is concluded. In this direction, let us define340

κm1 =
k1

1 + a1
− ρ(b1/β)−1−a1

b1
· ε1/β

κm2 =
1

2
− (b1 − 1)ρ[b1/(β(b1−1))]−2

b1
· ε1/β

(3.15)341

and let us further note that, from expressions (3.9), one may corroborate, after basic342

developments, that ε < ε0 ≤ ε1 =⇒ κm1 > 0 and ε < ε0 ≤ ε2 =⇒ κm2 > 0. From343

this, and the expressions defining V0(x, ẋ) and W0(x, ẋ), we have V0(x, ẋ)−W0(x, ẋ) =344

κm1|x|1+a1 +κm2ẋ
2 > 0, ∀(x, ẋ) ∈ B2ρ\{(0, 0)}, whence positive definiteness of V1(x, ẋ)345

is concluded.346

Note, on the other hand, that following a similar procedure we get347

V1(x, ẋ) ≤ V β0 (x, ẋ) + ε
(
|x|1/β |ẋ|1/β

)β
348

≤ V β0 (x, ẋ) + ε

(
|x|b1/β

b1
+

(b1 − 1)|ẋ|b1/(β(b1−1))

b1

)β
349

≤
(
k1|x|1+a1

1 + a1
+
ẋ2

2

)β
+ ε

(
|x|(b1/β)−1−a1 |x|1+a1

b1
+

(b1 − 1)|ẋ|[b1/(β(b1−1))]−2ẋ2

b1

)β350

≤ w2(x, ẋ) ≤W2(x, ẋ) ∀(x, ẋ) ∈ B2ρ(3.16)351352

where353
354

(3.17) w2(x, ẋ) = (1 + ε)
(
κM1|x|1+a1 + κ′M2ẋ

2
)β

355

= (1 + ε)
(
κM1|x|1+a1 + κ′M2|ẋ|3−2β−a2 |ẋ|2β−1+a2

)β
356
357
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with358

κM1 = max

{
k1

1 + a1
,
ρ(b1/β)−1−a1

b1

}

κ′M2 = max

{
1

2
,

(b1 − 1)ρ[b1/(β(b1−1))]−2

b1

}(3.18)359

and360

(3.19) W2(x, ẋ) = (1 + ε)
(
κM1|x|1+a1 + κM2|ẋ|2β−1+a2

)β
361

with362

(3.20) κM2 = κ′M2ρ
3−2β−a2363

(one can verify, from expressions (3.8), that 1 ≤ β ≤ β0 ≤ β2 =⇒ 1 + a2 ≤364

2β − 1 + a2 ≤ 2 =⇒ 3− 2β − a2 ≥ 0).365

The derivative of V1 along the system trajectories is obtained, after basic devel-366

opments, as367

V̇1(x, ẋ) = βV β−10 (x, ẋ)V̇0(x, ẋ) + εẋ2 − εk1|x|1+a1 − εk2x sign(ẋ)|ẋ|a2(3.21)368369

Under the consideration of (3.4), (3.5) and (3.8a), we further get370

V̇1(x, ẋ) ≤ − βk2
2β−1

|ẋ|2β−1+a2 + εẋ2 − εk1|x|1+a1

+ εk2
(
γ−(b2−1)/b2 |x|

)(
γ(b2−1)/b2 |ẋ|a2

)371

≤ − βk2
2β−1

|ẋ|2β−1+a2 + εẋ2 − εk1|x|1+a1

+ εk2

(
γ−(b2−1)|x|b2

b2
+

(b2 − 1)γ|ẋ|a2b2/(b2−1)

b2

)(3.22)372

≤ −ε
(
k1 −

k2γ
−(b2−1)|x|b2−1−a1

b2

)
|x|1+a1

−
(
βk2
2β−1

− ε|ẋ|3−2β−a2

− εk2(b2 − 1)γ|ẋ|[a2b2/(b2−1)]−2β+1−a2

b2

)
|ẋ|2β−1+a2

373

≤ −W3(x, ẋ) ∀(x, ẋ) ∈ B2ρ(3.23)374375

where376

(3.24) W3(x, ẋ) = εκ̄m1|x|1+a1 + κ̄m2|ẋ|2β−1+a2377

with378

κ̄m1 = k1 −
k2ρ

b2−1−a1

b2
· γ−(b2−1)

κ̄m2 =
βk2
2β−1

− ερ3−2β−a2 − εk2(b2 − 1)ρ[a2b2/(b2−1)]−2β+1−a2

b2
· γ

(3.25)379
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(one can verify that (3.11) =⇒ (b2 ≥ 1 + a1) ∧ [a2b2/(b2 − 1) ≥ 2β − 1 + a2] and, as380

previously noted, that (3.8) =⇒ 1 + a2 ≤ 2β − 1 + a2 ≤ 2 =⇒ 3− 2β − a2 ≥ 0), γ381

is a positive constant such that382

(3.26) γm ,

(
k2ρ

b2−1−a1

k1b2

)1/(b2−1)

< γ <
b2

(
βk2
2β−1 − ερ3−2β−a2

)
εk2(b2 − 1)ρ[a2b2/(b2−1)]−2β+1−a2

, γM383

(one can verify, from expressions (3.9), that ε < ε0 ≤ ε3 =⇒ γM > γm) and Young’s384

inequality was applied (taking p = b2 and q = b2/(b2 − 1) in (2.1)) to get (3.22).385

One can further verify, after basic developments, that (3.26) =⇒ κ̄mi > 0, i = 1, 2,386

whence W3(x, ẋ) is corroborated to be positive definite —and consequently V̇1(x, ẋ)387

is concluded to be negative definite— (on B2ρ). Moreover, from (3.19) and (3.24), by388

taking389

r1 =
α0

1 + a1
, r2 =

α0

2β − 1 + a2
, r =

(
r1
r2

)
390

for any α0 > 0, we have, for any z = (x ẋ)T ∈ B2
ρ and all ε ∈ (0, 1], that: δrε (z) ∈391

B2ρ (since ‖δrε (z)‖ ≤ ‖z‖ ≤ ρ for any z ∈ B2ρ and all ε ∈ (0, 1]), W3(εr1x, εr2 ẋ) =392

εα0W3(x, ẋ) and W2(εr1x, εr2 ẋ) = εα0βW2(x, ẋ), i.e W2 and W3 are locally r-ho-393

mogeneous of degree α2 = α0β and α3 = α0, respectively, both with domain of394

homogeneity B2ρ. Thus, by Lemma 2.5 and Remark 2.6 (under the consideration395

of the positive definiteness of W2 and W3), there is a positive constant c such that396

W3(x, ẋ) ≥ c[W2(x, ẋ)]α3/α2 , ∀(x, ẋ) ∈ B2ρ, and consequently, by (3.16) and (3.23), we397

have that V̇1(x, ẋ) ≤ −W3(x, ẋ) ≤ −c[W2(x, ẋ)]α0/(α0β) ≤ −c[V1(x, ẋ)]1/β , i.e.398

(3.27) V̇1(x, ẋ) ≤ −c[V1(x, ẋ)]1/β399

∀(x, ẋ) ∈ B2ρ.400

Third stage: finite-time stability. Note, from expressions (3.8), that (3.3) =⇒401

β0 > 1. Thus, if 0 < a1 < a2 < 1 then, by taking β ∈ (1, β0), we have 1/β ∈ (0, 1),402

and consequently, from (3.27), we conclude, by Theorem 2.3 and Remark 2.2 (recalling403

the first stage), that the trivial solution x(t) ≡ 0 is globally finite-time stable. Item 1404

of the theorem is thus proven.405

Fourth stage: r0-exponential stability with infinite-time attractivity. Let us now406

suppose that 0 < a1 < a2 = 1. Under this assumption, we have, from expressions407

(3.8), that β0 = 1. Thus, if 0 < a1 < a2 = 1, then, by taking β = 1, we have 1/β = 1,408

whence, for any z = (x ẋ) ∈ B2ρ (and recalling (3.2)), we have: from (3.13)–(3.15),409

that410

(3.28) V1(x, ẋ) ≥ κm1|x|1+a1 + κm2ẋ
2 ≥ κm‖z‖2r0,2411

with κm = min{κm1, κm2}a2=β=1 > 0; from (3.16)–(3.20), that412

(3.29) V1(x, ẋ) ≤ (1 + ε)
(
κM1|x|1+a1 + κM2ẋ

2
)
≤ κM‖z‖2r0,2413

with κM = (1 + ε) max{κM1, κM2}a2=β=1; from (3.23)–(3.25), that414

(3.30) V̇1(x, ẋ) ≤ −εκ̄m1|x|1+a1 − κ̄m2ẋ
2 ≤ −κ̄m‖z‖2r0,2415
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with κ̄m = min{εκ̄m1, κ̄m2}a2=β=1 > 0; and from (3.21), under the consideration of416

(3.5) and Young’s inequality (with p = q = 2 in (2.1)), that417

V̇1(x, ẋ) ≥ −k2ẋ2 − εk1|x|1+a1 − εk2|x||ẋ|418

≥ −εk1|x|1+a1 − k2ẋ2 −
εk2
2

(
x2 + ẋ2

)
419

≥ −ε
(
k1 +

k2|x|1−a1
2

)
|x|1+a1 − k2

(
1 +

ε

2

)
ẋ2420

≥ −κ̄M1|x|1+a1 − κ̄M2ẋ
2

421

≥ −κ̄M‖z‖2r0,2(3.31)422423

with424

κ̄M1 = ε

(
k1 +

k2ρ
1−a1

2

)
, κ̄M2 = k2

(
1 +

ε

2

)
425

and κ̄M = max{κ̄M1, κ̄M2}a2=β=1. Thus, from these expressions, we conclude, by426

Theorem 2.11 and Corollary 2.12 (recalling the first stage), that the trivial solution427

x(t) ≡ 0 is globally asymptotically stable and (locally) r0-exponentially stable with428

infinite-time attractivity, which proves item 2 of the theorem.429

Remark 3.2. From (3.2) and Remark 2.10, when a1 = a2 = 1, the stability of the430

trivial solution, stated through item 2 of Theorem 3.1, becomes exponential (in the431

conventional sense). Moreover, since with a1 = a2 = 1 system (3.1) becomes linear,432

the exponential stability of the trivial solution is global.433

Remark 3.3. Note from (3.8a) that under (3.6), which includes all the cases of434

the two items of Theorem 3.1, by taking β = 1, for any z = (x ẋ)T ∈ B2ρ, we have:435

from (3.13)–(3.15), that436

V1(x, ẋ) ≥ κm1|x|1+a1 + κm2ẋ
2 ≥ κ′m‖z‖2r0,2437

with κ′m = min{κm1, κm2}β=1 > 0; from (3.16)–(3.18), that438

V1(x, ẋ) ≤ (1 + ε)
(
κM1|x|1+a1 + κ′M2ẋ

2
)
≤ κ′M‖z‖2r0,2439

with κ′M = (1 + ε) max{κM1, κ
′
M2}β=1; and from (3.23)–(3.25), that440

V̇1(x, ẋ) ≤ −εκ̄m1|x|1+a1 − κ̄m2|ẋ|1+a2 = −εκ̄m1|x|1+a1 − κ̄m2|ẋ|a2−1ẋ2441

≤ −εκ̄m1|x|1+a1 − κ̄m2ρ
a2−1ẋ2442

≤ −κ̄′m‖z‖2r0,2443444

with κ̄′m = min{εκ̄m1, κ̄m2ρ
a2−1}β=1 > 0. Thus, from these expressions, we conclude,445

by Theorem 2.11 (recalling the first stage), that (whatever are the values that ai,446

i = 1, 2, take satisfying (3.6)) the trivial solution x(t; 02) ≡ 0 is globally asymptotically447

stable and (locally) r0-exponentially stable, whether the (non-trivial) system solutions448

x(t; z0), z0 ∈ R2 \ {02}, converge to the origin in finite time or not. This includes the449

case when 0 < a1 = a2 < 1, the only one permitted by (3.6) for which the analytical450

context developed here has not been able to conclude on finite-time stability or infinite-451

time attractivity of the trivial solution. For the complementary case 0 < a2 < a1 ≤ 1,452

not encompassed by (3.6), global asymptotic stability is the best conclusion obtained453

here, from the first stage of the proof of Theorem 3.1.454
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4. Discussion. The conditions for finite-time stability of the trivial solution455

x(t) ≡ 0 of (3.1), stated through (3.3), can be alternatively expressed as a2 ∈ (0, 1)456

and a1 ∈ (0, a2), or equivalently a1 ∈ (0, 1) and a2 ∈ (a1, 1). Notice that a2/(2−a2) ∈457

(0, a2), ∀a2 ∈ (0, 1), resp. 2a1/(1+a1) ∈ (a1, 1), ∀a1 ∈ (0, 1), whence one corroborates458

that (3.3) indeed extends the conditions obtained through homogeneity. With respect459

to the conditions obtained in [9], more precisely stated through [9, Corollary 1] and460

expressed here through the expressions in (1.5), one observes that, for any a2 ∈ (0, 1),461

the choices on a1 are significantly different, extending the lower values and limiting462

the upper ones. There are two reasons that explain such differences. The first of463

such reasons is the restriction of the (local) analysis from [9] to finite-time convergent464

solutions that avoid non-stopping oscillations during the finite-time transient, while465

no restriction to any specific type of finite-time convergent solutions is considered or466

formulated in the analysis developed here. Such a restriction in [9] is motivated by467

[9, Theorem 1] which —for a particular type of systems (that include (3.1)) with a468

finite-time stable equilibrium at the origin— characterizes the way in which (locally469

or ultimately) non-oscillating finite-time convergent solutions head towards zero. But470

in view of an imprecision in the proof of [9, Theorem 1] (details are given in Appendix471

A), the referred theorem inaccurately states that such a characterization applies to472

every solution that reaches the origin in finite time, thus generating the inexact idea473

that finite-time convergent solutions cannot reach the origin while swinging. This is474

counter-argued as follows. Consider (3.1) with a1 = a2 = 1 and control gains ki,475

i = 1, 2, such that k22 − 4k1 < 0. The resulting differential equation corresponds to a476

linear system whose (non-trivial) solutions converge to zero oscillating asymptotically477

in time. By continuous dependence (or even differentiability) of the solutions on478

parameters [13, Chapter 3], a sufficiently small decrease on the values of ai, i = 1, 2,479

resulting in the satisfaction of (3.3), would imply that the convergence of the non-480

trivial solutions become finite-time, but their oscillating nature could not abruptly481

change. On the contrary, this should be kept up to a significant change on ai, i =482

1, 2. Moreover, since the result from [9, Corollary 1] excludes finite-time convergent483

solutions that do not stop oscillating during the finite-time transient, this is the type484

of solutions that must take place from the extension on the choices of a1 furnished485

through (3.3), or more precisely with a1 ∈
(
0, a2/(2 − a2)

)
for any a2 ∈ (0, 1). This486

is more precisely corroborated through the following refined version of the analysis487

developed in [9]. From (3.1) and the fact that ẍ = dẋ/dt and ẋ = dx/dt, we get488

(4.1) ẋ
dẋ

dx
= −k1sign(x)|x|a1 − k2sign(ẋ)|ẋ|a2489

The relations among x and ẋ that satisfy (or are defined by) this differential equation490

give rise to the trajectories generated by (3.1) on the phase plane (with x and ẋ as the491

system states). As precisely pointed out in [9], the trajectories that converge to the492

origin (locally) heading towards it, must (ultimately) approach it from the interior493

of a quadrant where x and ẋ have opposite signs. This is so since the opposite signs494

imply that |x| decreases (along the trajectories), approaching zero, while in the other495

quadrants, where x and ẋ have the same sign, |x| increases, moving away from zero.496

In such a (final) phase of the trajectories, since the motion of |x| is monotonically kept497

decreasing, ẋ keeps a functional relation with x: ẋ = h(x), ∀|x| ≤ x̄, for a sufficiently498

small positive value x̄, with xh(x) < 0 (or equivalently sign
(
h(x)

)
= −sign(x)),499

∀x 6= 0, and h(0) = 0 (since the trajectories converge to the origin; note that such500

properties imply continuity of h at x = 0, thus limx→0 h(x) = h(0) = 0). Hence,501
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under such considerations and assertions, (4.1) becomes502

(4.2) h(x)
dh

dx
(x) = −k1sign(x)|x|a1 + k2sign(x)|h(x)|a2503

which determines the existence and forms of solutions that converge to the origin504

(locally or ultimately) heading towards it. By further involving the following approx-505

imation:506
507

lim
x→0

dh

dx
(x) = lim

x→0
lim
ν→0

h(x+ ν)− h(x)

ν
= lim
ν→0

lim
x→0

h(x+ ν)− h(x)

ν
508

= lim
ν→0

h(ν)

ν
= lim
x→0

h(x)

x
509
510

i.e. (dh/dx)(x) ≈ h(x)/x in a sufficiently small interval around x = 0, we get that511

(4.2) can be approached as512

(4.3) h2(x) + k1|x|1+a1 = k2|x||h(x)|a2513

∀|x| ≤ x̄, for a sufficiently small (positive) x̄. Observe that functions h(x) (with the514

above mentioned properties) that solve (4.3) shall satisfy k2|x||h(x)|a2 ≥ h2(x) and515

k2|x||h(x)|a2 ≥ k1|x|1+a1 which, for any a2 ∈ (0, 1], can be equivalently rewritten as516

(4.4)

(
k1
k2

)1/a2

|x|a1/a2 ≤ |h(x)| ≤ k1/(2−a2)2 |x|1/(2−a2)517

Thus, trajectories that converge to the origin (locally or ultimately) heading towards518

the origin shall adopt the form of functions (with the above mentioned properties)519

that satisfy (4.4) in a sufficiently small region around x = 0. A simple analysis on the520

(upper and lower) bounds from (4.4) shows that, for any a2 ∈ (0, 1], this is feasible521

on {|x| ≤ x̄} for a sufficiently small (positive)522

x̄ <

[
k
1/(2−a2)
2

(
k2
k1

)1/a2
]1/[(a1/a2)−1/(2−a2)]

523

provided that a1 > a2/(2 − a2), while if a1 < a2/(2 − a2), there is no function h(x)524

satisfying (4.4) in a neighborhood of x = 0. In other words, with a2 ∈ (0, 1] and a1 >525

a2/(2− a2), trajectories that (locally or ultimately) head directly towards the origin526

do exist and they are all within the curve segments defined by the lower and upper527

bounds from (4.4) in a sufficiently small interval around x = 0, while with a2 ∈ (0, 1]528

and a1 < a2/(2−a2), such type of trajectories cannot take place. Furthermore, in view529

of the invariance of the trajectories (due to the uniqueness of the non-trivial system530

solutions), the existence of trajectories that head directly towards the origin exclude531

that of trajectories that converge spiraling around it and vice versa. Consequently, we532

conclude that with a2 ∈ (0, 1] and a1 > a2/(2− a2) the system trajectories converge533

to the origin (locally or ultimately) avoiding spiraling around it, while with a2 ∈ (0, 1]534

and a1 < a2/(2−a2) the system solutions shall converge to zero oscillating (undergoing535

an infinite number of zero crossings before the definitive permanence at zero). It536

is worth noting that the just concluded assertions do not depend on the specific537

(positive) value of the control gains ki, i = 1, 2. On the contrary, for any a2 ∈ (0, 1],538

if a1 = a2/(2 − a2) (the homogeneity-related case), the type of (oscillating or non-539

oscillating) convergence does depend on the control gains. Indeed, a simple analysis540
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on the (upper and lower) bounds from (4.4) shows that if a1 = a2/(2 − a2), for541

any a2 ∈ (0, 1), then (k1/k2)1/a2 ≤ k
1/(2−a2)
2 , or equivalently k22 ≥ k2−a21 , becomes a542

necessary condition for trajectories to converge to the origin avoiding spiraling around543

it, and consequently, k22 < k2−a21 turns out to be a sufficient condition for the system544

solutions to converge to zero oscillating throughout the settling time; a more refined545

(alternative) analysis that leads to a more precise condition on the control gains ki,546

i = 1, 2, accurately stating the dividing point among oscillating and non-oscillating547

solutions in the homogeneity-related case will be developed and reported in a future548

communication. In the more particular case when a1 = a2 = 1 (the linear system549

case), one corroborates directly from (4.3) that the former (non-oscillating) case takes550

place with k22 ≥ 4k1, while the latter (oscillating) one arises with k22 < 4k1.551

The second reason on the differences among the result obtained for finite-time552

stability in [9, Corollary 1], with respect to that presented here, is the unexhaustive553

search (carried out in [9]) related to the finite-time convergence in itself, leading to con-554

ditions that permit such type of convergence without strictly ruling out infinite-time555

convergent solutions, while the analysis developed here leads to sufficient conditions556

that guarantee the finite-time convergence. Indeed, as pointed out in [9], finite-time557

stability of the origin (in the previously referred state space) may be concluded as558

long as the functional relation held among x and ẋ in the considered non-oscillating559

final stage of the system trajectories, ẋ = h(x), defines a first-order differential equa-560

tion with finite-time stable equilibrium at x = 0. With this in mind, the search for561

related conditions, carried out in [9], focuses on the system trajectories that (locally562

or ultimately) finish up by being close to the upper and lower bounds from (4.4). By563

forcing the exponent in the upper bound to be less than unity, the corresponding so-564

lutions were concluded to achieve the finite-time convergence, which led to conclude565

that such a convergence is achieved with a2 < 1, omitting any further analysis on566

the lower bound. Through such a condition, finite-time convergence of the system567

trajectories is indeed made possible, but the referred omission turns out to addition-568

ally permit conditions (namely, those giving rise to an exponent in the lower bound569

from (4.4) being higher than unity) through which solutions that converge to zero570

asymptotically in time take place (for instance, those that finish up by being close to571

the lower bound from (4.4)). As a matter of fact, in order to guarantee the finite-time572

convergence, one must additionally force the exponent in the lower bound to be less573

than unity too. This forces all the functions h(x) in the region defined through (4.4)574

(for sufficiently small values of |x|) to have the required form (in order for ẋ = h(x)575

to define a first-order system with finite-time stable equilibrium at x = 0). Such a576

complementary consideration in the analysis turns out to state the supplementary577

condition a1 < a2. Thus, for any a2 ∈ (0, 1), the limitation of the upper choices on a1578

stated through the result obtained here, in relation to that from [9, Corollary 1], turns579

out to guarantee (and not just permit) the finite-time stability of the trivial solution580

x(t) ≡ 0, thus ruling out infinite-time convergent solutions that may take place with581

a1 ≥ a2. The assertions concluded from the analysis and discussion developed in this582

section will be corroborated through simulations in the next section.583

Remark 4.1. From the analysis developed in this section, one can see that in the584

r0-exponential stability with infinite-time attractivity case stated through item 2 of585

Theorem 3.1, i.e. when 0 < a1 < a2 = 1, the system solutions converge ultimately586

oscillating, since 0 < a1 < a2 = 1 =⇒ 0 < a1 < a2/(2 − a2) = 1, while in the r0-587

exponential stability and asymptotic stability cases arisen with 0 < a1 = a2 < 1 and588

0 < a2 < a1 ≤ 1, respectively (recall Remark 3.3), the solutions converge ultimately589
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Fig. 1. System responses taking k1 = 0.1 and k2 = 1. Upper graphs: a2 = 0.8, a1 = 0.5 <
2/3 = ah1 (finite-time stability with ultimate oscillation), and a2 = 0.8, a1 = 0.7 > 2/3 = ah1
(finite-time stability avoiding ultimate oscillation). Center graphs: a1 = 0.9, a2 = 1 ((20/19, 1)-
exponential stability with infinite-time attractivity), and a1 = a2 = 1 (exponential stability with
infinite-time attractivity). Lower graphs: a1 = a2 = 0.7 ((20/17, 1)-exponential stability), and
a1 = 0.8 > 0.6 = a2 (asymptotic stability). Right-hand graphs: zooms of the responses included in
their corresponding left-hand graph.

avoiding oscillations, since 0 < a1 = a2 < 1 =⇒ 0 < a2/(2 − a2) < a1 < 1 and590

0 < a2 < a1 ≤ 1 =⇒ 0 < a2/(2− a2) < a1 ≤ 1.591

5. Simulation results. In this section, we illustrate the analytical findings of592

Section 3 and corroborations from Section 4 through computer simulations. In this di-593

rection, it is important to keep in mind that the goal here is not to evaluate closed-loop594

performance from a control viewpoint, where some sort of optimization or improve-595

ment is aimed. We have rather implemented the system dynamics (3.1) with several596

combinations of control parameter values selected so as to make as clear as possible the597

referred illustrations. Subsequently, we denote ahi , i ∈ {1, 2}, the homogeneity related598

value of ai for a given a3−i ∈ (0, 1), i.e. ah1 = a2/(2− a2) for a given a2 ∈ (0, 1), resp.599

ah2 = 2a1/(1 + a1) for a given a1 ∈ (0, 1). Recall further (3.2). All the simulations600

were run up to 300 seconds, taking initial values x(0) = ẋ(0) = 1.601

Figure 1 shows simulation results obtained taking k1 = 0.1 and k2 = 1 with602

different combinations of ai, i = 1, 2; note that k22 = 1 > 0.4 = 4k1, satisfying the non-603

oscillating solution condition of the exponential stability with infinite-time attractivity604

case, i.e. with a1 = a2 = 1. More particularly, Figure 1 shows results obtained with605

a2 = 0.8 and a1 = 0.5 < 2/3 = ah1 (finite-time stability with ultimate oscillation),606

a2 = 0.8 and a1 = 0.7 > 2/3 = ah1 (finite-time stability avoiding ultimate oscillation),607

a1 = 0.9 and a2 = 1 ((20/19, 1)-exponential stability with infinite-time attractivity),608

a1 = a2 = 1 (exponential stability with infinite-time attractivity), a1 = a2 = 0.7609

((20/17, 1)-exponential stability) and a1 = 0.8 > 0.6 = a2 (asymptotic stability).610

Note that while the system response obtained with a2 = 0.8 and a1 = 0.7 > 2/3 = ah1611
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Fig. 2. System responses taking k1 = 1 and k2 = 0.1. Upper graphs: a2 = 0.8, a1 = 0.5 <
2/3 = ah1 (finite-time stability with ultimate oscillation), and a2 = 0.8, a1 = 0.7 > 2/3 = ah1
(finite-time stability avoiding ultimate oscillation). Center graphs: a1 = 0.9, a2 = 1 ((20/19, 1)-
exponential stability with infinite-time attractivity), and a1 = a2 = 1 (exponential stability with
infinite-time attractivity). Lower graphs: a1 = a2 = 0.7 ((20/17, 1)-exponential stability), and
a1 = 0.8 > 0.6 = a2 (asymptotic stability). Right-hand graphs: zooms of the responses included in
their corresponding left-hand graph.

converges heading directly towards the equilibrium and reaching zero at about 149.6612

seconds where it remains thereafter, that gotten with a2 = 0.8 and a1 = 0.5 < 2/3 =613

ah1 converges ultimately experiencing non-stopping oscillations to finish up converging614

at around 57.975 seconds remaining at zero thereafter. Observe on the other hand615

that the system solution obtained with (a1, a2) = (0.9, 1) converges quicker than616

that gotten with (a1, a2) = (1, 1) and that it does converge ultimately experiencing617

oscillations (recall Remark 4.1). Note further that the system responses corresponding618

to the r0-exponential stability and asymptotic stability cases, respectively obtained619

with a1 = a2 = 0.7 and a1 = 0.8 > 0.6 = a2, are both corroborated to converge620

avoiding oscillations (recall Remark 4.1). Moreover, these cases are observed to keep621

on approaching to zero by the end of the simulation time.622

Figure 2 shows further simulation results obtained taking this time k1 = 1 and623

k2 = 0.1 with the same precedent combinations of ai, i = 1, 2; note that in this624

case k22 = 0.01 < 4 = 4k1, satisfying the oscillating solution condition of the ex-625

ponential stability with infinite-time attractivity case (a1 = a2 = 1). Note that in626

spite of the oscillating start of the finite-time convergent solutions involved in Figure627

2 (contrarily to those involved in Figure 1), the response obtained with a2 = 0.8628

and a1 = 0.7 > 2/3 = ah1 ultimately stops oscillating to head directly towards the629

equilibrium, reaching zero in a settling time close to 112.8835 seconds where it re-630

mains thereafter, while that gotten with a2 = 0.8 and a1 = 0.5 < 2/3 = ah1 keeps on631

oscillating up to its settling time at around 120.58 seconds remaining at zero there-632

after. Observe on the other hand that the solutions obtained with (a1, a2) = (0.9, 1)633
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Fig. 3. System responses taking homogeneity related values ah1 = 2/3 and a2 = 0.8 with:
k1 = 0.1 and k2 = 1 (widely satisfying the homogeneity related non-oscillating response necessary
condition); k1 = 1 and k2 = 0.1 (satisfying the homogeneity related oscillating solution sufficient
condition). Right-hand graphs: zooms of the responses included in their corresponding left-hand
graph.

and (a1, a2) = (1, 1) are corroborated to converge experiencing oscillations, while634

no important difference is observed among their convergence rate this time. Fur-635

thermore, one notes that the system responses corresponding to the r0-exponential636

stability and asymptotic stability cases, respectively obtained with a1 = a2 = 0.7 and637

a1 = 0.8 > 0.6 = a2, are again both corroborated to converge avoiding oscillations.638

In particular, the asymptotic stability case is clearly observed to keep on approaching639

the equilibrium by the end of the simulation time.640

Finally, Figure 3 shows further simulation results obtained taking this time the641

homogeneity related values a1 = 2/3 (= ah1 ) and a2 = 0.8, with the two precedent642

different combinations of control gains ki, i = 1, 2, namely (k1, k2) = (0.1, 1) and643

(k1, k2) = (1, 0.1); notice that in the former control gain case we have that k22 =644

1 > 0.1 > k2−a21 , ∀a2 ∈ (0, 1), and in the latter one that k22 = 0.01 < 1 = k2−a21 ,645

∀a2 ∈ (0, 1), widely satisfying the non-oscillating response necessary condition and the646

oscillating solution sufficient condition of the homogeneity related case, respectively647

(as exposed in Section 4). One observes from the figure that with (k1, k2) = (1, 0.1) the648

system response indeed converge in finite time oscillating, while with (k1, k2) = (0.1, 1)649

it turns out to converge in finite time avoiding oscillations.650

6. Conclusions. The double integrator fed back by an additive composition651

of gained (proportional) exponentially weighted position and velocity error correc-652

tion terms turns out to possess multiple stability properties and give rise to mul-653

tiple response behaviors. In particular, global finite-time stability of the trivial so-654

lution is proven to arise for any less-than-unity exponential weights with that re-655

lated to the position error correction term, a1, lower than that of the velocity er-656

ror one, a2, i.e. for any 0 < a1 < a2 < 1. The homogeneity related exponential657

weights, namely a1 = ah1 , a2/(2 − a2) ∈ (0, a2) for any a2 ∈ (0, 1), or equivalently658
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a2 = ah2 , 2a1/(1 + a1) ∈ (a1, 1) for any a1 ∈ (0, 1), thus turn out to be a particu-659

lar case over the referred richer spectrum of exponential weight values giving rise to660

finite-time stability of the trivial solution. Actually, such homogeneity related expo-661

nential weights happen to constitute the dividing point among finite-time convergent662

system solutions that ultimately keep/induce or avoid non-stopping oscillations before663

the definitive permanence at zero, independently of the control gain values; namely664

a2 ∈ (0, 1) with: a1 ∈ (ah1 , a2) giving rise to the ultimately non-oscillating behavior665

and a1 ∈ (0, ah1 ) for the ultimately oscillating one, or equivalently a1 ∈ (0, 1) with:666

a2 ∈ (a1, a
h
2 ) for the ultimate non-oscillation case and a2 ∈ (ah2 , 1) for the ultimate os-667

cillation one. Curiously, both oscillating and non-oscillating behaviors can take place668

in the homogeneity related case depending on the control gain values, with k22 < k2−a21669

proven to be a sufficient condition for the former (oscillating) behavior and k22 ≥ k
2−a2
1670

a necessary condition of the latter (non-oscillating) one, when a2 ∈ (0, 1). The con-671

ventional and a homogeneous-norm-related exponential types of stability turn out to672

additionally arise when 0 < a1 ≤ a2 ≤ 1. Actually, for any such combinations of ex-673

ponential weights, the trivial solution happens to have the homogeneous-norm-related674

exponential type of stability, becoming the conventional type when a1 = a2 = 1, with675

additional infinite-time attractivity in this case and when 0 < a1 < a2 = 1, and676

sharing the finite-time stability property when 0 < a1 < a2 < 1. For the comple-677

mentary exponential weight condition 0 < a2 < a1 ≤ 1, global asymptotic stability678

is the best conclusion that can be drawn for the trivial solution through the analysis679

developed here. For this asymptotic stability case and the homogeneous-norm-related680

exponential stability one arisen with 0 < a1 = a2 < 1, no analytical certainty about681

the type of convergence, among finite- and infinite-time, could be obtained. It re-682

mains to discover if the analytically obtained finite-time stability sufficient condition,683

0 < a1 < a2 < 1, is additionally necessary, or if there is an analytical way to know684

the type of convergence (among finite- or infinite-time) that does or may arise when685

0 < a1 = a2 < 1 and when 0 < a2 < a1 ≤ 1.686

Appendix A. About [9, Theorem 1]. [9, Theorem 1] claims that, for systems687

ż = g(z), z ∈ Rn, with a finite-time stable equilibrium at z = 0n and g being a688

continuous vector field that is continuously differentiable on Rn \ {0n} and has a689

component gi(z) that is Lipschitz-continuous at z = 0n, for some i ∈ {1, . . . , n}, the690

solutions that reach the origin in finite time do so such that limt→T zi(t)/‖z(t)‖ = 0,691

with T being the settling time. By denoting z(t; p0) a system solution with z(0; p0) =692

p0 and considering that z(T ; p0) = 0, the proof begins by invoking the mean value693

theorem, through which it is claimed that there exists q ∈ [0, T ] such that 0 =694

zi(T ; p0) = zi(0; p0) + Tgi(z(q; p0)). By further considering the dependence of T and695

q on the initial state and denoting p a generical initial condition along the trajectory696

going through p0, i.e. p = z(t; p0), t ∈ [0, T (p0)], the previous equation is more697

generally rewritten as698

(A.1)
gi(z(q(p); p))

zi(0; p)
= − 1

T (p)
699

for any such p. At this point, the author claims that, in view of the smoothness of700

zi(t; p) in t and its vanishing at t = T (p):701

(A.2) lim
p→0n

∣∣∣∣zi(q(p); p)zi(0; p)

∣∣∣∣ = 1702

and involves such a limit to support the rest of the proof. Nevertheless, such a limit703

does not hold (and does not even necessarily exist) if q is not unique. Indeed, in a704
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general context where zi(t) can converge to zero undergoing non-stopping oscillations705

(giving rise to an infinite number of zero crossings) during the settling time or avoiding706

oscillations (for instance, depending on the value of parameters involved in the system707

dynamics), the limit may be valid for the latter (non-oscillating) case. But in the708

former (oscillating) case, there would be a multiple (actually infinite) number of mean709

times q satisfying (A.1) for every p, and each one of such mean times, subsequently710

denoted qj , j = 1, 2, . . . , would generally state different relations of zi(qj(p); p) and711

zi(0; p), i.e. different values of zi(qj(p); p)/zi(0; p) for each j = 1, 2, . . . ; in particular,712

by considering that qj1(p) > qj2(p) for any j1 > j2: qj(p) → T (p) as j → ∞, and713

consequently limj→∞ zi(qj(p); p)/zi(0; p) = 0 for every p. This shows that in the714

oscillating case —and consequently, in the more general context where no assumption715

is made on the type of (oscillating or non-oscillating) convergence— the left-hand side716

limit in (A.2) does not have a defined value, and more particularly that (A.2) does not717

generally hold. Consequently, [9, Corollary 1] does not really apply to every finite-718

time convergent solution. It may however be considered to apply to solutions whose719

component zi converge to the origin in finite time (locally or ultimately) avoiding720

oscillations.721
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