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Abstract: Chronic kidney disease (CKD) is a health problem that is constantly growing. This disease
presents a diverse symptomatology that implies complex therapeutic management. One of its
characteristic symptoms is dyslipidemia, which becomes a risk factor for developing cardiovascular
diseases and increases the mortality of CKD patients. Various drugs, particularly those used for
dyslipidemia, consumed in the course of CKD lead to side effects that delay the patient’s recovery.
Therefore, it is necessary to implement new therapies with natural compounds, such as curcuminoids
(derived from the Curcuma longa plant), which can cushion the damage caused by the excessive use
of medications. This manuscript aims to review the current evidence on the use of curcuminoids on
dyslipidemia in CKD and CKD-induced cardiovascular disease (CVD). We first described oxidative
stress, inflammation, fibrosis, and metabolic reprogramming as factors that induce dyslipidemia in
CKD and their association with CVD development. We proposed the potential use of curcuminoids
in CKD and their utilization in clinics to treat CKD-dyslipidemia.

Keywords: curcumin; curcuminoids; chronic renal disease; cardiovascular disease (CVD); dyslipidemia;
CKD

1. Introduction

Chronic kidney disease (CKD) is a global public health problem, with an incidence
of >11.1% [1], corresponding to 843.6 million cases worldwide [2]. CKD significantly
increases cardiovascular morbidity and mortality rates since CKD increases cardiovas-
cular events by more than 50% [3–6]. Several risk factors are shared between CKD and
cardiovascular disease (CVD), including diabetes, hypertension, lipid abnormalities, obe-
sity, and smoking. CKD-induced dyslipidemia has been highlighted as a critical factor
in CVD development [7,8]. CKD patient management involves using different drugs to
reduce cardiovascular risk and prevent renal venous hypertension and congestion. These
drugs include antihyperlipidemic combinations, renin-angiotensin-aldosterone system
(RAAS) inhibitors, angiotensin receptor blockers, diuretics, vasodilators, inotropes, and
β-blockers [8–10]. However, it has been reported that these drugs might cause side effects,
doing more challenging to treat CKD patients [8]. Therefore, new treatment strategies are
required to avoid or reduce dyslipidemia in CKD and the associated CVD without these
side effects.
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Curcuminoids are compounds derived from turmeric (Curcuma longa) root, used in
traditional medicine and as a pigment, additive, and spice for several years [11]. In CKD,
curcuminoids have received significant interest due to their several health-beneficial prop-
erties, such as antioxidative, anti-inflammatory, antifibrotic, and others [12]. In addition, it
has been hypothesized that curcuminoids can reduce dyslipidemia in CKD; however, the
beneficial effects of curcuminoids on dyslipidemia in CKD and associated CVD are poorly
explored. Therefore, this review aims to describe some mechanisms that lead to dyslipi-
demia in CKD and how these mechanisms promote CVD development. We also discuss
the use of curcuminoids to attenuate CKD-induced dyslipidemia and the associated CVD.

2. Pathophysiological Features of Dyslipidemia in CKD

CKD is a chronic disorder characterized by kidney structure and function abnormali-
ties for 3 months or more [13]. CKD is classified into five stages based on the estimated
glomerular filtration rate (eGFR), serum creatinine, and albuminuria levels [14,15]. The
advanced stages of CKD are characterized by a decreased eGFR of less than 60 mL/min
per 1.73 m2, which leads to progressive glomerular, tubular, and interstitial damage [13].
Several etiologic factors predispose to CKD development, including diabetes, hypertension,
vascular disease, and glomerulonephritis [16]. Mechanistically, the pathophysiology of
CKD is characterized by overstimulation in the RAAS, oxidative stress, inflammation, fi-
brosis, and dyslipidemia [14,17]. Dyslipidemia is an unfavorable lipid profile that occurs in
approximately one-third of patients [18], complicating their treatment [16,19]. Dyslipidemia
results from the imbalance of lipids such as cholesterol, triglycerides, and lipoproteins.
Lipoproteins are macromolecules that transport lipids into the bloodstream to deliver them
to the organs [20]. These macromolecules are synthesized in the liver and are denominated
according to their density as high-density lipoprotein (HDL), low-density lipoprotein (LDL),
and very-low-density (VLDL). VLDL and LDL mainly transport triglycerides to the tissues,
while HDL transports cholesterol back to the liver [21].

Patients with CKD develop dyslipidemia since the early stages of renal dysfunc-
tion [19], which may increase the CKD progression rate [22]. Dyslipidemia in CKD is
characterized by elevated triglycerides, cholesterol, VLDL, LDL, and low concentrations
of HDL [23]. Furthermore, the size of LDL tends to be smaller and denser, related to
atherogenic risk. The levels of apoproteins (proteins associated with lipoproteins) are also
altered, characterized by the decrease of HDL apolipoprotein A1 (apoAI) and the accu-
mulation of cholesterol. More specifically, CKD patients with dyslipidemia have elevated
total cholesterol (above 240 mg/dL) and LDL-cholesterol levels (above 130 mg/dL), re-
duced HDL-cholesterol, and increased LDL-cholesterol/HDL-cholesterol ratio [24]. These
alterations have been linked to the decrease in renal clearance and the altered enzyme
activity of lipoprotein lipase, which induce alterations in triglyceride elimination [25]. In
addition, the apolipoprotein B (apoB)/apoAI ratio is higher, causing the increase of LDL in
plasma [26]. Therefore, dyslipidemia is a progressive disease with the potential need for
additional lipid-lowering modifications in CKD patients [27]. Moreover, several studies
have shown that dyslipidemia during CKD might lead to CVD development [7].

3. Dyslipidemia in CKD-Induced Cardiovascular Damage

CVD is a growing condition that produces high rates of mortality and disability in
the world [28,29]. CKD is an independent risk factor for CVD development, and CVD
degree closely correlates with CKD severity [5,30]. For example, patients with an eGFR
less than 60 mL/min/1.73 m2 have a three-fold increased risk of heart failure (HF) [31],
while patients with end-stage renal disease or on dialysis have a 10–30-fold increased risk
of cardiovascular events for all-cause [10,17]. In addition, the lipid accumulation in plasma
causes atheroma, increasing the CVD risk [19].
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It is well-recognized that dyslipidemia is a risk factor for CVD [32]. In the clinical
context, two profiles are considered to determine dyslipidemia. In the first, total cholesterol,
LDL, triglycerides, and apoB levels are above the 90th percentile of the general population.
In the second, HDL and apoA1 levels are below the 10th percentile of the general popula-
tion [33,34]. Low HDL levels have been associated with a significant risk factor for chronic
and ischemic heart disease [35]. An updated statistical report from the American Heart
Association in 2020 showed that 38% of the adult population had elevated triglyceride
levels (>200 mg/dL), and 29% had elevated LDL levels (>130 mg/dL) [36]. The alterations
in these lipids are a risk factor for the development of dyslipidemia. Dyslipidemia also
produces alterations such as atherosclerotic CVD [37], which is the leading cause of death
and disability in the elderly [38]. The patient’s condition worsens if other factors, such
as smoking, body weight, hypertension, and diabetes, are involved [39]. In addition,
atherosclerosis induces endothelial damage, leading to inflammation and the production of
a fibrotic plaque that inhibits lipid metabolism [37].

The development of dyslipidemia is a common factor between CKD and CVD, which
complicates the illness and its progression [26]. In clinical trials, it has been shown that the
reduction in LDL-cholesterol levels in CKD patients is directly proportional to the decrease
in CVD risk [40,41]. Dyslipidemia increases the risk of developing atheroma and arterioscle-
rotic plaques. These injuries increase vessel thickness and decrease resistance, promoting
blood pressure changes. Moreover, the vessels can develop aneurysms, increasing the risk
of internal bleeding and death [42]. Therefore, CVD because of dyslipidemia continues
to be a factor that contributes to higher mortality and morbidity in CKD patients. CKD
causes a systemic and permanent proinflammatory state that contributes to vascular and
myocardial remodeling processes, vascular senescence, and myocardial fibrosis [43]. CKD
patients manifest cardiovascular outcomes as coronary artery disease, HF, arrhythmias, and
sudden cardiac death [43]. In addition, metabolic changes have also been proposed [44–46].
Although several guidelines exist to guide healthcare providers in treating dyslipidemia,
there are no specific recommendations for the CKD population [19]. Furthermore, some
preventive therapies to reduce lipid levels in patients with CKD, such as statins and other
drugs, are not always optimal for treating CKD patients [18]. Thus, strategies to improve
some of these symptoms could be crucial in treating CKD-induced dyslipidemia and the
associated CVD.

4. Mechanisms Involved in CKD-Induced Dyslipidemia and Associated
Cardiovascular Damage
4.1. Oxidative Stress

Oxidative stress is recognized as an imbalance between the production of reactive
oxygen species (ROS) and their elimination. In the kidney, the primary ROS sources are
mitochondria, nicotinamide adenine dinucleotide phosphate hydrogen (NADPH) oxidases
(NOX), peroxisomes, and endoplasmic reticulum; however, the main contributors in CKD
are NOX and mitochondria, mainly in the tubular segments of the nephron [47,48]. Al-
though mitochondria canonically generate 1–3% of electron leakage, inducing low ROS
production, mitochondria dysfunction produces ROS in large amounts during CKD [49].
Furthermore, ROS produced by NOX is upregulated in CKD, which increases oxidative
stress [50].

During CKD, hemodynamic changes and hypertrophy induce ROS overproduction,
which might activate hypoxia-inducible factor (HIF)-1α, triggering lipid accumulation
(Figure 1). This mechanism implies the repression of carnitine palmitoyl transferase 1 A
(CPT1A), the rate-limiting enzyme of β-oxidation in mitochondria [51]. Additionally, high
ROS levels promoting oxidative stress led to peroxisome proliferator-activated receptor γ
co-activator 1α (PGC-1α) deactivation, downregulating β-oxidation, and contributing to
fatty acid (FA) accumulation [52]. Indeed, dyslipidemia might be caused by oxidative stress
due to high ROS levels leading to PGC-1α deactivation, downregulating β-oxidation, and
contributing to FA accumulation [52]. This mechanism could be explained since PGC-1α
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interacts with peroxisome proliferator-activated receptor-alpha (PPAR)-α to regulate FA
metabolism through genes involved in β-oxidation [52]. Thus, the dysregulation of PGC-1α
leads to the downregulation of β-oxidation genes, inducing a decrease in FA oxidation into
mitochondria (Figure 1). Additionally, ROS overproduction might lead to the oxidation of
lipids in the membranes, which further increases cell damage [53].
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Figure 1. Oxidative stress causes dyslipidemia. (1) Hemodynamic changes and hypertrophy increase
reactive oxygen species (ROS) levels. (2) Moreover, the downregulation of nuclear factor erythroid
2-related factor 2 (Nrf2) leads to ROS overproduction, which activates hypoxia-inducible factor
(HIF)-1α. (3) The activation of HIF-1α causes the inhibition of carnitine palmitoyl transferase 1 A
(CPT1A), the rate-limiting enzyme of β-oxidation in mitochondria, inducing the downregulation of
β-oxidation. (4) The downregulation of Nrf2 also causes the increase of cluster of differentiation 36
(CD36), which augments fatty acid (FA) uptake. (5) Furthermore, the decrease of Nrf2 boosts the levels
of enzymes involved in FA synthesis, such as FA synthase (FAS), diacylglycerol O-acyltransferase
1 (DGAT1), and sterol regulatory-element binding protein 1 (SREBP1). (6a) The increase in CD36
levels, (6b) the upregulation of FA synthesis enzymes, and (6c) the downregulation of β-oxidation
lead to the accumulation of low-density lipoproteins (LDLs). LDLs can be oxidized via ROS into
apolipoprotein B (apoB), contributing to atherosclerosis. (7) ROS also downregulates peroxisome
proliferator-activated receptor γ co-activator 1α (PGC-1α), which influences (8) the decrease of
peroxisome proliferator-activated receptor-alpha (PPAR-α), leading to β-oxidation genes decrease.

Another protein affected by ROS is nuclear factor erythroid 2-related factor 2 (Nrf2),
which is commonly downregulated in CKD [54]. In contrast, the levels of Kelch-like-ECH
associated protein-1 (Keap-1), a negative regulator of Nrf2, are upregulated, possibly con-
tributing to low levels of Nrf2 [55]. The decrease in Nrf2 has been related to FA metabolism
alterations. In line with this, in type 2 diabetes, the low levels of CPT1A and acetyl-CoA
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carboxylase (ACC) were rescued by sulforaphane (SFN), a potent Nrf2 activator, suggesting
that Nrf2 reduction decreases the levels of these proteins [55]. Supporting this, our group
has recently reported that SFN alleviated FA metabolism dysfunction in the unilateral
ureteral obstruction (UUO) model by downregulating cluster of differentiation 36 (CD36)
levels and the FA synthesis proteins, such as FA synthase (FAS), sterol regulatory-element
binding protein 1 (SREBP1) and diacylglycerol O-acyltransferase 1 (DGAT1), as well as
triglyceride levels in the renal tissue [56]. These data suggest that the restoration of Nrf2 re-
sults in improving lipid metabolism impairment in the renal damage caused by obstruction.
Interestingly, Nrf2 overactivation might have deleterious consequences in dyslipidemia [57].
This hypothesis is sustained due to Nrf2 regulating the transcription of CD36 by positioning
in its promoter region. Following the latter, in a model of atherosclerosis, the upregulation
of Nrf2 leads to the transcription of CD36, which causes free-cholesterol accumulation
due to the presence of high levels of FA [58]. However, additional studies are required to
determine the effect of Nrf2 overactivation in other kidney disease models.

Oxidative stress promotes atherosclerosis by modifying the lipoproteins and proteins
involved in FA metabolism. For instance, intermediate LDL and LDL are accumulated in
uremia, which causes the oxidation, carbamylation, or glycation of apoB contained in these
lipoproteins [59]. The oxidation of LDL-cholesterol produces oxidized (Ox)-LDL-cholesterol.
4-hydroxy-2-nonenal (4-HNE) is the most abundant aldehyde in Ox-LDL-cholesterol and
malondialdehyde (MDA); MDA has been found in the plasma of CVD patients [59].

The accumulation of Ox-LDL-cholesterol can also damage the mitochondria, increas-
ing the leakage and the subsequent production of ROS and later oxidative stress [60].
Additionally, macrophages induce Ox-LDL-cholesterol uptake, forming macrophage foam
cells in the walls of the vessels, which also cause even more oxidative stress. In this way,
oxidative stress promotes atherosclerotic plaque development [60].

In summary, hemodynamic changes and hypertrophy induce ROS, causing the inacti-
vation of Nrf2. The decrease of Nrf2 decreases β-oxidation through the activation of HIF-1α.
Moreover, Nrf2 low levels increase CD36 expression and the levels of FA biosynthesis en-
zymes. ROS also deactivates to PGC-1α, promoting the downregulation of β-oxidation
genes. These alterations lead to LDL accumulation and oxidation. Ox-LDLs are the leading
factors for atherosclerotic lesions development (Figure 1).

4.2. Inflammation and Fibrosis

Inflammation is present during CKD, supporting kidney damage through the release
of cytokines, chemokines, and other molecules that lead to the recruitment of macrophages,
neutrophils, and lymphocytes to the damage site [61]. These inflammatory cells secrete
additional molecules, inducing a vicious cycle that contributes even more to damage.
Fibrosis is a part of the repair process that develops in response to injury. However, the
dysregulation of fibrosis causes an overproduction of extracellular matrix proteins, mainly
collagen [22,62]. In kidney diseases, both inflammation and fibrosis go hand in hand. For
example, secretion of tumor necrosis factor (TNF)-α, an activator of nuclear factor-kappa B
(NF-κB), results in the production of transforming growth factor (TGF)-ß by fibroblasts [63].

In the same way, in renal interstitial fibrosis, the infiltration of inflammatory cells,
mainly lymphocytes and macrophages, promotes fibrosis through the M2 CD206+ phe-
notype, leading to various degrees of renal failure [64]. In addition, macrophages can
undergo the macrophage-to-myofibroblast transition process, contributing to the fibrotic
process [65]. Thus, inflammation and fibrosis are CKD’s leading causes of kidney damage.

Inflammation and fibrosis are closely related to metabolic disorders such as dyslipi-
demia [66]. This relationship is observed through CD36, an integral membrane protein that
not only facilities FA uptake but is also related to inflammation and fibrosis [67]. Further-
more, this receptor is expressed in macrophages, inducing the capture of ligands such as
apoAI, lipopolysaccharide, FA, and Ox-LDL [68]. A study reported that the overexpression
of CD36 on macrophages contributes to foam cell formation and subsequent accumulation,
leading to atherosclerotic lesions (Figure 2) [69]. These mechanisms are triggered primarily
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by CD36 increasing Ox-LDL consumption, which then induces interleukin (IL)-1ß secretion
mediated by activation of the nucleotide-binding oligomerization domain-like receptor
containing pyrin domain 3 (NLRP3) [69]. Furthermore, in hypercholesterolemia-induced
CKD, the deletion of CD36 decreases NF-κB, preventing interstitial macrophage infiltra-
tion [70]. Additionally, CD36-/- mice showed less fibrosis compared to CD36 wild type,
suggesting that the decreased lipid accumulation could prevent inflammation and fibrosis
in this model [70]. Therefore, CD36 increase and overactivation promote the maintenance
of inflammation and fibrosis in CKD models. Interestingly, the upregulation of CD36 in
rodent models has been related to CVD caused by type II diabetes, obesity, and insulin
resistance [71,72].
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Figure 2. Effect of inflammation and fibrosis in chronic kidney disease (CKD)-induced dyslipidemia.
(A) The presence of the cluster of differentiation 36 (CD36) in macrophages promotes the uptake of
oxidized low-density lipoproteins (Ox-LDLs), which activates nucleotide-binding oligomerization
domain-like receptor-containing pyrin domain 3 (NLRP3), inducing the secretion of IL-1β and the
later the formation and accumulation of foam cell, leading to atherosclerotic lesions. (B) CD36
also (1) activates nuclear factor-kappa B (NF-κB), which leads to the recruitment of macrophages.
Additionally, CD36 (2) promotes fibrosis by promoting the overexpression of collagen I (Col I)
and collagen III (Col III). TNF-α induces cholesterol accumulation, which triggers (3) apoptosis of
renal cells.
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The association between inflammation and dyslipidemia has also been linked through
TNF-α in a diabetic nephropathy urine model where the injection of TNF-α caused the accu-
mulation of cholesterol and favored apoptosis [73]. This study indicates that inflammatory
markers promote the dysregulation of lipid metabolism. In addition, the cytokine tumor
necrosis factor-like weak inducer of apoptosis, a member of the TNF-α family, induces
PGC-1α downregulation via NF-κB [74], suggesting that β-oxidation might be altered due
to the upregulation of inflammatory pathways.

4.3. Metabolic Reprogramming

The kidneys are highly energy-demanding organs [75,76], and the mitochondria
principally sustain adenosine triphosphate (ATP) production in these organs to carry out the
reabsorption process [77–79]. The principal substrates used by kidneys are FA, metabolized
via β-oxidation [80–83]. In contrast, glycolytic pathway contribution is strongly limited
under normal physiological conditions [84–86]. Mitochondrial dysfunction is a common
pathology observed in several types of CKD [75,76,87]. In CKD, the activation of lipogenesis
pathways decreases β-oxidation and mitochondrial biogenesis through PGC-1α and PPAR-
α reduction [88]. In this context, mitochondria fail to respond to the CKD-induced ATP
demand increase [87,89,90], which induces a metabolic reprogramming characterized by
the shift from mitochondrial-based to anaerobic metabolism [91,92]. Additionally, the
increase in triglyceride synthesis and FA uptake proteins has been observed since the early
stages of CKD [76,93], favoring lipid deposition in nephrons [92–94]. Likewise, FA release
from phospholipids is also stimulated [76]. Therefore, metabolic reprogramming has been
suggested as a critical factor that allows dyslipidemia in CKD [76,95,96]. CKD patients and
experimental models have shown that elevated protein levels of CD36 indicate an increase
in lipid uptake [97]. CD36 also increases PPAR-γ abundance and produces positive feedback
increasing CD36 and FA binding protein (FABP), favoring the lipid droplets formation and
their later accumulation in the kidneys [97]. According to the latter, dyslipidemia also is
developed in the nephrectomy model due to metabolic reprogramming, which increases
FA synthesis and decreases mitochondrial β-oxidation in the kidney [98,99].

In experimental models, the reduction of mitochondrial electron transport complexes
activity in the kidney [90] produces an increase in FA release to the bloodstream and
their posterior accumulation in other organs, particularly the liver [96]. Furthermore,
altered lipid metabolism in the liver is observed during CKD. Liver FA synthesis increases,
followed by FAS and ACC abundance elevation. The β-oxidation is also decreased via PGC-
1α/PPARα/CPT1A reduction [99]. In the liver, CD36 is also increased [96], promoting FA
and VLDL synthesis. Together, these data suggest that impairing mitochondrial β-oxidation,
electron transport system activities, and biogenesis favor metabolic reprogramming. This
enhances renal lipids uptake and its accumulation, promoting dyslipidemia in CKD.

5. Drugs and Their Drawbacks in CKD-Induced Dyslipidemia and Associated
Cardiovascular Damage

CKD is a syndrome that involves a variety of symptoms that must be treated to prevent
their progression and the development of other complications. Managing CKD requires
reducing cardiovascular risk, arterial hypertension, nephrotoxins, acidosis, and dyslipi-
demia [100]. Although different therapies are used during CKD treatment, some cautions
must be considered. For example, RAAS inhibitors are utilized to slow the progression of
CKD; however, recent studies have found that these inhibitors might cause hyperkalemia.
In contrast, discontinuation of RAAS inhibitors is associated with an increased risk of
initiation of dialysis and cardiovascular mortality [101].
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Diuretics are the first-line treatment in acute decompensated HF; however, close
monitoring is needed to avoid dangerous side effects in patients [8]. Potassium-sparing
diuretics, such as amiloride, are used primarily in combination with thiazide or loop
diuretics to prevent hypokalemia, and their diuretic effect is low. In contrast, aldosterone
receptor antagonists and potassium-sparing diuretics can induce hyperkalemia, mainly in
patients with renal dysfunction [8]. Furthermore, when renal function declines to eGFR
<30 mL/min, thiazide diuretics are ineffective and cause hypokalemia and nocturia [101].
Although loop diuretics are the most common for HF and acute renal dysfunction, their
short half-life and hemodynamic changes are their principal limitations. In addition, these
diuretics might produce ototoxicity. Moreover, high doses of diuretics are often associated
with increased serum creatinine and mortality, but data are inconclusive [102]. Vasodilators
are often used in patients with preserved or elevated blood pressure to alleviate symptoms
and improve hemodynamics; however, vasodilators increase stroke volume and cardiac
output [103].

Other approaches to reduce dyslipidemia include pharmacological therapy with
statins to lower cholesterol [104], ezetimibe, fibrates to reduce FA and triglycerides, niacin
(HDL-increasing drug), and bile acid-binding resins [27,105,106]. Statins and fibrates
are the most common treatments for dyslipidemia; however, these drugs could produce
myopathy in the long term or in combination. Moreover, these drugs do not correct the
lipid problem [107]. In this sense, managing dyslipidemia implies lifestyle modification and
dietary interventions, such as reducing sugars, saturated fats, and salts [32]. Following the
latter, treating severe hypercholesterolemia and very high-risk atherosclerotic CVD involves
combining dietary and pharmacological therapies. However, its exclusive use is sometimes
the most effective [108]. Therefore, searching for treatments that help significantly reduce
dyslipidemia without modifying other parameters in patients is urgently needed. Moreover,
it is necessary to use better alternatives that correct CKD symptoms without damaging
other organs, preventing its progression, and avoiding the consumption of different drugs
by the patients.

6. Curcuminoids

Turmeric (Curcuma longa) root has multiple properties, such as antioxidant and
anti-inflammatory, showing beneficial effects on health [109]. Their principal active
molecules are curcumin, bis-dimethoxy curcumin, demethoxycurcumin, and tetrahydro
curcumin [110]. In addition, other synthetic curcumin derivates have shown high bioavail-
ability and reabsorption [111].

6.1. Curcuminoids Bioavailability

Curcumin can be administered as concentrates or purified turmeric, curcuminoids
(95%), or curcumin alone [112]. Most orally administered curcuminoids are excreted in the
feces and urine. Therefore, very low is detected in blood plasma [113]. Low bioavailability
has been linked to their lipophilic properties, difficulty absorbing water and acidic or
neutral pH, and rapid metabolism to inactive metabolites [114]. The bioavailability of
curcuminoids is a problem that prevents taking advantage of their benefits [115]. Therefore,
different strategies have been implemented to increase curcuminoid availability [114].

Several formulations have been intended to enhance solubility and distribution to aug-
ment curcumin’s bioavailability [112]. Carriers or delivery systems’ synthetic compounds
may increase curcuminoids’ bioavailability [114]. Some of the most common have included
micelles, liposomes, phospholipids, microemulsions, nano-emulsions, emulsions, solid
lipid nanoparticles, gelatin or polysaccharides, nanostructured lipid carriers, biopolymer
nanoparticles and microgels [112,116,117]. Conjugated curcumin to phospholipidic carriers
has increased its antioxidant capacities compared to when it is free [118]. Other strategies,
such as liposomal curcumin (e.g., chitosan-coated curcumin and Lallemantia iberica seed
gum nanoparticles), allow the correct encapsulation of curcumin and show an improve-
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ment in the mucoadhesive property [119]. The mucoadhesive property suggests prolonged
adsorption in the gastrointestinal tract and has been shown to treat cancer effectively [120].

Recent techniques have been applied with outstanding results in different diseases.
Magnetic nanoparticles provide multifunctional properties due to their controlled ap-
plication. In this sense, magnetic-guide targeting in the delivery of curcumin diethyl
γ-aminobutyrate, a carbamate prodrug of curcumin, has proved to be effective in cancer
treatment due to its poor water solubility and improved delivery [121]. Other techniques
include emulsion-based delivery systems used in the food industry to protect active in-
gredients against extreme conditions. One example is nanoemulsions formed with oil
and emulsifiers that proved to augment the anti-inflammatory properties of curcumin
in a model of 12-O-tetradecanoylphorbol-13-acetate-induced edema of mouse ear [122].
Curcuminoids’ complex formation is difficult due to their physicochemical features [114].
Therefore, more recent carriers have tried nanostructured lipid carriers with liquid and
solid lipids. The ultrasonication method allows the encapsulation of whole turmeric into
nanostructured lipid carriers. The technique can maintain turmeric’s physicochemical
properties and stability.

Moreover, nanostructured lipid carriers protected gastric conditions, suitability, and
safety for oral delivery, improved release control, and bioaccessibility compared with free
turmeric [114]. The beneficial role of delivery systems in curcuminoids has been extensively
proven. Alkaline conditions and organic solvents do not mimic those of the gastrointestinal
tract and are very susceptible to auto-degradation. Therefore, careful experiments must
be carried out [112,122,123]. Furthermore, more experimental and clinical studies are
obligatory to prove curcumin’s beneficial effects in other models. Taken together, the
studies showed that the availability of curcuminoids could be more feasible, and their
clinical and basic research study is plausible and reproducible.

To date, the study of curcuminoid carriers to improve their bioavailability in CKD
models has yet to be carried out. In current experimental models, the vehicles used include
water [124], carboxymethyl cellulose [96], and yoghurt [125]. In patients, commercial
curcumin is first given in juices, water [126], and capsules [127]. In line with this, curcumin
is generally administered along with dietary lipids or lecithin to enhance its absorption.
They are mainly found in food ingredients such as eggs, dairy products, or vegetable oils,
facilitating tissue bioavailability and concentration [128] and making their use possible
in clinical practice. It has been suggested in preclinical studies that curcumin could be a
potent adjuvant to treat various disorders, including renal and cardiovascular damage and
dyslipidemia [11].

6.2. Curcuminoids on CKD

Several factors might contribute to the progression of CKD, including parenchymal cell
loss, chronic inflammation, fibrosis, and reduced regenerative capacity of the kidney [22].
The increased plasma creatinine and blood urea nitrogen (BUN) indicates that the kidney’s
filtering capacity is diminished, and nitrogenous compounds are accumulating in the
bloodstream [129]. In this context, curcumin could be a potential therapy to treat kidney
damage at different levels. For example, at two different doses (60 and 120 mg/kg),
curcumin improves renal function in rats with 5/6 nephrectomy (5/6NX), being the high
doses the most effective [130]. Furthermore, curcumin reduces proteinuria, creatinine, and
BUN levels by improving renal hemodynamics [130–132]. Similar results have been shown
with tetrahydro curcumin at 1% given in food [133] (Table 1).
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Table 1. Curcuminoids’ effects on chronic kidney disease (CKD) models.

Reference Model Compound Dosage Effect

[132] 5/6 nephrectomized
Wistar rats Curcumin 120 mg/kg

Reduces proteinuria, creatinine, and BUN
serum levels, Improves renal function and
blood pressure. Decreases oxidative stress
through the Nrf2 pathway and monocyte
infiltration by the reduction of MCP-1

[134]
Sprague–Dawley rats,
renal injury induced by
0.25% adenine

Curcumin 37.5, 75 and
150 mg/kg

Decreases renal damage markers,
inflammation (IL-1ß and IL-6), and
fibrosis (caspase 3); and increases
antioxidant indices (glutathione and
super oxide dismutase).

[131] 5/6 nephrectomized
Wistar rats Curcumin 60 mg/kg

Reduces proteinuria, creatinine, BUN
serum levels, and systolic pressure.
Improve renal hemodynamics and
mitochondrial respiration. Decrease
oxidative stress, interstitial inflammation,
and fibrosis.

[130] 5/6 nephrectomized
Wistar rats Curcumin 60 and

120 mg/kg

Reverts glomerular and systemic
hypertension. Restores kidney tubular
atrophy, reduces the mesangial area and
mesangial cells proliferation, prevents the
expansion of the glomerular matrix

[135]
Dahl salt-sensitive rats,
nephrosclerosis induced
by salt

Curcumin 10 mg/kg
The antifibrotic effect could be through
the inhibition of histone
acetylation (H3K9)

[133] 5/6 nephrectomized
Sprague–Dawley rats Tetrahydro curcumin 1% in food

Improves the expression of antioxidant
enzymes in the kidney, decreases renal
apoptosis and fibrosis and ameliorates
proteinuria, hypertension, and
cardiac hypertrophy.

[136] Mice with unilateral
ureteral obstruction Bisdemethoxycurcumin 100 and

200 mg/kg
Reduces fibrosis throw
fibroblast apoptosis

BUN: Blood urea nitrogen, Nrf2: Nuclear factor erythroid 2-related factor 2, H3K9: histone 3 lysine 9, IL: interleukin,
MCP-1: monocyte chemoattractant protein-1.

During exercise or strenuous physical activities, water excretion and protein metabolism
increase, which could further damage the kidney during CKD [137]. Curcumin (75 mg/kg/day)
prevented increased creatinine, proteinuria, and BUN levels in a renal damage model
induced by adenine and aerobic exercise stress [138]. Another critical aspect in managing
CKD is balancing the diet because hypercaloric diets (western diets) produce metabolic
stress, dyslipidemia, and severe damage to kidney tissue [139]. Curcumin (100 mg/kg)
administration in mice with CKD exposed to a western diet showed a reduction in the
urine ratio of albumin-creatinine compared to a control diet [140]. Thus, curcumin could
be used as a potential treatment to prevent the consequences of diet management in CKD
patients (Table 1).

The improvement in renal function by curcumin also prevents tissue degeneration.
Curcumin (120 mg/kg) reversed renal tubular atrophy in 5/6NX rats by promoting the
reduction of the mesangial area and mesangial cell proliferation, avoiding the expansion of
the glomerular matrix [130]. Moreover, curcumin, combined with other natural compounds
at different concentrations, reduced the expression of smooth muscle actin (α-SMA) in
NFK-49F cells proving its antifibrotic effect [141] (Table 1). At a 60 mg/kg dose, curcumin
prevented renal hypertrophy by reducing interstitial fibrosis and 50% of glomerular and
global sclerosis [131,142]. The same effect was observed with tetrahydro curcumin at
1% in food, which reduced approximately 20% of renal fibrosis [133]. The antifibrotic
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effect of curcumin has been associated with the inactivation of the mammalian target of
rapamycin/HIF-1α/vascular endothelial growth factor (mTOR/HIF-1α/VEGF) signaling
pathway in vitro (10 and 20 µM doses of curcumin) [136] and in vivo (100 and 200 mg/kg
doses of curcumin) [143]. Furthermore, in a nephrosclerosis salt-sensitive model, the
antifibrotic effect of curcumin was attributed to the inhibition of histone acetylation in
histone 3 lysine 9 (H3K9) [135] (Table 1).

On the other hand, it has been well-described that curcumin has an antioxidant ef-
fect [144]. For instance, the minimum curcumin antioxidant dose of 60 mg/kg is enough to
induce the Keap1/Nrf2 signaling pathway and promote nuclei translocation of Nrf2. This
increases the expression, protein levels, and activity of antioxidant enzymes like glutathione
peroxidase, glutathione reductase, and superoxide dismutase 1 in the 5/6NX and adenine
models [130–132,134]. In vitro studies showed that curcumin and demethoxycurcumin
decrease ROS levels and MDA content, and increase superoxide dismutase activity, avoid-
ing apoptosis in advanced glycation end products-induced oxidative stress in mesangial
cells [145]. In line with this, it has been demonstrated in the 5/6NX model that curcumin
reduces the NOX activity in the renal cortex and proximal tubules [132,133]. Other authors
hypothesized that curcumin decreases oxidative stress by reducing endoplasmic reticulum
stress, preventing apoptosis in podocytes, and improving renal function [146]. These mech-
anisms were associated with regulating the mitogen-activated protein kinase/extracellular
signal-regulated kinase 1/2 (MAPK/ERK1/2) signaling pathway [147]. Thus, one of the
principal mechanisms mediated by curcumin is its ability to reverse oxidative stress by
avoiding ROS overproduction (Table 1).

Curcuminoids also have anti-inflammatory effects in CKD. For instance, in the 5/6NX
model, curcumin at 60 mg/kg reduced the interstitial inflammation in the remnant kidney,
falling from 50 to 20 macrophages per field and preventing monocyte chemoattractant
protein-1 (MCP-1) overexpression [131,132]. In addition, curcumin reduced plasmatic
concentrations of TNF-α and IL-6 [140]. Reducing all mentioned cytokines decreases
kidney inflammation and stabilizes kidney function. In the cisplatin model, an acute
model, intraperitoneal curcumin at 100 mg/kg, prevented macrophage infiltration in the
kidney at 24 h. The beneficial effect was achieved by blocking macrophage inducible
Ca2+-dependent lectin receptor (Mincle), diminishing spleen tyrosine kinase (Syk)/NF-
κB signaling and, therefore, reducing IL-1β, TNF-α, IL-6, and MCP-1 expression [148].
Concerning NF-κB signaling, its canonical activation is given by p65/p50 heterodimer [149],
which translocates to the nucleus to induce the expression of proinflammatory cytokines
like TNF-α, IL-1, IL-2, IL-6; adhesion molecules such as intercellular adhesion molecule
(ICAM)-1, vascular cell adhesion molecule (VCAM)-1, E-selectin, chemokines (e.g., IL-8,
MCP-1, regulated on activation, normal T cells expressed and secreted (RANTES)), and
inducible enzymes such as cyclooxygenase (COX) 2 and inducible nitric oxide synthase
(iNOS) [150]. On the other hand, curcumin also avoids inflammation through arachidonic
acid hydrolyzation, inhibiting phospholipase A2 (cPLA2) phosphorylation and decreasing
COX1 and COX2 [142]. In the immune nephritis model, 1 g/kg of curcumin for 15 days
reduces the periglomerular and perivascular lymphocyte infiltration [151] (Table 1).

In CKD patients, curcuminoid’s effects are poorly investigated; however, it has been
found that in mononuclear cells isolated from CKD patients, 1–3 mM of curcumin decreases
the secretion of Il-6 and IL-1ß and its procoagulant activity [152] (Table 2). A similar effect
was seen in the plasma of CKD patients treated with 1 g per day of Meriva® (demethoxy-
curcumin), which reduced lipid peroxidation and plasma pro-inflammatory mediators like
MCP-1, IFN-γ, and IL-4 [153]. In hemodialyzed patients, 2.5 g of turmeric (the whole root)
decreased NF-κB in mononuclear cells, TNF-α plasma levels, and regulated gut micro-
biota [126,154,155]. In the early stages of renal failure, curcuminoids in combination with
Boswellia serrata influenced IL-6 and prostaglandin E2 plasma concentrations, avoiding
CKD progression [156]; however, more studies are required to determine the mechanisms
involved in improving renal function by curcuminoids (Table 2).
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Table 2. Curcuminoids’ effects on CKD patients.

Reference Model Compound Dosage Effect

[152] CKD patients’
mononuclear cell culture Curcumin 1 and 3 mM

Decreases secretion of IL-6 and IL-1β.
Decreases the procoagulant activity of
mononuclear cells.

[127]

Clinical trial,
CKD patients with
coronary angiography
or angioplasty

Curcumin 1.5 g There are no significant changes

[153] Clinical trial,
stage 3 to 4 CKD patients Meriva® 1 g/day

Increases plasma creatinine, decreases
eGFR, and changes
microbiota diversity.
Reduces plasma pro-inflammatory
mediators (MCP-1, IFN-γ, and IL-4)
and lipid peroxidation.

[156]
Clinical trial, CKD
patients with
coronary angiography

Curcuminoids 1.5 g/day Preserve changes in eGFR preventing
post-contrast acute kidney injury.

[157] Clinical trial,
non-dialysis CKD patients

Curcuminoids and
Boswellia serrata

824 and 510 mg/day,
respectively

There was a time effect and time x
compliance interaction effect for IL-6

[158] Clinical trial,
stage 2 to 3 CKD patients

Curcuminoids and
Boswellia serrata

824 and 510 mg/day,
respectively

There was a group effect and a trend
for group× time interaction for
prostaglandin E2.

[154]
Clinical trial,
hemodialyzed
CKD patients

Turmeric 2.5 g
Decreases in NF-κB mRNA expression
in mononuclear cells and in plasma
high-sensitivity CRP levels

[126]
Clinical trial,
hemodialyzed
CKD patients

Turmeric 2.5 g Decreases in pCS plasma levels,
suggesting gut microbiota regulation

[155]
Clinical trial,
hemodialyzed
CKD patients

Turmeric 2.5 g Reduces TNF-α plasma levels

MCP-1: monocyte chemoattractant protein-1, IFN-γ: interferon-gamma, NF-κB: nuclear factor-kappa B, CRP:
C-reactive protein, pCS: p-cresyl sulfate, TNF-α: tumor necrosis factor-α, IL: interleukin, eGFR: estimated
glomerular filtration.

6.3. Effects of Curcuminoids on CKD and Associated Cardiovascular Damage

The protective role of curcuminoids has been probed in preclinical models of CKD
and concurrent cardiovascular alterations [159]. For example, in the heart of nephrec-
tomized rats, curcumin prevented macrophage infiltration and reduced the inflammasome
component levels NLRP3, apoptosis-associated speck-like (ASC), and caspase-1, prevent-
ing inflammasome activation. The latter avoided IL-1β release, reducing inflammatory
levels [160]. Administration of curcumin at doses of 60 or 120 mg/kg/day in rats after
5/6NX with or as a prophylactic treatment reverted glomerular and systemic hypertension
and improved renal function and structure. The beneficial effects were similar to those
of enalapril, an inhibitor of the angiotensin-converting enzyme 2 [130]. In addition, the
chronic administration of Theracurmin® (100 mg/kg/day gavage for 5 weeks) in the 5/6NX
rat model improved ventricular function and avoided fatal consequences such as heart
hypertrophy and interstitial fibrosis by reducing beta myosin heavy chain (ß-MHC) and
Col I levels [160]. In the same model, the administration of tetra hydro curcumin, at a dose
of 1% in the food per 9 weeks, showed a decrease in systolic and diastolic blood pressure
associated with hypertrophy prevention [133]. In line with this, ventricle hypertrophy
and dilatation were prevented through the reduction of glycogen synthase kinase 3 beta
(pGSK-3ß), ß-catenin and nuclear factor of activated T-cells (NFAT) levels [142] (Table 3).
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Table 3. Curcuminoids’ effects on chronic kidney disease (CKD)-induced cardiovascular damage.

Reference Model Compound Dosage Effect

[138]
Sprague–Dawley rats,
renal injury induced by
0.25% adenine

Curcumin 75 mg/kg

Prevents increased creatinine, proteinuria, and
BUN levels in CKD during exercise. Prevents the
increase in systolic blood pressure and increases
the activity of antioxidant enzymes. Decreases
fibrosis and inflammation.

[140]
C57Bl/6 mice with
5/6 nephrectomy and
western diet

Curcumin 100 mg/kg

Reduces the urine albumin-creatinine ratio and
decreases arteriosclerotic lesions. Improve
glucose tolerance, and decrease inflammation
and blood pressure.

[142] 5/6 nephrectomized
Sprague–Dawley rats Curcumin 150 mg/kg

Attenuates cardiac hypertrophy and remodeling
through the reduction in pGSK-3ß, ß-catenin,
and NFAT levels.

[160] 5/6 nephrectomized
Sprague–Dawley rats Theracurmin® 100 mg/kg/day

Improves ventricular function and avoids heart
hypertrophy and interstitial fibrosis by reducing
ß-MHC and collagen type 1

[161] 5/6 nephrectomized
Wistar rats Curcumin 120 mg/kg

Decreases principal CKD biochemical markers.
Prevents ventricular hypertrophy and decreases
ischemic events and oxidative stress in
heart tissue.

[162] 5/6 nephrectomized
Wistar rats Curcumin 120 mg/kg

Prevents the tissular remodeling process
reducing MMP-2, the activity of gelatinase, and
the activation of the IP3K/AKT/ERK
signaling pathway

BUN: Blood urea nitrogen pGSK-3ß: glycogen synthase kinase 3 beta, NFAT: nuclear factor of activated T-cells,
ß-MHC: beta myosin heavy chain, MMP-2: matrix metalloproteinase 2, PI3K/AKT/ERK: phosphatidylinositol
3 kinase/protein kinase B/extracellular signal-regulated kinase.

In the 5/6NX model, 100 mg/kg/day of curcumin for 16 weeks decreased arterioscle-
rotic lesions [140], while 120 mg/kg reduced necrotic lesions in mice exposed to a western
diet [161] by preventing the tissular remodeling process through the reduction of ma-
trix metalloproteinase 2 (MMP-2) and the activity of gelatinase. These processes might
be related to activating the phosphatidylinositol 3 kinase/protein kinase B/extracellular
signal-regulated kinase (IP3K/AKT/ERK) signaling pathway [142,162].

Therefore, the studies mentioned above suggest curcumin could also be used as an
alternative adjuvant or therapy to prevent cardiovascular side effects related to hypertrophy,
cardiac remodeling, and ventricular function during CKD (Table 3).

6.4. Regulation of Dyslipidemia by Curcuminoids in CKD

The effect of curcumin on dyslipidemia has been determined in diabetes and obesity
models, demonstrating beneficial results [163]. Since the liver is the main lipid metabolism
organ, most studies have used it to assess the curcumin effect on dyslipidemia in this
organ. For instance, curcumin prevents hepatic lipotoxicity in diabetic and obese models,
modulating the metabolism of cholesterol by forming bile acids and increasing the oxidation
of fatty acids. At the same time, curcumin increases serum HDL and the activity of lipases
that prevents the increased uptake of fatty acids [163]. Recent studies in obese rats treated
with curcumin (80 mg/kg) and Garcinia mangostana (400 mg/kg) for 6 weeks showed that
curcumin reduces oxidative stress, increases HDLc, and decreases LDLc sera levels [164]. In
the high-fat diet induced-diabetic mice model, treating tetra hydro curcumin at 100 mg/kg
for 12 weeks decreased the renal damage markers and cholesterol and triglycerides levels.
The authors proposed that tetra hydro curcumin deactivates the renin-angiotensin system,
which reduces oxidative stress. The reduction in oxidative stress causes a decrease in lipid
levels, attenuating dyslipidemia [165]. In diabetic patients, a meta-analysis suggests that
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curcumin supplementation could lower LDL, TG, and TC levels in complicated type two
diabetes [166]. Furthermore, in metabolic syndrome patients, a syndrome associated with
diabetes development, 200 mg/day of curcumin reduces HDLc, LDL, TG, and TC serum
levels [167].

In the obesity and diabetes protocols, it also has been reported that curcumin de-
creased dyslipidemia, attributed to its binding to lipids in the intestine [168]. The proposed
molecular mechanism is mediated by cyclic adenosine monophosphate (cAMP) respon-
sive element binding protein (CREB)/PPAR signaling pathway, which increases cAMP
concentrations to promote lipid oxidation [169]. In adipose tissue, curcumin inactivates
the AKT/mTOR signaling pathway, preventing adipogenesis, FA uptake, and triglyceride
formation [170]. Curcumin also increased paraoxonase 1 activity and lipoprotein lipase
abundance in plasma and the liver, promoting lipoprotein lipids hydrolysis and their
oxidation in the tissues [124,125]. In an in silico study, curcumin showed a particular inter-
action with ADIPOQ and PPARG genes, both are closely related to lipid metabolism [171].
In C57BL/6J mice with renal injury induced by a high-fat diet, the treatment with bis-
demethoxycurcumin at 20 and 40 mg/kg avoided lipid accumulation, oxidative stress,
and improved plasma lipid levels through Nrf2/Keap1 [172]. Thus, curcumin has an
antihyperlipidemic role in CKD related to these pathways.

Few studies have evaluated the effects of curcumin on serum lipids during CKD.
Currently, some attempts have found that curcumin modulates lipid metabolism in renal
tissue and decreases serum and liver triglycerides, cholesterol, free FA, and LDL levels. In
experimental models such as the 5/6NX, the administration of 75 mg/kg of curcumin for
11 weeks corrected the serum lipid profile by decreasing LDL, total cholesterol, and total
triglycerides and increasing HDL levels [173], suggesting that curcumin has a positive effect
on serum lipids unbalance. Supporting the latter, in the adenine CKD model, curcumin
treatment with 100 mg/kg increased HDL cholesterol while decreasing total cholesterol,
triglycerides, LDL cholesterol, VLDL, and non-esterified FA (NEFA) [174]. The authors
also found that triglycerides and NEFA levels in the liver decreased, but cholesterol levels
increased. This could be partly explained because increased serum HDL concentrations led
to increased cholesterol uptake in the liver, which produced further metabolization and
elimination via the bile [174].

Interestingly, the authors reported that the atherogenic and the coronary risk index
also decreased, suggesting that the correction of lipid profile by curcumin influences cardio-
vascular alterations [174]. According to the latter, the decrease of LDL and VLDL reduces
the formation of atheroma, a severe consequence of dyslipidemia [175]. Recently, our group
determined a possible mechanism in 5/6 NX-induced CKD. We found that curcumin cor-
rects dyslipidemia by improving renal mitochondrial β-oxidation function. This prevents
lipid accumulation, its distribution, and FA uptake by the liver [96], suggesting that the
kidney is the origin of dyslipidemia (Table 4 and Figure 3).

Table 4. Curcuminoids’ effects on CKD dyslipidemia.

Reference Model Compound Dosage Effect

[173] 5/6 nephrectomized
Sprague–Dawley rats Curcumin 75 mg/kg Decreases LDL, total cholesterol, and

total triglycerides

[174]
Sprague–Dawley rats,
renal injury induced by
0.25% adenine

Curcumin 100 mg/kg

HDL cholesterol increases and decreases
total cholesterol, triglycerides, LDL
cholesterol, VLDL, NEFA, atherogenic
index, and the coronary risk index. In the
liver, it increases cholesterol and
decreases triglycerides and NEFA.
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Table 4. Cont.

Reference Model Compound Dosage Effect

[176] Meta-analysis _ _

Reduces total cholesterol and TNF-α.
Not confirm significant changes in
triglyceride, LDL-cholesterol,
HDL-cholesterol, and CRP.

[177]
Clinical trial,
patients with nondiabetic
proteinuria CKD

Curcumin 320 mg/day Attenuates lipid peroxidation and
enhances the antioxidant capacity.

[172]
C57BL/6J mice, renal
injury induced by a
high-fat diet

Bisdemethoxycurcumin 20 and 40 mg/kg

Decrease renal injury markers,
inflammatory cytokines, and tissue
fibrosis. Decreases body and white
adipose weight, serum glucose, insulin,
TC, TG, and HDL-C levels. Increases
antioxidant activity and decreases lipid
accumulation through Keap1/Nrf2.

LDL: low-density lipoproteins, HDL: high-density lipoprotein, VLDL: very low-density lipoprotein, NEFA: non-
esterified fatty acids, Keap-1: Kelch-like-ECH associated protein-1, Nrf2: nuclear factor erythroid 2-related factor
2, TC: total cholesterol, TG: triglycerides, CRP: C-reactive protein, TNF-α: tumor necrosis factor-α.
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Figure 3. Regulation of lipids by curcuminoids in chronic kidney disease (CKD). Different beneficial
effects can be attributed to curcuminoids in the improvement of CKD. For example, curcuminoids
may restore the imbalance of lipids in the bloodstream, such as triglycerides, cholesterol, VLDL, LDL,
and HDL levels. In the liver, curcuminoids can improve mitochondrial function and reduce lipid
accumulation, lipoperoxidation, oxidative stress, and lipid uptake, as well as increase lipid hydrolysis.
Finally, in the kidney, curcuminoids have also improved mitochondrial function and reduced lipid
accumulation, oxidative stress, and lipid uptake. The restoration of these mechanisms together
produces the improvement of CKD or the avoidance of its progression toward other detrimental
effects in the organism. VLDL = very low-density lipoproteins, LDL = low-density lipoproteins,
HDL = high-density lipoproteins.
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7. Conclusions

CKD is characterized by a progressive decline in renal function, which triggers several
pathological mechanisms, resulting in CVD consequences. Among them, dyslipidemia
plays a crucial role in CVD development. Dyslipidemia is strongly related to oxidative
stress, inflammation, metabolic reprogramming, and fibrosis in renal tissues. These patho-
logical processes worsen renal disease and increase the plasmatic lipid levels, which results
in metabolic lipid alterations in other tissues, like the liver and heart. The current drugs
used to overcome these pathophysiological mechanisms produce side effects and are only
sometimes optimal for all CKD types and populations.

Recent studies have shown that curcuminoids may improve lipid disorders in dia-
betes and obesity. Moreover, a potential therapy for CKD-induced hyperlipidemia has
been given. The administration of curcuminoids reverses CKD-induced metabolic repro-
gramming, avoiding the decrease in β-oxidation and preventing mitochondrial damage.
Therefore, curcuminoids might avoid the accumulation of lipids in renal tissue. In addition,
curcuminoids reverse increased FA uptake and synthesis, closely related to the decrease in
oxidative stress and pro-inflammatory and pro-fibrotic processes in the kidney, reducing the
release of lipids into the bloodstream. The curcuminoid’s protection also might decrease the
pathological processes associated with the development of CVD during CKD by regulating
dyslipidemia. Although the decrease in cardiovascular damage has been shown in several
CKD experimental models, further investigation should be generated to determine the
effects of curcumin in patients with CKD.
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