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Research on glutamatergic neurotransmission has focused mainly on the function of

presynaptic and postsynaptic neurons, leaving astrocytes with a secondary role only

to ensure successful neurotransmission. However, recent evidence indicates that

astrocytes contribute actively and even regulate neuronal transmission at different

levels. This review establishes a framework by comparing glutamatergic components

between neurons and astrocytes to examine how astrocytes modulate or otherwise

influence neuronal transmission. We have included the most recent findings about

the role of astrocytes in neurotransmission, allowing us to understand the complex

network of neuron-astrocyte interactions. However, despite the knowledge of

synaptic modulation by astrocytes, their contribution to specific physiological and

pathological conditions remains to be elucidated. A full understanding of the

astrocyte’s role in neuronal processing could open fruitful new frontiers in the

development of therapeutic applications.
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Introduction

The brain is one of the most complex organs in the human body; it consists of many distinct
cell types, but most cells fall under the broad categories of neurons or glia with approximately
even numbers in each category. The glial cells are divided into microglia, oligodendrocytes,
and astrocytes; the latter comprise around 20% of the cells in the brain (Ventura and Harris,
1999; Salas et al., 2020). Astrocytes participate in many neurophysiological processes, including
synaptogenesis (Allen and Eroglu, 2017), modulation of synaptic transmission, neuronal
plasticity (Newman and Zahs, 1998; Araque et al., 1999), and regulation of blood flow in
addition to the trafficking of small molecules and ions through their end-feet processes at the
blood-brain barrier (Giaume et al., 1997; Simard et al., 2003). During physiological conditions,
neurons and astrocytes have a coordinated functional relationship that ensures proper
information flow, and each contributes to synaptic transmission by releasing neurotransmitters
(by presynaptic neurons) or gliotransmitters (by astrocytes; see below).

Glutamate is the primary excitatory neurotransmitter in the mammalian brain, and
it participates in diverse physiological processes such as learning, memory, and neuronal
development (Yu et al., 1984; Behar et al., 1999; Hrabetova et al., 2000). However, glutamate
can induce neuronal damage through excitotoxicity, which results from the over-activation of
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glutamatergic receptors. Glutamate-mediated toxicity has been
implicated in the pathogenesis of neurodegenerative diseases
including Alzheimer’s, Huntington’s, and Parkinson’s diseases
(Koutsilieri and Riederer, 2007; Estrada-Sánchez et al., 2009; Ong
et al., 2013), as well as psychiatric disorders such as schizophrenia
(O’Donovan et al., 2017; Shah et al., 2020). Although glutamate
toxicity contributes to these neuropathological conditions, the
changes that lead to impaired glutamatergic neurotransmission are
diverse, with different causes in each pathology. Nonetheless, an
impaired relationship between neurons and astrocytes might be a
common component. In the next section, we review the similarities
and differences among the components of glutamatergic transmission
in neurons and astrocytes.

Glutamatergic neurotransmission

Glutamate synthesis

Glutamate plays a role in multiple biological processes in the
brain, and yet it cannot cross the blood-brain barrier. Instead, the
brain’s glutamate is synthesized locally by astrocytes and neurons
through one of several pathways. We provide a brief description of
glutamate metabolism (this section and Figure 1; Hawkins, 2009;
Fernstrom, 2018); further details can be found in the extensive review
by Schousboe et al. (2014).

The main precursor of glutamate in the brain is glutamine, a
key component of the glutamine-glutamate cycle that encompasses
the exchange of glutamine and glutamate between astrocytes and
neurons. The reuptake of glutamate by its transporters, glutamate
transporter 1 (GLT-1) and glutamate aspartate transporter (GLAST)
in astrocytes enables the synthesis of glutamine by the cytosolic
enzyme glutamine synthetase, which is highly expressed in astrocytes.
Glutamine synthetase promotes the conversion of glutamate to
glutamine using the cofactors NADPH, ATP, and NH+

4 (Lehre et al.,
1995; Bergles and Jahr, 1997; Anlauf and Derouiche, 2013; Huyghe
et al., 2014; Yamada et al., 2019). Glutamine is then transported to the
synaptic cleft, where neurons take it up through specific glutamine
transporters (i.e., members of the families SNAT, LAT, ASC, and
+LAT; Anlauf and Derouiche, 2013; Yamada et al., 2019). Once
transported into neurons, the mitochondrial enzyme glutaminase
(an amidohydrolase) generates glutamate from the glutamine
provided by the astrocytes (Figure 1A). Glutamate synthesis occurs
predominantly in neurons, although astrocytes can synthesize it
through the same pathway (Hogstad et al., 1988). Neurons and
astrocytes both preferentially express the mitochondrially-located,
kidney-type glutaminase (GLS) isoenzyme type 1 (GLS1), although
there is also the liver-type GLS2 that localizes to the mitochondrion
and nucleus (Cardona et al., 2015). However, evidence suggests that
neurons and astrocytes might express an isoform of glutaminase
GLS1, which has not been characterized to date (Kvamme et al., 2001;
Cardona et al., 2015).

Glutamate is a component of energy metabolism, which
requires de novo synthesis to avoid an imbalance in glutamate
concentrations. De novo glutamate synthesis occurs by the pyruvate
carboxylase, which is located exclusively in astrocytic mitochondria;
this enzyme metabolizes pyruvate into oxaloacetate, a precursor for
α-ketoglutarate (Walker, 2014; Schousboe et al., 2019). Although
neurons lack pyruvate carboxylase, they contribute to de novo

glutamate synthesis by the pyruvate carboxylation to malate through
the malic enzyme, which is found in the cytosol and mitochondria
(McKenna et al., 1995; Hassel, 2001; Amaral et al., 2016).

Another enzyme that contributes to glutamate production is
aspartate aminotransferase (found in the cytosol or mitochondria),
which synthesizes glutamate by reversibly transferring the α-amino
group from aspartate to 2-oxoglutarate, resulting in glutamate and
oxaloacetate; this enzyme uses pyridoxal 5’-phosphate as a co-factor
(Figure 1B; McKenna et al., 2006; Schousboe, 2017). Neurons
and astrocytes express aspartate aminotransferase, and the enzyme
appears to have the same function and activity in both cell types
(McKenna et al., 2006).

Astrocytes and neurons contain alanine aminotransferase in the
cytoplasm and mitochondria (Ruscak et al., 1982; Waagepetersen
et al., 2000), which catalyzes the reversible interconversion of alanine
and α-ketoglutarate into pyruvate and glutamate (Figure 1C). Low
activity of this enzyme in neurons (Westergaard et al., 1993; Erecinska
et al., 1994) suggests that, within this pathway, astrocytes exert a
primary control (Schousboe et al., 2013).

Ammonia concentration in the brain is regulated by the
mitochondrial glutamate dehydrogenase, which catalyzes the
reversible conversion of glutamate to α-ketoglutarate and ammonia,
using NADH or NADPH as a co-factor (Islam et al., 2010; Plaitakis
et al., 2017). Glutamate dehydrogenase expression in astrocytes varies
spatially by brain region, cellularly by astrocyte type, and temporally
with the developmental stage (Figure 1D; Osterberg and Wattenberg,
1962). For example, astrocytes increase glutamate dehydrogenase
expression during rat hippocampus maturation (Kugler and Schleyer,
2004). Interestingly, along with increased glutamate dehydrogenase
activity, astrocytes also increase the expression of GLT-1, suggesting a
deeper, interconnected regulatory system of glutamatergic dynamics
(Kugler and Schleyer, 2004).

Glutamate packaging

In neurons, glutamate is packaged and stored in synaptic
vesicles through specific vesicular glutamate transporters (VGLUT).
Currently, three subtypes of VGLUTs (VGLUT1, 2, and 3) have
been described, and their distribution differs among different brain
structures. VGLUT1 is present in the cerebral cortex, cerebellum,
hippocampus, and thalamus (Fujiyama et al., 2001; Herzog et al.,
2004). VGLUT2 is expressed in the cortex, thalamus, diencephalon,
and rhombencephalon (Fremeau et al., 2001; Herzog et al., 2004).
VGLUT3 is less predominant than the other two transporters and is
located in the striatum, neocortex, and hippocampus (Fremeau et al.,
2002).

VGLUT function depends on the electrochemical proton gradient
generated across the membrane by the activity of the vacuolar H+-
ATPase (Wolosker et al., 1996). This H+-ATPase activity increases
the H+ concentration inside the vesicle leading to an acidic pH. The
rate of glutamate transport by VGLUT correlates inversely with the
concentration of chloride ions (Cl−) such that a low extravesicular
Cl− concentration generates high glutamate uptake, whereas high
Cl− concentration leads to gradual inhibition of glutamate uptake
(Wolosker et al., 1996; Juge et al., 2006).

There appears to be a proportional relationship between VGLUT
levels and glutamatergic synapse response. A study of VGLUT1-
knockout mice demonstrated that the knockout reduced the
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FIGURE 1

Glutamate synthesis. Schematic representation of four main metabolic reactions, synthesizing glutamate in neurons and astrocytes: Glutaminase (A),
Aspartate aminotransferase (B), Alanine aminotransferase (C), and Glutamate dehydrogenase (D).

amplitude of miniature excitatory postsynaptic currents (mEPSCs),
suggesting a smaller quantal size (Wojcik et al., 2004). In another
study, vesicles containing a lower number of VGLUT1 showed a
reduced release probability (Herman et al., 2014). Similar results have
been described also in VGLUT3-knockout mice (Fasano et al., 2017).

The evidence for astrocyte expression of VGLUT is contradictory
and requires further investigation to clarify the situation (for a review
see Hamilton and Attwell, 2010). For example, Li et al. (2013a)
describe the absence of VGLUT in mouse cortical, hippocampal,
and cerebellar astrocytes. On the contrary, Ormel et al. (2012)
identified VGLUT1 in astrocytic processes in the rat hippocampus,
frontal cortex, and striatum. Likewise, astrocytes from postnatal rat
brains express VGLUT1 and VGLUT2 (Montana et al., 2004), as
well as cortical cultured astrocytes (Anlauf and Derouiche, 2005).
VGLUT3 has been detected in astrocytes end-feet in microcultures
of rat ventral tegmental area, substantia nigra pars compacta,
and raphe nuclei (Fremeau et al., 2002). Despite the controversy
about astrocytic VGLUTs, evidence indicates that astrocytes contain
vesicular compartments and the molecular machinery to release
glutamate in vesicular packages; this phenomenon—now known as
gliotransmission—was later confirmed and contributes to neuronal
information processing (see below; Bezzi et al., 2004).

Glutamate release

Once glutamate is packaged into the synaptic vesicles and
stored in the synaptic bouton, it is ready to be released upon the
arrival of an action potential, which will induce the opening of
voltage-dependent calcium channels, increasing intracellular calcium

(Ca2+) concentration. The Ca2+ influx facilitates vesicle fusion
with the plasma membrane, which releases the neurotransmitters
into the synaptic cleft (Figure 2; de Wit et al., 2009). The soluble
N-ethylmaleimide-sensitive factor attachment protein receptor
(SNARE) family of proteins are key components for this process.
These proteins are divided into two groups, the vesicular v-SNARE,
highly abundant in the vesicles, and the target t-SNARE, highly
expressed in the target zone in the cellular membrane (Han et al.,
2017). A trans-SNARE complex -interaction between v and t
SNAREs– must be formed to release the neurotransmitter; the main
v-SNAREs are synaptobrevin, synaptotagmin, syntaxin, and the main
t-SNARE is SNAP-25.

SNARE expression is not limited to neurons; SNAREs support
gliotransmitter release in astrocytes (Crippa et al., 2006). Cultured
astrocytes express synaptobrevin II and release glutamate that is
reduced by the inhibitors of the neuronal exocytosis botulinum
toxin-A and botulinum toxin-C, suggesting the expression of
SNAP-25 and syntaxin in astrocytes (Jeftinija et al., 1997). The
vesicular exocytosis process is similar between neurons and astrocytes
(Crippa et al., 2006), with the principal difference arising in
the initiation of exocytosis. Neuronal exocytosis is initiated by
the arrival of an action potential at the synapse, which results
in membrane depolarization in addition to an influx of Ca2+

through transmembrane channels involved in the action potential
response; the Ca2+ wave initiates a cascade of signaling that
results in vesicular release. Astrocytes cannot generate action
potentials, but the astrocytic vesicular release also requires a transient
increase in intracellular Ca2+ concentration. Astrocytes have multiple
mechanisms to accomplish this Ca2+ increase, including activation
of ionotropic or metabotropic receptors and the subsequent inositol
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FIGURE 2

Astrocyte’s contribution to glutamatergic neurotransmission. The arrival of action potential and calcium (Ca2+) influx leads to presynaptic vesicular
glutamate (G) release to the synaptic cleft, and the activation of its ionotropic (AMPA, NMDA, KA) and metabotropic (mGluR) receptors located in the
postsynaptic terminal and astrocytes. The remaining neurotransmitter is captured by transporters located in neurons (EAAC and GLT-1a) and astrocytes
(GLT-1 and GLAST). In the former, G is metabolized to glutamine (Gln) by the glutamine synthetase (GS), the initial step of the glutamate-glutamine
cycle between astrocytes and neurons that use Gln as a precursor for G. Sodium Neutral Amino acid Transporter (SNAT) 3/5 transporters located in
astrocytes will transport Gln to the synaptic space where the neuronal SNAT-1 transporter will internalize it to serve as a precursor for G by glutaminase
(GLS) activity. The xCT transporters (SLC7A11) internalize cystine (C) cotransporting G outside the astrocytes; this is the first step of glutathione synthesis
that involves astrocytes and neurons. Furthermore, a mechanism involving the interaction of protease-activated receptor 1 (PAR-1) with the potassium
channel TREK-1 or Best-1, and the G transported by xCT could contribute to increased extracellular G concentrations. In astrocytes, the activation of
mGLuR and purinergic P2Y1 receptors contribute to increased intracellular Ca2+ concentration, leading to vesicular G release that activates extrasynaptic
NMDA receptors; however, the vesicular proteins involved remain controversial. Modified from Estrada-Sánchez and Rebec (2012).

1,4,5-trisphosphate (IP3) signaling cascade, activation of transient
receptor potential (TRP) channels, or the release of Ca2+ by
mitochondria (Guerra-Gomes et al., 2018); or selective activation
of either purinergic receptors P2Y1 or protease-activated receptor
1 (PAR-1) that in astrocytes leads to increased intracellular Ca2+

concentration (Shigetomi et al., 2008).
Furthermore, recent evidence indicates that astrocytes can release

glutamate by the interaction of metabotropic receptors PAR-1 with
either the two-pore domain potassium channel (TREK-1) or the
Bestrophin-1 (Best-1), a Ca2+-activated chloride channel (Figure 2).
Glutamate efflux from the intracellular space occurs when the
TREK-1 intracellular domain interacts with PAR-1 allowing fast
glutamate transient currents, whereas the interaction of PAR-1 and

Best-1 leads to slow transient currents (Woo et al., 2012; Lalo et al.,
2021). Taken together, the evidence supports the view that both
neurons and astrocytes contribute to glutamatergic signaling.

Glutamate receptors

Glutamatergic receptors are widely distributed in the different
regions of the central nervous system. Neurons and astrocytes
express glutamate receptors, which split into two families. Ionotropic
glutamate receptors (iGluRs; Kukley et al., 2001) and metabotropic
glutamate receptors (mGluRs; Schools and Kimelberg, 1999; Fiacco
and McCarthy, 2004; Perea and Araque, 2007; Cavaccini et al., 2020).
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iGluRs

The iGluRs family, consisting of NMDA (N-methyl-D-aspartate)
receptors, and the AMPA (α-amino-3-hydroxyl-5-methyl-4-isoxazol-
propionate) and KA (kainic acid) receptors, which are responsible
for the excitatory transmission in the central nervous system of
vertebrates. These receptors are ligand-gated ion channels that allow
the movement of cations such as Na+, K+, and Ca2+ across the
cell membrane. Structurally, iGluRs are transmembrane proteins
composed of four subunits that form a central ionic pore comprised
of an extracellular amino-terminal domain, an extracellular ligand-
binding domain, four transmembrane domains, and an intracellular
carboxyl-terminal domain (Traynelis et al., 2010).

NMDA receptor

NMDA receptors are highly expressed in the brain, and their
role in physiological and pathological mechanisms have been studied
extensively (Lakhan et al., 2013; Zhou et al., 2013; Intson et al., 2022).
The subunits that constitute these receptors are GluN1, GluN2 [A,
B, C, D], GluN3A, and GluN3B. A functional receptor contains a
tetrameric assembly with two possible configurations. All receptors
must have two GluN1 subunits. The remaining two subunits can
be a pair of GluN2 subunits, or one GluN2 subunit together with
one GluN3 subunit (Schorge et al., 2005; Ulbrich and Isacoff, 2008;
Traynelis et al., 2010; Hansen et al., 2021). Moreover, mRNA editing
and alternative splicing of the different NMDA subunit genes confer
more complex properties to the NMDA receptors’ conformation,
which have been extensively reviewed by Hansen and colleagues
(Hansen et al., 2021).

Full activation of NMDA receptors in neurons requires membrane
depolarization to displace the Mg2+ ion that blocks the ion channel
with the simultaneous binding of glutamate and the co-agonist,
glycine. When both conditions are met, NMDA receptor activation
allows Na+ and Ca2+ ion influx. In addition to glycine, D-serine
is an NMDA receptor co-agonist, which is supplied by astrocytes
(Henneberger et al., 2010). However, recent evidence indicated that
neurons also contribute to the de novo synthesis of D-serine (Neame
et al., 2019). D-serine metabolism depends on 3-phosphoglycerate
dehydrogenase (Phgdh) enzyme activity and glycine concentration
(Shibasaki et al., 2017; Neame et al., 2019). Since astrocytes require
Phgdh to synthesize L-serine from glucose, astrocyte de novo synthesis
of L-serine may be a previously unrecognized regulatory mechanism
for the NMDA receptors co-agonism by D-serine (Masuoka et al.,
2019; Neame et al., 2019).

On the other hand, astrocytes also express NMDA receptors,
as evidenced by the presence of GluN1 and GluN2 subunit mRNA
(Jimenez-Blasco et al., 2015). In astrocytes, the NMDA receptors are
insensitive or weakly sensitive to the blockade of Mg2+ ion, and their
activation might even occur at negative resting potential (Verkhratsky
and Kirchhoff, 2007). Interestingly, the expression pattern of NMDA
subunits in astrocytes varies depending on the brain region. For
example, cortical astrocytes express GluN1, GluN2A/B, GluN2C,
and GluN2D subunits (Conti et al., 1996; Palygin et al., 2011).
GluN2B is more abundant in the Bergmann glia cells (Luque and
Richards, 1995), whereas the GluN2C is predominantly expressed in
the telencephalon glial cells (Alsaad et al., 2019). In hippocampal
cultured astrocytes, GluN1 and GluN2 subunits are predominant

(Araque et al., 1998a). In vivo evaluation of the GluN2C NMDA
subunit localization showed that parvalbumin-positive neurons in the
globus pallidus, ventral pallidum, and substantia nigra express this
subunit, whereas GluN2C in the cortex, striatum, hippocampus, and
amygdala colocalizes with astrocytes’ markers (Ravikrishnan et al.,
2018). The variety of NMDA subunit compositions confers different
activation properties to the receptors, which, in combination with the
regional expression patterns, results in differences in the contribution
of NMDA receptors to neuronal and astrocyte activity (Palygin et al.,
2011).

AMPA receptor

An AMPA receptor is composed of four subunits from the
proteins GluA1, GluA2, GluA3, and GluA4 (Traynelis et al., 2010).
AMPA receptors can either be homomers or heteromers. These
subunit types are differentially expressed in the nucleus accumbens,
dorsal striatum, prefrontal cortex, and hippocampus (Reimers et al.,
2011). Activation of AMPA receptors allows Na+ and K+ influx, but
if the receptor conformation lacks a GluA2 subunit or contains a
post-transcriptionally modified GluA2 by RNA editing at the Q/R
site, the channel will also be Ca2+ permeable (Traynelis et al., 2010;
Hansen et al., 2021). AMPA subunits interact with the transmembrane
AMPA receptor regulatory protein (TARP), which modulates channel
opening (Hansen et al., 2021). Activation of AMPA receptors leads to
membrane depolarization, leading to the displacement of the Mg2+

ion that blocks the NMDA ion channel allowing its activation.
Some studies suggest the presence of AMPA receptors in

glial cells (Müller et al., 1992). These receptors have been
described in cortical cultured astrocytes (David et al., 1996),
and a subpopulation of hippocampal astrocytes express GluA1,
GluA2, GluA3, and GluA4 subunits (Matthias et al., 2003).
Regarding function, it has been shown that the AMPA receptors
modulate the inward-rectifier potassium channels (also known
as Kir) in hippocampal astrocytes, which induces gliotransmitter
release and AMPA activation in neurons (Schröder et al., 2002;
Fiacco and McCarthy, 2004). Of note, AMPA receptors containing
at least one GluA3 or GluA4 subunit are permeable to Ca2+,
as described in hippocampal astrocytes (Seifert and Steinhauser,
1995), providing a direct mechanism to raise intracellular Ca2+

concentrations.

KA receptor

Among the iGluRs family proteins, KA receptors comprise the
least studied class (Meyerson et al., 2016). The subunits that form the
KA receptors are GluK1, GluK2, GluK3, GluK4, and GluK5. The KA
channel is permeable to Na+ and K+. Some of the most important
functions of these receptors are the regulation of synaptic activity
(Fernandes et al., 2009) and neuronal plasticity (Lauri et al., 2006).

The expression of receptor subunits does indeed vary across
species and brain regions. For example, the primate neocortex
primarily expresses the GluK1-2-3 subunits (Huntley et al.,
1993), whereas the rodent cortex expresses more GluK2 and
GluK4 subunits (Herb et al., 1992). Hippocampal interneurons
express KA receptors (Liu et al., 2004). Astrocytes in the hypothalamic
arcuate nucleus express GluK1–3 subunits (Diano et al., 1998).
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Hippocampal astrocytes express GluK2 (Matschke et al., 2015).
Some KA subunits allow Ca2+ efflux, which in astrocytes can
contribute to glutamate vesicular release or activate other Ca2+-
dependent signaling pathways (see Guerra-Gomes et al., 2018).
Interestingly, after chemoconvulsive status epilepticus of temporal
lobe epilepsy, CA1 hippocampal reactive astrocytes expressed GluK1,
GluK2/3, GluK4, and GluK5 (Vargas et al., 2013). Of these,
GluK1 and GluK5 expression in astrocytes persist during the
presence of spontaneous seizures, suggesting that KA receptors
in astrocytes might contribute to the pathophysiology of epilepsy
(Vargas et al., 2013).

In general, iGluRs are a key component for synaptic activity and
neuronal processing, however, more research is required to elucidate
the contribution of each iGluRs in astrocytes and how it contributes
to glutamatergic neurotransmission.

mGluRs

mGluRs are coupled to G-proteins and modulate slow synaptic
transmission through second messengers. To date, eight mGluRs
(mGluR1–8) have been described and divided into three groups
designated I, II, and III according to similarities in their distinctive
features: gene sequence, pharmacological properties, and intracellular
signaling mechanisms (Sladeczek et al., 1985).

The group I receptors, mGluR1 and mGluR5, are associated with
intracellular Ca2+ signaling, phospholipase C, and these receptors
are mainly activated by 3,5-dihydroxyphenylglycine (DHPG). Group
II includes mGluR2 and mGluR3, which are negatively coupled
to adenylate cyclase and are selectively activated by LY379268.
Finally, group III contains mGluR4, mGluR6, mGluR7, and
mGluR8 receptors, which, like group II, are negatively coupled to the
adenylate cyclase (Sugiyama et al., 1987; Masu et al., 1991).

Receptors from the Group I mGluRs are more widespread in
the brain. They are expressed in neurons from the olfactory bulb,
cerebral cortex, globus pallidus, lateral septum, cerebellar Purkinje
cells, and thalamic nuclei (Crupi et al., 2019). Group II mGluRs are
expressed in the olfactory bulb and cerebellar cortex (for more details
see Crupi et al., 2019). In contrast, astrocytes showed a predominance
of mGluR1, mGluR3, and mGluR5 receptors, which have been
described thus far in the hippocampus and cerebral cortex (Schools
and Kimelberg, 1999; Sun et al., 2013; Spampinato et al., 2018).
Using electron microscopy and immunohistochemistry, mGluR2 and
mGluR3 have been identified in astrocytes in the rat ventrobasal
thalamus (Mineff and Valtschanoff, 1999).

The activation of mGluR3 and mGluR5 increases Ca2+

intracellular concentration, triggering vesicular glutamate release
in neurons and astrocytes, which influences synaptic activity
and plasticity (Fiacco and McCarthy, 2004; Perea and Araque,
2007; Cavaccini et al., 2020). Specific activation of metabotropic
group II receptors in astrocyte cultures increases the expression
of GLAST (Gegelashvili et al., 2000). Likewise, activating the
mGluR5 receptor increases glutamate uptake through increased
expression of GLT-1 and GLAST transporters (Vermeiren et al.,
2005). However, contradicting results have been observed during
the activation of group I mGluRs, which reduces the expression of
GLAST (Gegelashvili et al., 2000). Therefore, more studies are needed
to understand the specific role of each mGluR in astrocytic glutamate
transporter expression and function.

Glutamate transporters
Glutamate transporters, also known as excitatory amino acid

transporters (EAATs), maintain optimal extracellular glutamate
concentration; these transporters belong to the solute carrier (SLC)
family 1 (high-affinity glutamate transporters; He et al., 2009). These
proteins are expressed in neurons and glial cells, especially astrocytes,
and are responsible for the bulk of glutamate uptake (Rothstein et al.,
1996) by the co-transport of glutamate, Na+ (three molecules), H+

(one molecule), and counter-transport of K+ (one molecule; Levy
et al., 1998).

Five EAATs have been identified in humans. In rodents,
these transporters were named excitatory amino acid carrier
1 EAAC1/EAAT3, GLAST/EAAT1, GLT-1/EAAT2, excitatory amino
acid transporter 4 (EAAT4), and excitatory amino acid transporter 5
(EAAT5; Figure 2; Kanai and Hediger, 1992; Pines et al., 1992; Storck
et al., 1992; Fairman et al., 1995; Rothstein et al., 1996; Arriza et al.,
1997).

Neurons in the rat cerebral cortex, hippocampus, cerebellum,
and spinal cord express the EAAC1 transporters (Kanai et al., 1995;
Shashidharan et al., 1997). Interestingly, this transporter is mainly
involved in anion conductance and uptake of cysteine, a precursor of
glutathione synthesis (Lee et al., 2020). EAAT4 is highly expressed in
cerebellar Purkinje cells (Magi et al., 2019). However, it is also found
in the fore- and mid-brain and the somatosensory cortex (Massie
et al., 2008; de Vivo et al., 2010). EAAT5 is mainly expressed in the
retina (Arriza et al., 1997).

GLAST and GLT-1 are highly expressed in astrocytes of the
hippocampus, striatum, and cerebral cortex and oversee glutamate
uptake at the synapse (Levy et al., 1993; Lehre et al., 1995; Bergles
and Jahr, 1997; Mennerick et al., 1998). According to studies focused
on evaluating the subcellular distribution of GLAST and GLT-1,
both transporters are highly expressed in hippocampal astrocytes
with a predominant presence of GLT-1 in the filopodium and
perivascular end-feet, and GLAST is mostly present in the soma and
processes (Schreiner et al., 2014; Radulescu et al., 2022). However,
the GLT-1 isoforms (GLT-1a and b) are expressed in neurons from
the hippocampus, cerebral cortex, striatum, thalamus, and midbrain
(Chen et al., 2002, 2004; Berger et al., 2005). Astrocyte processes
express more GLT-1a mRNA, whereas GLT-1b mRNA has been
detected mainly in the cell body (Berger et al., 2005). In neurons,
GLT-1a protein expression in axons, spines, and dendrites contributes
to glutamate reuptake in the excitatory terminals (Chen et al., 2004).
It has been suggested that GLT-1 in neurons provides glutamate as
a substrate for energy metabolism and mitochondrial functionality
(Petr et al., 2015; McNair et al., 2019).

Astrocytes are the main regulators of extracellular glutamate
concentration through the GLT-1 and GLAST glutamate transporters;
expression of these transporters is regulated by neuronal activity
(Swanson et al., 1997; Perego et al., 2000). Interestingly, besides
neurons, brain endothelial cells can also induce GLT-1 expression
through Notch signaling (Lee et al., 2017).

In addition to EAATs, the SLC7A11/xCT transporter is a
cystine/glutamate antiporter, which transports a cystine into the
cell while exchanging for glutamate (1–1 ratio), in a sodium-
independent fashion; therefore, contributing to astrocyte glutamate
release (Bannai, 1986). It consists of two subunits, the light subunit
(SLC7A11) and the heavy subunit (SLC3A2). Whereas the light
subunit is responsible for the active transport of cystine and
glutamate, the heavy subunit is necessary for intracellular trafficking
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and proper membrane arrangement of the transporter (Nakamura
et al., 1999; Shin et al., 2017). The SLC7A11/xCT transporter
takes up cystine and, inside the cell, cystine will be converted
to cysteine, the main precursor for the antioxidant glutathione
(Conrad and Sato, 2012). SLC7A11/xCT is highly expressed in
the human brain (Sato et al., 1999). In mice, SLC7A11/xCT is
prominently expressed in the hippocampus, cortex, hypothalamus,
and dentate gyrus (Sato et al., 2002). The SLC7A11/xCT expression
occurs mainly in glial cells (Re et al., 2006), including astrocytes
(Ottestad-Hansen et al., 2018). SLC7A11/xCT is essential to avoid
oxidative damage (Lewerenz et al., 2012), probably due to its link
with glutathione synthesis. It follows that blocking SLC7A11/xCT
leads to an increase in oxidative stress and astrocyte death (Chen
et al., 2000), a process known as oxidative glutamate toxicity
(Schubert and Piasecki, 2001).

Interestingly, Drosophila xCT gene-knockout reduced the
extracellular ambient glutamate concentration by 50%, suggesting
that the xCT transporter is essential for extracellular glutamate
regulation (Augustin et al., 2007). Also, the use of sulfasalazine,
an xCT inhibitor, reduces the NMDA-induced current by 66.8%
in mouse hippocampus slices, indicating that glutamate release
through xCT contributes to neuronal activation (Koh et al., 2022). In
addition, xCT deletion in mice induces an age-dependent anxiety-like
behavior (Bentea et al., 2015). In a related experiment, exposing the
astrocytoma-derived cell line (1321N1) to peroxide increased both
ambient glutamate concentrations and the population of xCT
transporters, suggesting that xCT activity contributes to glutamate
release and accumulation (Kazama et al., 2020). Further experiments
are necessary to clarify whether the release of glutamate by the xCT
transporter contributes to the activation of iGluRs and mGluRs in
neurons or astrocytes and if it contributes to pathological processes
in vivo.

Role of astrocytes in glutamatergic
neurotransmission during physiological
conditions

Astrocyte function was initially thought to support neuronal
activity or protect neurons from excitotoxicity. However, later studies
suggested that astrocytes can directly or indirectly modulate synaptic
neuronal activity (Figure 2; Nedergaard, 1994; Beppu et al., 2021)
and influence behavior (Lyon and Allen, 2022). The first level of
regulation is glutamate uptake by astrocytic transporters as they
regulate the neurotransmitter levels in the synaptic cleft; these
transporters indirectly modulate neuronal transmission (Jabaudon
et al., 1999), neuronal activity (Estrada-Sánchez et al., 2019) and
survival (Estrada-Sánchez et al., 2007, 2019). Glutamate uptake can
also regulate the availability of glutamine to synthesize glutamate.
As mentioned in an earlier section, once astrocytes take up
glutamate, it can be metabolized into α-ketoglutarate by glutamate
dehydrogenase or into glutamine through amidation of glutamate
by the glutamine synthetase (as part of the glutamate/glutamine
cycle; Laake et al., 1999; Islam et al., 2010). As this enzyme
is highly expressed in astrocytes, they are considered the major
glutamine reservoir and an important source of precursor for the
metabolism of glutamate and gamma-aminobutyric acid (GABA;
Hamberger et al., 1979; Norenberg and Martinez-Hernandez,
1979). Therefore, astrocytes also might regulate glutamatergic

neuronal dynamics by the amount of glutamine released into the
synaptic cleft.

Astrocytes can also regulate neuronal activity by releasing
gliotransmitters such as glutamate, ATP, D-serine, or GABA, also
known as gliotransmission. Once the gliotransmitter is released, it
activates its target receptors and, consequently, generates responses
in the same astrocyte (autocrine response) or nearby cells, including
neurons (Lapato and Tiwari-Woodruff, 2018; Savtchouk and Volterra,
2018; Beppu et al., 2021; Sherwood et al., 2021a). In addition
to gliotransmission, astrocytes contribute to neuronal activity by
regulating the availability of NMDA receptor co-agonists (glycine and
D-serine; Sherwood et al., 2021a). However, more studies are needed
to better understand this process’s physiological and pathological
implications. For a more detailed description of this topic, see
Sherwood et al. (2021a). Also, astrocytes can release active molecules
through hemichannels (Lee et al., 2011; Montero and Orellana, 2015;
Lalo et al., 2021). This topic is beyond the scope of this review, but
for more information refer to Sahlender et al. (2014), Montero and
Orellana (2015), and Caudal et al. (2020).

Experiments using electrophysiology, optical imaging, and
molecular biology demonstrated that astrocytes respond to
neurotransmitters. Activation of mGluR initiates a cellular
signaling cascade that increases intracellular Ca2+ concentration
on a timescale of about 50–200 ms (Batchelor and Garthwaite,
1997; Marcaggi et al., 2009), in contrast to the comparatively fast
ionotropic receptors that take approximately 1–10 ms in neurons
to initiate the same response (Traynelis et al., 2010; Reiner and
Levitz, 2018). iGluRs are fast-acting because extracellular Ca2+

directly enters the cell through the open channel, although a
significant Ca2+ concentration rise requires a substantial number
of simultaneously open iGluR channels. The activation of mGluR
initiates a cellular signaling cascade that amplifies the input signal,
albeit at the cost of response time; the activated mGluR activates
the phospholipase C/IP3 pathway, which then generates the release
of Ca2+ from the endoplasmic reticulum (Decrock et al., 2013;
Rodriguez-Prados et al., 2020). This intracellular source of Ca2+

induces gliotransmitter release by Ca2+-dependent exocytosis (Bezzi
et al., 1998, 2004; Zhang et al., 2004; Mothet et al., 2005; Crippa
et al., 2006; Woo et al., 2012; Li et al., 2013b; Navarrete et al., 2013;
Heller et al., 2020; Takata-Tsuji et al., 2021). Gliotransmitter
release in turn affects neuronal functioning, forming a
feedback loop.

Although astrocytes express both iGluRs and mGluRs,
intracellular Ca2+ concentration rises mainly due to the activation
of mGluRs rather than iGluRs (Conti et al., 1996; Schools and
Kimelberg, 1999). However, we cannot dismiss the contribution of
iGluRs in astrocytes for two reasons. First, the temporal dynamics
of iGluRs are approximately an order of magnitude faster than
mGluRs. Second, the presence of certain subunits confers different
Ca2+ permeability to iGluRs (Seifert et al., 1997; Brand-Schieber
and Werner, 2003; Brand-Schieber et al., 2004; Palygin et al., 2010).
The subunits that increase Ca2+ permeability are GluN3 subunits for
NMDA (Cull-Candy et al., 2001; Kvist et al., 2013), GluA2 for AMPA
(Traynelis et al., 2010), and GluK3-4 for KA (Burnashev et al., 1995).
The ratio of iGluRs with and without increased Ca2+ permeability in
astrocytes may constitute a regulatory mechanism to modulate Ca2+

influx into the cell, affecting Ca2+-dependent pathways.
The release of glutamate from astrocytes contributes to

NMDA-related long-term depression. This mechanism is initiated
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by cannabinoid receptor type 1 (CB1) activation of astrocytes, which
increases Ca2+ concentration and produces astrocytic glutamate
release. Increased extracellular glutamate activates NMDA receptors,
promoting internalization of AMPA receptors (Han et al., 2012; Min
and Nevian, 2012) in the cortex and hippocampus. In the cortex, the
activation of astrocytic CB1 receptors by exogenous cannabinoids
impairs spatial working memory (Han et al., 2012; Min and Nevian,
2012).

In the striatum, two subpopulations of astrocytes may selectively
regulate the response for dopamine D1 vs. D2 medium spiny neuron
(MSN) subpopulations. Astrocytic CB1 activation elicits astrocytic
glutamate release that specifically induces activity from either D1 or
D2 MSNs, but not both (Martín et al., 2015). This finding suggests
nuanced organization and interaction of neurons and astrocytes in
the striatum.

On the other hand, Beppu et al. (2021) demonstrated that
Bergmann glial cells amplify excitatory neuronal signals in the
cerebellar cortex by releasing glutamate through a mechanism
involving bicarbonate efflux and resultant intracellular acidification,
a mechanism sensitive to the inhibition of volume-regulated ion
channels. Although this is a novel and exciting mechanism by which
astrocytes can regulate the neuronal activity, more experiments
are needed to elucidate its specific molecular components and
their contribution during physiological conditions in vivo.
Also, this opens the question of whether this is a mechanism
restricted to the cerebellar cortex or if it also occurs in other
brain areas.

Interneurons also play an important role in astrocyte modulation
of neuronal activity. Interneurons are locally projecting neurons
that regulate neuronal activity levels through inhibitory signaling
that counteracts excitatory (e.g., glutamatergic) signaling, and
helps to prevent runaway excitatory cascades. For example, in the
hippocampus, stimulation of inhibitory GABAergic interneurons
activates GABAB receptors in astrocytes, which subsequently triggers
increased Ca2+ waves in the surrounding astrocytes, potentiating
pyramidal inhibition. This effect is blocked by glutamatergic
antagonist CNQX [cyanquixaline (6-cyano-7-nitroquinoxaline-2,3-
dione)] and AP5 (2-amino-5-phosphopentanoic acid), suggesting
that interneuron-astrocyte-mediated potentiated inhibition of
pyramidal neurons depends on astrocyte-mediated glutamate
release (Kang et al., 1998). Also, in the hippocampus, Perea et al.
(2016) described that, besides activating GABAB receptors in
astrocytes, GABA release by interneurons also activates GABAA
receptors in presynaptic neurons, which inhibited synaptic activity.
However, when the interneuron leads to astrocyte-mediated
glutamate release, presynaptic activation of mGluR 1/5 receptors
contributes to synaptic potentiation (Kang et al., 1998; Perea et al.,
2016). In the mouse cerebellar cortex, activation of purinergic
P2Y1 receptors and AMPA receptors in Bergmann glial cells leads
to glutamate-vesicular release that activates NMDA receptors in the
interneurons, enhancing the inhibitory synaptic input to Purkinje
cells (Rudolph et al., 2016).

Shen et al. (2017) described that autocrine activation of
P2Y1 purinergic receptors in astrocytes modulates the release of
glutamate mediated by the Ca2+-dependent chloride channel Best-1
and the subsequent activation of extra-synaptic NMDA receptors
in neurons. Related studies evaluated the effect of astrocytic Ca2+-
dependent glutamate release on the activity of neuronal extra-synaptic
NMDA receptors (Le Meur et al., 2007; Shen et al., 2017; Koh

et al., 2021). These receptors contain the GluN2B subunit and
their activation produce a slow inward current with an amplitude
of 18–477 pA, with a rise time of 13–332 ms, and decay times
of 72–1,630 ms. The presence of extra-synaptic NMDA currents
directly depends on astrocytes’ intracellular Ca2+ concentrations;
they decrease when Ca2+ signaling is abolished and increase when
intracellular Ca2+ concentration rises (Araque et al., 1998b; Pirttimaki
et al., 2011; Perea et al., 2014); these neuronal currents are generated
by astrocyte activity in the hippocampus, cortex (Gomez-Gonzalo
et al., 2017, 2018), and nucleus accumbens (Corkrum et al.,
2019).

Moreover, Santello et al. (2011) showed that the P2Y1 activation
and consequent Ca2+-dependent glutamate release in astrocytes
from the dentate gyrus also involve the tumor necrosis factor-
alpha (TNFα), which at physiological concentrations (pM range),
favors the adequate exocytosis of astrocytic glutamatergic vesicles.
Interestingly, glutamate released activates presynaptic NMDA
receptors, particularly expressing the GluN3A subunit with a low
voltage-dependent Mg2+ block (Savtchouk et al., 2019). In an
excellent review, Di Castro and Volterra (2022) describe how this
mechanism might be relevant within the entorhinal cortex-dentate
gyrus circuit involved in memory processing.

Additional evidence beyond the hippocampus indicates that
astrocytes have a functional role in behavior regulation. For example,
astrocytes in the suprachiasmatic nucleus increase Ca2+ signaling
at night. This signaling is highly related to circadian behavior
regulated by glutamate release (Brancaccio et al., 2019). Blum
et al. (2021) demonstrated in Drosophila melanogaster through
in vivo two-photon experiments that increased astrocyte Ca2+

activity correlates with sleep needs. Another behavior modulated
by astrocytes is feeding (Sweeney et al., 2016; Varela et al.,
2021). Specific stimulation of astrocytes from mice’s medial basal
hypothalamus suppresses food intake (Sweeney et al., 2016).
Finally, mice lacking astrocyte glucocorticoid receptors in the
amygdala show attenuated anxiety behaviors in the open field
behavioral test and fear memory (Wiktorowska et al., 2021),
demonstrating a direct involvement of astrocytes in fear memory
and anxiety.

The extensive evidence reflects the key role of Ca2+-mediated
signaling in astrocytes, which requires stimulation of IP3 receptors
(IP3R). There are three subtypes of IP3R in mammals (IP3R1,
IP3R2, and IP3R3) and among them, IP3R2 was widely accepted
as the only functional subtype in astrocytes (Sherwood et al.,
2021b). However, recent evidence showed that IP3R1 and IP3R3 are
also present in astrocytes and participate in Ca2+-mediated
signaling, especially in astrocytic processes (Sherwood et al., 2017,
2021b). This new finding raises questions about the functional
role and subcellular localization of the different IP3R subtypes
in astrocytes during gliotransmission and its relevance during
physiological processes.

As a whole, this evidence indicates that gliotransmission
modulates the activity of astrocytes and neuronal circuits (projecting
and interneurons) and appears to be a widespread mechanism
in the brain. Besides glutamate, ATP purinergic receptors
emerge as a key component that triggers astrocytes’ modulation
of neuronal circuits. Although the current evidence indicates
that gliotransmission can influence behavior, more research is
needed to dissect the different roles of astrocytes in shaping
animal behavior.
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Role of astrocytes in glutamatergic
neurotransmission during pathological
conditions

Alterations in the glutamate transporters are related to
neurodegenerative diseases (Pajarillo et al., 2019). Postmortem brains
of Alzheimer’s disease patients showed a reduction in EAAT1 and
EAAT2 (Masliah et al., 2000). Epilepsy is associated with decreased
EAAT2 (Tanaka et al., 1997). In the intrahippocampal kainic acid
model of temporal lobe epilepsy, GLT-1 and GLAST expression
increase early after the treatment, suggesting that dysregulation in
the expression of astrocyte glutamate transporters could contribute
to the development of epilepsy. However, the accuracy of this
hypothesis has not yet been determined (Peterson and Binder,
2019). In Huntington’s disease, an inherited neurodegenerative
disorder, reduced expression of EAAT2 was observed in postmortem
brain samples (Faideau et al., 2010). In the R6/2 Huntington’s
disease transgenic mouse model, decreased content of GLT-1 and
GLAST correlates with increased vulnerability to glutamate-
induced toxicity (Estrada-Sánchez et al., 2009, 2010). Likewise,
cortical pyramidal neurons in the R6/2 mice are more vulnerable
to glutamate-mediated paroxysmal activity during the inhibition
of both GLT-1 and GLAST transporters (Estrada-Sánchez et al.,
2019).

To date, exploration of how gliotransmission contributes to
neural information processing and behavior focused mostly on
physiological conditions. Less is known about how changes in
gliotransmission contribute to the pathology of neurological,
neuropsychiatric, or neurodegenerative conditions. However, data
from physiological studies point out that astrocytes in the
striatum can modulate differentially D1 or D2 MSNs (see above),
and its dysfunction may contribute to diseases like Parkinson’s
and Huntington’s disease. D1 and D2 MSNs comprise key
components of the brain circuits that control movement and, at
the behavioral level, both diseases involve substantial alterations in
movement control. At the cellular level, D1/D2 MSN impairment
contributes to neuropathology, and a distinct line of evidence
demonstrates altered astrocyte functioning (for a review, see
Estrada-Sánchez et al., 2017). The results from Martín et al.
(2015) suggest that these two lines of evidence from disease
pathology are connected to healthy tissue function (Martín et al.,
2015); further understanding of how this system works may
yield promising pathways for future therapeutic interventions for
these diseases.

Another possible contribution of gliotransmission to
neuropathology might be through the activation of extra-
synaptic NMDA receptors since the NMDA-mediated response
in neurons depends on its subcellular localization. Whereas
activation of synaptic NMDA receptors leads to survival
pathways, activation of extra-synaptic NMDA receptors initiates
neuronal death cascades (Kaufman et al., 2012). In fact, it has
been documented that activation of extra-synaptic NMDA
receptors contributes to the neurodegenerative processes
described in Huntington’s disease and ischemia (Hardingham
and Bading, 2010; Milnerwood et al., 2012). Because activation
of extra-synaptic NMDA receptors indicates astrocytic Ca2+-
dependent glutamate release, it is important to evaluate the
possible role of astrocytes in the balance/imbalance between

synaptic and extra-synaptic glutamatergic receptors activation
and whether this contributes to survival or neuronal death
pathways.

The description of three functional IP3R subtypes in astrocytes
raises new questions about their role in pathological states. Recently,
it was shown that the IP3R1 subtype has a key role in chronic
itching (Shiratori-Hayashi et al., 2021) and the absence of IP3R2 in
astrocytes generates autism spectrum disorder-like behaviors (Wang
et al., 2021).

More studies are needed to fill the knowledge gaps about the
contribution of gliotransmission during the pathological process of
neurodegenerative, psychiatric, and neuropathological conditions.

Perspectives

The evidence reviewed strongly suggests a complex functional
interaction between neurons and astrocytes. The extent to which
astrocytes modulate the synapse could vary depending on the
brain region, influencing its information processing and behavioral
output. To date, most of the information on gliotransmission
has been centered in the hippocampus, and less is known about
gliotransmission in other areas of the brain. Similarly, most studies
have focused on physiological conditions, and although there
is evidence that astrocytes contribute to the neuropathological
process, the precise role of astrocytes during neuropathological
processing is still to be determined. The review also suggests
extensive opportunities for further research, including the specific
contribution of each gliotransmitter described to date and perhaps
the identification of new gliotransmitters, their synthesis, and release
systems. It is also important to better understand the effects of
gliotransmitters on neighboring cells, including the same astrocyte
or afferent, efferent neurons, interneurons, and microglia cells.
Finally, additional studies will clarify the functional interconnection
among different signaling pathways in a tripartite synapse, such
as glutamatergic, purinergic, and GABAergic, during physiological
and pathological conditions. Current evidence is limited to in vitro
and brain slice experiments, which limits our understanding of the
functional role of all these components in vivo.

Conclusions

The development of new experimental tools has widened
our understanding of the synapse, where astrocytes emerge as
a complex contributor. The evidence indicates that astrocyte
release of gliotransmitters such as glutamate, ATP, D-serine, and
GABA can activate, potentiate, or inhibit the activity of projection
neurons, interneurons, or other astrocytes. Furthermore, astrocytes
can influence neuronal synaptic modification through effects on
long-term depression and potentiation. It is likely that more than
one gliotransmitter coexists within the same astrocyte, providing a
new degree of complexity to astrocyte modulatory activity. These
mechanisms suggest additional layers of information-processing
capability, enabled by astrocytes that extend beyond the traditional
focus on neurons as the information-processing cells of the
brain. More studies are needed to understand how astrocytes
modulate neuron-astrocyte network activity across the brain during
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physiological and pathological conditions. Finally, deepening the
understanding of the functional dynamics between gliotransmitter
signaling in neurons and astrocytes will widen the therapeutic targets
for neuropathological conditions and neurodegenerative diseases,
including ischemia, stroke, and Huntington’s disease.
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