
Copyright: © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This 
article is an open access article distributed under the terms and conditions 
of the  Creative Commons Attribution (CC BY) License which permits 
unrestricted use, distribution, and reproduction in any medium, provided the 
original work is properly cited. 
 
How to Cite: 
García-Grimaldo, C.; Bermudez-Marquez, C.F.; Tlelo-Cuautle, E.; Campos-
Cantón, E. FPGA Implementation of a Chaotic Map with No Fixed Point. 
Electronics 2023, 12, 444. https://doi.org/10.3390/electronics12020444  

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics12020444


Citation: García-Grimaldo, C.;

Bermudez-Marquez, C.F.;

Tlelo-Cuautle, E.; Campos-Cantón, E.

FPGA Implementation of a Chaotic

Map with No Fixed Point. Electronics

2023, 12, 444. https://doi.org/

10.3390/electronics12020444

Academic Editor: Zbigniew

Kotulski

Received: 16 November 2022

Revised: 3 January 2023

Accepted: 12 January 2023

Published: 14 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

FPGA Implementation of a Chaotic Map with No Fixed Point
Claudio García-Grimaldo 1 , Ciro Fabián Bermudez-Marquez 2, Esteban Tlelo-Cuautle 2

and Eric Campos-Cantón 1,*

1 Instituto Potosino de Investigación Científica y Tecnológica A.C. (IPICYT), San Luis Potosí 78216, Mexico
2 Instituto Nacional de Astrofísica, Óptica y Electrónica (INAOE), San Andrés Cholula 72840, Mexico
* Correspondence: eric.campos@ipicyt.edu.mx

Abstract: The employment of chaotic maps in a variety of applications such as cryptosecurity,
image encryption schemes, communication schemes, and secure communication has been made
possible thanks to their properties of high levels of complexity, ergodicity, and high sensitivity to
the initial conditions, mainly. Of considerable interest is the implementation of these dynamical
systems in electronic devices such as field programmable gate arrays (FPGAs) with the intention
of experimentally reproducing their dynamics, leading to exploiting their chaotic properties in
real phenomena. In this work, the implementation of a one-dimensional chaotic map that has no
fixed points is performed on an FPGA device with the objective of being able to reproduce its
chaotic behavior as well as possible. The chaotic behavior of the introduced system is determined
by estimating the Lyapunov exponents and its chaotic behavior is also analyzed using bifurcation
diagrams. Simulations of the system are realized via Matlab, as well as in C and the very high-speed
integrated circuit (VHSIC) hardware description language (VHDL). Experimental results on FPGA
show that they are like those obtained in the simulations; therefore, this chaotic dynamical system
could be used as an element in some encryption schemes such as in the generation of cryptographically
secure pseudorandom numbers.

Keywords: chaotic map; PWL map; map without fixed points; FPGA implementation; Lyapunov
exponent; bifurcation diagram

1. Introduction

Chaotic dynamical systems have proven to be very useful in several areas of technol-
ogy, in biological and physical sciences, as well as in different branches of engineering,
mainly because of their ergodicity properties, sensitivity to initial conditions, and posi-
tive entropy [1–3]. Some dynamical systems, whether defined in continuous or discrete
time, have been implemented through electronic circuits and have been given different
uses. For example, the implementation of such chaotic systems has been used in image
encryption schemes, secure communication systems, etc., and has been done through the
use of different electronic devices such as field programmable analog arrays (FPAAs) [4],
the platform STM32 [5], and FPGAs [6]. These different devices have some advantages
and disadvantages, for example, in an FPAA device the processing time is less compared
to digital devices because it does not require discretization and the blocks are already
established. However, it presents a lower accuracy, the design is closed, and also for
digital applications it needs an analog-to-digital converter (ADC). An STM32 device has
the following advantages: structured architecture, the design time is less (just configure
and program), higher precision (depending on the design) than analog devices, and lower
power consumption, but it has some drawbacks such as a closed architecture and some-
times a lower speed than an FPGA. Finally, an FPGA has the following benefits: digital
implementation, quick processing because of the clocks it can use, accuracy, and freedom
of design/open architecture, i.e., the design can be reprogrammed and optimized. On the
other hand, this device presents some disadvantages such as high current consumption
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and longer design times than devices that already have blocks established. Because an
FPGA can be reconfigurable, has a flexible design, and rapid prototyping has been helpful
in implementing continuous-time and discrete-time chaotic dynamical systems better than
other devices. In particular, FPGAs have been very useful to implement chaotic attractors
in order to check mathematical models and observe their behavior in the real world [7]
with the intention of obtaining applications based on chaos. For example, Tlelo et al. [8]
implemented a chaotic dynamical system in an FPGA through an artificial neural network
with the purpose of encrypting data, where random binary sequences are generated. Sun-
darapandian et al. [9] created a dynamical hyperchaotic system, as well as the realization
of its circuit using MultiSim, and their implementation on FPGA for the application of a
new encryption scheme in color images.

In relation to discrete-time systems, Aboulseoud and Ismail [10] reported on a floating-
point hardware design of a fractional-order chaotic map and their implementation in
an FPGA for image encryption. Thane and Chaudhari [11] proposed an FPGA-based
cryptographically secured pseudo-random number generator (PRNG) by using a piecewise
linear (PWL) map. Wang et al. [12] presented an FPGA implementation, as well as
an analysis of discrete chaotic maps, which can be useful in applications. The use of
some of these one-dimensional maps has been workable for applications that require high
computation efficiency because of their low implementation costs [13,14]. In this regard,
over the last decade, dynamical systems without fixed points or equilibrium points have
been proposed. These systems have been the object of important consideration, since the
mere fact of not having fixed points makes it difficult to determine their dynamics [15–18].
In the implementation of a PRNG, a system without a fixed point presents advantages
over a system with a fixed point due to there being no orbit that converges to the fixed
point for any initial condition. Additionally, if the initial condition is an eventually fixed
point, then the orbit will be periodic for an n iteration. Note that this could happen at
the first iteration, the second iteration, and so on. It is worth mentioning that this does
not occur in a system without a fixed point, so maps with more complex dynamics can be
obtained and this fact is a primordial property in certain applications such as encryption
schemes based on PRNGs. Since a map without a fixed point has no eventual fixed points,
then the space of initial conditions leading to chaotic behavior is larger than a map with
a fixed point. We have that the initial condition is part of the key space of an encryption
scheme, then the key space increases the probability of generating a greater number of
cryptographically secure sequences. For instance, Yu et al. [19] described an approach to
obtain a PRNG by using a hyperchaotic system without an equilibrium point based on a
memristor and its realization in FPGA. We remark that this last work shows a continuous
dynamic system, this fact leads to employing some integration methods, for example,
the Runge–Kutta algorithm, to solve and implement the dynamical system on the FPGA.
When the integration methods used are simple, FPGA resources are reduced, but this
results in larger rounding errors than if more complex integration methods were used.
However, regardless of the method used, the problem of rounding errors will always be
there. For a discrete dynamic system, an integration algorithm is unnecessary. Therefore,
both the resources used and the rounding errors will be lower than if an integration method
was applied (if a proper design is performed).

While there are other works where discrete systems are implemented in an FPGA
in order to reproduce their chaotic dynamics, to the best of the authors’ knowledge, no
study has been conducted on implementing a one-dimensional map without fixed points
on an FGPA. In view of the advantages stated in the previous paragraph, and that a PWL
system is less difficult to implement compared to those built on nonlinear functions, in this
work, we present an implementation of a PWL chaotic map without fixed points in an
FPGA. In order to accomplish this task, and as mentioned in [20], in a first step, we make
a computer simulation of the PWL map using floating-point arithmetic, specifically, we
find, via Matlab, time series for different values of the parameters of the PWL map. As a
the second step, we determine the range in which the values of the system lie and thus
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establish the integer and the fractional part. As a third step, we carry out the design and
simulation of the PWL map using fixed-point arithmetic (a dynamical system without fixed
point refers to the fact that there is no x such that f (x) = x, but a fixed point arithmetic
refers to the computation of the value of x). In relation to this, we first show the design of
the block diagram in which we synthesize all the operations that allow us to obtain the
iterations of the PWL map. Second, we calculate the time series using fixed-point arithmetic
for the same values of the PWL parameters that were used in the Matlab simulation,
but now in the C language and in VHDL. As a final step, we perform the implementation
of the PWL map design on the FPGA. The experimental results achieved with the FPGA
implementation for particular values in the parameters by which the PWL map is chaotic
show that these agree with the numerical results obtained with the C, VHDL, and Matlab
languages, i.e., the same behavior can be observed in the time series produced with the
experimental implementation and simulations.

In synthesis, the research conducted in this work contributes to the fact that new map-
pings without fixed points such as the one presented here can be taken into consideration
in encryption schemes, in particular in the experimental discovery of PRNGs (through an
electronic device such as an FPGA), and, therefore, application in various technologies that
require an encryption system is possible. The rest of the work is presented as follows: in
Section 2 we present the PWL map used in this work. In Section 3 we show an analysis of
its dynamics. Section 4 contains the numerical simulations and the experimental realization
of the PWL map in the FPGA. Finally, in Section 5 the conclusions of this research are given.

2. PWL Map without Fixed Points

In this section , we present the difference equation that defines the chaotic map used
in this work, as well as a brief analysis of its dynamics. This map is a one-dimensional PWL
mapping designed by García-Grimaldo and Campos Cantón [17], which, as will be seen
later on, has no fixed points and exhibits chaotic dynamics when its parameters are within
a certain range. Equation (1) describes the dynamic system based on a PWL map

xn+1 =


m1xn + b1 for −b2 ≤ xn ≤ −a,
m2xn + b2 for −a < xn < 0,
m2xn − b2 for 0 ≤ xn < a,
m1xn − b1 for b2 ≥ xn ≥ a,

(1)

where m1 6= 0, m2 6= 0. The values 0 < a and b2 are set as shown in (2) and (3).

a =
b1

m1
, (2)

b2 =
m2 b1

m1
. (3)

Note that mi and bi have the same sign, with i = 1, 2.

Fixed points. As we said previously, the PWL map given by (1) could present the absence
of fixed points, specifically when its parameters m1 and m2 take determined values. In a
formal way, García-Grimaldo and Campos-Cantón [17] establish a means of following
Theorem 1, the hypothesis for which it is obtained a dynamical system without fixed points,
as well as Theorem 2, which is proved to be chaos in Devaney’s sense for particular values
of (1).

Theorem 1. Let f be a PWL map given by (1), such that m2 > 0 and m1 ∈ (−∞, 0) ∪ (0, 1),
therefore, the PWL map (1) has not fixed point.
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Theorem 2. The map given by (1) such that f : [−25, 25] 7−→ [−25, 25), with values
m1 = 0.80, m2 = 5, b1 = 4, b2 = 25, has chaotic behavior in Devaney’s sense.

Figure 1 shows the graph of the map given in Theorem 2, from Theorem 1, with the
values m1 = 0.8, m2 = 5, b1 = 4, and b2 = 25, the PWL map has no fixed points.

x
n

x
n

+
1

Figure 1. PWL map given by (1). m1 = 0.8, m2 = 5, b1 = 4, and represented by the blue lines. The
red line is the identity map.

3. Dynamical Analysis: Bifurcation Diagram and Lyapunov Exponents

In this part, we will perform an examination of the dynamics for the PWL map (1).
First, we present the bifurcation diagram which will allow us to identify the regions in
which there are non-periodic dynamics. Subsequently, we show the graph which displays
the Lyapunov exponents obtained by varying the parameter m1.

In Figure 2a we can see the bifurcation diagram which was generated by modifying
the parameter m1 in the closed interval [0.1, 1], in addition, for each of the values of m1,
the initial condition was taken as x0 = 0.11. The values m2 and b1 were set to 5 and
4, respectively. As can be noted when m1 lies in the intervals (0.1, 0.2) and (0.25, 0.45),
the orbit generated from the successive iterations of map (1) is periodic, being of period
four in the first interval and of period six in the second interval. The other way, there are
two intervals in the parameter m1 where there are chaotic dynamics: 0.2 < m1 < 0.25 and
0.45 < m1 ≤ 1. From the aforementioned, we can notice that this PWL system, presents
a route to chaos different from other maps, such as the logistic one in which, as it is well
known, presents a route to chaos by means of period doubling, while for map (1), it starts
first with a periodic behavior and immediately when m1 reaches a certain value it goes
to a dynamic with chaotic behavior, which is maintained until the value of m1 meets a
certain value, after that, a periodic dynamic is suddenly produced and eventually a chaotic
behavior emerges once again.

In order to determine and corroborate what was observed in the previous bifurca-
tion diagram, where periodic and chaotic dynamics were detected in certain intervals,
the results of the calculation of the Lyapunov exponents are shown below by means of the
following definition:

λ(x0) = lim
n→∞

1
n

n−1

∑
j=0

ln | f ′(x(j)) |. (4)

where λ(x0) is the Lyapunov exponent calculated for a given initial condition x0. A value
of λ > 0 as well as the orbit of x0 is bounded, implying the existence of chaos.

Figure 2b displays the calculation of the Lyapunov exponents of map (1) by taking
values of m1 in the closed interval [0, 1], m2 = 5, b1 = 4 and the initial condition x0 = 0.11.
As can be corroborated in this plot, the Lyapunov exponent is non-positive in the same



Electronics 2023, 12, 444 5 of 13

intervals where periodic dynamics were obtained in the bifurcation diagram, i.e., in the
intervals where 0 < m1 < 0.2 and 0.25 < m1 < 0.45, and is positive for the intervals:
0.20 < m1 < 0.25 and 0.45 < m1 < 1. Given that the orbits in each of these two intervals
are bounded and λ > 0, then chaos is present in each of them.

(a) Bifurcation Diagram.
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(b) Lyapunov exponents.

Figure 2. Dynamical analysis of the PWL map (1) by taking values of m1 in the closed interval [0, 1],
m2 = 5, b1 = 4 and the initial condition x0 = 0.11.

4. FPGA Implementation

As is well known, FPGA devices have recently been used for the electronic imple-
mentation of dynamical systems in continuous time; however, one of the disadvantages
of employing such systems is that numerical methods must be applied to discretize the
system, which leads to the consumption of more resources of the FPGA. On the other hand,
the FPGA implementation of discrete-time dynamic systems offers the advantage that the
aforementioned discretization step is not required due to the nature of the system. In this
work, the implementation of a discrete PWL map on an FPGA is carried out and the fact
that it is built by means of simple functions leads to lower utilization of FPGA resources.

In Figure 2b, it is possible to see a positive Lyapunov exponent for a wide range of
values of the parameter m1. This implies chaotic dynamics for a wide range of values of
m1, and the parameters m2 = 5 and b1 = 4. Then there are many options to select the value
of the parameter m1 for the FPGA implementation of the PWL map (1), that is, the value of
the parameter m1 can be chosen arbitrarily considering only when the Lyapunov exponent
is positive. A wide range of values of m1 of the PWL map (1) is an advantage in generating
an encryption scheme because the parameter values are part of the key space of the system.
With respect to other maps such as the logistic map, if the parameter value is always taken
to be µ = 4, then it is not considered as part of the key when used in encryption schemes.

In this work, three different sets of parameters are used to carry out the simulations in
Matlab and C. Finally, one of these three sets of parameters for the PWL maps is used for
implementation in VHDL and on the FPGA, and we select the set of parameters that exhibits
chaos in the Devaney sense to show that it is feasible to reproduce chaos experimentally in
a mapping that exhibits chaos theoretically.

4.1. Matlab Simulation

Before performing the simulation of the PWL map in VHDL, as well as its implementa-
tion on the FPGA, the time series of the PWL map computed with Matlab for three different
sets of values are shown below to compare them with the time series computed in C, VHDL
and experimentally with the FPGA. Additionally, the histograms corresponding to each
map are displayed to observe how their distribution changes when one of their parameters
is varied.

For Matlab, the data test volume was 10 0000 iterations for each set of parameters
shown in Figure 3 and the same initial condition x0 = 0.1 (Matlab makes the calculations
using floating point arithmetic according to the standards of the IEEE). In Figure 3, we can
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appreciate the time series and histograms for the three different maps. We can observe that
as in Figure 2, there is a chaotic behavior for the values present in Figure 3c,e, while for
the parameters in Figure 3a, there is periodic behavior. Furthermore, the striped structure
obtained in Figure 3c occurs because there are bars that are close together with a frequency
close to each other, as shown in the histogram in Figure 3d. As the value of m1 increases,
the distribution of values is concentrated closer to xn = 0 and the stripe width is thinner
(see Figure 3e,f).

Time

x
n

(a) Time series of the PWL map (1),
m1 = 0.3, m2 = 5, b1 = 4 , b2 = 66.7.

(b) Histogram of the PWL map (1),
m1 = 0.3, m2 = 5, b1 = 4 , b2 = 66.7.

Time

x
n

(c) Time series of the PWL map (1),
m1 = 0.8, m2 = 5, b1 = 4 , b2 = 25.

(d) Histogram of the PWL map (1),
m1 = 0.8, m2 = 5, b1 = 4 , b2 = 25.

Time

x
n

(e) Time series of the PWL map (1),
m1 = 0.98, m2 = 5, b1 = 4 , b2 = 20.4.

(f) Histogram of the PWL map (1),
m1 = 0.98, m2 = 5, b1 = 4 , b2 = 20.4.

Figure 3. Various time series and corresponding histograms for the PWL map (1).

4.2. Arithmetic Operations

In digital electronic devices, two formats can represent numerical values: fixed-point
and floating-point arithmetic. In fixed-point notation, a number n, the binary point sepa-
rating its integer and fractional part, is limited to a particular or fixed position in the bit
pattern. In floating-point notation, a number n is expressed in the form n = m2e, where m
is the mantissa and e is the exponent.

To implement dynamic systems in an FPGA, it is advisable that the calculation of the
operations be performed using fixed-point arithmetic instead of floating-point ones since
in this format the values can be computed more quickly, and the use of hardware resources
and costs is minor. Moreover, if the dynamic system is not represented by highly complex
functions, as of the PWL maps used in this work, the use of floating-point arithmetic can
adequately represent the dynamics of the system. Because of this, in this article, we decided
to use the arithmetic of fixed point to compute the PWL system (1).



Electronics 2023, 12, 444 7 of 13

To establish within this arithmetic an adequate representation of the mathematical
model of the PWL map, it is necessary to determine: the range that the integer values of the
parameters can take, the values obtained by performing the operations describing the PWL
map (1), and the amplitude of the state variable x. Given the time series of Figure 3 and the
bifurcation diagram of Figure 2b, we can note that the values of the iterations are lower and
upper bounded by −b2 and b2, respectively. From this, by Theorem 3 we established the
conditions that guarantee that all the operations involved in the PWL map, its parameters,
as well as the amplitude state variable are bounded in the closed interval [−b2, b2].

Theorem 3. Let f be a PWL map defined as (1), such that b1 > 1, m2 > 1 and m1 ∈ (0, 1), then
m1, m2, b1, m1xn, m2xn, m1xn + b1, m1xn − b1, m2xn + b2, and m2xn − b2 are bounded on
the closed interval [−b2, b2].

Proof. First, we prove that m1, m2, b1 ∈ [−b2, b2]. By hypotheses, b1 > 1, m2 > 1, then

b1 > m1, thus
b1

m1
> 1, since b2 =

m2 b1

m1
, then, −b2 < m2 < b2. In analogous way, it can

proved that m2, b1 ∈ [−b2, b2].

Second, we prove that m1xn, m2xn ∈ [−b2, b2]. If−b2 ≤ xn ≤
−b1

m1
, and by hypotheses

m1 ∈ (0, 1), then −b2 ≤ xn < m1xn < 0 < b2.

If
−b1

m1
< xn < 0 <

b1

m1
, then −b2 =

−m2b1

m1
< m2xn < 0 <

m2b1

m1
= b2.

Third, we prove that m1xn + b1, m1xn − b1, m2xn + b2, m2xn − b2. If −b2 ≤ xn ≤
−b1

m1

and the fact that b1 > 1 then −b2 < m1x < m1xn + b1 ≤ 0 < b2. If
−b1

m1
< xn < 0

b1

m1
and

due to −b2 =
−m2b1

m1
< m2xn < 0, then 0 < m2xn + b2 < b2. In an analogous way, it can

be proven that m1xn − b1, m2xn − b2.

Under the conditions of Theorem 3, we can state that the range that the integer part can
take for all values is from −b2 to −b2, where −b2 is the next integer greater than b2. In this
work, for the C and VHDL simulations, we will use three common architectures: 16, 32, and
64 bits. Thus, once the value of b2 is defined, we will determine the number of bits required
to represent all integer values in the range [−b2, b2] or vice versa, we can give the number
of bits for the integer part and determine the range, and as a result know the numbers of
bits that will be available for the fractional part in each of the above architectures.

4.3. Block Diagram of the PWL Map

After determining the arithmetic computation, the next step is to identify the type
of blocks that will be required for the simulation and implementation of the PWL map in
the FPGA. Figure 4 displays the block diagram used for the implementation of the PWL
map that is defined in four subintervals Ii, i = 1, . . . , 4 as we can see in (1). Figure 4 shows
the adder, subtractor, and multiplier blocks needed to perform the arithmetic operations.
Additionally, since we have a piecewise map, it is required to determine in each n-th
iteration in which interval Ii, with i = 1, . . . , 4, xn is located. In Figure 4, it can be seen that
this could be determined with two blocks: the comparator block, which precisely has as
input signals the signal xn and the threshold signal a, and the encoder block, in which the
output signal “SEL2” allows us to determine the correct value of xn+1, which is represented
by the output signal fr of the multiplexer with input signals “SEL2” and f1, f2, f3, f4.
Finally, the signal fc is fed to a register block which allows us to store each of the computed
iterations. As can be seen in Figure 4, there is also a read-only memory (ROM) block in
which the values of the parameters that remain constant are stored. In addition, in order
to start and end the iterative process, a state control machine was designed, which is
composed of the following blocks: a multiplexer block, which allows us to choose between
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the initial condition x0 or the condition xn+1, and a control unit (CU) block that allows to
start and end the computation of the PWL map dynamics.

Figure 4. Block diagram of the PWL map (1).

4.4. Simulation in C and VHDL

Usually, once the arithmetic computation is determined, as well as the design of the
blocks, the next step is to create the code in a description language such as VHDL to carry
out the simulation process. However, in this work, we also present simulations derived
from the creation of a code in the C language, in which the arithmetic computation was
done using fixed-point arithmetic. The main reason to perform the implementation in C
is intending to detect design errors before the simulation in VHDL and its subsequent
implementation in the FPGA, where it is more difficult to detect such errors. We use the
C programming language with a GCC compiler on a UNIX base operating system, in the
code we use the following data type: double-8 bytes, int128-16 bytes, long-8 bytes, and
int-4 bytes.

In each of the three architectures: 16, 32, and 64 bits, we occupy eight bits for the integer
part. Therefore, the range of values that the integer part can take is [−28 − 1, 28 − 1], this is,
with eight bits it is possible to represent PWL maps defined by (1) where the amplitude,
parameters, and dynamics belong to the close interval = [−b = −255, b = 255], the reason
for this was that the simulations made with of the time series of the three maps described
above had a range which could avoid falling into an overflow; however, it is important to
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mention that it can take a larger range based on the conditions of Theorem 3. Table 1 lists
the number of bits used in each of the three architectures.

Table 1. Number of bits in each architecture.

Architecture # Sign-Bit # Bit-Integer # Bit-Fractional

16 bits 1 8 7
32 bits 1 8 23
64 bits 1 8 55

Figure 5 displays the time series (TS) for the same three PWL employed on simulation
made with Matlab but now obtained by simulating it in the C language using fixed-point
arithmetic with three distinct architectures. For the PWL simulation using C language, we
also calculate 100,000 iterations, and an initial condition x0 = 0.1. For the three maps it was
taken m2 = 5, b1 = 4; for PWL-1, m1 = 0.3, b2 = 66.7; for PWL-2, m1 = 0.8, b2 = 25; for
PWL-3, m1 = 0.98, b2 = 20.4.

(a) TS of PWL-1 using 16 bits. (b) TS of PWL-2 using 16 bits. (c) TS of PWL-3 using 16 bits.

(d) TS of PWL-1 using 32 bits. (e) TS of PWL-2 using 32 bits. (f) TS of PWL-3 using 32 bits.

(g) TS of PWL-1 using 64 bits. (h) TS of PWL-2 using 64 bits. (i) TS of PWL-3 using 64 bits.

Figure 5. Time series for three distinct PWL maps with three different architectures.

In Figure 5b,c, we can detect that with a 16-bit architecture, there are discrepancies
in the time series of map PWL-1 and map PWL-2 regarding the series of the same maps
simulated with Matlab, which can be seen in Figure 3c,e, respectively. However, for the
three PWL maps the time series in Figure 5d–i with the architectures of 32 and 64 bits,
respectively, shows the same dynamical behavior that was exhibited in the time series in
Figure 3a,c,e. Thus, C language simulations of maps using 32-bit and 64-bit fixed-point
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arithmetic show that it is achievable to reproduce the dynamics now in VHDL and in
the FPGA.

From the simulations made in the C language, it was possible to reproduce the dynam-
ics of the PWL maps defined by (1) using 32-bit and 64-bit architectures for three sets of
parameters. In this part, we display the VHDL simulation of the PWL map. We select the set
of parameters to generate chaos, as already detailed in previous sections, chaotic behavior
was demonstrated through Devaney’s definition, as well as by using Lyapunov exponents.
For this reason, we consider it important to carry out its implementation experimentally,
since the fact of achieving it shows a map without fixed points with the presence of chaotic
dynamics in three senses: theoretical, numerical simulation, and experimentation.

For the PWL map simulation using VHDL, we also compute 10,000 iterations and the
parameters are m1 = 0.8, m2 = 5, b1 = 4, a = 5, x0 = 0.1. To implement the PWL map, each
of the blocks present in the diagram in Figure 4 is programmed with VHDL using 64-bit
fixed-point architecture, given that this has higher precision than the 32-bit architecture for
the calculation of each of its iterations.

Figure 6 shows the values of the first iterations of the PWL map (1) obtained by
the VHDL simulation. Since these values are in hexadecimal format, we also decided to
calculate the same number of iterations using C language with the same architecture and in
hexadecimal format to compare both results and determine if there were any discrepancies
between the values obtained with VHDL and with C.

Figure 6. VHDL simulation of the PWL map (1). m1 = 0.8, m2 = 5, b1 = 4, a = 5, x0 = 0.1.

Table 2 presents the values in a hexadecimal format of the first 10 iterations and the
last iterations in both languages. As we can see, exactly the same results are achieved in
both the first and last iterations in C-hexadecimal and in VHDL. Therefore, the analysis,
design, programming, and simulation of the block diagram representing the PWL map (1)
are adequate. Thus, the last step to be carried out is the synthesis and implementation of
the map in the FPGA.

4.5. FPGA Implementation

Figure 7 shows the experimental implementation of the PWL map. Figure 7a depicts
the necessary devices to obtain the PWL time signal, which consists of an FPGA Basys 3
Xilinx Artix-7 XC7A35T-1CPG236C, a linear power supply at 5 V, a 16-bit DAC, and an
oscilloscope to visualize the output signal, which can be seen in Figure 7b. Here, in the time
series reproduced on the oscilloscope, we can detect the same type of chaotic behavior as
that exhibited in the simulations done in Matlab, C, and VHDL. In each of these simulations,
as well as in the FPGA implementation, the same lines are observed, i.e., there is the same
type of distribution. In this way, it has been possible to reproduce experimentally the
chaotic dynamics of the PWL map (1). Finally, Table 3 shows the resources used by the
FPGA Basys 3 Xilinx Artix-7 XC7A35T-ICPG236C to implement the PWL map (1). These
data were acquired when the FPGA is operated with a clock signal of 100 MHz.
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Table 2. Iterations of the PWL map.

Iteration VHDL-Value C-Hexadecimal Value

1 f3c0000000000001 f3c0000000000001
2 f83333333333330c f83333333333330c
3 fbc28f5c28f5c257 fbc28f5c28f5c257
4 fe9ba5e353f7ce9e fe9ba5e353f7ce9e
5 058a3d70a3d70916 058a3d70a3d70916
6 026e978d4fdf3a89 026e978d4fdf3a89
7 ffa8f5c28f5c24ad ffa8f5c28f5c24ad
8 0accccccccccb761 0accccccccccb761
9 06a3d70a3d7092d6 06a3d70a3d7092d6
10 034fdf3b645a0f26 034fdf3b645a0f26
9996 0a3c7dcc356a64ca 0a3c7dcc356a64ca
9997 063064a35deeb728 063064a35deeb728
9998 02f383b5e4bef900 02f383b5e4bef900
9999 005c695e5098c73c 005c695e5098c73c
10,000 f54e0ed792fbe42c f54e0ed792fbe42c

Table 3. Hardware resources for the implementation of PWL system (1) by using the FPGA Basys 3
Xilinx Artix-7 XC7A35T-ICPG236C.

Resources PWL Available

LUTs 700 20,800
FF 127 41,600
DSP 24 90
Multipliers 2 –
Adders 2 –
Subtractors 2 –
Comparators 1 –
Latency (ns) 40 20

(a) Experimental setup. (b) Experimental time series.

Figure 7. FPGA implementation of the PWL map (1). m1 = 0.8, m2 = 5, b1 = 4, a = 5, x0 = 0.1.

5. Conclusions

In this work, the analysis, numerical simulation, and implementation in an FPGA of a
PWL map without fixed points have been presented. This implementation is an alternative
to encryption schemes because it has some advantages such as a wide range of values of
the m1 and this helps to increase the key space. To achieve the proposed objectives, a series
of steps were carried out, firstly, the theoretical analysis was addressed with a couple of
theorems on the difference equation that defines the PWL map. In the first, the conditions
were established so that there are no fixed points, and in the second, a chaotic map in
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the sense of Devaney was exhibited. Second, numerical simulations were performed to
analyze the dynamics using bifurcation diagrams and Lyapunov exponents. The results
indicated that the PWL map has continuous ranges where chaotic dynamics are developed,
this characteristic evidences that its parameters can be used as part of the key of some
encryption schemes, unlike other maps such as the logistic one, in which its parameter is
generally not part of the key. Third, time series were shown by simulating them in Matlab
using three sets of parameters of the PWL map. Fourth, it was determined that it was
best suited for the calculation of the values of the PWL map iterations to use fixed-point
arithmetic in the simulation process in C and VHDL, as well as for the implementation
of the PWL map in an FPGA. In connection with this, we established a theorem that
provided the conditions that determine the range in which the integer part of the values
represented in the fixed-point notation of the PWL map is guaranteed to be bounded.
Fifth, we presented the design of the block diagram in which the relationships between
the operations that allow defining the PWL map were established. Sixth, we displayed the
time series generated in the C language for the PWL map obtained from the simulation in
Matlab using 16-, 32-, and 64-bit fixed point architectures. The results showed that, with the
16-bit architecture, the time series differ with respect to those obtained with Matlab, thus
not correctly reproducing the dynamics of the PWL map. However, with the 32-bit and
64-bit architectures, the results revealed very similar time series with respect to those
found with Matlab, with the 64-bit having a higher precision by using a greater number of
bits for the fractional part. Based on this, we decided to use a 64-bit architecture for the
simulation in VHDL, as well as in the implementation in the FPGA to the PWL map (the
one that has been shown to have chaos in the sense of Devaney and through Lyapunov
exponents). The results of the simulation in VHDL compared with those obtained in C in
hexadecimal format showed that the same values were found in the iterations of the PWL
map and, therefore, the chaotic behavior was reproduced, which proved that the design
and programming of the PWL map in the VHDL language were correct, so as a last step
the implementation of the PWL map in the FPGA was performed. The experimental results
given showed that the time series exhibited the chaotic dynamics displayed in the series
with Matlab and C. In this way, we could experimentally reproduce the chaotic dynamics
of the PWL map without fixed points. Finally, from the results presented, the PWL map
without fixed points employed in this work may be an option for application in encryption
schemes or for the generation of cryptographically secure pseudo-random sequences.
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