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Sustained exposures to ubiquitous outdoor/indoor fine particulate matter (PM2.5),

including combustion and friction ultrafine PM (UFPM) and industrial nanoparticles

(NPs) starting in utero, are linked to early pediatric and young adulthood aberrant

neural protein accumulation, including hyperphosphorylated tau (p-tau), beta-

amyloid (Aβ1−42), α-synuclein (α syn) and TAR DNA-binding protein 43 (TDP-

43), hallmarks of Alzheimer’s (AD), Parkinson’s disease (PD), frontotemporal

lobar degeneration (FTLD), and amyotrophic lateral sclerosis (ALS). UFPM from

anthropogenic and natural sources and NPs enter the brain through the

nasal/olfactory pathway, lung, gastrointestinal (GI) tract, skin, and placental

barriers. On a global scale, the most important sources of outdoor UFPM are

motor tra�c emissions. This study focuses on the neuropathology heterogeneity

and overlap of AD, PD, FTLD, and ALS in older adults, their similarities with

the neuropathology of young, highly exposed urbanites, and their strong link

with sleep disorders. Critical information includes how this UFPM and NPs cross

all biological barriers, interact with brain soluble proteins and key organelles,

and result in the oxidative, endoplasmic reticulum, and mitochondrial stress,

neuroinflammation, DNA damage, protein aggregation and misfolding, and faulty

complex protein quality control. The brain toxicity of UFPM and NPs makes them

powerful candidates for early development and progression of fatal common

neurodegenerative diseases, all having sleep disturbances. A detailed residential

history, proximity to high-tra�c roads, occupational histories, exposures to

high-emission sources (i.e., factories, burning pits, forest fires, and airports), indoor
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PM sources (tobacco, wood burning in winter, cooking fumes, and microplastics

in house dust), and consumption of industrial NPs, along with neurocognitive and

neuropsychiatric histories, are critical. Environmental pollution is a ubiquitous,

early, and cumulative risk factor for neurodegeneration and sleep disorders.

Prevention of deadly neurological diseases associated with air pollution should

be a public health priority.

KEYWORDS

air pollution, Alzheimer’s, nanoparticles, nanoneuropathology, PM2.5, sleep disorders

RBD, OSA, depression

1. Introduction

Chronic exposures to outdoor concentrations of PM2.5

above WHO air quality guidelines (annual 5 µg/m3) caused
6.4 million premature deaths and 93 billion days lived with
illness in residents worldwide in 2019 (1). Exposures to
traffic-generated pollutants, residency close to high-traffic
roads, incomplete combustion emissions, firepit emissions,
and in vitro experimental PM exposures of neural tissues,
among other sources, have all been associated with extensive
neural damage and increases in neurodegenerative diseases,
including AD, PD, and ALS for the last two decades (2–17).
Millions of US residents are exposed to wild forest fires and
live near high-volume traffic roads and traffic-related air
pollution (TRAP) (18, 19). Disadvantage populations, including
minorities and low-income individuals, are exposed to high TRAP
pollution (19, 20).

This study focuses on how incomplete combustion species and
friction-derived and industrial-sourced nanoparticles reach neural
tissues and damage target organelles in the nervous system; how
these UFPMs and NPs travel in the brain and affect brain hubs
with extensive communications and key roles in the integration
of critical information, including sleep (21–23). For this study, we
would be using either UFPMs and/or NPs, since our focus is on
particle size, i.e., ≤100 nm.

The identification of the initial neuropathological stages of
Alzheimer’s disease (hyperphosphorylated tau and amyloid beta)
(24) in 202/203 Metropolitan Mexico City forensic autopsies, with
an average age of 25.4 ± 9.2 years, including 44 children with an
average age of 12.89 ± 4.9 years, and the progression of the disease
by the second and third decades of life, along with the concomitant
development of PD and TDP-43 pathology in young urbanites,
are at the core of our research efforts and our deep interest in
comparing sleep disorders in patients with AD, PD, FLTD, and
ALS, the involvement of aberrant neural proteins, and the presence
of UFPM and NPs in sleep hubs in young highly exposed to air
pollution cohorts (9–11, 24–34).

Populations that are exposed chronically to high concentrations
of outdoor and indoor PM2.5 are at higher risk of developing
early diagnostic and neurodegenerative hallmarks, and the fact that
they overlap from the earliest ages strongly suggests that there is
a common denominator affecting the protein neural structures.
UFPM and NPs could be the causative agents in association

with genetic, epigenetic, and other environmental variables, and
damaged sleep hubs, and resulting sleep disorders could be early
findings (35–43).

Millions of people worldwide are exposed to outdoor and
indoor environmental fine particulate matter (PM2.5) and nanosize
PM ≤ 100 nm [ultrafine particulate matter (UFPM) and industrial
nanoparticles (NPs)]. Metal combustion and friction-derived
UFPM and NPs are identified in brain organelles starting in utero

and are directly responsible for intense oxidative stress, protein
misfolding, protein aggregation, and fibrillation. AD, PD, and ALS
are associated with exposure to air pollutants. Sleep disorders are
strong predictors of fatal neurodegenerative disorders.

2. Particulate matter pollution, what is
it? How do we measure it? Why
nanosize PM is key?

Particulate matter (PM) consists of a mixture of microscopic
solids and aerosols (liquid droplets) of different sizes and
compositions found in the air. Different sizes of PM are based
on their aerodynamic diameters: PM10 (mass of PM with an
aerodynamic diameter<10µm); fine or PM2.5 (particles<2.5µm),
and ultrafine particles (UFPM, with an aerodynamic diameter
<0.1µm). PM differs in chemical composition, size, shape,
morphology, and air lifetime, depending mainly on their origin,
which in turn can be primary or secondary. Particles emitted
directly into the atmosphere are primary PM, while those formed
within the atmosphere from a number of processes such as
nucleation, condensation, and/or chemical reactions of gas-phase
species are secondary PM, mainly gaseous air pollutants (44).
PM10 and PM2.5 are our current indicators for PM pollution
worldwide, particularly in highly polluted urban areas (i.e.,
Metropolitan Mexico City, Figure 1). Routine measurements of
UFPM are neither common nor enforced, despite it being well-
recognized that they can reach alveoli, circumvent primary
airway defenses, and carry numerous toxic organic and inorganic
compounds (44, 45).

Notably, while PM10 and PM2.5 ambient concentrations
and their regulatory compliance with air quality standards are
determined by mass-based methods, UFPMs have negligible
mass, making them very difficult to measure. UFPMs are
quantified by number concentration, which in many cases
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FIGURE 1

Time series trend of annual mean 24-h PM2.5 concentrations, averaged over 3 years, for five representative monitoring stations in MMC from 1990 to

April 2020 and their comparison with the respective annual USEPA NAAQS. Data were processed and evaluated from measurements reported by the

manual PM network of the Secretaría del Medio Ambiente del Gobierno de la Ciudad de México (SEDEMA) under a 6-day sampling schedule. Annual

means from the years before 2004 were estimated from available information on PM10 since 1990 and the mean slope of the correlation PM10 vs.

PM2.5 between 2004 and 2007. Source of data: http://www.aire.cdmx.gob.mx/default.php#.

do not correlate with the mass concentrations reported as
PM10 or PM2.5 (46–48). We currently do not have worldwide
ultrafine particle matter regulations (21, 22). Although some
countries have guidelines for UFPMs in terms of particulate
number concentrations, their focus has been on short-term
exposures in occupational environments and for specific
materials, thus they do not apply to outdoor or indoor
environments. Available measurement systems for UFPMs
include condensation particle counters, electro-mobility
spectrometers, diffusion battery counters, and photoelectric
nucleus counters (44–49).

As road traffic and uncontrolled small combustion sources
generate a significant number of nanoparticles, heavily polluted
urban areas are suffering from strong UFPM problems (48).
Metropolitan Mexico City (MMC) has experienced a dramatic
increase in the number of vehicles in the last 20 years. Before
2000, CO and PM2.5 levels in MMC were among the highest levels
registered in North America. However, due to actions to reduce
traffic pollution, UFPM particle number concentrations (PNC)
from the mid-2000s on, have been reduced to around 30,000 cm−3

(50). Using a non-linear correlation model between PNC, CO,
and PM2.5 concentrations obtained from short-term monitoring
studies, we have estimated that in the 1990s, PNC in MMC was
around 300,000 cm−3 (50–54). Figure 2 shows the estimated annual
average UFPMs number trend coupled with the CO annual median
for MMC from 1989 to 2021 (50). We assumed that PM2.5 and CO
could be reasonable proxies of vehicular emissions and incomplete
combustion processes in the urban area. Typical particle number
concentrations measured in 44 urban areas worldwide are in the

order of∼5× 103 to∼8× 104 cm−3 with extremes above 1× 105

cm−3 in China and India (48).

3. Nanoparticles, metals, metalloids,
and plastics. How harmful? How early?
Where do they go in the brain? How
relevant are systemic inflammation
and neuroinflammation in
neurodegeneration and their
association with air pollution?

Nanoparticles, regardless of composition or shape, go
everywhere in the body, cross all biological barriers, and go
through paracellular pathways, including tight junctions, adherens
junctions, and cytoskeletons (55–62). Their small size facilitates
their absorption capabilities and their passage through membranes
(5, 63–71); red blood cells (RBCs) and white blood cells (WBCs)
are very efficient transporters of UFPM and NPs because they
can reach any place, including the brain (12, 71). Their portals of
entry (55) are key to understanding the importance of inhalation
and ingestion of NPs and their direct brain entrance through the
olfactory region and access to the trigeminal nerve. The inhalation
entry starts in the nasal mucosa and continues to the alveolar
space and the enormous lung capillary bed with the transport
of UFPM and NPs through RBCs and WBCs and their free
systemic circulation transportation. The massive amount of NPs
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FIGURE 2

Trends of estimated PNCs and the associated annual medians of 1-h average CO for five representative monitoring stations of the MMC from 1989 to

2021. The colored circles in the figure correspond to the medians of PNCs measured by the authors referenced in (51*), (52**), (53***), and (54****).

CO data source: http://www.aire.cdmx.gob.mx/default.php.

we ingest every day have direct access to the intestinal epithelium
and submucosa, causing significant damage to the paracellular
structures and allowing direct entry of NPs to the enteric nervous
system (ENS) (72).

The neurovascular unit (NVU) (73), defined as a complex

functional and anatomical structure integrated by endothelial cells,

capillaries, arterioles, a basal lamina covered by pericytes, smooth

muscle cells, and neural cells including neurons, interneurons,

astrocytes, and an extracellular matrix, is a direct UFPM/NP target,
a critical observation explaining the extensive capillary and small
arteriole vascular damage starting in utero and in childhood upon
PM air pollution exposures (9, 10, 12, 55). As described by Schaeffer
and Iadecola (73), NVU damage, regardless of the source, has
serious effects on neurovascular regulation and coordination of
vascular responses to central and peripheral signals, which are
critical to maintaining brain homeostasis. NVU damage predicts
neurodegeneration (21, 55, 72–74).

The detrimental impact of NPs on the brain includes high
production of reactive oxygen species, neural inflammation,
depletion of anti-oxidative enzymes, DNA damage, apoptosis,
structural cell damage, including organelles, nuclei, tight junctions,
adherens junctions, endothelial damage, and dysfunction (5, 55, 59,
62, 64, 70, 75–78).

Particularly relevant to this study is the fact that UFPM/NPs
are very effective in their capacity to aggregate, conglomerate,
and produce protein folding, destabilization, and fibrillation (5,
61, 63, 65, 67, 69, 70, 79–82). John et al. (81) referred to
large nanostructures of ≥20 nm affecting the kinetic peptide

aggregation, thus size and shape matter. They also discussed how
NPs serve as a surface for the adsorption of peptide monomers
and facilitate nucleation to oligomers and fibril formation (81).
Mohammad-Beigi et al. (82) discussed how α-synuclein undergoes
interactions with NPs and how these interactions can be prevented
by the characteristics of the protein corona acquired during
the exposure of NPs to serum proteins. When α-synuclein
and polyethylenimine-coated carboxyl-modified polystyrene NPs
(PsNPs-PEI) interact, the NP surface promotes the primary
nucleation step of amyloid fibril formation, thus key to pathological
fibrillation, serum proteins modulate the complex interplay
between NPs and amyloid proteins (82).

NP/UFPM interactions with brain cells are complex, and
variables such as the nature of the protein corona, bioavailability,
biodistribution, size, shape, charge, composition, cell and organelle
targets, and certainly portal of entry are all impacting the extent and
type of brain damage.

An interesting and concerning factor in UFPM composed
of iron (magnetite and maghemite) is precisely their magnetic
properties (5, 83–85). In the study by Shu et al. (85), the
superparamagnetic NPs could respond to an external magnetic
field, and magnetic NPs could be seen setting down in the magnetic
pole regions (see Figure 4d of that study). This magnetic cell settling
does, in fact, occur in MMC residents, as we have documented the
phenomenon in electron micrographs [(55), Figure 3B]. The issue
is more than a sporadic finding; MMC brains contain significant
concentrations of magnetic NPs measured as saturation remanent
magnetization (SIRM), being highest in the cerebellum (10). The
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cerebellum in young MMC residents shows extensive vascular
pathology and cerebellar endothelial erythrophagocytosis (50) and
significant atrophy by volumetric brain MRI in young MMC
residents (39).

Systemic inflammation and endothelial dysfunction are very
relevant to air pollution exposures, as shown by our laboratory
in Mexico City children (86), along with nasal inflammation,
DNA nasal epithelial damage (87–90), and CSF inflammation
(43). Systemic inflammation and endothelial dysfunction have
been described in 295 pregnant women (91) with strong
associations between increases in soluble vascular adhesion
molecule-1 (sVCAM-1) levels for each 10 µg/m3 increase in
PM10 concentration, strongly suggesting that inflammation and
endothelial dysfunction have a key role in modulating the
detrimental effects of air pollution exposure during pregnancy, as
shown recently in our laboratory with the extensive presence of
nanoparticles of industrial origin in placentas of all ages and brain
fetal tissues (12).

Oxidative stress and inflammation are common denominators
of particulate matter (PM) air pollution exposures (92), including
PM containing polycyclic aromatic hydrocarbons (PAHs) at low
exposure settings. Occupational exposures are equally important
for both systemic and neural inflammation and neurodegeneration
(93, 94). Orysiak et al. (93) described a significant increase in
proinflammatory cytokines in firefighters, along with respiratory
inflammation, a piece of information that is very significant
given the massive exposure of the US population to forest
fires (18) and traffic air pollution (19). Thus, the report of
Huang et al. (94) on neuroinflammation in the 2001 World
Trade Center (WTC) responders is not a surprise, nor is the
increment in suicides among the same responder population (95–
97). The expected responses of the highly PM-exposed WTC
responders were precisely what researchers are publishing 22
years later and what we commented within hours of the tragic
event: acceleration of neuroinflammation, neurodegeneration,
and suicides, as we see in Mexico City residents, more
pronounced in APOE4 carriers, and associated with dose and
routes of exposure key for both WTC responders and MMC
residents (9–12).

Monitoring systemic inflammation in children should be a
health priority since ambient air pollution impacts inflammatory
responses from childhood (86, 98). Certainly, UFPM/NPs
play a key role in both systemic and neural inflammation
(12, 14, 16, 17, 21, 45, 50, 55, 62, 64), and diesel and Fe-NPs cause
significant damage to neural cells under experimental conditions
(62, 64). The issue also applies to industrial NPs consumed
worldwide in massive amounts, i.e., titanium oxide NPs (99).
Rolo and coworkers (99) have an excellent review of the TiO2-
NPs in foods causing oxidative stress, cytotoxicity/apoptosis/cell

death, inflammation, cellular and systemic uptake, genotoxicity,

and carcinogenicity, and although the authors made a plea to
support limiting the use of TiO2-NPs in food, we are aware as
toxicologists that the food industry will be reluctant to follow-
up on the recommendations. Thus, although the literature
supports the multiple pathways UFPM/NPs are capable of
causing systemic and neural damage through oxidative stress,
neuroinflammation, mitochondrial function, neurodegeneration,
via excessive activation of cellular prion protein signaling,

hippocampal-impaired neurogenesis and synaptic plasticity,
abnormal peptidomic responses, apoptosis, and necrosis (100–
105), we still do not have NPs and UFPM regulations in the
United States, and we need to establish clear correlations between
PM exposures, neurodegeneration, and inflammation (106–109).

4. Development of Alzheimer’s and
Parkinson’s diseases and TDP-43
pathology in children and young adult
MMC residents. The diagnostic neural
abnormal proteins are present and
overlap from childhood and are key
for the diagnosis of early sleep
disturbances

In 2002, we described the association between the
neuropathological hallmarks of Alzheimer’s disease and air
pollution exposures in our laboratory, stating: Neurodegenerative
disorders such as Alzheimer’s may begin early in life with air

pollutants playing a crucial role (37). Two decades later, we have
robust evidence to support this statement in populations exposed
to high levels of PM2.5 and UFPM/NPs. Our studies demonstrate
the development of AD, PD, and TDP-43 pathology starting in
childhood, and it is corroborated clinically with the progressive
cognitive deterioration, abnormal gait and equilibrium, brainstem-
evoked auditory potentials, olfactory deficits, sleep abnormalities,
and brain MRI cortical, subcortical, and cerebellar atrophy in
seemingly healthy individuals (36–42). Low CSF concentrations of
amyloid β 1−42 and BDNF differentiate children exposed to MMC
air pollution from low pollution controls (43).

We have identified p-tau, the presence of Aβ and α-synuclein,
and abnormal TDP-43 expression in 202 MMC forensic autopsies
from residents who died in accidents, homicides, and suicides
aged 25.3 ± 9.2 years (9, 10). Extensive, early, and progressive
neurovascular unit damage and key organelle ultrastructural
pathology were associated with metal- and metalloid-rich
UFPM/NPs, making solid UFPM/NPs an agent for brain pathology
in MMC subjects (9–12).

Figure 3 illustrates the two key AD neuropathology markers,
namely, hyperphosphorylated tau and beta-amyloid, in MMC
residents per decade, including 44 children (9). We thoroughly
studied the extra neural tissues and confirmed there were no gross
and/or light microscopy abnormalities.

As seen in Figure 3, every child had h-tau pre-tangle stages
in the 1st decade of life, and by the 2nd decade, we documented
neurofibrillary (NFT) tangles I–V (24). Subjects in the 4th
decade were clearly in NFT I–V stages, and pre-tangle stages
could no longer be identified. In contrast, Aβ progressed slowly
and remained in the early phases. Interestingly, in our autopsy
studies (9, 10), apolipoprotein E allele 4 (APOE4) carriers of
the strongest Alzheimer’s disease genetic risk factor (110–113)
had higher AD Braak stages and the highest risk for suicide
associated with lower cumulative exposures to PM2.5 vs. APOE3
carriers. A finding in keeping with the literature regarding the
higher risk of carrying two copies of ε4 allele increasing the
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FIGURE 3

Two hundred and three forensic autopsies were staged for Alzheimer’s disease using p-tau and Aβ1−42 (9). Subjects were 25.4 ± 9.2 years old and

causes of death were related to car accidents, homicides, and suicides; 202/203 had AD pathology, including the youngest subject, an

11-month-old baby.

FIGURE 4

Venn diagram showing the overlap of neurodegenerative fatal diseases in a cohort of 186 MMC residents with an average age of 27.3 ± 11.8 years

(10). Alzheimer’s disease neuropathology changes (ADNC) (h-tau and Aβ) were present in each case.

AD risk up to 15-fold versus an APOE3 carrier in European
ancestry subjects (114). APOE is a key protein in the equation
of AD risk, neuroinflammation, oxidative stress, and metals (35,
112–114). The study by Tcw et al. (115), relating local APOE

haplotype and the ε4-specific amino acid changes to important
deficits in lipid metabolism dysregulation, glial activation, and
inflammation, is of considerable interest in the setting of air
pollution (9).
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The overlap of AD, PD, and TDP-43 pathology is remarkable
in young MMC residents as it is extraordinarily similar to
the mixed protein pathologies described in elderly demented
patients diagnosed with AD, FTLD, LBD, PD, ALS, and cerebral
amyloid angiopathy (CAA), white matter rarefaction (WMR)
pathology, and in the younger than 60-year patients who are
AD demented (25–34, 116–119). Metha and Schneider (118)
illustrated the overlapping neuropathology in a Venn diagram,
which was further discussed by Jellinger (119, 120). It is clear
that in elderly populations, AD is a heterogeneous disease, and
co-pathologies (119), including LBD and TDP-43 pathology,
and cerebrovascular lesions, are critical for the clinical picture,
imaging, and laboratory results (25, 119–128). Figure 4 illustrates
the aberrant neural protein overlap in MMC young without extra
neural pathology (10).

All major neuropathological hallmarks of AD, PD, FTLD, and
ALS are identified in young urbanites, from brainstem p-tau and
diffuse amyloid plaques in an 11-month-old baby to extensive
cortical p-tau in carriers of APOE4 alleles in 15-year olds. Common
findings in MMC residents include p-tau in substantia nigrae and
lack of nuclear TDP-43 in cortical motor neurons, lower motor
neurons for cranial nerves III, V, and XII, and cervical motor
neurons in teens and young adults (9–11). Hyperphosphorylated
tau is definitely the major aberrant protein in highly exposed
air pollution young urbanites (36). Figure 5 shows the overlap of
aberrant neural protein in MMC young residents (10), compared
to elderly subjects in the key work of Karanth et al. (25).

Cerebrovascular pathology involving small and large cerebral
vessels, with lesions ranging from gross and microscopic infarcts,
atherosclerosis, and arteriolosclerosis, is commonly attributable to
aging and independently associated with a higher risk of AD in
elderly subjects (116, 118–120, 128). Strikingly, we have described
extensive brain capillary and arteriole endothelial pathology and
abnormal NVU in MMC dogs, children, and fetal brains in
weeks 12–15 (12, 129). In dogs and children, capillaries displayed
abnormal tight junctions—a critical component of the NVU
(129), decorated with UFPM/NPs, and white matter extensive
perivascular damage with leaking capillaries and arterioles
displaying extravascular lipids and erythrocytes. The endothelial
basement membranes are thickened and display beta-sheet
structures, and the perivascular glial sheet is focally absent. NPs
(10–48 nm) are localized in endothelial cells (EC), pericytes, and
across the basement membranes. Endothelial damage associated
with NPs is detected very early and worsens with age in children
and teens with high PM exposures (Figure 6) (129).

We strongly suggest that neural abnormal protein overlap
could be explained by the presence of UFPM/NPs in critical hubs
with portals of entry, emission sources, cumulative exposures, size,
shape, surface charge, chemical composition, biomolecular corona
proteins, target organelles, cellular toxicity, axonal anterograde and
retrograde transport, trans-synaptic movements, and a number of
genetic (i.e., APOE4 carrier status) and environmental factors (in
utero exposures), comorbidities, etc., accounting for the neural
damage and the heterogeneity of neurodegenerative diseases (12–
17, 25–34, 113, 116–129).

The nanosize PM is composed of metals including Fe, Ti,
Hg, Cu, Al, and Bi; post-transition metals, i.e., Al and Pb;
alkaline earth metals, i.e., Ba; and non-metallic chemical elements

such as Si are identified in every organelle in neurons, glial
cells, microglia, and endothelial cells in Mexico City residents
(10). Mitochondria and endoplasmic reticulum (ER), as well
as the mitochondria-ER membrane contacts (MERC), are key
NPs targets, and abnormal MERCs are common in highly
exposed subjects (55, 56, 129). UFPM/NPs are also localized
in the nuclear matrix—in close contact with heterochromatin—
and nuclear pores. The outstanding accumulation of NPs in
endolysosomes and specific structures like neuromelanin has great
relevance in targeted neurodegenerative processes, including PD
(Figure 7) (10, 55, 56, 130).

The spectrum of metals and metalloids is critical for brain
targets. We are identifying Fe-based, highly magnetic UFPM
along with metals commonly associated with electronic waste,
such as elongated TiO2 NPs (131). Shredding of e-waste is an
extensive source of NPs in the United States (131), and very
high concentrations of lead, for example, 2.9 µg-lead m3, are
common 1.8m away from the shredder operator, with extensive
metal surface contamination reaching up to 250,000 particles cm3

with fine PM2.5 up to 171 µg m3, and both failing to return
to background levels after 40min of inactivity, as described by
Ceballos et al. (131). As stated by Frazzoli et al. (132), the

aggressively extractive advanced technology industry thrives on the

intensive use of non-renewable resources and hyper-consumeristic

culture and unfortunately, the health impact on the brain is
detrimental. Figures 8, 9 show the metal and metalloid profiles
in individual UFPM/NPs in neural and vascular cells analyzed by
energy-dispersive X-ray spectrometry (EDX).

UFPM/NPs in targeted organelles with critical functions,
including the assembly of proteins, lipid synthesis, regulation,
transportation, clearing of damaged organelles via lysosomal
degradation, inter-organellar communication, Ca2+ storage,
transport and signaling, apoptosis, autophagy, stress responses,
and formation and activation of inflammasomes, are at the core
of the nanoneuropathology, as shown by the myriad of interesting
studies focusing on alterations of mitochondria, MERCS, ERs,
mitochondria-lysosome connections, neuromelanin, and nuclear
pores (133–142).

Neurodegenerative diseases are heterogeneous, multisystem
disorders with multiple abnormal proteins frequently associated
with cognitive impairment and sleep disorders. The heterogeneity
includes clinical-brain imagen variants that complicate diagnoses
and putting forward we still have limitations for clinical and
neuropathology diagnostic criteria (25–34, 116–129). AD, PD, and
TDP-43 pathology start in childhood in populations with high
exposures to PM2.5 (for this review, concentrations above the
USEPA annual standards of 12 µg/m3) and UFPM and NPs.

5. Neurodegeneration spectrum
heterogeneity, quadruple neural
abnormal proteins, and sleep disorders

At the core of this study are the neuropathology spectrum
heterogeneity and the overlap in neuropsychiatric outcomes,
including sleep disorders (25–34, 117–128, 143–166). There
is consensus that for specific sleep disorders, i.e., rapid eye
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FIGURE 5

(A, B) A comparison in aberrant neural proteins between the young MMC 186 autopsy cohort (10) and Karanth et al. (25) 375 autopsies with an

average age of 86.9 ± 8.04 years including subjects with normal cognition, mild cognitive impairment (MCI), impaired (but not MCI), and dementia.

FIGURE 6

Light and electron microscopy of the brain in di�erent anatomical locations in MMC young residents. (A) Thirteen-year-old girl’s olfactory bulb

showing small blood vessels with red blood cells (RBC) in the lumen and prominent endothelial cells. A significant number of perivascular vacuolated

foamy cells (short arrows) and extensive areas of vacuolated neuropil (*) are observed. (B) A frontal blood vessel showing two luminal RBCs and

prominent endothelial extensions into the lumen (short arrow). The basement membrane (bm) is thickened, and a pericyte (arrow heads) is identified.

(C) The activated endothelial cell sends filopodia into the lumen (short arrows), while the lumen is occupied by ghost cell fragments (*), seen in

higher magnification in (D). (E) Small frontal blood vessel containing one single luminal RBC and extravascular numerous lysosomal structures

containing lipids and NPs (*). (F) Cerebellar blood vessel showing a typical RBC endothelial phagocytosis. The RBC is sequestered by the EC and

surrounded by EC cytoplasm (short arrows). (G) Small blood cortical vessel with luminal RBCs closely in contact with the EC. The EC basement

membrane is detached from the cell (*), and an accumulation of lysosome-like structures is seen. The basement membrane (bm) shows focal

thickening. (H) A close-up of a tight junction Tj—a key structure in brain endothelial cells—showing poorly defined integrity (arrow).

movement sleep behavior disorder (RBD), the association with
synucleinopathies, i.e., PD, LBD, or multiple system atrophy
(MSA), is supported (143–146, 152–160, 162–166). RBD is

regarded clinically as preceding the appearance of motor symptoms
and cognitive decline by several decades and the overlap of
neurodegenerative diseases is certainly present as magnifically
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FIGURE 7

(A) Locus coeruleus (LC) neuron surrounded by loose neuropil (*) and myelinated axons (a). (B) An LC neuron with neuromelanin (Nm) structures

containing nanoparticles (arrows) and similar NPs identified inside the nucleus (N). (C) Numerous NPs are identified both in large endolysosomal

structures (long arrows) and in mitochondria (m) (short arrows). (D) The Golgi apparatus is a target of NPs, as well as the endoplasmic reticulum

dilated structures (ER) (short arrows) and the lysosomal structures (long arrows).

FIGURE 8

(A) Using the transmission electron microscopy (TEM) Z-contrast technique, metallic nanoparticles are documented in brain tissues. Only the

nanoparticles marked with red arrows are Sn-NPs, while the rest are Fe-NPs. (B) The presence of Sn-NPs is verified through the acquired

energy-dispersive X-ray spectrometry (EDX) that shows the tin metal (Sn) peak.

shown by Boeve and collaborators (26). LBD, LBD and AD, MSA,
AD, and progressive supranuclear palsy (PSP) were diagnosed
at autopsy in patients with a clinical diagnosis of PD, cognitive
impairment, and autonomic dysfunction (29). Further support for

evidence of dopaminergic and cholinergic system alterations in
neuroimaging is present in the literature (143, 144).

There is a complex etiopathogenesis involved in the association
of sleep disorders and diseases such as PD. As discussed by
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FIGURE 9

(A) The green arrows indicate three Hg-NPs that stand out from surrounding iron NPs. (B) An area of Fe-NPs. These NPs are magnetic.

Mizrahi-Kliger et al. (147), patients with PD exhibited at least
four distinct pathways to explain their sleep problems: (i). a path
directly associated with their PD synucleinopathy with regional
involvement, (ii). medical therapy, (iii). degeneration of non-
dopaminergic cells altering the circadian rhythm, and (iv). damage
to brainstem dopaminergic neurons and its effect on the basal
ganglia (147). Thus, common sleep complaints are linked to
complex etiopathogenesis in the context of synucleinopathies,
along with poor sleep quality associated with depression, PTSD,
mood disorders, and excessive daytime sleepiness (148, 149, 156).

Howmuch should we be concerned about sleep complaints and
neurodegeneration? The answer is that we should be concerned
depending on the patient, age, gender, clinical history, and how
many risk factors, including environmental factors, are impacting
neurodegenerative processes. The issue is relatively easy when we
deal with a diagnosed elderly patient with AD or FTLD (151, 156,
157, 161), but not if we have a young adult resident in a polluted
city or with occupational exposures (36).

It is in the younger adult population that learning about
the etiopathogenesis of sleep disorders in AD, FTLD, PD,
and movement disorders is helpful (24–34, 161, 167–169).
Standlee and Malkani (169) underlined the mechanisms by which
movement disorders are associated with sleep and circadian rhythm
disruption, sleep fragmentation, insomnia, and excessive daytime
sleepiness. It is worth emphasizing, as these authors did (169),
the extensive involvement of brainstem nuclei regulating sleep and
wakefulness in neurodegenerative processes.

At this time, it is unclear if sleep disturbances precede the
common clinical neurodegenerative symptoms (i.e., cognition
deficits) or if the sleep problems are some of the initial, early
manifestations of neurodegenerative processes. Sleep complaints
and neurodegeneration may be bidirectional. The sleep literature
has addressed the abovementioned concerns in many different
ways. For example, Zamore and Veasey (170) addressed chronic
sleep disruption and neural damage, focusing on key variables,
including duration and type of sleep disruption, age at which sleep

loss occurs, neuronal populations responding to the injury, and the
presence of genes involved in neurodegenerative processes. Sleep
disruption impacts cognitive targets, such as episodic memory and
sustained vigilance, pre- and post-synaptic impairment, the release
of inflammatory cytokines and chemokines from microglia, and
in transgenic 3×Tg-AD mice models, daily sleep-wake rhythm
chronic fragmentation, increases in brain amyloid-beta (Aβ)
levels, and neuroinflammation (170, 171). Grigg-Dambererger
and collaborators (172) discussed acceleration of mild cognitive
impairment (MCI) and dementia in patients with sleep-wake
disorders and the removal of Aβ in non-rapid eyemovement stage 3
sleep and fragmented or insufficient sleep leading to accumulation
of abnormal neural proteins in preclinical stages. Burke et al.
(173) explored the association between sleep disturbance and brain
volumes in 1,533 subjects (cognitively normal/cognitively impaired
or demented) using a single question from the Neuropsychiatric
Inventory Questionnaire (NPI-Q): “Does the patient awaken you
during the night, rise too early in the morning, or take excessive
naps during the day?” The sleep disturbance was rated in a
binary fashion (yes/no). Subjects with a yes answer to the NPI-
Q question had a lower total brain, hippocampal volume and
frontal and temporal lobe gray matter volume. The authors
concluded as follows: These findings suggest that disrupted sleep is

associated with atrophy across multiple brain regions and ventricular

hydrocephalus ex vacuo. We will add that since the brain MRI
findings take years to evolve, it is possible that the atrophic brain
changes preceded the sleep disturbances. The direct relationship
between subcortical wake-promoting damaged neurons and sleep
phenotypes has been described by Oh et al. (174), in patients
with AD and progressive supranuclear palsy (PSP). In fact, in 19
subjects, aged 70 ± 7.7 years at their demise, neuronal counts
in three wake-promoting nuclei, namely, noradrenergic locus
coeruleus [LC], orexinergic lateral hypothalamic area [LHA], and
histaminergic tuberomammillary nucleus [TMN], were correlated
with decreased homeostatic sleep drive. The authors suggested
subcortical wake neurons correlate with sleep phenotypes in a
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number of neurodegenerative diseases, an observation that has
practical and immediate applications (174).

On the other side of the relationship between sleep disorders
and neurodegeneration, we find the literature on the brain impact
of obstructive sleep apnea (OSA) and intermittent hypoxia as
risk factors for preclinical AD and the incidence and progression
of cognitive deficits (175–180). There is strong data on OSA
producing intermittent hypoxia and sleep disruption and the
observation that patients with OSA have higher serum levels of
amyloid-beta and total tau and neuronal-derived Aβ and tau
exosomes, going hand in hand with changes in sleep architecture
(175, 176). There is strong evidence for the role of OSA as a
risk factor for cognitive deficits (177) and the risk of developing
or having OSA is significantly higher in patients with MCI or
who are demented (178). It is also clear that several pathways are
involved in neuropathological processes, including dysregulation of
the orexinergic system and cerebral β-amyloid metabolism (179),
major changes in CSF production, circulation, and glymphatic
system abnormalities, which are crucial for the removal of
metabolic waste (180). The American Thoracic Society workshop
on the link between obstructive sleep apnea and neurocognitive
impairment (181) concluded there is a strong biological plausibility
but insufficient data to prove bidirectional causality of the
associations between OSA and aging brain pathology. Thus, future
research needs to address sleep disorders, oxidative stress, and
accelerated brain aging (182, 183).

The WHO Mental Health Action Plan 2013–2030 emphasizes
depression, affecting 4% of the population, ∼280 million people,
as an important cause of disability worldwide (184). Depression
should be considered in the setting of sleep–wake disorders,
anxiety, stress, burnout, and suicide (185, 186). Insomnia and
mental health conditions coexist among US college students:
depressed students (adjusted odds ratio, 9.54; 95% CI, 4.50–
20.26) had significantly higher odds of insomnia, which were also
significantly higher among employed students (odds ratio, 2.10;
95% CI, 1.05–4.18) (187). Sleep and mental disorders are related,
and in the case of major depressive disorder (MDD), insomnia
seems to be a comorbid disorder (188). The relationship between
depression and sleep is highly concerning for sleep physicians given
the association between depression and neuropathology (189).
Villela Nunes and coworkers (189) examined the autopsies in 741
Brazilian non-demented individuals with an average age of 72.2
± 11.7 years and major depressive disorder (MDD) (7.3%), late-
life MDD (LLD) (10.8%), and depressive symptoms (DS) close to
death (22.7%). Remarkably, all three correlated with small vessel
disease: LLD andDSwith brain infarcts and LBD, andDSwith beta-
amyloid plaques and amyloid angiopathy (189). Therefore, in fact,
depression could be considered a premorbid neurodegeneration in
elderly people (189), and it is associated with insomnia in young
individuals (187).

The issues of sleep outcomes, sleep deprivation, sleep spindles,
and neurodegeneration are critical to the bidirectionality of the
relationship (190–194). The relationship between fast-frequency
sleep spindles, aging, AD, and glial activation is very interesting
and opens up the possibility of establishing an early marker
associated with microglia dysfunction, synaptic loss, p-tau, and
memory impairment. Sleep spindle deficits are a good example of
the opportunity of using sleep variables as early AD biomarkers in

aging and as trackers of AD progression (190–192). Furthermore,
slow oscillations, sleep spindles, and their coupling during non-
REM sleep are useful in experimental AD mouse models and could
apply to patients with AD as key biomarkers and as guides to
identify translationally relevant biomarkers and early intervention
strategies to prevent or delay AD progression (193, 194).

Most of the associations between neurodegenerative processes
have been done with particulate matter, especially UFPM and NPs,
due to their capacity to travel to the brain and be localized in every
organelle and cellular compartment (4, 5, 9–11, 16, 21, 22, 44, 137);
however, the atmospheric chemistry is very complex and has to
be seen as a continuum connecting emissions through chemistry
and transport, as discussed by Finlayson-Pitts (195). Toxicologists
and atmospheric chemistry researchers are working to understand
sources, chemical characteristics, relationships between different
pollutants, and transformations, as they are major challenges in air
quality control and climate research (196, 197).

There has been a significant reduction in the solid fraction
of PM in the United States and Europe; however, the generation
of UFPM by nucleation of organic vapor during the dilution of
the exhaust remains a serious issue (198), and the carbon UFPM
from brakes, tires, and road wear will remain a problem even if
we accomplish a fully electric vehicle fleet (198, 199). Furthermore,
exposure to microplastics and nanoplastics is ubiquitous, and
these nanoplastics can reach the brain and induce oxidative
stress (57, 58).

Sleep is impacted in every neurodegenerative disease and has a
robust link with depression. For a number of patients with sleep
disorders, there is a close association between sleep complaints
and the development and progression of well-characterized
proteinopathies. It is important to determine if a sleep disorder
is a consequence of the neurodegenerative process or if it
plays a key role in the development of the neurodegenerative
process itself. The bidirectionally/interplay between sleep and
neurodegeneration makes sleep a critical physiological process
subject to study in young populations with high risk for
neurodegenerative pathologies.

6. Summary

1. Sleep disorders are common in neurodegenerative diseases,
and the presence of targeted sleep problems associated with
a high risk of development of common proteinopathies, along
with significant associations between sleep deprivation, obstructive
sleep apnea, intermittent hypoxia, cognitive deficits, pre-clinical
AD, and other neurodegenerative pathologies, make sleep and
neurodegeneration a focus for exploration in a number of patients
sent to sleep laboratories (200).

2. Sustained and significant exposures to high concentrations
of PM2.5 and UFPM/NPs are likely to play a significant role in the
developing of neurodegenerative processes, dating back to in utero

exposures. The presence of quadruple abnormal neural proteins
starting in MMC infants and progressing as the subjects remain
in the polluted environment should be of deep concern for health
workers and has serious implications, including sleep disorders, for
millions of people residing in such places.
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3. We have shown the overlap of AD, PD, and TDP-43
pathology in highly exposedMexico City children and young adults
and the similarity of the overlap five decades later, when the patients
are in terminal stages. We support that nanosized PM plays a
key role in brain protein alterations and the complex subsequent
cellular pathology.

4. Sleep disorders affect individuals of all ages with serious
consequences across professions, including sleep deprivation in
physicians (201). Our children are sleeping less, and there is a
strong association between adverse childhood experiences and
age-specific insufficient sleep duration in US youth, with serious
repercussions in adulthood (202–208). There are also significant
differences in sleep duration for US children depending on
ethnicity and socioeconomic status (SES): among 9–13-year olds;
black children sleep fewer hours compared to white, and poor
children compared to higher-income children (204). Across the
US, children sleep much less than what pediatricians recommend
according to age, and minorities and disadvantaged children
accumulate risk factors detrimental to their health (205). Moreover,
lack of sleep increases the risk for addiction in adolescents based on
chronic sleep loss and circadian misalignment (208). A potential
association between inadequate sleep duration and changes in
telomere length raises significant concerns related to cellular
function (209).

5. The relationship between air pollution, sleep,
neurodegeneration, depression, and suicide (210, 211) should
encourage health workers to know about combustion and friction
UFPM sources and engineered NPs (food products, cosmetics,
toothpaste, sun protectors, surface disinfectants, paints, and
e-waste). The presence of zinc, silver, copper, gold, selenium,
and calcium NPs as potential food additives for animals (212),
nanoplastics in drinking water (213), the massive presence of
nanometric particle fraction of TiO2 in the food industry, and
Fe3 O4 magnetic nanoparticles from food production, processing,
storage, and detection, make constant exposures to NPs a serious
health issue (76, 214).

6. The problem of human exposure to ultrafine particle
pollution is solvable. We are knowledgeable of the cellular effects

under experimental conditions and their intracellular and key
organelle presence in the brains of urbanites (5, 10, 45, 48, 57–
59, 62–71, 81, 82, 84). We also know the main emission sources and
the technological options to control them (27, 215–217). The cost-
benefit ratio is in favor of raising awareness (the role of our study)
and taking action. We need a broader concern and awareness and
the will to protect public health from deadly UFPM and industrial
nanoparticles.We are also facing a lack of support for research from
sleep medical societies. Denial is not an option.
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