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Abstract: We investigate the coordinated motion of a multi-agent system with heterogeneous
distance-dependent communication constraints. In this setup, the underlying interaction net-
work is dynamic since edges appear or disappear as the agents navigate their workspace. Inspired
by the gradient-descent method, we provide a distributed controller which preserves the position-
dependent communication network connectivity properties. We use a distributed connectivity
measure based on the entries of the first-left eigenvector of the network’s associated Laplacian
matrix to provide the agents with local knowledge of the overall network topology and reveal
its dynamics properties. We illustrate our result with a numerical simulation.
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1. INTRODUCTION

Over the past few years, multi-agent systems coordination
has become a topic of interest for researchers from many
fields, such as ecology, biology and robotics. A multi-agent
system consists of a large number of components, called
agents, interacting with each other through communica-
tion or sensing networks. In general, agents are simple, and
coordination arises from agents’ interactions. In coordina-
tion tasks, such as the formation control of multiple mobile
robots, agents must exchange information with others.
Therefore, the capability to preserve the communication
network’s connectivity is of great relevance.

Often, in physically embodied agents with limited com-
munication capabilities (such as mobile robots), the inter-
agent distances dictate the existence of communication
edges. Therefore, the distributed controller design, which
drives the multi-agent system to achieve the task at hand,
must also preserve the communication edges. This observa-
tion led to many studies on connectivity preservation over
proximity graphs. The first approaches aim to maintain
every edge and allow only their additions (Ávila-Mart́ınez
and Barajas-Ramı́rez, 2021). However, these conservative
solutions hindered the network’s flexibility. To account for
edge deletions a measure of the overall graph’s connectivity
was introduced, and distributed estimation processes were
developed (Sabattini et al., 2013; Fang et al., 2017; Ávila-
Mart́ınez, 2023). Nonetheless, in many cases agents with
different sensing ranges were not contemplated.

The coordinated motion in multi-agent systems takes
inspiration from collective behaviours observed in na-
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ture, such as consensus, synchronization and flocking. In
flocking motion, every agent follows three simple rules:
flock centring, collision avoidance and velocity matching
(Reynolds, 1987). Coordination emerges from local inter-
actions, and many studies concentrate on bidirectional
communication channels. Olfati-Saber presented a theoret-
ical framework to design distributed controllers for flocking
motion employing artificial potential functions (APFs)
over bidirectional graphs (Olfati-Saber, 2006). However,
a multi-agent system with heterogeneous sensing ranges
leads to directed communication channels, a case barely
studied because of its complexity.

In this paper, we design a distributed controller for flocking
motion in second-order multi-agent systems with heteroge-
neous communication constraints. The main challenge in
this setup is to keep the overall network properties which
drive the multi-agent system to achieve flocking motion.
When connections are distance-dependent, fragmentation,
i.e. when the group splits into two or more components, is
a common concern that hiders the group’s coordination.
Uneven communication constraints imply that the agent’s
actions are not symmetrical, a crucial feature to show the
behaviour’s stability in the case of bidirectional communi-
cation channels. Since the controller’s design cannot rely
on symmetric actions, we must provide the agents with
a local sense of the overall graph’s topology. Therefore,
graph connectivity measure and its dynamic properties
take great relevance in our setup. Yet, these design con-
cerns provide an opportunity to derive methods to coordi-
nate multi-agent systems with heterogeneous capabilities.

1.1 Related works

Coordination in first-order multi-agent systems with
position-dependent, heterogeneously constrained, commu-
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and Barajas-Ramı́rez, 2021). However, these conservative
solutions hindered the network’s flexibility. To account for
edge deletions a measure of the overall graph’s connectivity
was introduced, and distributed estimation processes were
developed (Sabattini et al., 2013; Fang et al., 2017; Ávila-
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and Barajas-Ramı́rez, 2021). However, these conservative
solutions hindered the network’s flexibility. To account for
edge deletions a measure of the overall graph’s connectivity
was introduced, and distributed estimation processes were
developed (Sabattini et al., 2013; Fang et al., 2017; Ávila-
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México (e-mail: phd.eber.avila.martinez@gmail.com).

Abstract: We investigate the coordinated motion of a multi-agent system with heterogeneous
distance-dependent communication constraints. In this setup, the underlying interaction net-
work is dynamic since edges appear or disappear as the agents navigate their workspace. Inspired
by the gradient-descent method, we provide a distributed controller which preserves the position-
dependent communication network connectivity properties. We use a distributed connectivity
measure based on the entries of the first-left eigenvector of the network’s associated Laplacian
matrix to provide the agents with local knowledge of the overall network topology and reveal
its dynamics properties. We illustrate our result with a numerical simulation.

Keywords: Multi-agent systems; Distributed control and estimation; Flocking motion;
State-dependent digraphs

1. INTRODUCTION

Over the past few years, multi-agent systems coordination
has become a topic of interest for researchers from many
fields, such as ecology, biology and robotics. A multi-agent
system consists of a large number of components, called
agents, interacting with each other through communica-
tion or sensing networks. In general, agents are simple, and
coordination arises from agents’ interactions. In coordina-
tion tasks, such as the formation control of multiple mobile
robots, agents must exchange information with others.
Therefore, the capability to preserve the communication
network’s connectivity is of great relevance.

Often, in physically embodied agents with limited com-
munication capabilities (such as mobile robots), the inter-
agent distances dictate the existence of communication
edges. Therefore, the distributed controller design, which
drives the multi-agent system to achieve the task at hand,
must also preserve the communication edges. This observa-
tion led to many studies on connectivity preservation over
proximity graphs. The first approaches aim to maintain
every edge and allow only their additions (Ávila-Mart́ınez
and Barajas-Ramı́rez, 2021). However, these conservative
solutions hindered the network’s flexibility. To account for
edge deletions a measure of the overall graph’s connectivity
was introduced, and distributed estimation processes were
developed (Sabattini et al., 2013; Fang et al., 2017; Ávila-
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actions are not symmetrical, a crucial feature to show the
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cation channels. Since the controller’s design cannot rely
on symmetric actions, we must provide the agents with
a local sense of the overall graph’s topology. Therefore,
graph connectivity measure and its dynamic properties
take great relevance in our setup. Yet, these design con-
cerns provide an opportunity to derive methods to coordi-
nate multi-agent systems with heterogeneous capabilities.

1.1 Related works

Coordination in first-order multi-agent systems with
position-dependent, heterogeneously constrained, commu-

nication (or sensing) edges was studied in (Poonawala and
Spong, 2017; Maeda et al., 2017; Yoshimoto et al., 2018;
Sano et al., 2023). A target determination process was used
in (Maeda et al., 2017; Yoshimoto et al., 2018; Sano et al.,
2023), where each agent chooses one of its neighbours
such that the initial proximity digraph contains a directed
spanning tree. Then, the control actions are such the multi-
agent system conserves such a tree. On the other hand, a
distributed connectivity measure for strongly connected
digraphs is introduced in (Poonawala and Spong, 2017).
This measure is used to decide whether a connectivity pre-
serving control action is included in the agent’s controller
or not, and the sensing ranges are assumed to be increased
or decreased by the controller as needed. The connectivity
measure is based on the first-left Lapacian’s eigenvector
entries and is computed through the distributed method
described in (Poonawala and Spong, 2015).

1.2 Contributions

In contrast to the above discussed researches, we con-
template second-order dynamic agents, explore the dy-
namic properties of the connectivity measure introduced in
(Poonawala and Spong, 2017), and use it in the gradient-
descent method to obtain distributed controllers that steer
the system into a flocking motion behaviour. With this
design, we allow both edge additions and deletions while
preserving the proximity graph’s strong connectivity.

2. PRELIMINARIES

Let Rd and Cd be the d-dimensional sets of real and
complex numbers, and Rd×d the set of d × d matrices.
The set R≥0 is the non-negative real scalars set. Denote as
1d (0d) the d-dimensional vector with all its entries equal
to one (zero). For a matrix A ∈ Rd×d denote as rank(A)
its rank. Meanwhile, for a set S, denote |S| its cardinality.

2.1 Algebraic graph theory

A directed graph (in short, a digraph) of order N is a pair
D = (V, E), where V := {1, 2, . . . , N} is a set of nodes and
E ⊂ V × V a set of ordered pairs of nodes, called edges.
For i, j ∈ V, the ordered pair eji = (j, i) ∈ E denotes an
edge that starts at j and ends at node i. In an edge eij ,
respectively i is known as the parent and j as the child.
The in- and out-neighbours of node i respectively are

N in
i := {j ∈ V : eji ∈ E} and N out

i := {j ∈ V : eij ∈ E} .

In D , a self-loop is an edge that starts and ends in the
same node. A simple digraph has no self-loops and no
multiple edges between the same pair of nodes (here we
only consider simple digraphs). A directed path of lengthm
from node i to j is a sequence of edges eik1

, ek1k2
, . . . , ekmj

with distinct nodes kl and l = 1, 2, . . . ,m. A cycle is a
simple path that starts and ends at the same node. A
digraph is acyclic if it contains no cycles.

A directed tree, sometimes called a rooted tree, is an
acyclic digraph with a node, called the root, with no out-
neighbours and where every other node has a directed
path to it. In a directed tree, a leaf is a node with no
in-neighbours. A directed tree is called a spanning tree of
D if is a spanning subgraph of it. Let T be a spanning tree

in D and Ti the collection of all spanning trees in D with
node i as its root, thus T ∈ Ti means T is a spanning tree
with root at the ith node.

Digraph D is weakly connected if has no isolated nodes
and strongly connected if there exists a directed path
connecting every nodes pair.

The adjacency matrix A = [aij ] ∈ RN×N of a digraph
D , is a nonnegative matrix with elements aij > 0 if
eji ∈ E , and aij = 0 otherwise. When eji ∈ E , aij is
known as the edge weight. The Laplacian matrix L =
[lij ] ∈ RN×N of D is a zero-row-sum nonnegative definite
matrix with elements lii =

∑
j∈N in

i
aij and lij = −aij . The

following previous results summarize several properties of
the Laplacian matrix.

Lemma 1. (Wu (2007)). For a digraph D with Laplacian
L there exists a positive vector γ ∈ RN such that γTL =
0T
N if and only if D is a disjoint union of strongly connected

subgraphs.

Lemma 2. (Wu (2007)). Consider a digraph D which con-
tains a directed spanning tree and with Laplacian L. Let
a nonnegative vector γ ∈ RN such that γTL = 0T

N , with
γ = [γ1, . . . , γN ]. Then γi = 0 for all nodes i that do no
have directed paths to all other nodes in D and γi > 0
otherwise.

Proposition 1. (Guo et al. (2008)). For a strongly con-
nected digraph D and vector γ ∈ RN such that γTL = 0T

N ,

γi =
∑

T ∈Ti

Π(ET ) , i ∈ V, (1)

where ET is the edge set of T and Π (ET ) =
∏

ekj∈ET
ajk.

Lemma 3. (Li and Duan (2015)). For a digraph D define
its generalized algebraic connectivity as

α = min
γT x=0,x ̸=0

{
xT

(
ΓL+ LTΓ

)
x

2xTΓx

}
, (2)

where L is its matrix Laplacian, γ is defined as in Lemma
1 and Γ = diag(γ). Then α > 0.

3. PROBLEM FORMULATION

Consider a multi-agent system consisting of N mobile
agents with the dynamics of the ith agent given by:

ṗi = vi, v̇i = ui, i ∈ V, (3)

where pi, vi, ui ∈ Rn are, respectively, its position, velocity,
and control input. Each agent has an individual maximum
sensing radius ri > 0 within which it gathers information
from the nearby agents.

In multi-agent systems, the group’s cohesive movement is
called flocking motion. In terms of Reynold’s boids model,
every agent in the group satisfies three heuristic rules:
Flock centering, collision avodiance and velocity matching.
These rules translate to control objectives as follows.

Definition 1. We say the multi-agent system (3) is on
flocking motion over a time interval [t0, tf ) if the following
properties are satisfied:

(1) (Group cohesiveness) There is a constant ϵp > 0 such
that ∥pij∥ ≤ ϵp;

(2) (Collision avoidance) The inter-agent distances are
positive, i.e. 0 < ∥pij∥;
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(a) (b)

Fig. 1. The nearest neighbourhood rule (a) and its result-
ing proximity digraph (b).

(3) (Bounded velocity mismatch) There exists a suffi-
ciently small constant ϵv > 0 such that ∥vij∥ ≤ ϵv;

where pij := pi−pj and vij := vi−vj are, respectively, the
inter-agent position and velocity deviations for all i, j ∈ V.

4. PROXIMITY DIGRAPHS

A proximity digraph is a state-dependent digraph 1 in
which the relative position between agents regulates the
existence of an edge (Mesbahi and Egerstedt, 2010). More
precisely, it’s a digraph D(p) := (V , E(p)) where the multi-
agent system’s configuration p = [pT1 , . . . , p

T
N ]T ∈ RnN

governs the edge set. To keep a short notation, we denote
D = D(p) and E = E(p).
We can model the agents’ interactions in system (3)
through a proximity digraph (Figure 1 illustrates this
observation) where the ith agent’s neighbours set is

N in
i := {j ∈ V : ∥pij∥ ≤ ri} . (4)

In proximity graphs, the algebraic connectivity reflects its
connectivity properties (Sabattini et al., 2013; Fang et al.,

2017; Ávila-Mart́ınez, 2023); Nonetheless, computing it
is a centralized operation. In (Yang et al., 2010; Fang
et al., 2017; Zhang et al., 2022), the authors present
distributed computational methods to provide agents with
the algebraic connectivity value. However, they are not
suitable for digraph setups. In what follows, we provide a
distributed connectivity measure for digraphs.

4.1 Digraph connectivity measure

Let γ ∈ RN be the first-left eigenvector of the matrix
Laplacian associated to proximity digraph D , i.e. such that
γTL = 0T

N . Define the connectivity measure between the
ith agent and its in-neighbour j as a function µ : R≥0 ×
R≥0 → (1,∞) as follows:

µ(γi, γj) :=
γi
γj

+
γj
γi

. (5)

Notice µ(γi, γj) → ∞ if and only if either γi → 0 or
γj → 0. From now on, we use the shorthand notation
µij = µ(γi, γj).

1 A state-dependent digraph is a mapping between the state space
of the networked system and the set of all its possible network
configurations. See Mesbahi and Egerstedt (2010) for more details.

The connectivity measure of equation (5) was introduced
in (Poonawala and Spong, 2015) and used in (Poonawala
and Spong, 2017) to preserve the overall digraph’s con-
nectivity in a MAS setup. However, the authors used it
to decide whether or not the agents’ controller includes
a given term. Here, we provide some dynamic properties
of the connectivity measure and use it with the gradient-
descent method to derive each agent’s controller.

4.2 Position-dependent connectivity measure

Let the ijth element of the adjacency matrix A be

aij(∥pij∥) :=


1 if ∥pij∥ < ρi;
ãij(∥pij∥) if ρi ≤ ∥pij∥ ≤ ri;

0 if ri < ∥pij∥ ;
(6)

where ãij(·) : [ρi, ri] → [0, 1] is a differentiable and
strictly decreasing bump function. This definition pro-
vides a position-dependent nonnegative value ranging from
connectivity to non-connectivity between nearby agents,
a common phenomenon in sensors and communication
devices restricted by distance. Notice also that:

ȧij(∥pij∥) = vTij∇piaij(∥pij∥), (7)

where ∇piaij(∥pij∥) = ∂aij(∥pij∥)
∂∥pij∥

pij

∥pij∥ is the gradient with

respect to pij of aij(∥pij∥). Finally, we choose aij(∥pij∥)
such that

∂aij(∥pij∥)
∂∥pij∥ = bij(∥pij∥)aij(∥pij∥).

In what follows, we provide some properties of the connec-
tivity measure (5) where the Laplacian matrix elements are
given by equation (6).

Let T be a spanning tree in digraph D and denote as ET

its edge set. Define as

E i
T :=


eji ∈ ET : j ∈ N in

i


(8)

the set of edges in ET ending at the ith node. Now, let
γ ∈ RN be defined as in Lemma 1. From Proposition 1,
we have:

γi =


T ∈Ti

Π(E i
T )Π

�
Ē

, ∀i ∈ V, (9)

where Ē = E(T ) \ E i
T . On the other hand, for some k ∈ V

which is not a leaf of T , we have

γi =


T ∈Ti

ajk(∥pjk∥)Π(Ek
T )Π

�
Ē

, (10)

where j is a child of k, and Ē = E(T ) \

E i

T


ejk


. This

observation allows us to relate the first-eigenvector entry
with any other node in the network and evidence that γi
is a position-dependent value.

Equation (8) allow us to compute the time derivative of
γi and relate it to both inter-agent position and velocity
vectors as follows:

γ̇i =


T ∈Ti


Π(ET )



ekj∈ET

bjk(∥pjk∥)
vTjkpjk

∥pjk∥


 . (11)

On the other hand, for an agent i and its neighbours
j ∈ N in

i we are able to compute the gradient respect to
the ith agent’s position of γi and γj as:

∇piγi =


T ∈Ti


Π(ET )



eji∈Ei
T

bij(∥pij∥)
pij

∥pij∥


 (12)

and

∇piγj =


T ∈Tj


Π(ET )



eki∈Ei
T

bik(∥pik∥)
pij

∥pij∥




+


T ∈Tj


Π(ET )bji(∥pji∥)

pji
∥pji∥


. (13)

The above analysis allows us to reveal the dynamic prop-
erties of the connectivity measure in equation (5). That
is, µij changes as γi or γj do, and each of the former
does as the inter-agent positions change. Hence, the time
derivative of µij is

µ̇ij =
∂µij

∂γi
γ̇i +

∂µij

∂γj
γ̇j (14)

and its gradient with respect to the ith agents position is

∇pi
µij =

∂µij

∂γi
∇pi

γi +
∂µij

∂γj
∇pi

γj . (15)

So far, we have constructed and discussed the proper-
ties of a position-dependent matrix Laplacian first-left
eigenvector-based connectivity measure. In the following
section, we use it to design a distributed controller to
preserve the proximity digraph’s strong connectivity while
the multi-agent system maintains a flocking behaviour.

5. FLOCKING MOTION OVER PROXIMITY
DIGRAPHS

5.1 Controller design

Let ψij : [0, ri] × (1,∞) → R≥0 be an Artificial Potential
Function (APF) between an agent i and its neighbour

j with partial derivatives ϕij(s1, s2) =
∂ψij(s1,s2)

∂s1
and

φij(s1, s2) =
∂ψij(s1,s2)

∂s2
, and the following properties:

i) For all s1 ∈ [0, ri] and s2 ∈ (1,∞), 0 ≤ ψij(s1, s2);
ii) For all s1 ∈ [0, ri] and any s2 ∈ (1,∞), ϕij(s1, s2) < 0;
iii) For any s1 ∈ [0, ri] and all s2 ∈ (1,∞), φij(s1, s2) > 0;
iv) |ϕij(s1, s2)| ≤ ϕ̄ij < ∞;

v) φij(s1, s2) =
φ̃ij(s1,s2)

s2
with |φ̃ij(s1, s2)| ≤ φ̄ij < ∞.

Property i) states that ψij(s1, s2) is a non-negative poten-
tial function; Properties ii) and iii) states that ψij(s1, s2)
is a decreasing function of s1 but increasing for s2; Prop-
erty iv) and v) states that ϕij(s1, s2) and φij(s1, s2) are
bounded functions. Let s1 = ∥pij∥ and s2 = µij . Then, the
function ψij(∥pij∥ , µij) increases as the distance between
the pair of agents approach zero and decrease as ap-
proaches the sensing radius. Also, ψij(∥pij∥ , µij) increases
as the connectivity measure approaches infinity. This def-
inition allows us to obtain an increasing function between
pair of agents near collision or moving towards a position
which yields a proximity digraph which is not strongly
connected while allowing the edge deletions when needed.
It is also worth noticing that, for agents which are not
point masses, we might displace the value when collisions
occur from ∥pij∥ = 0 to ∥pij∥ = ϵc, with ϵc > 0 which
conforms to the physical dimension of the agents, and
define the APF’s domain for the inter-agent distances as
[ϵc, ri]. From now on, when needed, we’ll use the shorthand

notation ψij = ψij(∥pij∥ , µij), ϕij = ϕij(∥pij∥ , µij) and
φij = φij(∥pij∥ , µij).

For ψij , its time-derivative and gradient respect to the ith
agent’s position respectively are:

ψ̇ij = ϕij

vTijpij

∥pij∥
+ φij µ̇ij (16)

and
∇piψij = ϕij

pij
∥pij∥

+ φij∇piµij . (17)

Notice that, to compute ∇pi
ψij , each agent i must know

γi, γj , for all j ∈ N in
i , and their gradients with respect

to its position. Therefore, we introduce the following
assumption.

Assumption 1. Every agent computes γi (and shares it
with all k ∈ N out

i ), ∇piγi and ∇piγj , for all j ∈ N in
i .

Remark 1. Computing γi, for all i ∈ V, in a distributed
fashion can be achieved by implementing the algorithm
described in (Poonawala and Spong, 2015). On the other
hand, the sets Ti can be obtained easily for a small number
of agents.

For all i ∈ V, consider the following controller:

ui := − 1

γi



j∈N in
i

∇pi
ψij (∥pij∥ , µij)− c



j∈N in
i

aij(∥pij∥)vij ,

(18)
where c > 0 is a control gain yet to be design. The key dif-
ference between controller (18) and others (Ávila-Mart́ınez

and Barajas-Ramı́rez, 2021; Ávila-Mart́ınez, 2023) is its
dependency on the connectivity measure µij and γi.

5.2 Stability analysis

We establish the stability of the closed-loop system (3)-
(18) through its collective energy. Before that, we define a
disagreement vector and analyze its dynamic properties.

Denote as v = [v1, . . . , vN ] ∈ RnN the stack velocity vector
of the multi-agent system. Inspired by (Li and Duan,
2015), let δ =

�
IN − 1γT


⊗ In


v denote the velocity

disagreement vector, where γ is defined as in Lemma 1.
Each entry i ∈ V of δ and its time-derivative respectively
are

δi = vi −
N

k=1

γkvk

and

δ̇i = ui −
N

k=1

(γ̇kvk + γkuk) ,

where γ̇k is defined by equation (11). The following lemma
summarizes some properties of the disagreement vector.

Lemma 4. (Ávila-Mart́ınez, 2022) Consider a strongly
connected proximity digraph D with L as its associated
matrix Laplacian. Let γ ∈ RN be defined as in Lemma 1
and such that γT1 = 1. Then, the following is satisfied.

i) δ = 0 if and only if v1 = · · · = vN ;

ii)
N

i=1 γiδi = 0;

iii)
N

i=1 γ̇i(δi − vi) = 0;
iv) If ∥v∥ ≤ v̄, then ∥δi∥ ≤ (1− γi)v̄ for all i ∈ V.
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and

∇piγj =


T ∈Tj


Π(ET )



eki∈Ei
T

bik(∥pik∥)
pij

∥pij∥




+


T ∈Tj


Π(ET )bji(∥pji∥)

pji
∥pji∥


. (13)

The above analysis allows us to reveal the dynamic prop-
erties of the connectivity measure in equation (5). That
is, µij changes as γi or γj do, and each of the former
does as the inter-agent positions change. Hence, the time
derivative of µij is

µ̇ij =
∂µij

∂γi
γ̇i +

∂µij

∂γj
γ̇j (14)

and its gradient with respect to the ith agents position is

∇pi
µij =

∂µij

∂γi
∇pi

γi +
∂µij

∂γj
∇pi

γj . (15)

So far, we have constructed and discussed the proper-
ties of a position-dependent matrix Laplacian first-left
eigenvector-based connectivity measure. In the following
section, we use it to design a distributed controller to
preserve the proximity digraph’s strong connectivity while
the multi-agent system maintains a flocking behaviour.

5. FLOCKING MOTION OVER PROXIMITY
DIGRAPHS

5.1 Controller design

Let ψij : [0, ri] × (1,∞) → R≥0 be an Artificial Potential
Function (APF) between an agent i and its neighbour

j with partial derivatives ϕij(s1, s2) =
∂ψij(s1,s2)

∂s1
and

φij(s1, s2) =
∂ψij(s1,s2)

∂s2
, and the following properties:

i) For all s1 ∈ [0, ri] and s2 ∈ (1,∞), 0 ≤ ψij(s1, s2);
ii) For all s1 ∈ [0, ri] and any s2 ∈ (1,∞), ϕij(s1, s2) < 0;
iii) For any s1 ∈ [0, ri] and all s2 ∈ (1,∞), φij(s1, s2) > 0;
iv) |ϕij(s1, s2)| ≤ ϕ̄ij < ∞;

v) φij(s1, s2) =
φ̃ij(s1,s2)

s2
with |φ̃ij(s1, s2)| ≤ φ̄ij < ∞.

Property i) states that ψij(s1, s2) is a non-negative poten-
tial function; Properties ii) and iii) states that ψij(s1, s2)
is a decreasing function of s1 but increasing for s2; Prop-
erty iv) and v) states that ϕij(s1, s2) and φij(s1, s2) are
bounded functions. Let s1 = ∥pij∥ and s2 = µij . Then, the
function ψij(∥pij∥ , µij) increases as the distance between
the pair of agents approach zero and decrease as ap-
proaches the sensing radius. Also, ψij(∥pij∥ , µij) increases
as the connectivity measure approaches infinity. This def-
inition allows us to obtain an increasing function between
pair of agents near collision or moving towards a position
which yields a proximity digraph which is not strongly
connected while allowing the edge deletions when needed.
It is also worth noticing that, for agents which are not
point masses, we might displace the value when collisions
occur from ∥pij∥ = 0 to ∥pij∥ = ϵc, with ϵc > 0 which
conforms to the physical dimension of the agents, and
define the APF’s domain for the inter-agent distances as
[ϵc, ri]. From now on, when needed, we’ll use the shorthand

notation ψij = ψij(∥pij∥ , µij), ϕij = ϕij(∥pij∥ , µij) and
φij = φij(∥pij∥ , µij).

For ψij , its time-derivative and gradient respect to the ith
agent’s position respectively are:

ψ̇ij = ϕij

vTijpij

∥pij∥
+ φij µ̇ij (16)

and
∇piψij = ϕij

pij
∥pij∥

+ φij∇piµij . (17)

Notice that, to compute ∇pi
ψij , each agent i must know

γi, γj , for all j ∈ N in
i , and their gradients with respect

to its position. Therefore, we introduce the following
assumption.

Assumption 1. Every agent computes γi (and shares it
with all k ∈ N out

i ), ∇piγi and ∇piγj , for all j ∈ N in
i .

Remark 1. Computing γi, for all i ∈ V, in a distributed
fashion can be achieved by implementing the algorithm
described in (Poonawala and Spong, 2015). On the other
hand, the sets Ti can be obtained easily for a small number
of agents.

For all i ∈ V, consider the following controller:

ui := − 1

γi



j∈N in
i

∇pi
ψij (∥pij∥ , µij)− c



j∈N in
i

aij(∥pij∥)vij ,

(18)
where c > 0 is a control gain yet to be design. The key dif-
ference between controller (18) and others (Ávila-Mart́ınez

and Barajas-Ramı́rez, 2021; Ávila-Mart́ınez, 2023) is its
dependency on the connectivity measure µij and γi.

5.2 Stability analysis

We establish the stability of the closed-loop system (3)-
(18) through its collective energy. Before that, we define a
disagreement vector and analyze its dynamic properties.

Denote as v = [v1, . . . , vN ] ∈ RnN the stack velocity vector
of the multi-agent system. Inspired by (Li and Duan,
2015), let δ =

�
IN − 1γT


⊗ In


v denote the velocity

disagreement vector, where γ is defined as in Lemma 1.
Each entry i ∈ V of δ and its time-derivative respectively
are

δi = vi −
N

k=1

γkvk

and

δ̇i = ui −
N

k=1

(γ̇kvk + γkuk) ,

where γ̇k is defined by equation (11). The following lemma
summarizes some properties of the disagreement vector.

Lemma 4. (Ávila-Mart́ınez, 2022) Consider a strongly
connected proximity digraph D with L as its associated
matrix Laplacian. Let γ ∈ RN be defined as in Lemma 1
and such that γT1 = 1. Then, the following is satisfied.

i) δ = 0 if and only if v1 = · · · = vN ;

ii)
N

i=1 γiδi = 0;

iii)
N

i=1 γ̇i(δi − vi) = 0;
iv) If ∥v∥ ≤ v̄, then ∥δi∥ ≤ (1− γi)v̄ for all i ∈ V.
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Define the collective energy of system (3)-(18) as

V :=
1

2

N∑

i=1

∑

j∈N in
i

ψij +
1

2

N∑

i=1

γi ∥δi∥2 . (19)

This equation summarizes the artificial potential and
kinetic energies of the overall closed-loop system. Its local
minimum is on a configuration p∗ and a velocity vector
v such that, respectively, the APF is locally minima for
all (i, j) ∈ E and v1 = · · · = vN . On the other hand, for
a strongly connected proximity digraph D and bounded
velocity vector, there exists a finite 0 < V̄ such that
V ≤ V̄ < ∞. Finally, the time-derivative of (19) is

V̇ =
1

2

N∑

i=1

∑

j∈N in
i

ψ̇ij +
1

2

N∑

i=1

γ̇i ∥δi∥2 +
N∑

i=1

γiδ
T
i ui, (20)

where a few terms cancel according to the properties
described in Lemma 4.

In proximity digraphs the information network might
change over time. Therefore, suppose the topology of D
switches every time instant tk, with k = 1, 2, . . . , and
remains fixed over the time interval [tk−1, tk). At each
tk edges are added to or removed from E . The following
lemma studies the behaviour of the collective energy
dynamics over [tk−1, tk).

Lemma 5. (Ávila-Mart́ınez, 2022) Consider the closed-
loop system (3)-(18) in the time interval [tk−1, tk) and
denote as Vk−1 the collective energy at instant tk. Suppose
D is strongly connected, ∥v∥ ≤ v̄ at tk−1, and for all
t ∈ [tk−1, tk) the control gain

c ≥ b̄

γ̌α

(
4N(ϕ̄+ φ̄)(N − 1)2 + v̄

)
, (21)

where γ̌ = mini∈V {γi}, ϕ̄ = maxi,j∈V
{
ϕ̄ij

}
, and φ̄ =

maxi,j∈V {φ̄ij}. Then Vk ≤ Vk−1.

Remark 2. In equation (21), the lower bound for the con-
troller gain c changes as the proximity digraph’s topology
does. Also, the controller’s gain grows as both γ̌ and α ap-
proach zero. On the one hand, the value γ̌ can be retrieved
on each agent using a consensus algorithm. However, a
method to compute a positive constant lower bound for α
is yet a work in progress.

Theorem 1. Consider the closed-loop system (3)-(18).
Suppose at t0 the proximity digraph D is strongly con-
nected and the collective energy (19) bounded. Choose c
in controller (18) such that fulfils inequality (21) for all
t ≥ 0. Then, the following statements simultaneously hold:

i) The proximity digraph D remains strongly connected
for all t ≥ 0;

ii) The multi-agent system is on flocking motion.

Proof. Proof of statement i): Suppose edges are added
to or removed from E at every time instant tk, with
k = 1, 2, . . . , and remains fixed over the time interval
[tk−1, tk). The following analysis is for the k = 1, then
we extend it to every time interval.

Respectively denote by Vt0 and Vt the collective energy
from equation (19) at time instants t0 and t ∈ [t0, t1).
Given D doesn’t change at any t ∈ [t0, t1), from Lemma
(5), the collective energy doesn’t increase, i.e. Vt ≤ Vt0
for all t ∈ [t0, t1). Hence, Vt is bounded above by some

constant value and there are no APFs in (19) approaching
infinity. From the APFs definition, this implies there are no
connectivity measure approaching infinity. In consequence,
the entries of the first-left Laplacian eigenvector γ are all
such that γi > 0 for all i ∈ V. That is, D remains strongly
connected for all t ∈ [t0, t1).

Consider t1, the time-instant where D change. Respec-
tively denote as E− and E+ the set of edges removed from
and added to E at t1. Is clear that the edges deletion
reduce the collective energy (19), hence Vt1 ≤ Vt0 , and
the statement of the previous paragraph still holds true.
For edge additions this is not the case. The collective
energy at t1 is Vt1 ≤ Vt0 +

∑
eki∈E+ ψik. However, edge

additions just increase some of the vector γ entries, as we
can see from equation (1). That is, µik are bounded for
all eki ∈ E+ and also the APFs ψik. This also holds for
any other connectivity measures and APFs affected from
the edges addition. Hence, Vt1 is finite, thus D is strongly
connected.

By a similar reasoning over each time-interval, we conclude
the collective energy is finite. That is, there exists V̄ < ∞
such that Vt ≤ V̄ for all t ≥ 0. Thus, the proximity digraph
D remains strongly connected for all t ≥ 0.

Proof of statement ii): We’ll separately prove every prop-
erty in Definition 1.

(Group cohesiveness) We already show D is strongly
connected for all t ≥ 0. Therefore, in D the inter-agent
distances are bounded above by the sum of their sensing

radius. Take ϵp =
∑N

i=1 ri, hence the group is cohesive.

(Colision avoidance) From the APFs definition we have
ψij → ∞ as ∥pij∥ → 0. We already show there exists
V̄ < ∞ such that Vt ≤ V̄ for all t ≥ 0. In consequence,
there are no distance ∥pij∥ approaching zero for all i, j ∈ V
and t ≥ 0. Hence, inter-agent collisions are avoided.

(Bounded velocity mismatch) Without lost of generality,
suppose γT1 = 1. Notice the disagreement vector entries
can be rewritten as pondered inter-agent velocity differ-

ences as δi =
∑N

k=1 γkvik. From statement i), we know
there exists V̄ < ∞ such that Vt ≤ V̄ for all t ≥ 0.

From equation (19) this implies ∥δi∥ ≤
√

2V̄
γi

. With these

observation, we conclude that, at any time t ≥ 0, the
velocity differences ∥vij∥ ≤ ϵv for some ϵv < ∞. Thus,
inter-agents velocity mismatches are bounded.

6. NUMERICAL SIMULATIONS

Consider a multi-agent system of N = 3 agents moving on
a plane, i.e. n = 2, with dynamics given by equation (3).
Each agent has a different sensing radius, namely r1 = 1,
r2 = 2 and r3 = 5, resulting in a proximity digraph. We
show the initial configuration of the multi-agent system in
Figure 2a, where coloured circles are centred at the agents’
positions, while the solid arrows indicate the existence of
a distance-dependent edge.

Figure 2b shows the final configuration for the closed-loop
system (3)-(18) after 20 seconds with the APF

ψij (∥pij∥ , µij) = 10

[
(1− ∥pij∥)2 +

(
1− tanh

(
1

µij

))]
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Fig. 2. Closed-loop system (3)-(18) flocking motion.

and c = 50. On the other hand, Figure 2c shows the
trajectories of each eigenvector entry γi. Notice γi > 0
for all i ∈ V and t > 0, implying the proximity digraph
remains strongly connected.

7. FINAL COMMENTS

The distributed controller design for flocking motion in
second-order multi-agent systems with heterogeneous com-
munication constraints is a challenging problem. This pa-
per presents a gradient-descent method-based solution.
We modelled the agents’ interaction with a proximity
digraph and implemented a connectivity measure based
on the first-left Laplacian matrix eigenvector entries; pro-
viding the agents with local knowledge of the overall
graph’s topology. Then, by defining inter-agent distance-
dependent edge weights, we unveil the dynamic properties
of the connectivity measure. With a collective energy func-
tion and mild assumptions, we proved the closed-loop sys-
tem’s convergence to the desired flocking motion behaviour
while preserving the strong connectivity property of the
proximity digraph. However, to successfully implement our
controller design, the challenge of distributedly computing
the sets of the agents’ rooted spanning trees remains.

Future works include exploring the model’s robustness
properties concerning perturbations and designing dis-
tributed continuous algorithms to compute the rooted
spanning trees and a lower bound for the digraph’s gener-
alized algebraic connectivity. We also aim to use our con-
troller design in other multi-agent systems, for example,
where the agents have different input constraints.
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Fig. 2. Closed-loop system (3)-(18) flocking motion.

and c = 50. On the other hand, Figure 2c shows the
trajectories of each eigenvector entry γi. Notice γi > 0
for all i ∈ V and t > 0, implying the proximity digraph
remains strongly connected.

7. FINAL COMMENTS

The distributed controller design for flocking motion in
second-order multi-agent systems with heterogeneous com-
munication constraints is a challenging problem. This pa-
per presents a gradient-descent method-based solution.
We modelled the agents’ interaction with a proximity
digraph and implemented a connectivity measure based
on the first-left Laplacian matrix eigenvector entries; pro-
viding the agents with local knowledge of the overall
graph’s topology. Then, by defining inter-agent distance-
dependent edge weights, we unveil the dynamic properties
of the connectivity measure. With a collective energy func-
tion and mild assumptions, we proved the closed-loop sys-
tem’s convergence to the desired flocking motion behaviour
while preserving the strong connectivity property of the
proximity digraph. However, to successfully implement our
controller design, the challenge of distributedly computing
the sets of the agents’ rooted spanning trees remains.

Future works include exploring the model’s robustness
properties concerning perturbations and designing dis-
tributed continuous algorithms to compute the rooted
spanning trees and a lower bound for the digraph’s gener-
alized algebraic connectivity. We also aim to use our con-
troller design in other multi-agent systems, for example,
where the agents have different input constraints.
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