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Resumen

En este trabajo se propone y valida un esquema numérico que permite estudiar carac-
terı́sticas macroscópicas como función de la estructura microscópica de un material com-
puesto por partı́culas magnéticas monodominio. Lo anterior se lleva a cabo considerando
una celda representativa del material que contiene un número finito de partı́culas con ge-
ometrı́a arbitraria. Luego, se aplican condiciones de frontera de Dirichlet o de Robin para
simular que el sistema está aislado o que se repite periódicamente en el espacio, respec-
tivamente. Luego, a partir de la teorı́a micromagnetica, se coloca la ecuación diferencial
del sistema en forma débil para posteriormente utilizar el método de elemento finito para
obtener una configuración de las partı́culas que corresponda a un mı́nimo local de la energı́a
micromagnética. Lo anterior, da como resultado una curva de histéresis que nos permite
apreciar el comportamiento magnético del sistema en cuestión. Adicionalmente, se hace un
desarrollo con más rigor sobre el mismo problema al utilizar dos aproximaciones: la primera
es entender la celda como un sistema que a su vez está contenido dentro de un sistema de
mayor escala y luego propagar los factores de demagnetización para obtener un factor de
demagnetización del sistema compuesto. La segunda, es utilizar una muestra representativa
de volumen para después utilizar el método de homogenización asintótica para obtener, de
igual manera, un factor de demagnetización generalizado que contiene las propiedades de la
microstructura ası́ como un término que corresponde a la interacción entre celdas. Los resul-
tados de este trabajo representan una solución complementaria para el estudio de ensambles
de partı́culas magnéticas ubicada entre los modelos micromagnéticos y los de campo medio.

Palabras clave: micromagnetismo, método de elemento finito, método de homogenización
asintótica, formulación débil.
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Abstract

In this work, a numerical scheme is proposed and achieved, so that allows studying the
macroscopic properties as a function of the microscopic structure of a material composed
of monodomain magnetic particles. This is carried out by considering a representative cell
of the material that contains a finite number of particles with arbitrary geometry. Then,
Dirichlet or Robin boundary conditions are applied to simulate that the system is isolated
or periodically repeated in space, respectively. Then, from the micromagnetic theory, the
system’s differential equation is placed in weak form to subsequently use the finite element
method to obtain a configuration of the particles that corresponds to a local minimum of
the micromagnetic energy. This results in a hysteresis curve that allows us to appreciate the
magnetic behavior of the system in question. Additionally, a more rigorous development is
made on the same problem by using two approximations: the first is to understand the cell as
a system that is also contained within a larger-scale system and then propagate the demag-
netization factors to obtain a demagnetization factor of the composite system. The second is
to use a representative volume sample and then use the asymptotic homogenization method
to obtain, in the same way, a generalized demagnetization factor that contains the proper-
ties of the microstructure as well as a term that corresponds to the interaction between cells.
Keywords: micromagnetism, finite element method, asymptotic homogenization method,
weak formulation.

Palabras clave: micromagnetism, finite element method, asymptotic homogenization method,
weak formulation.
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Chapter 1

Introduction

1.1 Background and motivation

At the moment there is a great demand by industry on ferromagnetic materials due to
their properties. Specially nonhomogeneous ferromagnetic materials is a subject with grow-
ing interest. Therefore, there is a necesity to understand and foretell the behaviour of the
properties of such materials. The above is completed by means of numerical methods. But
also, there is an issue in this task: as the size of the sample becomes bigger the cost of a
numerical simulation increases and becomes a lock in the investigation in this matter.

Figure 1.1: Sketch representing the positioning of the model with respect to the other theo-
ries.

As far as we know [12] there are four ways to study magnetic materials. The first one is
the atomistic approach which uses quantum mechanics to study the properties of magnetic

2



materials in an atomic scale (rightmost picture of Figure 1.1). This can be used to analize
the effects of impurities in materials. The second is the macroscopic approach. This the-
ory considers the magnetic material as a bulk object and uses classical electrodynamics to
determine the properties of the material (leftmost picture of Figure 1.1). This can be useful
to study materials with simple geometries but it fails when it comes to study nanomaterials
as it can not see the interactions between particles. On third place we have the micromag-
netic approach wich takes into account the atomic structure and the magnetic interaction
between particles (center picture of Figure 1.1) but this approach fails as one wants to study
systems above the mesoscopic scale as the computing cost gets bigger. Finally, we have the
Multi-scale approach, which combines different approaches to study magnetic materials at
different length and time scales.

This thesis proposes the combination of the micromagnetic approach and homogeniza-
tion techniques to create and intermediate approach which can foretell the properties of a
bulk material taking into account the geometry of the nanoparticles present in the material
and the interaction of such arrangement of magnetic particles. This is done two ways: the
first, is to develop a mean-field model which describes the effective magnetostatic anisotropy.
This approach is created under the assumption that the material is made up of a very large
number of identical spherical particles enclosed in some finite volume V . This allow us to
compute the mean values of the main magnetic parameters of such a system ignoring some
factors of the microstructure. But also, this set of conditions are quite strong restrictions to
the systems that can be studied with this mean-field model. Therefore, there is a need to
develop a more general procedure that could tackle a broader set of systems. This is done
by means of homogenization techniques. Particularly, we use the asymptotic homogeniza-
tion technique and the two-scale homogenization approach to get a generalized model that
computes the main properties of a magnetic system based on a sample region (cell) of the
material which contains the geometry, and volume fraction of the magnetic particles in the
cell.

All the above, will serve to predict the characteristic of magnetic nanomaterials which in
turn will reduce the number of experimental samples that must be created and characterized.
Also, with the ability to numerically simulate materials of this kind, one can also determine
the final configuration of the magnetization due to certain initial state of the sample.
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1.2 Hiphothesis

We are certain that we can create a numerical scheme based on the minimization of the
micromagnetic energy and the Finite Element Method (FEM) studied under a model crafted
with partial differential equations in weak form. This scheme will be capable of computing
the hysteresis curves of a cell which contains a finite number of magnetic particles with
arbitrary geometry subject to Dirichlet, Robin or periodic boundary conditions.

Also, we can predict the main properties of magnetic systems with a mean-field model
for systems composed of a large number of spherical particles and, for more arbitrary sys-
tems, we can use a scheme based on the homogenization techniques what will determine
an operator which determines the demagnetization field based purely on the geometry and
arrangement of the magnetic particles in a cell.

1.3 Objectives and scope of the thesis

General objective:

• Create the numerical scheme that determines the hysteresis curve of some magnetic
material based on the geometry and accomodation of the particles in a cell.

• Develop a mean-field model capable of determining an analytical expression for the ef-
fective magnetic anisotropy for a system made of a large number of identical spherical
particles.

• Obtain an operator that computes the demagnetization field based on the geometry of
the sample using homogenization techniques.

Specific objetives

1. Set the micromagnetic energy for a system of N particles with constant magnetization
vector.

2. Use the boundary conditions to formulate the weak formulation of the problem.

3. Use the lagrange multipliers technique to find the direction in which the energy de-
scends.
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4. Use a line search algorithm to find the minimum energy for the actual configuration.

5. Code all of the above on FreeFem++.

6. Test the code.

7. Analyze the effects of the geometry and arrangement of the particles.

8. Develop a mean-field model based on the clustering of some lattice repeated in space
to form a larger system.

9. Obtain the total magnetic anisotropy for the system above mentioned.

10. Use the two-scale homogenization technique to determine an expression for the de-
magnetization field.

11. Apply the numerical scheme to magnetotactic bateria and observe the results.

12. Apply the numerical scheme to arbitrary geometries and observe the results.

5



1.4 Contribution to the field

The present investigation will contribute in two ways: first, with an open source code
which includes the numerical scheme mentioned above. This code will be written in FreeFem++
and published on Github for future generations to use, study and contribute. This code shall
be published under a creative commons of GNU license. Second, this investigation will
culminate with the publication of scientific papers with the detailed procedure on how to
obtain the numerical scheme, how to use the code to study several systems of interest and
how to apply the two-scale homogenization to obtain properties of a material with periodic
boundary conditions.
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Chapter 2

Literature review / State of art

2.1 Overview of micromagnetics

Magnetism in an natural phenomenon that we perceive with normality in daily life but
no always has been this way. The history of magnetism dates back to ancient times, the
first record of magnetism in history is from chinese literature around 4000 B.C. where is
mentioned that magnetite was used as a primitive compass [13]. Over the years, the compre-
hension of magnetism has evolved with the efforts of numerous scientists.

One of the earliest recorded mentions of magnetism can be traced back to Greece, where
the ancient philosopher Thales of Milletus noted that some special stones (lodestone) had
the abilty to pull small pieces of iron from a certain distance. This lodestone was found
in the region of Magnesia and because of this the magnets get its name. From here, there
was no formal study in this phenomenon until the 16th century when Sir William Gilbert,
at a the service of the Queen Elizabeth I, published the first scientific work on the subject
of this materials [14]. His investigation was published in the book ”De Magnete” in which
Hilbert describes the results of the first experiments with magnets and the term ”magnetism”
is introduced to the scientific community.

It was until the 19th century that magnetism was studied with academic rigor, with the
discovery of new magnetic materials and the development of experimental techniques. It is in
this time when Michael Faraday discovered the electromagnetic induction in 1831. Faraday
showed that the change in some magnetic field could induce an electrical current in copper
wire if the wire was near the source of the variable magnetic fied. This fact is, until today,
the basis of the electrical generators and motors. In the same century, James Clerk Maxwell
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formulated its famous set of equations, creating the theory that unified the electricity and
magnetism. This set of equations, henceforth known as the Maxwell’s equations, described
the demeanor of electric and magnetic fields and the relation between them. These equations
also predicted the existence of electromagnetic waves which in time became the foundations
for the development of the radio, television, and signal transmission [15].

Later in the 20th century, magnetism gathered the atention of the scientific community
with the discovering of the ferromagnetism: the phenomenon in which a non-magnetic
material can become permanently magnetized, this was the begining of the creation of
neodymium magnets. Ampere suggested that the ferromagnetism was due some internal
electric currents inside the material. This idea had be proven correct on and carried out by
W. E. Weber in the 19th century. Weber assumed that the molecules of iron could be capable
of move around their own axis, and this would be equivalent to a current flowing around a
circular spire creating a tiny magnetic moment but, in the case of iron, the molecules lied in
configuration such that every magnetic moment was neutralized with the moment of the other
molecules. Then, under the application of an external magnetic field, the magnetic axis of
each molecule aligns itself with the external magnetic field. This results in the magnetization
of the iron as happens in the experiments [16].

From here, we aim to study magnetic materials in a microscopic scale therefore a subfield
of magnetism was requiered: the micromagnetism. The earliest work in this subject was due
to Pierre-Ernest Weiss. His investigation was published in 1907 and coined the concept of
the ”molecular field theory” which describes the interaction between the atomic magnetic
moments of in the material. This was the basis for the magnetic domains: regions of a
material where the magnetic moments of the atoms are aligned in the same direction [17].

Later, there were numerous scientists [18] that contributed to the field but the most im-
portant between them where Felix Bloch (1930), who coined the ”Bloch wall model” which
describes the behaviour of domain walls; and Andrei Sakharov (1950) who studied the impor-
tance of the thermal fluctuations over the magnetic properties of magnetic materials [19]. On
the other hand, the first studies in micromagnetism based on numerical methods date from
the year 1960 when the development of computers led to the growth of new models and
theories which explained the stability of the magnetic domains and the response of magnetic
domains under a pulse of field [20].

Nowadays, the magnets have a significant role in technology as we have found many ap-
plications to this materials. We use magnets to transform mechanical energy into electrical
energy by using motors and transformers; to store data inside hard drives; to transform me-
chanical vibrations into electrical signals with a microphone or we can transform electrical
energy into mechanical vibrations with a loudspeaker. Among this applications we are Par-
ticularly interested in the ones that the computation has brought as the requirement of larger
data storage devices began to grow. In general, the magnetic storage devices such as hard
drives rely on tiny magnetic elements which store only a single bit of information. There-
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fore, the writing speed of these devices depends on the magnetization switching time. This
stands for an intensive understanding of the magnetization process and mechanisms in order
to design new and better data storage devices [21]. In this fashion, the model and simulation
of magnetic media can provide reliable information about magnetic systems without creating
every new material that comes to mind. Respec to this, the present thesis is an effort to build
a numerical scheme capable of determining magnetic properties of a system of N magnetic
nanoparticles with arbitrary shape. Then, as we propose periodical boundary conditions, the
numerical scheme wil be capable of calculate the properties of a bulk material with an atomic
structure given by the structure of one cell allowing us to accurately predict the properties of
think films made of a regular array of magnetic nanoparticles.

2.2 Elements of partial differential equations in weak form

A partial differential equation, in few words, is a mathematical model that represents or
describes a physical phenomenon that vary over time and/or space. This kind of equations
can be classified by its order, linearity and the number of variables in the equation. There
are only a few of this partial differential equations (PDE) that can be solved analytically and
therefore are the most known [22]. Some of this cases will be presented next.

2.2.1 The variational formulation

So far, we have seen that the study of partial differential equations is focused on finding
unknown functions that satisfy some differential equations subject to certain conditions. In
general, differential equations are mathematical models that represent a phenomena. Now,
if the interesting variables of a system are time dependent then we say that the differential
equation with the initial condition is a Initial Value Problem (IVP). On the other hand, if
the variables of the system are time independent then the differential equation depends only
on the coordinates and the variables of interest. In this case, we say that the differential
equation with the conditions established on the frontier conforms a Boundary Value Problem
(BVP). The solution to this kind of problems is not possible except for some explicit cases.
Therefore, we must find the solution to the majority of these problems by approximation
methods [23]. Although there is a variety of this methods, in this work we may focus in the
Finite Element Method (FEM). This method is used to find the solution of partial differential
equations in both time dependent and time independent problems. The method consist on
the discretization of the workspace by constructing a mesh made of smaller pieces called el-
ements, this elements can be constructed with a shape and size that is convenient to system’s
study. Later we select a function for interpolation and with this function as a basis we de-
termine the weak form (or variational formulation) of these problems. As for understanding
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what a weak formulation is, we are going to need the support of some concepts of functional
analysis.

Definition 2.2.1 (Set). Is defined as an ensemble of things that share some property. An
open set is a set that does not contain the boundary points and a closed set is one that already
contains the limit points.

Definition 2.2.2 (Space). A set that can be spanned as a linear combination of the elements of
the set (a basis) is called a Space. The number of elements that conforms the basis determines
the dimension of the space.

Definition 2.2.3 (Vector Space). a.k.a. Linear Space is a space that satisfies the conditions
of closure under addition and multiplication. Furthermore, a vector space must satisfy the
conditions of: commutativity, associativity, additive identity, additive inverse, distributivity
of scalars under sum and multiplication and scalar multiplication identity [24].

Definition 2.2.4 (Linear Relation). Let S be a linear space, and ui ∈ S, and αi ∈ R. Then, a
mathematical expression of the form

n

∑
i=1

αiui ∈ S

is a linear combination of ui. And finally, an equation that has the form

n

∑
i=1

αiui = 0

is said to be a linear relation.

Definition 2.2.5 (Finite-dimensional Space). A linear space S is a n-dimensional space if
and only if, there exist n linearly independent elements in S.

Definition 2.2.6 (Function). Let f (x),x ∈ Ω = [a,b], then f is a mapping that relates every
element in its domain Ω with one and only one element in another set (its range) R. Regularly,
this is written as f : Ω→ R.

Definition 2.2.7 (Metric Space). Let S be a linear space such that a,b,c ∈ S. Then, we can
define the distance between any two elements of S as d(a,b). Finally, S is a metric space if
the following conditions are satisfied:

i) d(a,b) = d(b,a)
ii) d(a,c)≤ d(a,b)+d(b,c) Triangle inequalty

iii) d(a,b)≥ 0
iv) d(a,b) = 0⇔ a = b

(2.1)

And the combination of the linear space S and the metric d(a,b) is a metric space denoted
by (S,d)
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Definition 2.2.8 (Normed Space). Let S be a linear space such that ui ∈ S. Also, let us define
the norm of ui as a real number denoted by ||ui||. This norm satisfy the following

i) ||αu||= |α||u| ∀α ∈ R
ii) ||u+ v|| ≤ ||u||+ ||v||

iii) ||u|| ≥ 0
iv) ||u||= 0⇔ u = 0

(2.2)

Definition 2.2.9 (Strong/Norm convergence). Let (V,d) be a metric space and {ui} ⊂ V a
sequence. Then, we say that u0 ∈V is the limit of {un} as n goes to infinity if for every ε > 0
there exist n0 ∈ N such that if n > n0, then d(un,u0)< ε. While all of this is true we can say
that

lim
n→∞

un = u0

or
un→ uo as n→ ∞.

And finally we can say that {un} is (strongly) convergent. In simple words: a sequence
is strongly convergent, if as n→ ∞ the sequence goes to a certain element inside the same
linear space. This is, the sequence gets close to some u0 ∈V as n→ ∞.

Definition 2.2.10 (Cauchy Sequence). Let (V,d) a metric space and {ui} ⊂ V a sequence.
The sequence shall be called a Cauchy sequence if for every ε > 0 exist some n0 ∈ N such
that if m,n > n0, then

d(un,um)< ε.

This is, after some element of the sequence indexed by n0 we can always draw a circle
centered around un and the circle will be completely contained in V .

Definition 2.2.11 (Complete metric space). Let (V,d) be a metric space. Then, the metric
space will be complete if and only if every Cauchy sequence in V converges to an element
in V .

Definition 2.2.12 (Banach Space). A Banach space B is a complete metric normed space.
Recall that every metric space is a normed space but not every normed space is a metric
space.

Definition 2.2.13 (Inner Product Space). Let S | x,y,z ∈ S be a linear space. Then, we can
define an inner product (x,y) that maps every pair x,y to a real number. This product will
satisfy

i)(x,y) = (y,x)
ii)(ax+by,z) = a(x,z)+b(y,z) ∀a,c ∈ R

iii)(x,x)≥ 0
iv)(x,x) = 0⇔ x = 0

(2.3)
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Definition 2.2.14 (Lp Spaces). Let 1 < p < ∞. Then, if u : Ω→ R is measurable and∫
Ω

|u|pdx < ∞.

Then, u ∈ Lp(Ω).

Definition 2.2.15 (Hilbert Space). It is a name for a complete inner product space.

Definition 2.2.16 (Hk Space). Let H0(Ω̄) = L2(Ω̄) be a space of square-integrable functions
defined over some Ω̄ Then, we can define Hk spaces as a space of functions whose kth
derivative exist and are square-integrable. It is remarkable that H0 is the bigger and less
restrictive space among these.

Definition 2.2.17 (Sobolev Spaces). We begin by denoting this spaces by W m,p(Ω) and
let Diu represent the ith derivative of u. Then, we say that a function u ∈W m,p(Ω) if the
following conditions are both satisfied:

• u ∈ Lp(Ω)

• Dαu ∈ Lp(Ω)

where p represents the integrability of the power and m represents the maximum derivative
that exist in such a space.

Definition 2.2.18 (Weak derivative). Let φ ∈ C 1
c (R) and a > 0 such that supp(φ)⊂ [−a,a]n.

Then by the fundamental theorem of calculus we know that∫ a

−a

∂φ

∂xi
(xi, x̂)dxi = φ(−a, x̂)−φ(a, x̂) = 0,

and by consequence ∫
Ω

∂φ

∂xi
=

∫
Rn−1

∫ a

−a

∂φ

∂xi
(xi, x̂)dxi = 0.

With this in mind, let us apply the same procedure to the product ( f φ) ∈ C 1
c (Ω) to obtain∫

Ω

∂( f φ)

∂xi
=

∫
Ω

∂ f
∂xi

φ+
∫

Ω

f
∂φ

∂xi
= 0

The last equation motivates the definition of weak derivative as follows: let u ∈ Lp(Ω)
then, u is weakly differentiable in Ω if there exist some v1, ...,vn ∈ Lp(Ω) such that∫

Ω

u
∂φ

∂xi
+

∫
Ω

viφ = 0 ∀φ ∈ C ∞
c (Ω),

for any i. In this context, vi is called the ith weak derivative of u in Ω such that Diu := vi
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Theorem 2.2.1 (Gradient Theorem). States that the line integral of a gradient field can be
evaluated by calculating the integral of the original scalar field at the endpoints of the curve.
This is ∫

Ω

∇φdxdydz =
∮

Γ

n̂φds

Theorem 2.2.2 (Divergence/Gauss Theorem).∫
Ω

∇ ·φdxdydz =
∮

Γ

n̂ ·φds

Proposition 2.2.1 (Integration by Parts). This is a calculus technique that allows to transfer
differentiation from one function to another by means of an integral representation. This
is also an integration technique that is allow us to rewrite the integral of a product of two
functions (u,v) ∈ C 1 as ∫ b

a
udv = [uv]ba−

∫ b

a
vdu.

Also, combining definitions (2.2.1, 2.2.2) we can get to these useful forms of the integra-
tion by parts. On the case of a partial derivative of first order we get∫

Ω

(∇φ)ψdΩ =−
∫

Ω

(∇ψ)φdΩ+
∮

Γ

n̂φψds.

And on the case of a second order differential operator we can write∫
Ω

(∇2
φ)ψdΩ =−

∫
Ω

∇φ ·∇ψdΩ+
∮

Γ

dφ

dn
ψds

The above definitions are not intended to be a express course of mathematical analysis,
although this definitions can result useful to give context to some concepts that are recalled
later in this work. If the reader is interested in this topic, all of the above come from [23,25–
27]

In spite of giving some context on the use of the integration by parts to change the form
of an equation we will show some examples next. Consider an operator A : S ⊂ H1(a,b)→
H0(a,b) such that

Aφ =−dφ

dx
,x ∈ (a,b).

Where we can name the domain Ω = (a,b) and the boundary of that domain as Γ = {a,b}.
Later, we can use the typical definition 2.2.1 to this product to get

(Aφ,ψ) =−
∫ b

a

dφ

dx
ψdx =

∫ b

a
φ

dψ

dx
dx+[φψ]ba.
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As you can see, as we integrate by parts the derivative operator goes from φ to ψ at the
cost of adding the extra term [φψ]ba. This extra term is called concomitant.

Now, let us consider an operator A : S⊂ H2(a,b)→ H0(a,b) such that

Aφ =
d2φ

dx2 .

Then we can use integration by parts to do the following

∫ b

a

d2φ

dx2 ψdx =
[

ψ
dφ

dx

]b

a
−

∫ b

a

dφ

dx
dψ

dx
dx,

and if we do the same process to the integral on the right hand side

[
ψ

dφ

dx

]b

a
−

∫ b

a

dφ

dx
dψ

dx
dx =

∫ b

a
φ

d2ψ

dx2 +

[
dφ

dx
ψ−φ

dψ

dx

]b

a
.

In this case, by applying twice the integration by parts to the operator acting over some φ

we change the operator from φ to ψ and appears a concomitant which is the term in brackets.

Finally we consider an operator in two dimensions. Let A : S⊂H1(Ω)→H0(Ω) |Ω⊂R2

such that

A =
∂

∂x
+

∂

∂y
.

Later we can rewrite the following integral as

∫
Ω

(
∂φ

∂x
+

∂φ

∂y

)
ψdΩ =−

∫
Ω

φ

(
∂ψ

∂x
+

∂ψ

∂y

)
dxdy+

∮
Γ

(nx +ny)φψdΓ.

Where we have used the last equations on definition (2.2.1) to change the integral over Ω to
be over the boundray Γ. As in the prior examples, we used the integration by parts technique
to modify the form of the equation. As usual, we pass the partial derivatives from φ to ψ and
the concomitant term appears in terms of n the normal to the boundary Γ.

14



Now that we have collected the concepts and definitions required, we can approach to the
main topic of this section: the weak formulation of a partial differential equation. Generally,
when we want to solve a problem numerically, we need to approximate the solution by using
a subspace of H1(Ω) spanned by a set of basis functions associated to a mesh representing
a virtual space. This task could be complicated if we try to solve it in strong form. Here
is where the weak form becomes interesting. The weak formulation is a way to transfer
the concepts of linear algebra to solve a problem in differential equations. To illustrate this
concept let us study a simple case as follows:

Suppose we have a problem involving a differential operator as −∇(a(x)∇u(x)) = f (x).
As we use the integration by parts technique we achieve the weak (variational) form of the
problem. Then, let {ψn | n = 1, ...,N} be a set of linearly independent functions that lay in
H1

0 (Ω). This set of functions clearly span an N-dimensional subspace VN ⊂H1
0 (Ω). To solve

this, we need to find some u ∈ H1
0 such that∫

Ω

a(x)∇u(x) ·∇v(x)dx =
∫

Ω

f (x)v(x)dx ∀v ∈ H1
0 (Ω).

The next step will be to seek an approximate solution

u =
N

∑
n=1

unψn | u ∈Vn.

In this way, we just need to test u against every v ∈Vn and not to every v ∈ H1
0 . Now, to this

end we can propose

v =
N

∑
m=1

umψm | u ∈Vn.

Taking u and v as series, then the integral equation can be rewritten as

N

∑
n=1

N

∑
m=1

unvm

∫
Ω

a(x)∇ψn(x) ·∇ψm(x)dx =
N

∑
m=1

vm

∫
Ω

f (x)ψm(x)dx.

And later, we consider that v = ψk ∀ k = 1, ...,N so vk = δm,k. Therefore,

N

∑
n=1

un

∫
Ω

a(x)∇ψn(x) ·∇ψm(x)dx =
∫

Ω

f (x)ψm(x)dx.

This becomes a system of equations of N×N represented by
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Au⃗ = b⃗,

where

A =
∫

Ω

a(x)∇ψn(x) ·∇ψm(x)dx ∈ RN×N ,

u⃗ = un ∈ RN ,

b⃗ =
∫

Ω

f (x)ψm(x)dx ∈ RN .

And as we can recognize, this is merely a problem of linear algebra, as desired [28].

2.3 Asymptotic homogenization

First, let us start with the concept of homogenization. In general, the idea of homoge-
nization allow us to upscale a differential equation model. For example, if a certain volume
Ω of a material has a certain physical property that depends on the coordinates and it is
represented by f (x). In addition, let us say that this property oscillates rapidly over some
representative sample of the material. What one would do, experimentally, is to take several
measurements over this representative sample and then report or assume the most likely re-
sult (the average maybe). If we have some mathematical representation of the property, then
we just report that the value of the property in Ω is given by

f̄ (x) =
∫

Ω

f (x,y)dy.

In this case, we propose that the oscillations of f (x) show the behavior of the microscale
of the material, represented by the variable y while f̄ (x) describe the properties of the mate-
rial in the macroscale. And as a concept the homogenization has the same spirit but it has a
more strict mathematical sense.

The process of homogenization begins with the selection of a representative elementary
volume (REV). Then we work not with only one function f (x) but with a whole family of
functions uε where ε > 0 is a scale parameter which depends on the spatial coordinates and
typically ε is associated with the length of an individual cell of the material. With this in
mind, the function uε let us analyze a family of problems associated with each ε in a sense
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that every one of these represent the properties of the material at a different scale. This can
be seen in the figure 2.1.

Figure 2.1: Sketch of how ε represents different scales on the material. This is, calculating
uε we can obtain the property at the desired scale of the material.

2.3.1 Example of homogenization in 1D

To illustrate the process we are going to considerate some simple configurations. In
this case, we shall consider a one-dimensional diffusion problem where u is the variable of
interest and it is defined in some Ω = [0,1]. Then the boundary value problem will be written
as


d
dx

[
a(x) d

dxu(x)
]
= 0, 0 < x < 1,

u(0) = 0,
u(1) = 1.

(2.4)

From the first equation it is clear that a(x)u′(x) must be constant (that we call Q) and
therefore

d
dx

u(x) =−−Q
a(x)

, (2.5)

and we can solve this equation to get
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u(x) =−Q
∫ x

0

1
a(x)

dx, (2.6)

and when we consider the boundary conditions this is rewritten as

u(x) =
−1∫ 1

0 a(x)dx

∫
Ω

a(x)dx. (2.7)

In this example, we have obtained the quantity u(x) and, as a collateral effect, we also
have the diffusion constant characterized by Q. This is the spirit of the homogenization tech-
nique. The function a(x) represent a non-homogeneous property of the material (diffusion
for this case) and the parameter Q is the effective diffusion in this medium. Note that Q
depends on the function that we already know in the cell region, whereas the u(x) depends
on both, the cell region and the Ω region over we want to compute the parameter.

Now, with mere descriptive purpose let us modify the problem to this version


d
dx

[
aε(x) d

dxuε(x)
]
= 0, 0 < x < 1,

uε(0) = 0,
uε(1) = 1.

(2.8)

Such that every problem will be indexed by the scale parameter ε= 1/n and the functions
aε(x) = a(x

ε
) and uε(x) = u(x

ε
) are such that have periodicity of length 1. In particular, this

fact can be interpreted as that the functions aε(x) are oscillatory functions with increasing
frequencies as ε→ 0. If we apply the same procedure as before we obtain a solution that can
be written as
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uε
0(x) =

1∫ 1
0

dx
aε(x)

∫ x

0

dx
aε(x)

uε
0(x) =

1∫ n
0

dy
a(y)

∫ nx

0

dy
a(y)

uε
1(x) = x+

1∫ n
0

dy
a(y)

∫ nx

0

(
1

a(y)
−1
)

dy

uε(x) = x+ ε

∫ 1
0

dŷ
a(ŷ)∫ 1

0
dŷ

a(ŷ)

− εy

(2.9)

This can be rewritten as
uε = u(x)+ εu1(x/ε), (2.10)

where u(x) = x and u1(x/ε) is a periodic function (1-periodic indeed). Here we can observe
that u(x) describes the global or macroscopic behavior of uε and u1(x/ε) is a correction term
that adds the local oscillations of uε(x). For further information and formal description of
this process, one can go to [29–32].

2.4 Previous works / State of art

2.4.1 Numerical scheme in micromagnetism

The principal aim of this work is to develop a solid numerical scheme that is capable to
compute the macroscopic properties of system of magnetic particles by knowing the micro-
scopic structure of the material. As a way to contextualize the reader of the place that this
research has in the field, this section will collect the articles that are related and accompany
the present research.

According to [33, 34] the field of the computational micromagnetics is divided in two
major fields: static micromagnetics and dynamic micromagnetics. The static micromagnet-
ics is the branch that finds a set of stable magnetization of the particles such that the total
free energy E of the system is (at least) in a local minimum with respect the magnetization
vecm. This model is useful to compute some properties of magnetic materials such as the
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hysteresis curves. On the other hand, dynamic micromagnetics makes use of the Landau-
Lifshitz-Gilbert (LLG) equation which describes the spatial motion of the magnetization in
some effective field.

Independently of the model that we use to describe some system, we have to deal with a
set of non-linear partial differential equations whose analytical solution exist just for a few
simple cases. In general, the solution of static and/or dynamic micromagnetics recall for
numerical methods. The most popular numerical methods in micromagnetics are two: the
Finite Difference Method (FDM) and the Finite Element Method (FEM).

In the case of the FDM we have several software packages that already exist such as
OOMMF [35], Fidimag [36], Micromagus [37], a very creative implementation of numpy
and python [38], Mumax3 [39] and magnum.fd [40]. All of the above mentioned software
are based on the FDM and deals with the dynamic version of the micromagnetics.

On the other hand, we have the FEM where we need to solve a system of partial differ-
ential equations but instead of make the original problem discrete we need to transform the
problem to its variational (weak) form and then discretize this form. In this context we have
even more software packages but most of these packages are not oriented specifically to the
field of micromagnetics but are a set of libraries that allow us to solve any problem of partial
differential equations by means of the FEM. This is quite convenient as opens the boundary
to solve not only micromagnetics but anything one can think about. In this respect the most
popular software is: Escript [41], MFEM [42], FEniCS [43] and are the basis to construct
software that really focuses on magnetism such as Magpar [44] , Nmag [45], Tetramag [46],
Fastmag [47].

Now, in general, every one of this packages has advantages and unique characteristics but
also each one has its flaws. In brief: Escript, MFEM, and FEniCS are not designed specif-
ically to treat with micromagnetics and due to this, solve a problem of magnetism in this
environment needs intermediate knowledge of programming and has a steep learning curve.
Also, the discretization of the space into a mesh of finite elements has to be made in external
packages which could deepen the learning curve. Fortunately we have the specialized soft-
ware as Magpar, Nmag, Tetramag and Fastmag. To analyze the opportunities of each of these
programs we shall do it one by one. In first place Magpar has a process of installation that
is not straightforward and despite of being free of cost, it could be difficult to compile and
use; Nmag is an exceptional software that makes use of a large set of tools but it is designed
to work on unix based operative systems. This, of course, indicates that the user must have
a previous knowledge of this platforms and how to set up and install libraries from scratch.
Tetramag and Fastmag are, as well, very powerful tools but both are designed to run over
the graphic unit processors (GPU) which, once again, indicates that is not suitable for a non
hardcore user and that you need to have a recent GPU and know how to use it.
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Therefore, there is a need to create an implement a numerical scheme that is multi-
platform, open source, free and easy to install and use for the casual users. This is the aim of
this research as to develop this scheme and analyze further examples and cases which, luck-
ily, will inspire the community to develop and cherish new functions, codes, and knowledge
over the properties of magnetic materials.

2.4.2 Asymptotic homogenization method in material’s science

Figure 2.2: Metaparticles and its accomodation in some scales of length [1]

Now, on the subject of homogenization we can find that there is large research field.
As new technologies appeared, new ways to construct materials became available. This
led to novel ways of thinking of materials: how these are fabricated and the properties that
the material could have if the microstructure is carefully chosen. Eventually this leads to
the study of metamaterials with a very precise geometry, then appeared the study of the
combination of these geometries and the effect that could have in the bulk properties [48].
What is said above can be visualized within figure 2.2.

In a field as wide as material’s science there are a lot of applications to the concept of
homogenization such as biomedicine [49], acoustics [50], metamaterials [51], composites
[52], wave propagation [53, 54], mechanical properties [55] and even turbulence modeling
[56]. A great compilation of all this applications and configuration problems can be found
in [57]. However, as far as we could inquire in the subject, there a few work related to the
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magnetic properties of materials [58–62]. Between these works the most interesting to our
ends can be found in [63].

Figure 2.3: Comparison of the geometries. Left: perforated magnetic medium. Right: as-
semble of magnetic particles inside a cell.

In this thesis, the author study the homogenization of the demagnetization field operator
in periodically perforated domains using a two-scale convergence method. This problem
is the geometric complement of the problem that we solve in this research, as we can see
in figure 2.3. Although the problem is quite similar, the procedure to solve the problem
and the solution of it is very different. For the problem of the perforated domains the most
remarkable result is an homogenized form of the demagnetization field operator, denoted by
H⃗d . This homogenized demagnetization field operator turns out to be (3×3) matrix whose
elements are given by

[H⃗d]i j =
1
χ̄

∫
y
(∇ω

′
i(⃗y)+χy∗(⃗y)⃗ei) · (∇ω

′
j (⃗y)+χy∗(⃗y)⃗e j)d⃗y−δi j. (2.11)

Which is used later in the paper to homogenize the LLG equation.
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Chapter 3

Theoretical framework

3.1 Notation and definition of the problem

So far, we know that the classical electromagnetic theory developed by Maxwell explains
the behavior of the magnetic fields around magnetic materials and it is based on phenomena.
Basically, is a description of an averaged function of the atomic structure and we consider the
magnetization of some magnetic material as a continuum function of the position. Follow-
ing this paradigm we could end up ignoring relevant information about how nanoparticles
are arranged in space and the interaction that may be happening between them. On other
hand we have the quantum theory which explains the source of the magnetic moments in
the magnetic materials and is based on an atomistic background. In this model the magne-
tization of the material is a discrete function of the position. This, of course, will take in
consideration a wider set of elements and the interaction between the atoms. The downside
is that this method would require an astronomical amount of computational time to simulate
a macroscopic material. The continuum theory of micromagnetism was developed to be the
bridge that connects the classical theory and the quantum theory. In general, neither the pure
classical or pure quantum theories is appropriate to describe the interaction of the magnetic
moments in the process of magnetization or to describe the hysteresis loops of structures
made of ordered spins [64]. But by means of micromagnetism there is an opportunity to de-
velop an intermediate regime in which we take into account some of the geometrical aspects
of the arrangement of magnetic particles but, at the same time, we could infer some of the
properties of some macroscopic magnetic material.

Particularly, we are interested in the study of magnetic nanoparticles. These are tiny
particles that can be manipulated by using of magnetic fields. In general, these particles
are made-up by a magnetic-matrix (iron, nickel. cobalt, etc.) and some other material [65].
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Moreover this type of nanoparticles have attracted the interest of the scientific community
as it has been found that magnetic nanoparticles can be applied in the catalysis to separate
chemical composites [66], biomedicine [67,68], microfluidics [69], data storage [70,71], and
many more. Hence there is a growing interest to study and understand the characteristics and
effects of magnetic nanoparticles. How these particles interact between them, how can we
manipulate the orientation or position of nanoparticles, and the different properties that can
be obtained by solely the geometric arrangement of the particles in space.

We are focused on studying a system with a finite number N of magnetic particles inside
a cell confined in a three dimensional space R3. The geometry of each particle is denoted
by Ωi where the subindex i = 1,2,3, ...,N marks the particle. The aggregate of the space
occupied by all the particles is denoted by

Ω = ∪N
i=1Ωi

and the boundary of each domain Ωi is indicated by ∂Ωi. Each particle is considered as
single-domain, and therefore, the magnitude of the magnetization inside each particle |Mi|
is constant. Considering that each particle has a saturation magnetization (Ms), then we
propose a function

m := M/Ms =

{
1,∀(x,y) ∈Ωi

0,∀(x,y) ∈ R3 \∑
N
i=1 Ωi

(3.1)

which will be used later to express energy in dimensionless units.

Next, from the Maxwell’s equations

∇×H = 0,
∇ · (H−M) = 0,

(3.2)

we know that there already exists a function U identified as the magnetostatic scalar potential
that satisfies

H = ∇U. (3.3)

Also, we consider two cases: one in which the particles only have shape anisotropy and
another in which the particles have both: shape and magnetocrystalline anisotropy. Since we
will be treating mainly with uni-axial magnetic particles, we use

Φ(m) = 1− (m · e)2 (3.4)

where e represents a unitary vector pointing in the direction of the easy axis of the magnetic
particle.

i
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3.2 Magnetic nanoparticles

In the present section we describe the systems that can (and are going to be analized) be
studied with the scheme developed in this thesis. In general terms we treat with bidimen-
sional magnetic nanoparticles without magnetocrystalline anisotropy.

In the present work we are using the micromagnetical model whose basic assumption is
that the spin direction varies only by a small amount from one point to another. Therefore,
we are assuming that the magnetization is a continuous function of its position in space
m⃗(x,y,z). Also, we are considering that the magnetization has a constant magnitude and
hence the magnetization can only rotate on its own axis.

As we are going to describe the magnetic properties of some material, we are going to
do so in terms of the magnetization m⃗(x,y,z). Now, the magnetic properties of the system
depends directly on the state of the magnetization of each particle. This state is governed
by the configuration and interaction of the magnetization of the particles and the equilibrium
states are those in which the energy reaches, at leas, a local minimum. Therefore, the task in
hand is to compute the energy of the system and find the configuration of the magnetization
that results in the minimum energy. To do so, we clearly need an expression for the energy
of the system, the so called micromagnetic energy that is written as

E(M) =
∫

Ω

A|∇m|2dx︸ ︷︷ ︸
Exchange

+
∫

Ω

KaΦ(m)dx︸ ︷︷ ︸
Anisotropy

+
µ0

2

∫
R3
|Hstray|2dx︸ ︷︷ ︸

Magnetostatic

−
∫

Ω

Hext ·Mdx.︸ ︷︷ ︸
Zeeman

(3.5)

3.2.1 The Exchange Energy

The first term, called the exchange energy, comes from the quantum nature of the system.
It is related to the interaction between the spins of pairs of ferromagnetic electrons which
depends of the relative orientation of the spins. This is to say that energy is lower when the
spins are parallel and higher when the spins are anti parallel. Using the Pauli’s exclusion
principle and the model of Coulomb for electrostatic interaction over every pair of lattice
points in a crystal one can get to the expression

Eex =
JS2

a ∑
i

a3

[(
∂m⃗i

∂x

)2

+

(
∂m⃗i

∂y

)2

+

(
∂m⃗i

∂z

)2
]
, (3.6)
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where J is the exchange integral between some pair of atoms, S is the spin quantum number,
m⃗i is the magnetization of the i− th atom and, a is the lattice constant of the crystal. Later,
as we define A = JS2n/a and replace the sum for an integral interpreting the space as a
continuum, the latter equations becomes

Eex = A
∫

Ω

|∇m⃗|2dV. (3.7)

3.2.2 The Anisotropy Energy

The next term in the list is the anisotropy energy. This term comes from the fact that
ferromagnetic crystals (magnets) are anisotropic. Then, depending on the orientation of the
external magnetic field with respect to the crystal, the magnetization can reach the saturation
state at lower of higher values of the external field. This anisotropy energy is the work done
by the external field to modify the magnetization from the easy axis to the hard axis. In
this case, the explicit form of this term must be obtained from experiments and written in
some functional form denoted by Φ(m⃗). In general, there are a few models for the most
common configurations of the lattice (cubic, hexagonal, etc). As this work deals principally
with uniaxial particles we can propose the anisotropy energy density of one atom as

eani(m⃗) = KaΦ(m⃗) = Ka(1− (m⃗+ e⃗)), (3.8)

and integrating this over the whole volume we get

Eani =
∫

Ω

= Ka(1− (m⃗+ e⃗))dV. (3.9)

Where Ka is the anisotropy constant and is commonly a function of temperature.

3.2.3 The Magnetostatic energy

Later, we describe the third term in the micromagnetic energy, called the magnetostatic
energy. This energy comes from the dipolar interaction in the crystal. The a crystal each
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magnetic moment creates a dipole field, but this field is influenced by the field of each of
the other dipoles in the crystal. Now, the average field over the crystal generated by the
interaction of all the magnetic moments is what we call the demagnetization field. This is
interesting as this field is a nonrotational one and therefore, we can write the field as the
gradient of some scalar potential U . This is

Hdemag = Hstray =−∇U. (3.10)

Now, to compute the the magnetostatic energy we consider the energy of each magnetic
moment interacting with the demagnetization field. The sum over all the atoms will be the
total magnetostatic energy of the crystal. This can be written as

Emagnetostatic =−
µ0

2 ∑
i

µ⃗i · H⃗stray, (3.11)

which in turn we can extend to the continuum and rewrite the last equation as

Emagnetostatic =−
µ0

2

∫
R3

Ms(m⃗ · H⃗stray)dV. (3.12)

Next, we must consider the boundary value problem that comes from the Maxwell’s
equations. These equations state that ∇ · H⃗stray = −∇ · M⃗. Later we plug equation (3.10) in
the boundary value problem and we can derive that

Emagnetostatic =−
µ0

2

∫
R3
(∇U)2dV =−µ0

2

∫
R3
|H⃗stray|2dV (3.13)

3.2.4 The Zeeman Energy

This term comes from the fact that every magnetic dipole moment µ⃗ that interacts with
some magnetic induction B⃗ is given by −⃗µ · B⃗. Now, let us define B⃗ = µ0H⃗ext and we get that

EZeeman =−µ0 ∑ µ⃗i · H⃗ex, (3.14)
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is the interaction energy between the magnet and the external field. Now, if we make
M⃗ = N⃗µ and take the analysis into the continuum we obtain

EZeeman =−
∫

Ω

µ0Ms(m⃗ · H⃗ext)dV (3.15)

3.3 Weak formulation of the problem

In order to compute the micromagnetic energy, we need to calculate the magnetostatic
scalar potential U for a given magnetization m. If ν is the normal with respect the surface of
the partile. Then, the magnetostatic scalar potential satisfies the problem

△U = ∇ ·m in Ω

△U = 0 in R3 \Ω

∂u
∂ν

= m ·ν in ∂Ω.

(3.16)

The former problem can be solved by taking the weak form of it. From Definition (2.2.18)
and integrating by parts ∫

Ω

ϕ△u = ϕ∇U
∣∣∣
∂Ω

= ϕ
∂u
∂ν

∣∣∣
∂Ω

= ϕ(m ·ν) (3.17)

and ∫
Ω

f ∇ϕ =
∫

Ω

∇u∇ϕ (3.18)

we get to the weak formulation of the problem∫
R3\Ω

∇u∇ϕdx−
N

∑
i=1

∫
∂Ω

ϕ(mi ·ν)dx = 0 (3.19)

3.4 Numerical scheme

3.4.1 The micromagnetic energy

We know that in order to create magnetic materials and devices we need to understand
the effects of the material’s microstructure on the macroscopic magnetic properties of the
said material and, at the same time, we also need to understand how the interactions between
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particles can impact the behavior of the material or device [72]. To this extent the finite
element method (FEM) results to be an effective technique to treat these problems simul-
taneously [73–75]. To this end we use an energy based approach in which we start with a
certain number of magnetic particles with magnetizations randomly orientated and then we
find the configuration of the magnetization that corresponds to an energy minimum. Then,
the micromagnetic energy in SI units is defined as

E(M) =
∫

Ω

A|∇m|2dx+
∫

Ω

KaΦ(m)dx+
µ0

2

∫
R3
|Hstray|2dx−

∫
Ω

Hext ·Mdx. (3.20)

Where A is the exchange constant, Kα is the anisotropy constant, and Hstray =−∇U . In order
to obtain a dimensionless form of the micromagnetic energy, let us define a dimensional
constant Cd as

Cd =
M2

s
2µ0

and then divide the latter expression for the energy in order to obtain the volume-dimensional
energy

E(m) :=
E(M)

Cd
= d2

∫
Ω

|∇m|2dx+Q
∫

Ω

Φ(m)dx+
∫
R3
|∇U |2dx−2

∫
Ω

Hext ·mdx.

(3.21)
where Q = Ka/Cd is the quality factor and measures the strength of the anisotropy relative
to that of the stray field. Q < 1 include the soft materials, and Q > 1 represents the hard
materials; d = A/Cd is the exchange length; U = Ms

µ0
Hstray is a volume dimensional scalar

magnetic potential and Hext =
Ms
µ0
Hext is a volume dimensional version of the external applied

field [76] . In this case, we are going to compute the energy of several particles. Therefore,
considering that the magnetization is constant inside each particle, the energy in discrete
form is written as follows:

E(m) =d2
N

∑
i=1
|∇mi|2dx+Q|Ωi|

N

∑
i=1

Φ(mi)+
∫
R3
|∇U |2dx−|Ωi|

N

∑
i=1

mi ·Hext (3.22)

for the purposes in this study, we are going to study only systems with single domain mag-
netic particles. Therefore, the term corresponding to the exchange energy is null.

3.4.2 Energy minimization

Now we have a way to compute the magnetostatic scalar potential for a given magneti-
zation (m⃗). For the above, we also have means to compute the micromagnetic energy of the
system for a given magnetization m⃗ and external applied field (Hext). The next objective is
to find the set m⃗ = (mx,my,mz) that corresponds to a local minimum in the micromagnetic
energy. This is carried out by using the Lagrange Multiplier’s technique.
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We consider a problem in which we want to minimize

E(m) = Q|Ωi|
N

∑
i=1

Φ(mi)+
∫
R3
|∇U |2dx−|Ωi|

N

∑
i=1

mi ·Hext = 0.

subjec to ∫
R3\Ω

∇u∇ϕdx−
N

∑
i=1

∫
∂Ω

ϕ(mi ·ν)dx = 0

.

Therefore, we are looking for the direction of maximum descent of the energy with re-
spect to the magnetization of each particle. To this end, we take the the lagrangian as

L(mi,U) =
∫
R3\Ω

∇u∇ϕdx−
N

∑
i=1

∫
∂Ω

ϕ(mi ·ν)dx

+Q
N

∑
i=1
|Ωi|Φ(mi)+

∫
R3
|∇U |2dx−

N

∑
i=1
|Ωi|mi ·Hext

(3.23)

then, we add a perturbation in the magnetization as follows

mi→ mi + εαi (3.24)

and then take the derivative with respect to ε and evaluate at ε = 0 and obtain

∂L
∂ε

(mi + εαi,U,ϕ) =−
N

∑
i=1

∫
∂Ω

(αi ·ν)ϕdx

+2Q
N

∑
i=1
|Ωi|(mi · e) · (αi · e)−

N

∑
i=1
|Ωi|αi ·Hext

(3.25)

from the last equation is clear that the gradient with respect with the magnetization is given
by

∇miE(mi) =−
N

∑
i=1

∫
∂Ωi

αiνϕdx+2Q
N

∑
i=1
|Ωi|(mi · ei)ei−

N

∑
i=1
|Ωi|Hext (3.26)

equation (3.26) gives the direction in which the magnetization must move in order to reach
a local energy minimum. Then energy minimization is carried out by means of a Newton
algorithm [77].

If we take the partial derivative with respect to U in the same fashion we get

∂L
∂ε

(mi,U + εα,ϕ) =
∫
R3

∇α ·∇(u+ϕ)dx, (3.27)

This equation holds for every function ϕ ∈H1. Therefore, in an extremal, this equation must
be null and implies that

ϕ =−U.
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Indicating that the test function is equivalent to the additive inverse of the magnetic scalar
potential.

Finally, we take the partial derivative with respect to the test function ϕ

∂L
∂ε

(mi,U,ϕ+ εα) =
∫
R3

∇U ·∇αdx−
N

∑
i=1

∫
∂Ωi

(mi ·ν)αdx. (3.28)

This equation is nothing more than the constrain to the energy in weak form.

3.5 Non-dimensional units and material parameters

For the graphics in the results section we see that both axis are in non-dimensional units.
In order to make a clearer description of the graphics, we explain which are the material
parameters we are taking into account. We start by defining the energy in SI units as

E(J) =
∫

Ω

A|∇m|2 +
∫

Ω

Kaφ(m)+
1
2

∫
R3

Hstray−
∫

Ω

Hext · J (3.29)

where J is the magnetization density, then we define the nondinensional magnetization as
m := J/Js such that

m =

{
1 in Ω

0 in R3 \Ω
(3.30)

Next, we need to define de volume-dimensional energy. To this end, we set

Hext =
Hext
Js

(3.31)

U = U
Js

(3.32)

Hstray =
Hstray

Js
=−∇U (3.33)

and define the volume-dimensional energy as

E(m) :=
E
Kd

= d2
∫
|∇m|2 +Q

∫
φ(m)+

∫
|∇U |2−2

∫
Hext ·m (3.34)

where,

Kd =
J2

s
2

(3.35)

Q = Ka/Kd = quality factor (3.36)

d = (A/Kd)
1/2 = exchange length (3.37)

Finally, we use the fact that the length unit cell of our system of interest (magnetotactic
bacterias) is around 50 nm. Then, our dimensions are going to be set such that x→ x/ℓ,
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where ℓ =50nm. Then, we divide the volume-dimensional energy by the volume of the
cubic cell (Ω) (or square) as appropiate and we obtain the non-dimensional energy

e(m) := E(m)/|Ω|= κ
2
∫

Q
|∇m|2 +Q

∫
ω

φ(m)+
∫
R3
|∇u|2−2

∫
ω

hext ·m (3.38)

where

κ = d/|Ω|, (3.39)

u(x/ℓ) =
1
ℓ

U(x), (3.40)

hstray(x/ℓ) =−∇u(x/ℓ) = Hstray =−∇U(x), (3.41)
hext(x/ℓ) = Hext . (3.42)

For practical purposes, we set Js = 0.5T such that H ≈ 0.039hext . With this in mind,
when you see hext = 1 in the results, we mean an external applied field of 39mT.
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Chapter 4

Computer implementation

4.1 Discretization of the weak form equations

In general, the discretization of the variational problem is made automatically by the
software FreeFEM++ [78]. The software is described by its author as follows:

”FreeFEM is a partial differential equation solver for non-linear multi-physics
systems in 1D, 2D, 3D and 3D border domains (surface and curve). Problems
involving partial differential equations from several branches of physics, such
as fluid-structure interactions, require interpolations of data on several meshes
and their manipulation within one program. FreeFEM includes a fast interpola-
tion algorithm and a language for the manipulation of data on multiple meshes.
FreeFEM is written in C++ and its language is a C++ idiom.”

As mentioned above, this software package is an idiom of C++ and therefore can run in
almost every operative system (OS) making this a good option to create the numerical scheme
we want to achieve. Also, FreeFEM++ has an input mode for the variational formulation of
the problem; a geometric input given by the analytic description of the figure; an automatic
mesh generator with inner point density proportional to points in the boundary; and inline
generator of image and text files.

The space is discretized by a squared mesh of 50 points in each side and the particles are
represented by ellipses with 50 points distributed in the perimeter. This is created using the
border and mesh functions already built in FreeFEM++. This is done using
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Figure 4.1: Results of the automatic discretization of the physical space done with
FreeFEM++. We can appreciate that there is a higher density of points near the bound-
ary of the ellipse which represents the magnetic particle.

border a1(t=0.0,boxwidth){x=t; y=0.0; label=901;};
border a2(t=0.0,boxheight){x=boxwidth; y=t; label=902;};
border a3(t=0.0,boxwidth){x=boxwidth-t; y=boxheight; label=903;};
border a4(t=0.0,boxheight){x=0.0; y=boxheight-t; label=904;};
real xcenter= boxwidth/2.0;
real ycenter= boxheight/2.0;
border C0(t=0, 2.0*pi){
x= xcenter +xradius*cos(t)*cos(a0) -yradius*sin(t)*sin(a0) +xshift;
y= ycenter +xradius*cos(t)*sin(a0) +yradius*sin(t)*cos(a0) +yshift;
label=0;

};

int mp=meshpoints;
mesh Th= buildmesh( a1(mp)+a2(mp)+a3(mp)+a4(mp)+C0(-mp) );

The result can be seen in figure 4.1 where we can see how the points and finite elements
are constructed and distributed. We observe that there is a lower density of points at the
edges of the square (relatively far from the particle) and there is quite much chore points
near the particle. This is done in this way to optimize the computational time and use the
resources where we need it.

Later, we have discretized the space of functions u(x,y), which represent the magnetostic
potential. This is done merely by use of the function fespace.

fespace Vh(Th, P1);
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Vh uh, vh, hx, hy, F;

where, uh,vh,hx,hy and F represent the problem variables u = (u,V ) and h = (hx,hy) and
F is an auxiliar variable to keep data of the variational problem.

And finally, we use the function varf to implement the variational formulation of the
problem inside the virtual space. This is done as follows:

varf aa(uh,vh)= int2d(Th)( dx(uh)*dx(vh) +dy(uh)*dy(vh) )
+on(901,902,903,904, uh=0);

As we can see, the implementation of the mathematical model as a numerical discrete
scheme is done almost entirely by the software. The reader can recognize the structure of
some of the written equations in the code above. The syntax is almost identical.

4.2 Numerical algorithm

The algorithm goes as shown in algorithm 1. The principal idea is to find the configu-
ration of the magnetization of each particle which corresponds to a local minimum in the
energy and thus to a stable configuration for the given external field value. We start with
one initial data: the initial magnetization m⃗0. Then, for the first value of the external field,
we solve the numerical problem to find the magnetostatic scalar potential (u⃗0) for the initial
magnetization (m⃗) and the current external applied field (Hext0). Then compute the energy
E(u⃗0, m⃗0,Hext,0) and the gradient of that energy with respect the actual magnetization. Now
that the direction of maximum descent is known, we compute the next iteration of the magne-
tization m⃗1 by adding a vector to the magnetization in the direction of maximum descent and
normalizing the new magnetization to its norm. Then, we repeat the process and calculate
the magnetostatic potencial u1, the energy E (⃗u1, m⃗1,Hext,0) and the gradient of the energy
with respect the new magnetization and the same external applied field.

Once its done, we compare the energy of the k state Ek with the energy of the k+1 state
Ek+1 and make sure that the energy is diminishing. In this part, we use a line search algorithm
to find the local energy minimum by iterating the magnetization m⃗i. Finally, we use energy
as a convergence test. As we approach the local minimum the difference Ek+1−Ek must be
as small enough, indicating that the energy on the point k is as close to the energy in the point
k+ 1 as desired. On the other hand, if the system is in a non-saturated state the gradient of
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the energy with respect the magnetization must approach to zero. Then we can say that the
algorithm has found the magnetization that gives an stable configuration (which corresponds
to the local energy minimum). This magnetization is stored into a file along with the current
external field applied to the system. Then, the algorithm proceeds to the next iteration in the
external applied field and the process is repeated.

m⃗k← m⃗initial
Hext = Hext,initial
while Hext < Hext, f inal do

while ||∇mE||> ε or |Ek+1−Ek|> ε do
Compute u(m⃗k) by solving Eq. (3.19)
Compute E(m⃗k) by Eq. (3.22)
Compute ∇m,kE by Eq. (3.26)
Compute m⃗k+1 = m⃗k + α⃗ · ∇m,kE

|∇m,kE|
Normalize m⃗k+1
Compute u(m⃗k+1) by solving Eq. (3.19)
Compute E(m⃗k+1) by Eq. (3.22)
Compute ∇m,k+1E by Eq. (3.26)
if E(m⃗k+1)< E(m⃗k) then

continue
else

α⃗← α⃗/2
m⃗k+1← m⃗k

end if
end while
m⃗c← m⃗k
OutputFile← [Hext , m⃗c]
Hext ← Hext +∆Hext

end while

The complete code can be downloaded directly from the Github page of the author [79].
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Chapter 5

Numerical Results

For reference and as a first test, we analyze the classical problem of a Stoner-Wohlfarth
particle. This corresponds to a single dominain ellipsoidal particle with a uniaxial magnetic
anisotropy whose easy axis is along the long axis of the ellipsoid. The objective is to calculate
the hysteresis loops for different applied field directions with respect to the easy axis.

In this chapter we show the results of simulating various configurations of magnetic
particles. This intends to explore the effects changing the microstructure of an array of
magnetic particles over the hysteresis curve (a macro property). Also, this set of examples
serve as an sample of the systems that can be simulated with the numerical scheme developed
in this work.

5.1 Stoner-Wohlfarth particles

For the simulation, we are defining t as d2/|Ω| = 1t as a measure of length inside
the code. Then, fot this numerical experiment we are using a bounding square box of
[0,10t]× [0,10t] with open (Dirichlet) boundary conditions. The length of the major and
minor semiaxis are 1t and 0.5t, respectively, The external applied field is sweeped from
[−5,5] in units of z = Ms

µ0
Hext .

This experiment is used as fireproof for the code we begin by computing the hysteresis
curve of single particle with elliptical shape. An external magnetic field Hext is applied in the
vertical axis of the system. Let us define φ as the angle between the easy axis of the particle
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Figure 5.1: Hysteresis curves of the particle as we shift the angle from a vertical position
(φ = 0o) to an horizontal position (φ = 90o).

and the direction of the external field Hext so that φ = 0 when the easy axis is parallel to the
direction of the external field. As shown in figure 5.1a. This is, φ = 0 when the easy axis
of the particle is in the upward vertical direction. We vary φ by moving the easy axis of the
particle and observe the interaction between the external field and the magnetization of the
particle. The resulting hysteresis curves for different values of φ are shown in figure 5.1b
which agree with the Stoner-Wolhfarth model [80].

5.2 Axis length

Next is the case in which we modify the geometry of a single isolated magnetic particle.
Then, we extend the length of one of the semiaxis of the ellipse while the length of the
other is held constant. In this experiment we are using a squared bounding box such that
[0,10t]× [0,10t] with open boundary conditions, the minor semiaxis is held constant at 0.2t
and we shift the major semiaxis from 0.2t to 1.1t. Also, we are using an angle φ =−60o.

The results of this experiments are shown in figure 5.2. Each figure consists on the
geometry of the particle (in color white) in the upper row and its respective hysteresis curve
in the bottom row.

We start with a circle, as shown in figure 5.2(a), Then, we enlarge one of the semiaxis of
the particle in a sequence. In figures b, c, and d the mayor semiaxis has a length of 0.4t, 0.8t,
and 1.1t, respectively. Also, for this three figures we have a coercivity of approximately 0.5z,
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Figure 5.2: Upper row: the geometry of the particle is shown in white. The colors represent
the magnetostatic schalar potential (u). The red and black dashed lines are the minor and
major semiaxis, respectively. The length of each axis in units of d2/|Ω| is indicated in the
bottom row. Bottom row: hysteresis curve of the system obove each curve. In the left upper
corner of each plot is the length of the major and minor semiaxis of the particle inside the
system.

2z, and 3z in units of z = Ms
µ0
Hext . Therefore, we can see that the coercivity of the systems

increases as the shape of the particle becomes more asymmetrical. This is exactly what one
would expect, as, with a less symmetrical geometry there is more shape anisotropy such that
we requiere a more intense magnetic field to chance the magnetization of the particle. This
is, we need more field to flip the magnetization of the particle. Also, as we enlarge one of the
axis while keeping the other as a constat, the solume of the particle is increasing. Therefore,
we need a stronger field to flip the magnetization of the particle. In any case, this experiment
proves that the simulator is capable of detect and show the interaction between the geometry
of the particles and the intensity and direction of the external magnetic field applied. Further,
it also prooves that the code is sensible to the volume of the particle in the system.

5.3 Constant area

In the past experiment we observed that the program is capable of fetch the changes
in the hysteresis curve coming from both the volume and the shape of the particle. As a
way to discard that the increment in the coercivity is due only to the change in volume, in
this experiment we change the dimensions of the particle, such that the product of major
semiaxis and minor semiaxis remains constant. This is ab = 0.495t2, such that the volume
remains constant. Where t = d2/|Ω|. The bounding box in this experiment is a square of
[0,10t]× [0,10t] with open boundary conditions.
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Figure 5.3: Upper row: the geometry of the particle in white. u is represented in the colorbar.
Red and black dashed lines indicate the semiaxis of the elliptical particle. Bottom row:
hysteresis curve of the system. The length of each of the semiaxis is shown in the upper left
corner of each plot in units of t. In this case, the major and minor semiaxis are selected such
that the product between them remain fixed to 0.495.

The results of this experiment are shown in figure 5.3. There we can see that when
the particle has a more rounded form, the coercivity of the system is of the order of 1z.
This is the case of the figure 5.3b and (5.3c. On the other hand, for the figures 5.3a and
5.3d which have a stretched form, we see that the hysteresis curves goes around 2z. In this
experiment, the changes in the coercivity are due only to the shape of the particle beacuase
the volume of the particle is held constant. Therefore, the code is capable of account the
changes in the hysteresis curve due to the change in the geometry of the particles inside the
system. Also, from the hysteresis curves, we get a relationship between the eccentricity of
the ellipse and the coercivity of the system. For each of the systems shown in figure 5.3
their respective eccentricity is 0.181,0.505,0.775 and 0.254. This can be compared to the
predictions corresponding to the Stoner-Wohlfarth model. In this case, for eccentricity above
0.254 the coercivity does not increase anymore.
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5.4 Volume fraction

Figure 5.4: Top: Schematization of the system. We study a single cell with periodic boundary
conditions, therefore, there is an exact copy of the cell next to every side of the principal
cell. Every set of particles of similar size is the schematization of one experiment and each
experiment is a red point in the graph below. Bottom: plot of volume fraction vs coercivity.
As we increase the volume fraction, the coercivity of the system diminish. Indicating that
the code can calculate the interaction between two particles in different cells.

Next, we present an experiment with periodic boundary conditions. To this end, we use a
rectangular bounding box. The height of the box is 20t and the width of the box is sweeped
from 2.5t to 12t. The major semiaxis of the particle is equal to 1t and the minor semiaxis of
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the particle is 0.5t. The tilt of the particle is such that φ = 50o . The goal of the experiment is
to make sure that the code is taking into account the interaction between particles in periodic
interacting systems. So, let us define a cell for this experiment. We take a cell as a rectangle
containing one particle. The dimensions of the cell (bounding box) are selected such that
the particle interacts with the particles at its sides but the particles above and below are too
far away to make an interaction with the particle in the selected cell. Then, we hold the size
of the particle, but we reduce the width of the cell, making a more pronounced interaction
between the particles in each cell. Thus, as we reduce the dimensions of the cell, we are
increasing the volume fraction of magnetic material inside each cell. Then, we compute
the hysteresis curve of each cell and manually obtain the coercivity and the volume fraction
of each experiment. The results are shown in the bottom row of figure 5.4. Every point
(volume fraction, coercivity) is a red dot in the resulting plot. From this, we can recall that
as we increase the volume fraction (partciles get closer) the coercivity of the system goes
down. This makes sense, as the particles at the sides help to flip the magnetization of the
system. This is, we requiere less external magnetic field to change the magnetization of the
particle [81]. Therefore, the code successfully takes into account the interaction between
particles on different cells by just changing the boundary conditions of the system.

5.5 Interaction between two adjacent particles: distance
between particles

Figure 5.5: Two particles inside a unit cell with open boundary conditions. Top: schematic
cell of the system of study. The particles are in white and the magnetostatic scalar potential
u is in color. With each iteration we separate the particles on increments of 1t. Bottom:
hysteresis curve of the system above. We can see that the hysteresis curve of the respective
system.

In the past section we checked that the code considers the interaction between particles
in distinct cells. As a complement, we check that the code also considers the interaction

42



between two particles inside a single cell with open boundary conditions. For this, we use
a bounding box of dimensions [0,30t]× [0,30t]. Also, we use two identical particles with a
major semiaxis of 1t and a minor semiaxis of 0.5t. The first particle has its easy axis paralell
with the external field (φ1 = 0) and the second particle has a tilt φ = 30o. In this experiment
we begin with the particles separated by a distance of 2t then we enlarge this distance of
separation up to 5t in order to study the interaction between these two particles.

The interaction between particles is shown in figure 5.5. As usual, we show the geometry
of the system in the upper row and the hysteresis curve in the bottom row. We can see that
in every system we get a similar shape of the hysteresis curve. However, as we augment
the gap between the particles the hysteresis curve becomes wider. This implies that as we
separate the particles, the coercivity of the system increases which means that the slanted
particle is interacting less with the other particle, therefore needing more external field to
flip the magnetization of both particles.

In any case, this demonstrates that the code can take into account the interaction between
particles inside the same cell on open boundary conditions.

5.6 Interaction between two adjacent particles: the case of
a rotating particle

Figure 5.6: Top row: schematic primordial cell, in which the geometry of the system is
shown. As usual, the colors represent u and the particles are in white. Bottom row: Hys-
teresis curve of the system above. The hysteresis becomes softer as the particles get more
interactino between them because there is a wider set of accesible stable states for the mag-
netization.

For this experiment we use a bounding box of [0,30t]× [0,30t] with open boundary
conditions. Inside the box there are two partciles with a major semiaxis of 1t and a minor
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semiaxis of 0.5t. Both particles are separated by a distance of 3t, this is, the center of each
ellipse is at 1.5t from the center of the box. The particle in the left has its easy axis parallel
with the external applied field (φ = 0), and the particle on the right is going to be slanted at
φ = 18o,36o,47o,72o. The latter, to check that the code can show the interaction between
geometry of the particles.

The result of this experiment is shown in figure 5.6. As usual, the upper row represents
the geometry of the system and the bottom row the hysteresis curve of the system. In the
upper row the values of the magnetostatic scalar potential are shown in color. In this case,
we can see that the hysteresis curve starts in sort of squared shape, which makes sense if we
think that the magnetization of both particles flip at the same time. This is, as soon as the
slanted particle flips its magnetization, the vertical particle is affected by this interaction and
tends to flip its magnetization as well. This is effect is the same in each of the cases studied.
Nevertheless, we can see that when we modify the slope of the slanted particle, the shape of
the hysteresis curve mutates into a rhombohedrical shape with a more smooth ascent. This is,
the system locates a bigger set of stable magnetization states without reaching the saturation
magnetization. Therefore, we can see states which are not the saturated state of the system.
This results provide sufficient proof that the code can take into account the interactin between
shape and position of particles inside the same cell.

5.7 Particles with arbitrary shape

Figure 5.7: Top row: Particles with arbitrary shape and their corresponding magnetostatic
potential. Bottom row: hystersis curve of the corresponding system.

Next, we want o test the capabilities of the code in terms of the geometries that can
simulate. This is, particles with an irregular geometry. To this end, we use the parametric
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equations

x =x0 +(a+ sin(t))cos(t)cos(α)−bsin(t)sin(α)
y =y0 +acos(t)sin(α)+bsin(t)cos(α),

(5.1)

where a = 0.8,b = 0.4 and α = 17o,30o,55o, to generate three particles with irregular ge-
ometry.

Then, as usual, we use a bounding box of [0,30t]× [0,30t] with open boundary condi-
tions. Later, we compute the hysteresis curve for four systems. One system for each particle
with a geometry given with by equation (5.1) for α = 17o,30o,55o. Then, we simulate a
system in which a box with open bondary conditions holds the three particles before men-
tioned separated by a center-center distance of 2t. The results of this experiment are shown
in figure 5.7.As usual, the geometry and magnetostatic scalar potential (in color) are shown
in the upper row and the hysteresis curve of each system is shown below of the sketch of
each system in the bottom row.

The results show that the code can completely obtain the hysteresis curve of the sys-
tems with one particle inside the box. The particles in systems (a) and (b) are similar to an
horizontal ellipsoid and therefore the hysteresis curve seems to have a more rounded shape
acoording to the number of stable states of the magnetization. On the other hand, the particle
in system (c) resembles more to a vertical ellipsoid resulting in a more squared shape of the
hysteresis curve as the magnetization flips more abruptly. Finally for the system in (d) we
see combination of the hysteresis curve of the systems in (a). (b) and (c). The rounded part
of the hysteresis curve in (d) is a combination of the hysteresis curves of (a) and (b) while
the vertical step in (d) corresponds with the vertical part of the hysteresis in (c).

Therefore, we can theorize that the magnetization of a system of particles in a combina-
tion of the individual hysteresis curve of each particle which makes up the system.
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5.8 Magnetotactic bacteria

5.8.1 A Magnetotactic Bacteria

Figure 5.8: Transmission electron microscopy micrographs showing the shapes of the mag-
netosomes. Bars=100nm. [2]

The magnetotactic bacterias (MTB) are a group of bacteria that can align themselves with
the Earth’s magnetic field in order to reach regions with a low oxygen concentration [82].
MTB have a variety of morphologies such as coccoid, spirillar, rod-shaped, and multicel-
lular cells with a certain number of chains of magnetosomes which at the same time are
arranged in crystals and that can be cuboidal, prismatic, bullet-shaped, or anomalous (figure
5.8) [83,84]. The magnetosomes can be considered as magnetic particles with a single stable
domain with sizes between 30 and 120 nm. Furthermore, the MTB’s are made up of chains
in order to optimize the magnetic moment which ensures that the MTB can move in the di-
rection of the Earth’s magnetic field [85]. MTB’s can be found globally in diverse aquatic
environments such as salt ponds, swamps, lakes, deep-sea sedimentals, among others [86].
This magnetosomes have a high potential in paleontology as proxys in paleoenviromental
reconstructions and as magnetic separators or detectors [87].

The magnetosomes in MTB are made up of magnetite and the uncultivated MTB display
tiny sizes and uniform morphologies. This causes that the MTB may be difficult to obtain by
means of a chemical synthesis. But still, we can find the properties of the isolated magne-
tosomes as well as the properties of magnetosomes as part of a chain in a cell. In particular
we can hope to find a coercivity field between 16.27 and 33.4 mT and a remanence between
20.34 and 46.7 mT [88–90]. Unfortunately, very few measurements are made in the unculti-
vated magnetosome chains due to the large number of cells required for measurements and
this should be a potential research field for a numerical scheme.

In this study we numerically analyze various systems of MTB in order to understand
the magnetic behavior of different lattices of magnetosomes. We intend to analize the cases
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where we have an infinite array of cells with a chain of magnetosomes in each cell and the
magnetosomes in the chains have different morphology. On the other hand, we analize a cell
with a chain of magnetosomes with uniform and mixed morphologies to find the optimal
geometric configuration that leads to nano-technological applications of the MTB. This is
accomplished by using the full micromagnetic energy and a FEM numerical scheme. The
numerical scheme is implemented with FreeFem++ [78]. Besides, the energy minimization
method is based on a Lagrange multiplier method applied to the weak formulation of the
micromagnetic energy. Also FreeFem++ enable us to easily change the boundary conditions
in the problem to study the cases of a periodic array of cells and the case of an isolated cell.

5.8.2 Cuboidal shape

Figure 5.9: Left: geometry used to simulate the cuboidal shape of magnetosomes. Center:
hysteresis curve of the ”S” shaped bateria. Right: hysteresis curve as function of the volume
fraction.

In this simulation the particles are merely a circle or radius r = 1.5 units inside a squared
box that serves as the unit cell containing the set of magnetosomes that make up the MTB.

We first studied the effects of moving the second magnetosome (counting from bottom
to top) to the sides (over the x axis). If we displace the magnetosome to the left (red and
black solid lines) we have that the hysteresis shows a step and the magnitude of the step is
proportional to the displacement of the magnetosome. On the other hand, if we move the
magnetosome to the right (green and blue dotted lines) the hysteresis shows a double step.
In this case, the depth of the second step is inversely proportional to the magnitude of the
displacement. This results are shown in the left plot of figure 5.9. From this affirmation
we supposed that an ”S” shape, characteristic in certain MTB’s, would present an optimum
hysteresis curve for field detection. The center plot of the figure 5.9 points otherwise. In this
plot, the hysteresis loop show no steps, but it shows an increment in the remanence.

Exploiting the properties of the FEM and the weak formulation, is straightforward to
change the area of the unit cell in which the magnetosomes are contained. For this end,
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the size of the magnetosomes remains constant and we use the geometry shown in the left
plot of the figure 5.9. In other words, we shrink the size of the unit cell as the size of
the magnetosomes remain constant. Which is the same as increasing the packaging factor.
The results are shown in the right plot of the figure 5.9. From the figure we conclude that the
packaging factor is not an overwhelming characteristic to obtain superior field detectors. The
effect of increasing the packaging factor sums up to increase the coercivity of the system.

5.8.3 Prismatic shape

Figure 5.10: Left: Mesh used to simulate the prismatic shape of MTB’s. Center: hysteresis
curves of a system of magnetosomes in which one of the particles is displaced to left and
right. Right: Hysteresis curve of the system as we increase the the packaging factor.

In this simulation the magnetosomes are constructed by the equation of the so called
squircle:

x = x0 +
√
|cos(t)| · r1sign(cos(t)) (5.2)

y = y0 +
√
|sin(t)| · r2sign(sin(t)) (5.3)

where t ∈ (0,2π), r1 = 1.0 units, and r2 = 1.1 units. Once again, the starting size of the unit
cell is 30x30 units.

We analize the behaviour of a system of magnetosomes with prismatic shape. In first in-
stance, we start with a system in which the magnetosomes are aligned in a vertical line. Then,
let us take as reference the system shown in figure 5.10 we move one of the magnetosomes
in the x direction. The hypothesis were that if we move a magnetosome the same distance to
left and right, then we could obtain the same hysteresis curve. This has been proved wrong.
From the center plot in the figure 5.10 we see that there is a remarkable difference in moving
the particle two units to right and left. As we move the particle to the left, we can see two
steps appearing.
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We also tried the geometrical configuration shown in the right plot of the figure 5.11, in
which two particles are moved to the right side. Te result is shown in in the center plot of the
same figure with a black dashed line. We show that there is an increment in the coercivity of
the system but no significant differences in the shape of the hysteresis.

Finally, we analyze the effect of the packaging factor. The process of shrinking the area
of the unit cell as the size of magnetosomes is held constant is schematically shown in figure
5.11. The results are shown in the right plot of the figure 5.10. Once again, the volume
fraction of is not a decisive factor in the form of the hysteresis curve. Also, the increment of
the volume fraction is related with an increment in the coercivity of the system.

⇒ ⇒
Figure 5.11: Evolution of a unit cell as we increment the volume of the magnetosomes with
respect to the size of the cell.

5.8.4 Bullet shaped

Figure 5.12: Mesh of the bullet shape of the magnetosomes and the magnetostatic potential
of the array.

In this section we analyze the effects of moving magnetosomes and changing the volume
fraction in the unit cell. We use the geometry shown in figure 5.12 in which the magneto-
static potential is also shown. In this sketch, we see that the particle at the bottom is the
particle 1 and counting upwards we have the particles 2 and 3, respectively. The unit cell has
dimensions of 30x30 units as above, and the shape of every magnetosome is obtained with
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the equation:

x = x0 +(r1 + sin(t))cos(t)cos(θ1)− r2 sin(t)sin(θ2) (5.4)
y = y0 + r1 cos(t)sin(θ1)+ r2 sin(t)cos(θ2) (5.5)

where t ∈ (0,2π), r1 = 1.4, r2 = 1.9, θ1 = 44°, and θ2 = 3°.

From figure 5.13a is clear that displacing the magnetosomes to left or right has no signifi-
cant effect over the behaviour of the hysteresis curve. But is remarkable that the displacement
in each particle has a particular effect. In the figure 5.13b we see that a positive displacement
of the magnetosomes first and third, yield a decrease in the coercivity. On the other hand, a
displacement in the second particle yields an increment in the coercivity.

One should expect that a negative displacement should yield an opposite effect, but it
is not the case. From figure 5.13c we can see that a negative displacement in the first and
second magnetosomes yields a diminish in the coercivity. Yet, a negative displacement in the
third magnetosome, brings an augment in the coercivity. Finally, in the figure 5.13d we see
a comparison between a negative (solid lines) and a positive (dashed lines) displacements
in the magnetosomes. Concluding that we can modify the coercivity of the system just by
rearranging the position of the magnetosomes.

Figure 5.13: a) Hysteresis curve of the bullet-shaped magnetosomes in function of the dis-
placements of the first, second, and third particle. b) Zoom at the hysteresis for positive
displacements. c) Zoom at the hysteresis for negative displacements. d) Comparison be-
tween the positive and negative displacements.

In the case of the volume fraction, we see from figure 5.14 that the volume fraction plays
a role in the coercivity of the system. Also, we check that we can obtain almost the same
behaviour for a volume fraction of 2.77% and 4.69% (black and green lines, respectively).
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Figure 5.14: Evolution of a unit cell as we change the volume fraction and the hysteresis
curve depending on the volume fraction.

5.8.5 Anomalous shape

Figure 5.15: Right: Sketch of the system used to study the interaction of bacterias with
anomalous shape. Left: Hysteresis curve with the doble particle in distinct positions.

Maybe the most interesting case in this article, is the one from anomalous shape. The
mesh used to simulate the system is shown in the figure 5.15. As usual, the unit cell has di-
menions of 30x30 units. The shape of the magnetosomes is generated by applying a rotation
matrix (

cos(θ) −sin(θ)
sin(θ) cos(θ),

)
(5.6)

where θ = 30°, to a vector given by equations (5.2).

For the first experiment, we want to inquire the effect of the double magnetosome in
a row. The hysteresis curve of the system is shown in the right plot of the figure 5.15.
From there, we can see that if we put the double magnetosome at the bottom the hystereis
curve shows the characteristic steps of magnetic field detector. When we put the double
magnetosome in the middle of the chain we reduce this steps. Finally, when we put the
double magnetosome at the top of the chain we obtain the most effective field detector.
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Chapter 6

Analytical Results

6.1 Analytical magnetostatic mean-field model two dimen-
sional array of cylinder shaped assemblies of packed
spherical particles

The contents of this section correspond to the article:

Magnetostatic model for magnetic particle aggregates with cylindrical shapes
Victor Hugo Carrera-Escobedo, Kevin Hintze-Maldonado, Armando Encinas

DOI: https://doi.org/10.31349/RevMexFis.69.041605

6.1.1 Introduction

Using magnetic particles as building blocks to construct more complex structures is a
well known approach to fabricate materials with tailored magnetic properties. A well devel-
oped and extensively studied class of such materials are the so-called soft magnetic compos-
ites [91]. In which magnetic powders of a soft magnetic material are compacted to form a
larger, macroscopic shape. This materials are very interesting for their application as soft
materials [92,93]. Such constructions using densely packed particles has also been explored
with magnetic nanoparticles [94–96]. Another interesting example was reported by Merk,
et al, where they found that using wood as a template, an anisotropic composite material is
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obtained, related to the hierarchical structure of wood [97]. In another report, magnetic par-
ticles have been printed using an inkjet printer leading to a anisotropic printed material [98].
These reports show that when particles are packed in a given geometry, the assembly tends to
show a magnetic anisotropy having the symmetry of the enveloping volume [99,100]. Inter-
estingly, this has been observed when nearly spherical isotropic particles are packed together.
This anisotropy is due to magnetostatic effects, in particular demagnetizing dipolar interac-
tion between the particles. Moreover, there is evidence showing that changing the shape of
the particle packing and forming arrays of such packings can lead to novel anisotropy prop-
erties which show symmetry properties derived from both the shape of the packing and the
array formed with them [94, 95, 97, 98, 101].

Calculation of the magnetic anisotropy properties of these systems is complex and re-
quires specialized software and computing resources [102]. In this sense, simple model
calculations capable of providing a clear and practical view of the relation between the pack-
ing geometries and the resulting magnetic properties are needed. Specially given the current
advancements of current fabrication techniques that provide an unprecedented control at
the nanoscale to produce extremely complex particle assemblies. In this sense, herein we
propose and validate a simple mean-field model for spherical particle assemblies which ac-
counts for the magnetostatic properties of these systems. These properties allow to obtain
the magnetic shape anisotropy of the assembly. Moreover, we focus our analysis to cylin-
der shaped assemblies of packed spherical particles. The cylindrical shape includes the tube
(hollow cylinder) and the homogeneous cylinder. For both cases, it is possible to use approxi-
mate expressions for the demagnetizing factors leading to simple analytical expressions. The
model is extended to include the more complex case of a two dimensional array of cylinder
shaped assemblies of packed spherical particles. The results show that despite using spher-
ical isotropic particles, the assembly shows an effective magnetic anisotropy that originates
in the dipolar interaction between the magnetized particles. The symmetry and magnitude of
this anisotropy depends explicitly on the geometrical parameters of the system.

Overall, the model is shown to lead to the expected limiting cases without any inconsis-
tency. Moreover, we show that it allows to vary independently all the relevant parameters
of the system. The results provide insight into the role played by each parameter and sheds
ligth to possible mechanisms viable to control and tailor the magnetic anisotropy of these
particle assemblies.

6.1.2 Analytical mean-field model for magnetostatic effects in assem-
blies of packed spherical particles

An analytical mean-field model has been developed to describe the effective or total mag-
netostatic shape anisotropy and dipolar interaction effects in assemblies of packed spherical
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particles. We first present the model, starting with a brief overview of the basic expressions
for a single assembly of packed spherical particles and then the model is extended for the
case of a two dimensional array of cylinder shaped packings of spherical particles.

6.1.3 Single assembly of packed spherical particles

Previous work done in our group lead to the analytical mean field model for magneto-
static effects in a single assembly of packed spherical particles [3]. This model has served as
the starting point to develop the extension for the two dimensional array of cylinder shaped
assemblies of packed spherical particles. For this reason we now provide a brief review of
this model in order to highlight the main expressions that were used for the extended model.

The basic system is a cylinder filled with spherical particles (the cylindrical packing of
spheres). Herein we consider the general cylinder is a tube and the homogeneous cylinder is
a particular case.

Figure 6.1: Two cylindrical packing of particles, a homogeneous cylinder and a tube, along
with their main geometrical parameters. Image adapted from [3].

Figure 6.1 depicts this cylindrical packing of spheres and the coordinate system that will
be used hereafter, the z-axis is taken parallel to the long axis and there is circular symmetry
in the xy-plane. From this schema, we define the system parameters as the cylinder diameter
φ, its height h, the aspect ratio τ = h/φ. Moreover, the particles occupy a packing fraction P
of the total volume of the cylinder. For the tubular structure we use the internal and external
radii r1 and r2 (r2 = φ/2), respectively.

We use the model proposed by Martinez-Huerta, et al; for the effective demagnetizing
field for particle assemblies [103]. As it is customary for the calculation of demagnetizing
effects, it is assumed that the system is fully saturated.

54



The model considers the assembly as a collection of identical particles contained in a
bounding outer volume. The particles are the elemental building blocks and each is char-
acterized by its volume V1 and demagnetizing factor N1. The external volume V2 has a
demagnetizing factor N2. The particles occupy a volume packing fraction P in the exter-
nal volume. The effective demagnetizing field (HDt), or the effective (total) demagnetizing
factor (NDt = HDt/µ0Ms) is written as [103],

NDt = N1 +(N2−N1)P. (6.1)

This expression is the sum of the demagnetizing effects of the single elementary particle,
the first term N1, and the interaction between particles contained in the external volume and
occupying a volume fraction P, which is the second term (N2−N1)P.

The total magnetostatic or shape anisotropy can be determined using this expression.
Recalling that the shape anisotropy is defined as ESt = µ0M2

s ∆NDt , where ∆NDt = ∆NDtx−
∆NDtz. Here it is assumed that the easy axis is along the long axis of the cylinder, in this case
the z axis while the hard axis is along x, see figure 6.1.

Using equation (6.1) to calculate ∆NDt , we obtain

∆NDt = ∆N1 +(∆N2−∆N1)P. (6.2)

This expression is proportional to the anisotropy energy ESt , so that in the following we
use and refer to the effective anisotropy as ∆NDt = ESt/(µ0M2

s ).

This expression is general as no specific geometries have been given. Considering spher-
ical particles, the corresponding demagnetizing factor is Ni = 1/3, i = x,y,z. For the external
volume we have a circular tube with β = r1/r2 as the ratio between inner and outer radii and
where the homogeneous (or solid) cylinder corresponds to the particular case of the tube
when r1 = 0 and β = 0. The demagnetizing factor for the tube is N2 = {N2x,N2x,N2z}, where
by symmetry N2x = N2y.

Noting that the particles are spherical, we have ∆N1 = 0. Additionally, taking advantage
of the symmetry in the xy-plane, we can see that 2Nx +Nz = 1 and ∆N2 = (1−3N2z)/2, we
can write equation (6.2) for the effective anisotropy as,

∆NDt = [1−3Nz]
P
2
. (6.3)
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Hereon, we drop the number 2 in the sub-index, so N2z = Nz. For Nz we use the approximate
expression for tubes proposed by Nam, et al [104]; that relates the demagnetizing factor the
tube with the one of the solid, homogeneous cylinder Ncz,

Nz = Ncz(1−β
2). (6.4)

While the axial demagnetizing factor of a homogeneous circular cylinder is computed as a
function of the aspect ratio τ = h/φ using the approximate expression proposed by Sato and
Ishii [105], namely,

Ncz =
1

1+ 4τ√
π

. (6.5)

Using equations (6.4) and (6.5) in equation (6.3) leads to the approximate analytical expres-
sion for the shape anisotropy of a tube containing spherical particles,

∆NDt =

[
1− 3(1−β2)

1+ 4τ√
π

]
P
2
, (6.6)

which depends on the aspect ratio of the tube, τ ≥ 0, the thickness of the tube wall (β) and
the volume fraction occupied by the particles and subject to 0≤ β < 1 y 0≤ P≤ 1.

Two dimensional array of assemblies of packed spherical particles

We now extend the model for the case of a two dimensional array of cylinder shaped
assemblies of packed spherical particles. This case leads to the interaction between tubes.
Figure 6.2 shows a 2D array of parallel tubes each containing spherical particles. In this case,
we have the same parameters (inner and outer radii, height) with the addition of the center-
to-center distance D and the reduced center to center distance D/φ. For this system we have
two packing fractions: P1 corresponding to the volume fraction of the spherical particles in
each tube, and a second packing fraction P2 corresponding to the tubes in the 2D array.
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Figure 6.2: 2D array of parallel tubes each containing spherical particles with a vulome
fraction P1. The geometrical parameters of the system are the internal and external radii
(r1,r2), their heigth h and the center-to-center distance D between the tubes.

This system can be described using three different volumes and their respective demag-
netizing factors. As previously, the first volume is that of the spherical particles, N1. The
next volume is that of the cylindrical tube, N2 and now we include a third volume which cor-
responds to a thin film, N3, that contains the 2D array. Figure 6.2 depicts the system, where
the same geometrical parameters are used as before with the addition of the center-to-center
distance between cylinders D.

To extend the model we start with (6.1). Since the tubes (N2) form an array, we call N′2
the effective demagnetizing factor of the tube array, so equation (6.1) reads as,

NDt = N1 +(N′2−N1)P1, (6.7)

Now, for N′2 we use the same equation but introducing the third volume (thin film) and the
packing fraction occupied by the tube array in the film (P2): N′2 = N2 +(N3−N2)P2. Substi-
tution in equation (6.7) and rearranging terms, we obtain the expression for this system,

NDt = N1 +(N2−N1)P1 +(N3−N2)P1P2, (6.8)

as in the previous section, the effective anisotropy is given as ∆NDt , this is,

∆NDt = ∆N1 +(∆N2−∆N1)P1 +(∆N3−∆N2)P1P2, (6.9)

As done before, from this expression it is possible to analyze the most important limiting
cases. The first one is when P1 → 0, that corresponds to a single particle and we see that
indeed, the previous expression reduces to ∆NDt = ∆N1. If now we take the limit P1 →
1, which corresponds to a homogeneous tube, we can see that the terms containing ∆N1
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are eliminated and we obtain the expression corresponding to a 2D array of tubes having a
packing fraction P2 analogue to equation (6.1). Taking now P2 → 0 in equation (6.9), we
recover the case of a single tube containing spherical particles. For the limit P2→ 1, we have
that the tubes ideally fill entirely the volume of the thin film. From equations (6.8) and (6.9)
we see that the terms containing N2 are eliminated and we obtain the expression for a film
(N3) containing spherical particles (N1) that occupy a volume fraction P1. These are the four
expected limits.

The corresponding demagnetizing factors can be entered in equation (6.9). For the
spheres and tubes, we use the same as before and for the thin film N3 = {0,0,1}.

Taking again ∆N = Nx−Nz, we have that ∆N1 = 0, ∆N2 = (1−3Nz)/2 y ∆N3 =−1. This
leads to,

∆NDt =

[
1
2
− 3

2
Nz

]
P1−

[
3
2
(1−Nz)P2

]
P1. (6.10)

To further simplify, we use equations (6.4) and (6.5) for Nz as before. For the packing
fraction of the tubes in the thin film (P2) we use the expression reported previously for a 2D
hexagonal array of tubes with external diameter φ separated by a center-to-center distance D
and reduced distance as d = D/φ [106],

P2 =
π

2
√

3
(1−β2)

d2 (6.11)

Note that the first term in equation (6.10) reduces to equation (6.6). Substitution of the ex-
pressions for Nz and P2 leads to the following analytical expression for the (reduced) effective
anisotropy,

∆NDt =

[
1− 3(1−β2)

1+ 4τ√
π

]
P1

2
−

[
π
√

3
2

(
1− (1−β2)

1+ 4τ√
π

) (
1−β2)

d2

]
P1

2
. (6.12)

This expression contains the sum of two terms and they both correspond to dipolar inter-
action field contributions. Comparing to equation (6.9), the first term in equation (6.12) is the
dipolar interaction between the particles in a given tube. While the second term represents
the dipolar interaction between tubes in the 2D array. Here again ∆N1 = 0 as the spherical
particles have zero shape anisotropy. Then the anisotropy in this systems originates in the
dipolar interaction between the constituent particles and their spatial arrangement.

We note that P1/2 appear multiplying both terms, which as discussed in the previous sec-
tion, it will simply modulate the amplitude of the effective anisotropy. Besides from P1, the
anisotropy depends on the width of the tube wall (β), the tube aspect ratio (τ) and the reduced
center-to-center distance (d). The particular case of a 2D array of continuous/homogeneous
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tubes is obtained when P1 = 1, so equation (6.12) reduces to the expression reported previ-
ously [107].

6.1.4 Results and discussion

In the previous sections analytical approximate expressions have been obtained for the
2D array of tube shaped spherical particle arrays. These expressions can be easily evaluated
making it practical and easy to obtain curves of the different quantities of interest. We
analyze first the case of a single cylinder shaped assembly of packed spherical particles,
and then we consider the 2D array of such cylinder shaped assemblies.

Single cylinder shaped assembly of packed spherical particles

The case of a single cylinder shaped assembly of packed spherical particles has been
previously considered [3], so at present we limit the discussion to those results that are
fundamental for analyzing the more complex case of the 2D-array.

As a first point, note that the system has a finite magnetic anisotropy despite the fact that
it is made with isotropic spherical particles. Indeed, despite ∆N1 = 0, ∆NDt ̸= 0 implying
a finite magnetic shape anisotropy. This anisotropy originates from the dipolar interaction
between the spherical particles and can be written in general form using equation (6.2),

∆NDt = ∆N2P. (6.13)

Clearly, for P→ 0 the expected limit for a single isotropic particle is recovered (∆NDt = 0),
and for P→ 1 we obtain the shape anisotropy of the homogeneous tube of arbitrary aspect
ratio ∆NDt = ∆N2.

The anisotropy for these type of particle packing depend on the aspect ratio and the tube
wall thickness, both defining the demagnetizing factor, as well as the packing fraction of
the particles P. Consider first the limiting case P = 1 and the material is a continuous and
homogeneous tube (β ̸= 0) or cylinder (β = 0). This case serves as a reference to compare
with previous results reported for tubes [107].

Figure 6.3 (a) shows the reduced effective anisotropy as a function of the aspect ratio for
different tube wall thickness β for the particular case of the continuous tube (P = 1). As seen
in the figure, the curves show an increase of the anisotropy with the aspect ratio. However,
this increase is faster as the value of β increases, corresponding to a reduction of the tube
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Figure 6.3: Reduced effective anisotropy as a function of the aspect ratio for different tube
wall thickness β for (a) the particular case of the continuous tube (P = 1) and a particle
volume fraction of P = 0.5.

wall thickness. So that a reduction of the tube wall thickness enhances the shape anisotropy
of the tube [106, 107].

From the figure it can also be noted that for small values of β, the anisotropy goes from
positive to negative as the aspect ratio decreases. This change in sign corresponds to a change
of the easy axis direction below a critical aspect ratio. For an homogeneous (continuous)
cylinder this critical value has a well-known value of τ = 0.906 [107]. However, as the value
of β increases, the value of the aspect ratio where the anisotropy is equal to zero decreases,
and for β >0.8 it no longer reaches zero. In this case, the easy axis no longer reverses
regardless of the aspect ratio. AS expected, these results (P = 1) are equivalent to those
reported for continuous tubes [107]. Regarding the effect of the packing fraction, we note
from equation (6.6) that the packing fraction is a multiplicative factor and therefore it only
modulates the amplitude of the total anisotropy. As expected, the anisotropy is zero when
P = 0, which is the case of a single isotropic sphere and it reaches its maximum value of
1/2 for P = 1 for large aspect ratio values. This modulating effect of the packing fraction
is shown in figure 6.3 (b), where the total anisotropy as a function of the aspect ratio for
different values of the tube wall thickness is shown for the particular case where P =0.5.
Comparing to the results shown in figure 6.3 (a), we see the same behavior but, as expected,
the amplitude is reduced. We can see that the maximum value of the anisotropy is given by
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P/2.

To gain further insight to the role of the packing fraction the effective anisotropy was
calculated as a function of the aspect ratio while keeping the value of the tube wall thickness
constant (β=0.5) for different values of the packing fraction. The results are shown in figure
6.4 (a). As seen from the figure, the volume fraction simply modulates the amplitude of the
anisotropy and its general variation with the aspect ratio is independent. Here we note that
the point where the anisotropy is zero is the same regadless of the value of P and therefore
the reorientation of the easy axis only depends on τ y β. This is clear in equation (6.6), where
a change of sign in ∆NDt can only result from the quantity in the brackets.
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Figure 6.4: (a) Reduced effective anisotropy as a function of the aspect ratio for different
values of the packing fraction (P) for the particular case of β =0.5. (b) Zero anisotropy
curve, showing the critical aspect ratio value at which the anisotropy is zero as a function of
the tube wall thickness β.

To find the condition for the isotropic point, we equate equation (6.6) to zero an solve for
the critical aspect ratio τc, which is given by:
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τc =
3
√

π

4

(
2
3
−β

2
)

(6.14)

This expression is equal to equation (13) in reference [107] which reflects a quadratic de-
pendence on β. This expression can be evaluated to obtain the zero anisotropy curve for the
critical aspect ratio as a function of β, which is shown in 6.4 (b). Where, as shown schemat-
ically, those values above the curve correspond to an easy axis parallel to the tube axial axis,
∆NDt > 0, whole those values below the curve correspond to an easy axis perpendicular to
the tube axis, ∆NDt < 0. In addition, we note that the curve goes to zero at β ≈0.8. This
means that above this value of β the total anisotropy has the easy axis parallel to the tube
axis (∆NDt > 0) regardless of the value of the aspect ratio. This is the same result pointed
out in figures 6.3 (a) and (b), where above a value of β≈0.8 the anisotropy no longer reaches
negative values. Taking τc = 0 in equation (6.14) we obtain the value of β above which it is
no longer possible to reverse the easy axis by changing the tube aspect ratio. This value is
β2

c = 2/3 or βc =0.82.

This condition related to the tube wall thickness (β) as well as equation (6.14) have
already been identified and predicted for the case of a 2D array of homogeneous tubes [107].
However, for the cylinder shaped assembly of packed spherical particles considered herein,
this diagram becomes important since it is independent of the packing fraction. This is, to
tailor the easy axis direction it is only necessary to adjust τ and β following equation (6.14),
regardless of the volume packing of the spherical particles.

2D array of cylinder shaped assembly of packed spherical particles

In contrast to the single tube/cylinder, the 2D array introduces additional contributions
to the effective anisotropy which originate in the classical dipolar interaction between the
tubes/cylinders.

Equation (6.12) shows the sum of two terms. The first one is the interaction between
spherical particles in a given tube. This is the case already analyzed in the previous section.
The second term is the dipolar interaction between tubes in the 2D array. The second term
is always negative which indicates that this interaction term favours an easy anisotropy axis
perpendicular to the tube axis, or in the xy-plane. The amplitud of this term is modulated by
both packing fractions: P1 of the particles in the tube and P2 volume occupied by the tubes
in the thin film containing the 2D array.

To analyze the behaviour and the effects of this second term, we have calculated sepa-
rately the values of this term alone as well as the total anisotropy, equation (6.12). For this
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calculation, the tube aspect ratio was kept constant at a value of τ = 10, and we varied the
tube wall thickness β.

The results are plotted as a function of the inverse of the reduced distance, this is 1/d
since it is more practical. Indeed, it varies between [0,1], the value 1/d = 0 corresponds to
the case were the tube and infinitely apart and the interaction goes to zero. Inversely, when
1/d = 1 corresponds to the limiting case where the tubes touch and its the smallest possible
distance between them.

Figure 6.5 (a) and (b) show the reduced interaction field, (c) and (d) reduced anisotropy as
a function of the inverse reduced distance (1/d) for different values of the tube wall thickness
β and a constant aspect ratio of τ=10. In (a) and (c) P1=1, while in (b) and (d) were obtained
for P1=0.5.

For the interaction field between the tubes in the 2D array, figure 6.5 (a), it goes to zero
when the tubes are separated (1/d = 0). When the distance between them is reduced, the
interaction field increases following a quadratic behaviour (1/d2), until reaching its highest
value when the tubes come into contact (1/d = 1). We can see that as the tube wall thickness
decreases, β increases; the magnitude of the interaction field decreases. This is similar to the
effect described for a single tube in the previous section, this is, the anisotropy of the tube is
reinforced when the tube wall becomes thinner.

As pointed out before, the amplitude of both terms in equation (6.12) is modulated by
the factor P1/2. To this end we compare the reduced interaction field for P1=1 a P1=0.5 in
figures 6.5 (a) and (b). As expected, the same behaviour is obtained in both cases, the only
change being the amplitude of the interaction field.

Regarding the effective magnetic anisotropy, this is shown in figure 6.5 (c) and (d). The
overall behavior reflects the sum of the shape anisotropy, the first term in equation (6.12),
and the dipolar interaction between tubes, second term in equation (6.12), which is preceded
by a negative sign. As seen in the figure, the total anisotropy is maximal when the tubes are
apart (1/d = 0) and as the distance between them is reduced, the interaction between them
(with its negative sign) leads to a reduction of the total anisotropy, leading to a change in
sign for certain values of β. At large separation (1/d = 0), the effective anisotropy reduces
to that of the single (non-interacting) tube, which as discussed above, increases as the width
of the tube wall decreases (β approaches 1), in agreement with the results shown in figure
6.3.

As mentioned before, the amplitude of the effective anisotropy is proportional to the
packing fraction of the spheres P1/2, which also defines the upper limit value of the anisotropy.
This is shown as horizontal dashed lines in figure 6.5 (c) and (d). So by increasing the dis-
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Figure 6.5: (a) and (b) Reduced interaction field, (c) and (d) reduced anisotropy as a function
of the inverse reduced distance (1/d) for different values of the tube wall thickness β and
a constant aspect ratio of τ=10. In (a) and (c) P1=1, while in (b) and (d) were obtained for
P1=0.5.

tance between tubes, 1/d → 0, we see that the anisotropy tends to this upper limit and as
this distance is reduced (increasing 1/d), the anisotropy decreases as the interaction field
becomes stronger. The rate at which the anisotropy decreases and changes sign, 1/d = 0,
depends on the tube wall thickness (β).

As already mentioned, the packing fraction of the particles in the tube P1 modulates the
amplitude of the effective anisotropy but its not expected to change its behaviour. To show
verify this we have calculated the effective anisotropy as a function of the inverse of the
reduced distance for different packing fractions of the spherical particles in the tubes with
constant tube aspect ratio τ = 10 and thickness of the tube wall β =0.2. The results are shown
in figure 6.6 where we verify that the volume fraction of the particles in the tube only change
the amplitude of the anisotropy. For the case shown in figure 6.6 we see that the point where
the anisotropy is zero is the same for all the values of P1. This is in agreement with the results
from the previous section, in particular those shown in figure 6.4 (a).
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Figure 6.6: Reduced anisotropy as a function of the inverse of the reduced distance for
different packing fractions of the spherical particles in the tubes (P1) with constant tube
aspect ratio τ = 10 and thickness of the tube wall β =0.2.

As observed for the case of a single tube, the effective anisotropy shows a change of
sign, as seen in figures 6.5 (c), (d) and 6.6. However, this does not happen above certain
values of β. As before, the change in sign indicates that the easy axis direction changes from
being parallel to the tube axis (positive anisotropy) to perpendicular to the axis (negative
anisotropy). However, this easy axis reorientation is inhibited as the tube wall thickness
decreases. To find the conditions where the effective anisotropy vanishes, we equate to zero
equation (6.12) and solve to find the critical aspect ratio τc, leading to,

τc =

√
π

4

(
π
√

3
2d2

(
1−β2)−3

π
√

3
2d2 (1−β2)−1

(
1−β

2)−1

)
. (6.15)

This expression shows that the critical aspect ratio (τc ≥ 0) is given solely by the tube
wall thickness (0 < β < 1) and the reduced distance between tubes (d ≥ 1).

Equation (6.15) allows calculating the zero anisotropy curves for the tube aspect ratio
(τ) as a function of the reduced distance between them for different values of the tube wall
thickness β. Figure 6.7 shows these results.
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Figure 6.7: Isotropic curves for the tube aspect ratio (τ) as a function of the reduced distance
between them for different values of the tube wall thickness β.

As we can see, each value of β provides a different curve. Each curve corresponds to
the aspect ratio and the corresponding reduced distance for which the effective anisotropy
vanishes. Point above and to the right of the curve correspond to an easy axis along the
tube axis (z-axis). On the contrary, those points below the curve are those with the easy axis
perpendicular to the tube axis. An important property is that, as mentioned before, reducing
the tube wall thickness (increasing β) reinforces the easy axis direction along the tube axis.
So that above a certain value, it is no longer possible to reverse the easy axis when the aspect
ratio is decreased.

A final remark is that equation (6.15) for the 2D array of tubes made of spherical particles
is the same as equation (17) in ref. [107] for the case of continuous tubes. This despite of
being different systems. However, the case reported in ref. [107] is obtained as a particular
case of equation (6.12) when P1 = 1. In this sense, the main reason why the same expression
is obtained is that the spherical particles are isotropic and therefore the do not contribute to
the shape anisotropy. Indeed, as seen from equations (6.10) and (6.12), the only variable
related to the spherical particles present in the effective anisotropy is their packing fraction
P1. Which as discussed above, only modulates the magnitude of the anisotropy without
changing its behaviour.

To validate the model, we analyze selected experimental reports based on systems with
affine geometrical features. The first case of interest is that of individual magnetic particles
packed into, or confined to, a well defined geometry where the dipolar interaction between
particles leads to an observable magnetic anisotropy. In these regards, there are two notable
examples, the first one involves packing magnetic nanoparticles into cylinders, ideally as
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shown schematically in figure 6.1 (A). In one report, Pal, et al, [108] filled carbon nanotubes
with small magnetic nanoparticles. In another report, Duong, et al, [95] filled cylindrical
nano holes made in a polyacrylinitrile substrate with magnetite nanoparticles. In these two
studies, the magnetic characterization showed an increase of both remanence and coercive
field in the cylindrically confined particles with respect to the non-confined particles. This
is an indication of the presence of a magnetic anisotropy. In both cases, these effects are
attributed to the enhancement of the dipolar interaction between the confined particles. The
other example is the work of Merk et al [97], and Segmehl, et al, [109] who have performed
the synthesis of magnetic nanoparticles within the hierarchical structure of wood. This struc-
ture is highly anisotropic with a predominant cylindrical structure as building block, similar
to an array of pores aligned parallel to each other. The in-situ growth of nanoparticles from
liquid solutions leads to an important fraction of the particles being fixed on the walls of
the pores, leading to a tubular structure. This corresponds approximately to the situation
depicted in figure 6.1 (A). In both studies, the analysis of the magnetic properties of the
magnetic wood shows a magnetic anisotropy favoring an easy axis parallel to the symmetry
axis of the tubes. This anisotropy is attributed to the dipolar interaction between particles that
are confined to the tubular shape. In the context of our model, this follows from either equa-
tion (3) or (6), where it is clear that a finite magnetostatic anisotropy arises from the dipolar
interaction between the particles. Moreover, from equation (3) we see that the magnitude of
the resulting anisotropy is a function of the cylinder aspect ratio (Nz) and the packing fraction
(P) of the particles. For the more complex case of analyzing the inter-cylinder dipolar inter-
action, these studies do not explore experimentally these effects, although they recognize its
importance.

The model is also well suited for 2D arrays of magnetic nanowires grown by electrode-
position into nanoporous templates. These are 2D arrays of circular cylinders, arranged so
that their long exes are parallel to each other and distributed spatially forming a film. In this
case, the geometrical features are the circular cylinder and the thin film containing the 2D
array. For this system, equation (6.12) needs to be simplified by taking P1 = 1 corresponding
to ideal case of a continuous magnetic material and then, to treat the case of a homogeneous
cylinder, we need to take β = 0. Leaving only a dependence on the wire aspect ratio and the
distance between wires, this is,

∆NDt =
1
2

[
1− 3

1+ 4τ√
π

]
− π
√

3
4d2

[
1− 1

1+ 4τ√
π

]
(6.16)

This expression shows the competition between two terms: (a) the shape anisotropy
which favors an easy axis parallel to the wires long axis (z) and (b) the dipolar interac-
tion between wires, which due to the negative sign preceding it, favors an easy axis per-
pendicular to the long axis of the wires. The effective anisotropy of the system, in the
absence of other anisotropy contributions, is the result of this competition. In this sense, a
well known effect observed in arrays of NWs is the rotation of the easy axis from parallel
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to perpendicular to the long axis of the wires when the dipolar interaction overcomes the
shape anisotropy [110, 111]. For the case of an array of continuous cylindrical NWs, the
expression defining the easy axis rotation is given by equation 6.15 for β = 0. In this case,
it only depends on the interwire distance and the aspect ratio of the wires. As mentioned
above, this leads to a curve defining the limit where the system is isotropic, this is, where the
shape anisotropy of the single wire and the dipolar interaction cancel out and the effective
anisotropy of the system is zero.

This effect can be analyzed using the model and comparing it with reported experimental
results where the easy axis is shown to rotate as a function of either the distance between
wires or their aspect ratio. To this end, we have selected data for Ni [4–6] and NiFe [7] NWs
in order to avoid other materials that can have other magnetic anisotropy contributions.

Figure 6.8 (a) shows the easy axis diagram as a function of the aspect ratio and the inverse
of the reduced distance. The continuous curve corresponds to equation 6.15 for β = 0. The
horizontal dashed line at 1/d= 0.606 corresponds to the distance for the critical packing
fraction of P2 = 1/3 in an hexagonal array at which the easy axis rotates for the limiting
case of infinitely tall nanowires [111]. Notice that this is the value at which the continuous
curve tends asymptotically. In this diagram, the region above and to the left side of the curve,
corresponds to an easy axis parallel to the long axis of the wires. The region below and to the
right of the curve, corresponds to the case where the easy axis is perpendicular to the long
axis of the wires.

Consider first the experimental data for the case when the aspect ratio is varied while
keeping constant the distance between wires [4, 5]. As seen in the figure, the easy axis
rotates from parallel to perpendicular to the cylinder axis when the aspect ratio is reduced.
Moreover, as seen from the two series of data shown in the figure, the aspect ratio at which
the transition takes place is lower for larger interwire distance (1/d → 0). The easy axis
rotation is conditioned by the wires having an easy axis parallel to the symmetry axis. For
a single, non-interacting, cylinder this requires an aspect ratio larger than 0.91, since at this
point the system is isotropic. Wires with aspect ratios larger but close to the critical value
require a small interaction field to reverse the easy axis.

As the wire aspect ratio increases, the distance between wires required to reverse the easy
axis needs to be reduced (1/d increases) in order to increase the strength of the interaction
field. The largest value of the shape anisotropy for the circular cylinder is attained when the
aspect ratio is very large. In this case, as mentioned before, the axis axis rotates when the
packing fraction is larger than 1/3. This is seen in figure 6.8 (a) for the data corresponding to
those series of samples where the packing fraction is larger than 1/3 [4,6,7]. Furthermore, we
can see that the easy axis rotation takes place at different aspect ratio values. The predictions
of the model are in excellent agreement with the experimental results.
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Figure 6.8: (a) Effective anisotropy diagram for an array of nanowires as a function of the
wire aspect ratio (τ) and the inverse reduced distance (1/d). The continuous line corresponds
to the model, equation (6.16). The horizontal dashed line at 1/d= 0.606 corresponds to the
distance for the critical packing fraction of P2 = 1/3 in an hexagonal array. The data points
correspond to examples of Ni [4–6] and NiFe [7] NWs. (b) Axial component of the reduced
interaction field calculated from the model (continuous line) and compared to experimental
results reported for arrays of very tall nanowires [8–11].

The other measurements that can be compared with the model are those of the axial com-
ponent of the dipolar interaction field. To compare the model with available experimental
results on arrays of tall NWs, we have taken the date obtained using FORC diagrams for Co
(MS =1400 emu/cm3) [8] and CoFe (MS =1991.5 emu/cm3) [9], as well as those obtained
using remanence curves in Ni (MS =485 emu/cm3), NiFe (MS =788 emu/cm3) and CoFe
(MS =1900 emu/cm3) NWs with diameters of 71 nm and below [10]. In addition, we have
extracted the data obtained from the width of the switching field distribution (SFD) for Ni
NWs [11]. To obtain the value of the interaction field from the width of the SFD we assume
that the reported width w is the sum of the constant intrinsic width w0 and the shearing due
to the interaction field Hint(d), this is, w = w0+Hint(d). By interpolating the data for infinite
separation between NWs (Hint = 0), we obtain w0 so that Hint(d) = w−w0.

The values reported in these studies correspond to the interaction term of the axial com-
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Figure 6.9: Sketch of the model used to homogenize a system of magnetic SW nanoparticles.

ponent of the interaction field [103], so to convert these values to dimensionless effective
field, we have divided their magnitude by 4πMs (CGS) or µ0Ms (MKS), using the values
of MS mentioned above. Moreover, equation (6.16) is the total effective anisotropy field,
so to obtain the axial component, we have to divide the second term by 3 [103]. The axial
component of the interaction field is given by the second term in equation (6.16), which for
infinitely tall NWs, requires taking τ→∞. By doing so, and using the inverse of the reduced
distance, we can compare a single interaction curve for all the experimental points as shown
in figure 6.8 (b). Here, the continuous line corresponds to the model while the points corre-
spond to the experimental data. As seen in the figure, the entire data set shows a very good
agreement with the model.

6.2 Homogenization of a system of magnetic nanoparticles

In this section, we choose a representative elementary volume (REV) of a certain lattice
of single-domain magnetic nanoparticles in vacuum, and then, we use the asymptotic ho-
mogenization technique to extend the theory to study the characteristics of a bulk material
made of an array of the REV that we previously choose. We have made this process by
two methods: the first one is the asymptotic homogenization technique. Although is a valid
method to approximate a bulk property from the microscopic characteristics, we decided to
go on the second method: the two-scale homogenization technique. This, as the two-scale
homogenization has more mathematical formality.
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6.2.1 Asymptotic homogenization for a lattice of magnetic nanoparti-
cles

We start with a configuration like the one in figure 6.9, where the blue line in the left
panel indicates the boundary (Γ) between the magnetic material and vacuum and the red line
in the right panel indicates an arbitrary REV.

The goal of this exercise if to obtain an homogenized form of the demagnetization field
operator. In order to do so, we start by obtaining an expression for the magnetostatic scalar
potential u, which is solution to

Problem

{
−△u(x) =−∇ · m⃗(x)
Hd(m⃗) = ∇u(m⃗).

(6.17)

Now, to start with the asymptotic homogenization we assume that exist a solution in the
form

uε(x) =
∞

∑
i=0

ε
iui(x,y), (6.18)

and that the nabla operator converges to

∇ui = ∇xui +
1
ε

∇yui (6.19)

and least but not at least, we propose the magnetization as

m⃗(x) = χ(
x
ε
)m⃗0(x), (6.20)

where χ is a characteristic function of the position of the material. This is, χ(x) = 1 if x ∈W
and χ = 0 if x /∈W . The next step is to substitute the assumptions that we have made just
above into the problem shown in equation (6.17) to get

χ(x/ε)∇x ·m0(x)+ 1
ε
m0 ·∇yχ(xε) =

+ ε−2[△yu0]
+ ε−1[△yu1 +∇y∇xu0 +∇x∇yu0]
+ ε0[△xu0 +∇x∇yu1 +∇y∇xu1 +△yu2]

(6.21)
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Now, for the equation to be true, we need it to be true for every power of ε. Therefore,
this leaves us with the next system of equations

△yu0 = 0
△yu1 +∇y ·∇xu0 +∇x ·∇yu0 = m⃗0 ·∇yχ(x/ε)

△xu0 +∇x ·∇yu1 +∇y ·∇xu1 +△yu2 = χ(x/ε)∇x · m⃗0(x)
(6.22)

And from the first one we can conclude that

u0(x,y) = u0(x). (6.23)

So if we put this information in the second equation, we get that

∇y · (∇yu1− m⃗0χ(y)) = 0 (6.24)

Which leads us to
u1(x,y) = ∑

i
ωi(y)m0i(x) = ω⃗ · m⃗0 (6.25)

If we put the above information into the equation (6.24) we get

∇y ·
(

∂y1ω1−χ ∂y1ω2
∂y2ω1 ∂y2ω2−χ

)(
m01
m02

)
= 0 (6.26)

Which is precisely the

Cell Problem

{
∇y · [∇yωi− e⃗iχ] = 0, in C
ωi periodic in ∂C

(6.27)

Where C represents the Cell, this is, the particle W inside Ω= (0,1)2 which is completely
empty.

Now, for the equation corresponding to ε0 we have

△yu2 = χ∇x · m⃗0−△xu0−∇x · (∇yu1)−∇y · (∇xu1) (6.28)
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And by the Fredholm alternative (condition) [112] this equation has solution if and only
if ∫

C
[χ∇x · m⃗0−△xu0−∇x · (∇yu1)+∇y · (∇xu1)]︸ ︷︷ ︸

=0

dy = 0 (6.29)

where the last term in the right side of the equation is zero by means of a proof that can
be found in the appendix A.

Therefore,

−△x u0|C|=−|C|∇x · m⃗0(x)+
∫

C
∇x ·∇yu1dy−

∫
C

∇y ·∇xu1dy︸ ︷︷ ︸
=0

, (6.30)

Then,

−△x u0|C|=−|C|∇x · m⃗0(x)

=−∇x ·
(
|C|m⃗0(x)−

∫
Y

∇yu1

)
=−∇x · (|C|Id−Ŵ )m⃗0.

(6.31)

Where we have used the fact that∫
Y

∇yu1 =

(∫
Y ∂y1ω1dy

∫
Y ∂y1ω2dy∫

Y ∂y2ω1dy
∫

Y ∂y2ω2dy

)
︸ ︷︷ ︸

=Ŵ

(
m01
m02.

)
(6.32)

From here is easy to see that

−△x u0 =−∇x · (Id|C|+Ŵ )m⃗0 (6.33)

And by definition of the problem

−△u =−∇ · m⃗ | Hd(m⃗ = ∇u(m⃗)) (6.34)

So finally we can conclude that
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△u = HHom(m⃗0) = ∇xu0 +Ŵ m⃗0, (6.35)

Where we can identify ∇xu0 = H(m⃗0). And then, as expected, we have found the correc-
tion term to the magnetic demagnetization operator which depends only on the geometry of
the particles, the volume fraction of the particle (|C|). But, this still is a naive approximation
as we expected to see a term that models the interaction between the particles in different
cells. For this, is necessary to use a more mathematical sound as the two-scale convergence.

6.2.2 Two-scale homogenization to a system of magnetic nanoparticles

We begin explaining the model that we use to calculate the demagnetization operator
field. A sketch of the model can be found in figure 6.9. We are assuming a 3D system in
which the particle W is an ellipsoid and satisfies that

W ⊂ Q = (0,1)3

where Γ = ∂W is the boundary of the ellipsoid and Q = (0,1)3 is a unit periodic cell in R3

and θ = |W | is the volume fraction of magnetic material in the unit cell.

Let ε << 1 and Ω ∈ R3, then, inside Ω we have a crystallilne array of particles such that

Ω
ε
p = {x ∈Ω | x

ε
∈W}

Γ
ε = {x ∈Ω | x

ε
∈ Γ

and outside the particles we have free space denoted by

Ωε = Ω\Ω
ε
p.

Now, since the ellipsoid W and |Wε| ≈ ε << 1, then m must be constant on each Wε. With
this in mind, we let

74



mε(x) = ∑
k∈Iε

mkχQ

(x
ε
− k
)

(6.36)

where Iε = {k ∈ Z3 | k
ε
∈Ω}.

Also, inside each particle k ∈ Iε

H =−NW mk

where Nk ∈ R3×3 is the demagnetization factor of W such that Tr(NW ) = 4π.

Now, let uε be the solution of{
−∇2uε = 0 in R3 \Ωε

p
∂uε

∂ν
= ν · [(I−NW )mε] on Γε

(6.37)

Then the demagnetization field operator will be given by

H ε(mε) = χR3\Ωε
p
∇uε +χΩ

ε
pNW mε in R3 (6.38)

The task at hand is to compute the limit of the above operator when ε→ 0. For this end,
we are going to build some concepts.

Definition 6.2.1 (Two-scale convergence). We can say that uε ∈ L2(Ω) two-scale converges
to u0(x,y) ∈ L2(Ω×Q) if

lim
ε→0

∫
Ω

uε(x)φ(x,
x
ε
)dx =

∫
Ω

∫
Q

u0(x,y)φ(x,y)dydx ∀φ ∈C[Ω̄;C#(Q)].

This is written in short as uε→2s u0

Theorem 6.2.1. Let uε ∈ L2(Ω) be uniformly bounded. Then, exist some u0(x,y) ∈ L2(Ω×
Q) such that

uε→2s u0
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Theorem 6.2.2. Let uεH1(Ω) be uniformly bounded such that

uε→ u weakly in L2(Ω)

then exists some u1(x,y) ∈ L2(Ω,H1
# (Q)) such that

∇xuε→2s
∇xu0(x)+∇yu1(x,y).

With this tools in hand we proceed to compute the above mentioned limit. Let {mε(x),H ε(mε)},
then mε→ m in L2(Ω) and H ε(mε)→2s H̄ (m) where

H̄ (x,y) =−χQ\W (y)[∇xu(x)+∇yu1(x,y)]+χW (y)NW m(x) (6.39)

where u is a solution of


− △u = 0 in R3 \Ω

− ∇ · [(Id−D)∇u] =−∇ ·
[( 1

1−θ
Id +NW

)
m
]

on Ω

ν · [(Id−D)∇u |in −∇u |out ] = ν ·
( 1

1−θ
Id +NW

)
m on ∂Ω

(6.40)

and

u1 =−ω · [∇u+(Id−NW )m(x)] (6.41)

and ω = (ω1,ω2,ω3) are solutions of the cell problem


−△y ωi = 0 in Q\W
∂ωi
∂νi

= ν · ei on Γ

ωi is Q-periodic on ∂Q

(6.42)

and representing the proxy of interaction we have
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D =
∫

Q\W
(Dω(y))T dy (6.43)

Later, with that has been declared in this section we can get to homogenize the micro-
magnetic energy. In this fashion, let the micromagnetic energy be written as

Eε(mε) =
1
2

∫
R3

H ε(mε) ·H ε(mε)dx−
∫

Ωε
p

mε ·hextdx

=
1
2

∫
Ωε

p

mε ·H ε(mε)dx−
∫

Ωε
p

mε ·hextdx
(6.44)

Then, as ε→ 0 the micromagnetic energy converges to

Ē(m) =−1
2

∫
Ω

m ·
(∫

Q
H̄ (m)dy

)
dx−θ

∫
Ω

m ·hextdx

=
1
2

∫
Ω

m · ((1−θ)(N1∇u+N2m)+θ(NW m))dx−θ

∫
Ω

m ·hextdx
(6.45)

where

N1 = (Id−D) and N2 = D(Id−NW ) in R3×3, (6.46)

In such fashion that D and N1 are a measure of the interaction between the particles
and NW and N2 are taking into account the shape of the particles W . Finally, to interpret this
results let us assume that we are working with a macroscopic thin film such that ∇u→Hstray.
Then,

−Hstray =

(1−θ)NΩ +θNW )︸ ︷︷ ︸
as in literature

+(1−θ)D(Id−Nw−NΩ)︸ ︷︷ ︸
correction term

m (6.47)

From this last equation is easy to see that the correction term decreases when the ratio
of the semiaxis of the particles (a/b) tends to unity. Also, the correction term becomes
significant when this ratio becomes smaller, this is, when the particle takes an oblate form.
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Chapter 7

Conclusions and future work

Once we have stated all the results that have been obtained, we shall review the most
remarkable results obtained in the current research.

First of all, we have successfully developed a mathematical model that get the averaged
properties of magnetic systems. In particular, we have obtained an analytical expression
for the effective magnetic anisotropy. As a limitation to this work, the model describes the
properties of only two configurations: a system made up spherical particles which in turn
are arranged into cylinders; and a system made up of spherical particles which in turn are
arranged inside a hollow tube. Despite of the limitations of the model, we have proved the
usefulness of the model as we compared with experimental results to obtain remarkable con-
cordance. Also, we found that for cylindrical arrangements like the above mentioned, the
geometry of the volume containing the particles leads to a magnetic anisotropy that corre-
sponds to the dipolar interactions ignoring the fact that the particles in the arrangement are
isotropic.

Next, as an expansion of the mean-field model, we developed a more rigorous model
based on homogenization techniques. First, we used the asymptotic homogenization tech-
nique to find an analytical expression for the demagnetization field operator for a system
made up of a particle with an arbitrary shape that repeats itself over a representative element
of volume (REV), and this REV repeats over space to the extent of the bulk material. Fi-
nally, we extend our analysis of such a system by means of the two-scale homogenization
technique. This turned out as an analytical expression for the stray-field operator which cor-
responds exactly with the known expression in literature for the stray-field operator plus a
correction term that is related to the proxy of interaction between the particles inside the cell
given its shape and arrangement.
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The above mentioned shed light into the study and analysis of magnetic systems depend-
ing on whether the particles of the system are identical or if each particle has a singular
geometry. For the first, we shall use the mean-field model which has proved to be accurate
and for the last, we shall use the homogenized model as it has been designed specifically to
treat the geometry of each particle inside the analytical expressions.

As a matter of fact, we have corroborated the hiphothesys as we have created a numer-
ical scheme based on the minimization of the micromagnetic energy which determines the
configuration of the individual magnetization of each particle that corresponds to a local
minimum in the micromagnetic energy. Hence, we can obtain the equilibrium configuration
of the individual magnetization that corresponds to a stable state.

Later, we have already implemented this numerical scheme into a programming lan-
guage, FreeFEM++. This enables the code to run in Windows, OsX and Linux using open
source libraries. Also, the software runs in a normal CPU, hence not requiring expensive
hardware nor advanced coding skills. And last but not least, the code can be downloaded
for free, allowing the scientific community to develop and grow the code into their particular
necessities.

In perspectives, we aim to extend the analytical model to more complex systems such
as geometries in three dimensions, more types of boundary conditions, and maybe, auto-
similar or fractal structures in which we could analyze the unit cell and get conclusions on
what the properties of such a system might be. With regard to the numerical results, we
aim to implement our algorithms into the most modern platforms for coding and computing.
Also, we are willing to test our results on the homogenized model versus experimental data
to see the reach of the model and the possible usefulness that could acquire in the near future.
Finally, we are interested in use the geometrical optimization techniques to obtain the best
geometry which maximize a certain feature of the material. Then, the above mentioned
will serve as a guide to know a priori the optimal geometrical configuration that an array of
magnetic particles must have in order to attain a desirable property.
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Appendix A

Appendix: proofs

We want to prove that

∫
Y

∇y · (A∇xu1)dy = 0

First we note that we can write A∇xu1 can be written as

A∇xu1 =

(
ω1A11∂2

x1u0 +ω1A12∂x1∂x2u0 +ω2A11∂x1∂x2u0 +ω2A12∂2
x2u0

ω1A21∂2
x1u0 +ω1A22∂x1∂x2u0 +ω2A21∂x2∂x1u0 +ω2A22∂2

x2u0

)
(A.1)

then

∇y · (A∇xu1) =∇y · [(A11,A21)ω
1]∂2

x1u0 +∇y · [(A12,A22)ω
1]∂x1∂x2u0

+∇y · [(A11,A21)ω
2]∂x2∂x1u0 +∇y · [(A12,A22)ω

2]∂2
xxu0 (A.2)

and also

∇y · (A∇xu1) =

(
∇y · [(A11,A21)ω

1] ∇y · [(A12,A22)ω
1]

∇y · [(A11,A21)ω
2] ∇y · [(A12,A22)ω

2]

)
: D2

xu0 = A′ : D2
xu0 (A.3)

where D2
x us the Hessian applied to u0; Now from the equation∫

Y

(
∇y · (A∇xu1)+∇x · (A∇yu1 +A∇xu0)dy = f (x) (A.4)

we integrate each element of the matrix. This results in elements of the form∫
Y

Ai jdy =
∫

y
∇y · [(A11,A21ω

1)]dy (A.5)
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Using the Divergence theorem this becomes∫
∂Y

ν · (eiAω)dy = 0 (A.6)

this is naught due to the periodicity of A and ω in the micro-domain.Therefore∫
Y

∇y · (A∇xu1)dy = 0 (A.7)
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chowicz, and A. Ehrmann, “Magnetic nanofiber mats for data storage and transfer,”
Nanomaterials, vol. 9, no. 1, 2019.

86



[72] T. Schrefl, G. Hrkac, S. Bance, D. Suess, O. Ertl, and J. Fidler, Numerical Methods in
Micromagnetics (Finite Element Method). John Wiley Sons, Ltd, 2007.

[73] K. Preis, I. Bardi, O. Biro, C. Magele, G. Vrisk, and K. Richter, “Different finite
element formulations of 3d magnetostatic fields,” IEEE Transactions on Magnetics,
vol. 28, no. 2, pp. 1056–1059, 1992.

[74] A. Manaf, M. Leonowicz, H. Davies, and R. Buckley, “Effect of grain size and
microstructure on magnetic properties of rapidly solidified fe82.4nd13.1b4.5 alloy,”
Journal of Applied Physics, vol. 70, no. 10, pp. 6366–6368, 1991.

[75] E. C. Stoner and E. P. Wohlfarth, “A mechanism of magnetic hysteresis in heteroge-
neous alloys,” Philosophical Transactions of the Royal Society of London Series A,
vol. 240, pp. 599–642, may 1948.

[76] I. Mayergoyz and G. Bertotti, The science of hysteresis. Elsevier, 2006.

[77] J. Nocedal, Numerical optimization. New York, NY: Springer, Verlag, 2nd ed. ed.,
1999.

[78] F. Hecht, “New development in freefem++,” J. Numer. Math., vol. 20, no. 3-4,
pp. 251–265, 2012.

[79] V. Carrera, “Magnetic particle simulator.” https://github.com/00009/, 2023.

[80] J. Coey, Magnetism and Magnetic Materials. Cambridge University Press, 2010.

[81] E. Kneller and F. Luborsky, “Particle size dependence of coercivity and remanence of
single domain particles,” Journal of Applied Physics, vol. 34, pp. 656–658, 2004.

[82] D. B. Dusenbery, Living at micro scale : the unexpected physics of being small. Cam-
bridge, Mass.: Harvard University Press., 2009.

[83] S. Simmons and K. Edwards, “Unexpected diversity in populations of the many-celled
magnetotactic prokaryote,” Environmental Microbiology, 2007.

[84] S. Spring, R. Amann, W. Ludwig, K. Schleifer, V. Gemerden, and N. Petersen, “Domi-
nating role of an unusual magnetotactic bacterium in the microaerobic zone of a fresh-
water sediment,” Applied and Environment Microbiology, 1993.

[85] D. Bazylinkski and R. Frankel, “Magnetosome formation in prokaryotes,” Nature Re-
views Microbiology, 2004.
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