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a b s t r a c t 

Soils in the past mining areas are susceptible to trace metal(loid)s deposition and pose a health risk to humans. The 
purpose of this work is to evaluate the distribution patterns and contamination characteristics of trace metal(loid)s 
in the agricultural surface soils of past mining regions. The contaminated site is near an abandoned mining area, 
which is surrounded by land used for maize cultivation. The multivariate statistical approach and GIS interpola- 
tion techniques are often used in spatial distribution mapping to predict metal(loid)s concentrations for arsenic 
(As) and other trace metals (i.e., Al, Fe, Mn, and Sr) in areas that have not been sampled. The mean relative error 
(MRE) and root mean square error (RMSE) values were used to evaluate and correlate the efficiency of deter- 
ministic interpolation (Inverse Distance Weighting- IDW, Local Polynomial- LP, and Radial Basis Functions- RBF) 
as well as geostatistical interpolation methods (Ordinary Kriging- OK and Empirical Bayesian Kriging- EBK). The 
results revealed that all interpolation techniques predicted the mean concentration of trace metal(loid)s in soil 
with moderate accuracy. It was found that agricultural soils contained arsenic enrichment (up to 185 mg/kg), 
up to five times the background concentrations (35 mg/kg), and 8.5 times the Mexican guidelines (22 mg/kg). 
The statistical analysis with the cross-validation method revealed that IDW and LP consistently provided the 
most accurate predictions of trace metal(loid)s concentrations while OK, EBK, and RBF techniques are less ac- 
curate. Overall, these GIS interpolation techniques help in the prediction of trace metal(loid)s concentrations at 
unexplored sites and establish the requirement for the amelioration of agricultural surface soil. 
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. Introduction 

Due to the progressive growth of both agricultural and industrial sec-
ors, soil quality has continued to deteriorate in the developing world
 Soffianian et al., 2014 ; Othman et al., 2017 ; Akopyan et al., 2018 ).
ne of the main contributors to soil contamination in large mining ar-
as nowadays is waste that contains heavy metal(loid)s. Once heavy
etal(loid)s enters the soil, they can damage plants, impeding their
evelopment ( Ruíz-Huerta et al., 2017 ; Chen et al., 2018 ). Moreover,
eavy metal(loid)s in the soil can affect human health ( Zhao et al., 2012 ;
i et al., 2014 ). Mining activities in the surrounding areas of Matehuala,
exico stretch back over 200 years and are currently focused on the

xtraction of skarn deposits of heavy metals from a small hill range
nown as El Fraile that forms the western border of the Sierra Madre
riental ( Castro-Larragoitia et al., 1997 ; Razo et al., 2004 ; Martínez-
illegas et al., 2013 ). The deposition of demolition waste and blast
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urnace slag from a metal ore smelter that was operated around 60
ears ago are among the other polluting activities in Matehuala city
 Manz and Castro, 1997 ; Martínez-Villegas et al., 2013 ). Previous stud-
es have revealed that the dissemination of tailings, mining wastes,
ludges, and slags has affected children, wildlife, and crop production
hile contaminating soils, water, sediments as well as the ecological

nvironment in Matehuala region that surrounds the mining district
 Castro-Larragoitia et al., 1997 ; Razo et al., 2004 ; Chapa-Vargas et al.,
010 ; Martínez-Villegas et al., 2013 ). The majority of heavy metals in
he environment are contaminated by anthropogenic activities, such
s mineral extraction and smelting operations, manufacturing and in-
ustrialisation, as well as agricultural and domestic use of metal(loid)s
nd metal(loid)-containing compounds ( Shallari et al., 1998 ; He et al.,
005 ). Even though heavy metals are naturally occurring elements
hroughout the earth’s crust, they appear in the surface soil due to an-
hropogenic activities ( Tchounwou et al., 2012 ; Briffa et al., 2020 ). 
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The soil classification method coupled with a soil map, and spa-
ial interpolation are the two basic approaches that may be used to
redict soil attributes in unsampled regions ( Voltz and Webster, 1990 ;
oovaerts, 2011 ). All contour maps, including soil maps, represent the

patial distribution of soil properties as the conflict of polygons with
xed values ( Goovaerts, 2011 ). Each mapping unit is assumed to be
enerally homogenous in this representation, and significant variations
re expected to occur at the edges ( Webster and Beckett, 1968 ). Geo-
tatisticians have developed a number of methods to combine both map-
ing units and point measurement techniques in the estimation of soil at-
ributes ( Goovaerts, 2011 ; Mendes et al., 2020 ; Barrena-González et al.,
022 ). To locate areas with significant levels of contamination, and
orrelate the levels with potential sources, soil mapping has been car-
ied out in many countries to investigate the spatial distribution of
eavy toxic metal(loid)s in contaminated soils ( Piedade et al., 2014 ).
uch maps have been produced using various interpolation techniques
ith georeferenced soil sample points that are often organised in a grid
 Long et al., 2020 ; Saha et al., 2022a ). 

The regional heavy metal(loid) distribution patterns and pollution
ssessments in soil are progressively integrating GIS-based techniques
nd multivariate statistical analysis. The majority of the studies have ef-
ectively differentiated between anthropogenic and natural sources for
pecific heavy metal(loid)s ( Hou et al., 2017 ). The spatial distribution
f heavy metal(loid)s has been estimated by using different types of
tatistical and geostatistical methods ( Kumar et al., 2012 ; Saha et al.,
022a ). The spatial distribution of soil parameters at the unsampled
ites could not be determined using the traditional statistical approach.
herefore, geostatistics is an effective technique for analysing the spa-
ial distribution of soil attributes and also for significantly reducing the
ariation of evaluation error and associated costs ( Davis et al., 2009 ;
ickel et al., 2014 ; Bhunia et al., 2018 ; Fischer et al., 2021 ). GIS has
ecome a valuable tool for monitoring environmental pollutants. To fill
n any voids in the cognitive design model, interpolation of data can be
tilised to forecast values in unsampled areas using adjacent observed
alues ( Tobler, 1970 ; Fischer et al., 2021 ). Often a limited number of
oil samples are obtained from study sites for chemical analysis due to
ime and resource limitations, resulting in poor datasets that potentially
ndermine experimental findings and conclusions ( Liu et al., 2004 ).
hrough the multivariate statistical analysis, it was shown that the usage
f sewage sludge, municipal wastages, suspended solids, and livestock
anure was correlated with increasing levels of heavy metal(loid)s in

oil ( Cang et al., 2004 ; Wang et al., 2005 ; Dai et al., 2007 ; Huang et al.,
015 ). This study has employed appropriate GIS interpolation tech-
iques, along with multivariate statistical analysis techniques, such as
rincipal component analysis (PCA), cluster analysis (CA), and Pearson’s
orrelation analysis for a realistic assessment of the extent of surface soil
ontamination. 

The five common interpolation techniques for soil pollution studies
nd contamination mapping are (i) Inverse Distance Weighting (IDW),
ii) Local Polynomial (LP), (iii) Ordinary Kriging (OK), (iv) Empirical
ayesian Kriging (EBK), and (v) Radial Basis Functions (RBF). The IDW
ethod involves a deterministic interpolation technique that generates

n approximated area by taking into consideration the similarity of
easured points and estimating the optimum weight required to limit

he impact of locations at a specific distance ( De Smith et al., 2007 ).
he previous studies of trace metal(loid)s in the soil of Matehuala es-
ablished that IDW was the optimal interpolation technique ( Martínez-
illegas et al., 2018 ; Saha et al., 2022a ; Saha et al., 2022b ). The LP

nterpolation method only uses points in the predefined neighbourhood
o match the specific polynomial order ( Saha et al., 2022a ). The Krig-
ng method is based on a sequential interpolation technique that ap-
lies a semivariogram model to predict unknown values based on dis-
ance and variations in measured values ( Paramasivam and Venkatra-
anan, 2019 ). According to the study of Zare-mehrjardi et al., (2010) ,

okriging and ordinary kriging were superior to the inverse distance
2 
eighting (IDW) technique for predicting the geographical distribu-
ion of soil characteristics. In another study, Robinson and Metter-
icht (2006) estimated the soil salinity, acidity, and organic matter us-
ng three distinct GIS interpolation techniques: kriging, IDW, and RBF.
n iterative methods, RBF interpolation is a complex technique for creat-
ng high-precision interpolants of unstructured data, perhaps in elevated
egions ( Buhmann and Dyn, 1993 ). The precision of the interpolation
epends on how accurately the boundaries and contaminated areas are
efined; this also influences how accurately any pollutant is assessed
 Xie et al., 2011 ). Various studies were conducted on the effectiveness
f the preceding spatial interpolation techniques ( Gotway et al., 1996 ;
anagopoulos et al., 2006 ; Shi et al., 2009 ). Moreover, the number of sig-
ificant factors of the trace metal(loid) studies are also discussed in this
ork, such as: the traditional soil sampling approach, identifying, and

orrelating characteristics of trace metal(loid) concentrations as well as
dentification of sources. 

The current study focuses on a contaminated environment where
rsenic (As) is the predominant component in a mixture of inorganic
ontaminants, although other metals are not of much concern. The mo-
ility of As is thought to be regulated in calcium-dominated conditions
y calcium arsenates. However not being as strongly soluble as those
ound in other complex elements, these are known to remove significant
uantities of arsenate from aqueous solutions ( Rodríguez-Blanco et al.,
007 ; Martínez-Villegas et al., 2013 ; Mahlknecht et al., 2023 ). In natu-
al environments, arsenic occurs in two forms, namely, arsenite, As(III),
nd arsenate, As(V), both forms being anions. The sorption of these
wo As forms on iron containing minerals have different characteristics
 Deng et al., 2018 ; Vromman et al., 2018 ). As is mostly found as As(III)
n reducing environments ( Dixit and Hering, 2003 ). However, arsenite
s much more toxic and soluble in water ( Brusseau and Artiola, 2019 ;
aha et al., 2022c ). The slower excretion rates for arsenite compared to
rsenate and organic arsenic may be a factor in arsenite’s higher level
f toxicity ( Kuivenhoven and Mason, 2019 ). In this study, the spatial
istribution patterns of arsenic (As), aluminium (Al), iron (Fe), man-
anese (Mn), and strontium (Sr) in agricultural soil are evaluated using
he geostatistical interpolation techniques, namely, OK and EBK, as well
s deterministic interpolation techniques such as IDW, LP, and RBF.
ollowing a different systematic approach, we investigated the effect
f different types of soil (Calcisol and Gypsisol) on trace metal(loid)s
oncentration and try to associate concentration gradients with various
ontamination sources in semi-arid calcareous environments. The objec-
ives of this study are as follows: (i) to estimate metal(loid)s concentra-
ion in agricultural surface soil around Cerrito Blanco, Matehuala, San
uis Potosi, Mexico, (ii) to evaluate the level of uncertainty surround-
ng a contaminated area using various interpolation techniques, and (iii)
o investigate the relationship between the predicted accuracy and vari-
nce in soil trace metal(loid) components at the local level using various
ypes of GIS interpolation techniques with multivariate statistical anal-
sis. 

. Study area 

The soil sampling sites were located in the town of Cerrito Blanco,
round 6.8 km from the municipality of Matehuala in the northern part
f the state of San Luis Potosi, Mexico. It covers a total land area of
round 25.28 hectares and is located between 23°40 ′ 08 ′′ N latitude and
00°34 ′ 44 ′′ W longitude ( Fig. 1 ). This area was chosen based on informa-
ion obtained from previous studies on heavy metal distribution in agri-
ultural soil ( Chapa-Vargas et al., 2010 ; Martínez-Villegas et al., 2013 ;
uíz-Huerta et al., 2017 ). Over the past 200 years, mining and metal-

urgical activities in Cerrito Blanco-Matehuala have resulted in a highly
olluted area ( Razo et al., 2004 ; Martínez-Villegas et al., 2018 ). The area
as semi-arid weather, and the predominant vegetation is a microphal-
us shrub that supports modest cow grazing, mixed with maize crop-
ands ( Chapa-Vargas et al., 2010 ). In semi-arid conditions, this study
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Fig. 1. Location of soil sampling points in the agricultural soil of Cerrito Blanco, Matehuala, San Luis Potosi, Mexico. 
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llowed the identification of the dispersion routes followed by arsenic
nd heavy metals to impact the environment. Calcisol (CaCO 3 ) and Gyp-
isol (CaSO 4 ) are the major soil variations in this region and there is one
ultivating season due to low annual precipitation of 300 to 500 mm
 INEGI, 2009 ). Therefore, surface water from the Matehuala munici-
ality is utilised to irrigate crops as a supplement to rainwater ( Ruíz-
uerta et al., 2017 ). Cultivating rain-fed maize in small plots main-

ained by subsistence farmers is a common practice in this study area,
here contaminated water is frequently used to supplement the rainfall

hroughout the crop-growing season due to a lack of alternate supplies
 Ruíz-Huerta et al., 2017 ). Other polluting activities in the area include
he deposition of construction wastes, the extraction of heavy metal
karn deposits from El Fraile hill, and the slags from a metal ore smelter
hat operated in Matehuala until the 1960s ( Castro-Larragoitia et al.,
997 ; Manz and Castro, 1997 ; Razo et al., 2004 ; Martínez-Villegas et al.,
013 ; Saha et al., 2022d ). However, there is a lot of evidence that the
oil in this study area is highly contaminated and it’s a cause for concern.
3 
. Materials and methods 

.1. Soil sampling and analysis 

For surface soil sampling, 25 soil samples were collected using an
uger at the depth of 0–5 cm from the agricultural land using a sys-
ematic sampling approach based on a statistical method, according
o the Mexican guidelines and recommendations (NMX-AA-132-SCFI-
001) ( Secretaria de Economía, 2006 ). The soils were conserved in plas-
ic bags and preserved at 4°C until soils were homogenised and crushed.
he soil samples were air-dried at room temperature before being sieved
o filter out the fraction < 2 mm. Agricultural surface soil samples were
igested using a slightly modified version of the ISO 11466:1995 pro-
edure ( Ruíz-Huerta et al., 2017 ). Inductively coupled plasma optical
mission spectroscopy (ICP-OES) was used to estimate the metal(loid)s
n digested soil samples ( USEPA, 1994 ; Martínez-Villegas et al., 2018 ).
n aqua regia solution (HNO 3 :HCl, 3:1) was added to 1.0 gm of soil in a
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eaker. Total recoverable trace metal(loid)s in soils can be determined
sing this procedure ( Ruíz-Huerta et al., 2017 ; Martínez-Villegas et al.,
018 ). Aqua regia digestion does not release residues that are not con-
idered relevant for estimating elements of environmental importance’s
obility and behavior ( Niskavaara et al., 1997 ; Martínez-Villegas et al.,
018 ). The soil sample sites were georeferenced using a GPS device
ade by Garmin called an Etrex Personal Navigator. 

.2. Interpolation approaches for the spatial distribution of metals 

A range of deterministic (i.e., generate maps from observed values)
nd geostatistical (i.e., tools make use of the statistical characteristics
f the observed points) interpolation techniques were applied in the
resent study to derive the spatial distribution of trace metal(loid)s. This
ncludes some widely used deterministic interpolation techniques, such
s Inverse Distance Weighted (IDW), Local Polynomial (LP), Radial Basis
unctions - Completely Regularized Spline (RBF-CRS), and geostatisti-
al interpolation techniques, specifically Ordinary Kriging (OK) and Em-
irical Bayesian Kriging (EBK) ( Arslan and Turan, 2015 ; Bhunia et al.,
018 ; Saha et al., 2022a ). A brief overview comprising the technical
nderpinning of each technique used in this paper is presented below. 

.2.1. Deterministic interpolation techniques 

.2.1.1. Inverse distance weighted (IDW). One of the most widely used
eterministic interpolation methods in soil research is the IDW which
ombines multivariate statistical analysis with GIS. In compliance with
he inverse of distance to power, the weighing approach provided spa-
ially adjacent points with higher weight than distant points, which was
onceptually reasonable ( Qi et al., 2020 ). For this work, IDW calcula-
ions were performed on adjacent observed points. It is implied that the
nown observed points regulate themselves independently of one an-
ther ( Bhunia et al., 2018 ; Saha et al., 2022a ). 

 = 

𝑛 ∑
𝑖 =1 

(
𝑍 𝑖 ∕ 𝑑 

𝑝 

𝑖 

)
∕ 

𝑛 ∑
𝑖 =1 

(
1∕ 𝑑 𝑝 

𝑖 

)
here 𝑍 denotes the approximate value at an interpolated point; 𝑍 𝑖 

enotes the computed values at point 𝑖 ; 𝑛 denotes the total number of
alues obtained in interpolation; 𝑑 𝑖 denotes the distance between inter-
olated value 𝑍 and the computed value 𝑍 𝑖 , and 𝑝 denotes the weighting
ower. 

.2.1.2. Local polynomial (LP). The LP interpolation technique has
een utilised in meteorological research for more than 50 years
 Gilchrist and Cressman, 1954 ). This technique adjusts a unique polyno-
ial equation for each region based on the maximum and minimum ob-

erved values, regions, observed neighbourhood types, and kernel types
 Johnston et al., 2001 ; Antal et al., 2021 ). The purpose of polynomial
nterpolation is to identify a polynomial that can access a group of spec-
fied observation points. Overall, a global polynomial may cover the en-
ire surface; however, it cannot perfectly match the surface when there
s more natural variation ( Liao et al., 2018 ). The LP method provides
 number of advantageous characteristics, including efficiency and the
bility to successfully detrend data in a variety of geostatistical models
 Gribov and Krivoruchko, 2011 ). 

 𝑖 = 

( 

1 − 

𝑑 𝑖 

𝑅 

) 

𝑝 

here 𝑍 𝑖 is the mean observed values made at the 𝑖 th measurement
oint, 𝑑 𝑖 represents the difference between observed and predicted
oints, 𝑅 denotes the neighbouring area carried into consideration, and
 is the order of the polynomial function defined by the operator. 

.2.1.3. Radial basis functions (RBF). The RBF (also known as Spline)
efers to a set of precise interpolation techniques that are based on
rtificial neural networks (ANN) ( Johnston et al., 2001 ; Antal et al.,
021 ). The technique includes five distinct basis functions: thin-plate
4 
plines (TPS), spline with tension (ST), inverse multi-quadratic func-
ion (IMQ), completely regularized spline (CRS), and multi-quadratic
unction (MQ). RBF provides predictions about new values based on an
perator-specified region, and each predicted value must carry through
ach measured value ( Xie et al., 2011 ; Antal et al., 2021 ). 

 ( 𝑥 ) = 

𝑚 ∑
𝑖 =1 

𝑎 𝑖 𝑓 𝑖 ( 𝑥 ) + 

𝑛 ∑
𝑖 =1 

𝑏 𝑗 𝜓 

(
𝑑 𝑗 
)

here 𝑑 𝑗 represents the distance between each observed sample point
nd the estimated point 𝑥 , and 𝜓( 𝑑 𝑗 ) represents the radial basis func-
ions. The trend function 𝑓 𝑖 ( 𝑥 ) is regarded as a component of the basis
or polynomials with degree 𝑚 ; 𝑛 is the total number of known points
onsidered in the interpolation. 

In this study, we have assessed the completely regularized spline:
adial basis functions (RBF-CRS). The following functional equations are
sed for this radial basis function case ( Xie et al., 2011 ). 

 ( 𝑑 ) = ln 
(

𝑐𝑑 

2 

)2 
+ 𝐸 1 ( 𝑐𝑑 ) 2 + 𝛾

here 𝑑 represents the difference between the estimated and observed
oints, 𝑐 represents the smoothing factor, 𝐸 1 represents the modified
essel function, and 𝛾 denotes the Euler’s constant. The methodological
owchart ( Fig. 2 ) illustrates how soil samples are obtained as well as
ethods for identifying toxic metal(loid) and other trace metal(loid)s

n the agricultural surface soil. 

.2.2. Geostatistical interpolation techniques 

.2.2.1. Ordinary Kriging (OK). Advanced geostatistical techniques like
riging are part of a different class of interpolation methods. Kriging in-
erpolation approaches have been extensively used to characterise spa-
ial differences in soil characteristics and have been regarded as one of
he advanced geostatistical approaches that may produce an optimum
nd constructive estimation for an unsampled area ( Hu et al., 2016 ). The
asis of Ordinary Kriging (OK) is a statistical model that includes auto-
orrelation, or the statistical correlations between the observed points
 Ghosh et al., 2020 ). However, geostatistical algorithms not only have
he proficiency to generate a prediction surface but also offer some indi-
ation of the reliability or efficiency of the prediction ( Oliver and Web-
ter, 1990 ; Ghosh et al., 2020 ). OK emphasizes the function that is spa-
ially associated. OK functions as a spatial interpolation predictor and is
epresented as the following weighted sum of the data: 

 ( 𝑥 ) = 

𝑛 ∑
𝑖 =1 

𝜆𝑖 𝑍 

(
𝑥 𝑖 
)

( 𝑥 ) denotes the estimated value at point 𝑥 , 𝑍( 𝑥 𝑖 ) denotes the observed
alue at position 𝑥 , 𝜆𝑖 indicates the weight applied to the residual of
( 𝑥 𝑖 ) , and 𝑛 represents the number of sample data utilised at specific
oints within the neighbourhood. 

.2.2.2. Empirical Bayesian Kriging (EBK). Empirical Bayesian Kriging
EBK) optimizes the most challenging components using a sub-setting
nd simulation approach. EBK varies from traditional kriging meth-
ds in that it considers the error generated by predicting the semivari-
gram model ( Krivoruchko, 2012 ). The predicted semivariogram is as-
umed by the EBK method to be the exact semivariogram for the in-
erpolated area and a linear prediction with varying spatial dispersion
 Ghosh et al., 2020 ). EBK is a combination of two geostatistical concepts:
ntrinsic random function kriging (IRFK) ( Yaglom, 1955 ; Chiles and
elfiner, 1999 ) and linear mixed model (LMM, which is also known
s simple kriging with the external trend in the geostatistical literature)
 Banerjee et al., 2003 ; Diggle and Ribeiro, 2007 ; Schabenberger and
otway, 2017 ). Since the same procedures are employed for IRFK and
MM model fitting, and integration of two distinct processes into a sin-
le computational model ( Krivoruchko and Gribov, 2019 ; Gribov and
rivoruchko, 2020 ). 

 𝑖 = 𝑦 
(
𝑠 𝑖 
)
+ 𝜀 𝑖 , 𝑖 = 1 ……𝐾 
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Fig. 2. Workflow for data acquisition and interpolation techniques. 
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here 𝑍 𝑖 represents the measurement made at the observed point 𝑠 𝑖 ,
 ( 𝑠 ) denotes the Gaussian process under the study location 𝑠 , 𝜀 𝑖 repre-
ents the measurement error, and 𝐾 is the total number of measure-
ents. 

.3. Cross-validation and accuracy assessments 

The approaches that are frequently used to compare the interpolation
echniques include cross-validation and validation using an independent
ata set. In this study, cross-validation was used because of the limited
ample set. The distribution of error related to interpolation techniques
as assessed by randomly parting observed sample points into two parts:

) for interpolation (80%) and ii) cross-validation (20%) ( Ghosh et al.,
012 ; Hu et al., 2016 ; Saha et al., 2022a ). The 20% of sample points that
re set apart for cross-validation were compared to the corresponding
redicted values, estimated using referred interpolation techniques. To
valuate the accuracy of predictions, the mean relative error (MRE), root
ean square error (RMSE), and coefficient of variation (CV) derived

rom observed and predicted values at each soil sample point in the
ross-validation portfolio were compared. 

𝑅𝐸 = 

1 
𝑛 

𝑛 ∑
𝑖 =1 

|||||
𝑍 

∗ (𝑥 𝑖 ) − 𝑍 

(
𝑥 𝑖 
)

𝑍 

(
𝑥 𝑖 
) |||||

𝑀𝑆 𝐸 = 

√ ∑𝑛 

𝑖 =1 
[
𝑍 

∗ 
(
𝑥 𝑖 
)
− 𝑍 

(
𝑥 𝑖 
)]2 

𝑛 

𝑉 = 

𝑠𝑡𝑎𝑛𝑑 𝑎𝑟𝑑 𝑑 𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑝𝑟𝑒𝑑 𝑖𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒𝑠 

𝑚𝑒𝑎𝑛 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒𝑠 
5 
here 𝑍( 𝑥 𝑖 ) denotes the observed value at the 𝑖 th point, 𝑍 

∗ ( 𝑥 𝑖 ) indicates
he predicted value at the 𝑖 th point, and 𝑛 represents the number of
bserved sample data points. 

.4. Multivariate statistical analysis 

Alternative methods for assessing the environmental conditions
nclude multivariate statistical analysis ( Ustao ğlu and Tepe, 2019 ;
ukrer et al., 2021 ). Elemental concentrations are highly variable in the
atural environment. Therefore, statistical techniques must be used to
nterpret the big datasets for environmental information ( Oprea, 2005 ).
he data may be simplified, arranged, and classified using multivari-
te approaches to reveal meaningful patterns ( Sheikhy Narany et al.,
014 ; Arslan and Turan, 2015 ). Multivariate statistical techniques are
pplied in environmental research to measure associations among more
han two variables while taking their interactions into consideration
 Oprea, 2005 ). The potential sources of the metal(loid)s and their distri-
ution mechanisms were identified using a correlation matrix and prin-
ipal component analysis (PCA). However, PCA was performed to re-
uce the dimension of the multivariate structure of the dataset while
ptimising the outcomes of subsequent analysis applied for assessing
he environmental impact of metal(loid) contamination. 

.4.1. Principal component analysis (PCA) 

Principal component analysis (PCA) is a widely applied technique for
nalysing a high-dimensional dataset that underpins the linear trans-
ormation of highly correlated data into uncorrelated variables (re-
erred to as “principal components ”) ( Singh et al., 2004 ; Jolliffe and
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adima, 2016 ; Goswami and Kalamdhad, 2022 ). The newly created un-
orrelated components successively capture the variance in the dataset,
.e., first component captures most of the variance, and so on. A cumula-
ive distribution plot of components is used to select the optimum num-
er of components required for capturing the variance in the dataset. For
xample, in many highly correlated datasets, only the first few compo-
ents could successfully capture more than 90-95% of the variance and
hus can be used to replace a large dataset with a smaller set of com-
onents for any subsequent analysis. Thus, PCA facilitates the greater
nterpretability of the dataset with a reduced number of components
hile minimising the information loss. To assess the suitability of a
ataset for a PCA analysis Kaiser-Meyer-Olkin (KMO) test is often ap-
lied. The KMO test is used to assess the suitability of the dataset for
actor analysis (related analysis), in the present case, this approach is
pplied to normalised data using varimax rotation ( Zhang et al., 2018 ;
eshavarzi and Kumar, 2020 ). Thus, before performing the PCA analy-
is, the feasibility of implementing this method on the dataset was as-
essed using the KMO measure of sample adequacy and Bartlett’s test
f sphericity ( Akopyan et al., 2018 ). The following system of equations
s used to mathematically express the linear transformation of multi-
ariables as principal components: 

 𝑖𝑗 = 𝑥 1 𝑖 𝑦 1 𝑗 + 𝑥 2 𝑖 𝑦 2 𝑗 + 𝑥 3 𝑖 𝑦 3 𝑗 + ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ + 𝑥 𝑖𝑘 𝑦 𝑗𝑘 

here 𝑍 is the component value, 𝑥 refers to the component loadings,
 refers to the variable’s measured value, 𝑗 and 𝑘 indicate the sample
umber and the total number of variables. 

.4.2. Cluster analysis 

Cluster analysis is an unsupervised classification approach that facil-
tates pattern recognition and reveals the fundamental structure or in-
erent activity of a dataset. The approach utilises user-specified feature
haracteristics of the data in order to categorise the system’s components
nto groups or clusters based on their proximity or similarity ( Arslan and
uran, 2015 ; Alam et al., 2022 ). Data points that share similar charac-
eristics/features were clustered together into one class during cluster
nalysis. Cluster analysis is a comprehensive approach that integrates
 series of algorithms for identifying the optimum number of clusters
nd organising data across different clusters such that variance within
he clusters is minimum while variance between the clusters is max-
mised. The K-mean clustering and Hierarchical clustering are among
he widely applied clustering approaches ( Shrestha and Kazama, 2007 ).
he paper will be using hierarchical cluster analysis, which will also
reate a dendrogram plot illustrating the dataset in a layered structure.
urthermore, to prevent misclassification owing to significant variations
n data dimensionality, cluster analysis, and PCA were performed on ex-
erimental data that had been normalised using z-scale transformation
 Liu et al., 2003 ). The significance of variables with small variances usu-
lly grows, whereas the influence of variables with high variances tends
o decrease ( Singh et al., 2004 ). 

. Results and discussion 

.1. Descriptive statistics of metal(loid)s in soils 

The concentrations of As, Al, Fe, Mn, and Sr in agricultural soils,
ogether with soil permissible limits or reference values of metals
t regional and international levels are shown in Table 1 . The per-
issible or reference values of metal(loid)s in agricultural soil were
s (22 mg/kg) ( Martínez-Villegas et al., 2018 ), Al (10000 mg/kg)
 US EPA Ecological Soil Screening Level for Aluminium, 2014 ), Fe
300 mg/kg) ( Iyama et al., 2021 ), Mn (85 mg/kg) ( Ashraf et al., 2021 ),
r (200 mg/kg) ( Essel, 2017 ). The mean concentrations of As, Al, Fe,
n, and Sr in soil were 76.90 mg/kg, 241.85 mg/kg, 6933.74 mg/kg,

75.27 mg/kg, and 352.66 mg/kg, respectively. The concentration data
f different trace metal(loid)s was shown using the box and whisker
6 
lots in Fig. 3 . The mean concentrations of Al were within the soil’s ref-
rence value. In relation to the permissible limit of metals in the soil, As,
e, Mn, and Sr concentrations were 3.50, 23.11, 3.24, and 1.76 times
igher, respectively. The metal(loid)s concentration showed decreasing
rend (Fe > As > Mn > Sr > Al) in comparison with permissible or ref-
rence values, disclosing a concentration pattern in soil considerably
mpacted by industrial and past mining activities. The mean concentra-
ion of the most hazardous metal(loid) in this case, namely As was at an
larming level in mining areas, mining–smelting areas, and rapid urban
reas in this study. As and Sr showed moderate to significant spatial
ariation with coefficients of variation (CV) of 50.05% and 36.56%, re-
pectively. Although Sr present in the study location shows its natural
rigin and derives from the gypsum bed ( Saha et al., 2022b ). All the
tudied metal(loid)s in the soil samples had kurtosis values greater than
ero, which show that their distributions are non-normal with heavy tail,
epresenting values that are often far from the mean in extreme ranges
 Cohen et al., 2020 ). Overall, the selected study area has higher concen-
rations of metal(loid)s than the majority of places studied, especially
or As and Sr. 

.2. Spatial distribution of metal(loid)s 

The spatial distributions of As, Al, Fe, Mn, and Sr in agricultural soil
ere estimated using various interpolation techniques and ArcGIS soft-
are, and the results are indicated in Fig. 4 . All the metal(loid)s had a
igh concentration area (exception of Al metal), showing that anthro-
ogenic activities in this area had a detrimental impact on the elemental
oncentrations. Fig. 4 indicates that greater than 90% of the study area
ad significant As concentrations ( > permissible limit values), i.e., the
mall portion of the area of the northeast region was in the low con-
entration zone. The As contamination was observed over a gradient
rom a high of 90 mg/kg on the west and northwest side to a low of
.03 mg/kg in the northeast; this could have been impacted by the use
f As-contaminated groundwater used in irrigation. The mean Fe and
n concentrations in agricultural soil are somewhat higher than the per-
issible limits compared with As and Sr, considering the fact that these

wo are prevalent in this area, as shown by the standard and permissi-
le limit values. However, the ore smelting, slagging, and deposition of
etal dust in soil from mining sites may be related to the enrichment of
s concentration in soils in some specific areas. Similar spatial distribu-

ion patterns were observed for As, Fe, Mn, and Sr, with contamination
ispersed along the study area. Sr in its elemental form occurs natu-
ally in many compartments of the environment, including rocks, soil,
ater, and air. Sr compounds can move through the environment fairly

asily because many of the compounds are water-soluble. Sr is always
resent in the air as dust, up to a certain level ( Strontium (Sr) - Chem-
cal Properties, Health and Environmental Effects, 2023 ). The spatial
istribution patterns of each trace metal(loid) examined in agricultural
oil may be connected to the consequences of anthropogenic activities,
rrigation with contaminated waters, and their sources. 

.3. Comparison between deterministic and geostatistical interpolation 

echniques 

To choose the optimal technique must be made comparisons based
n the mean relative error (MRE), root mean square error (RMSE), and
oefficient of variation (CV) in relation to several concepts. The predic-
ion error will be depending on the size of the data, when it is near 0,
t indicates that the prediction error is acceptable and ideal. The mean
elative error is effective if the error is close to 0, which means that the
oot mean square error should be close to 1, and the prediction error can
e evaluated to check if it is optimal ( Park and Stefanski, 1998 ; Li et al.,
021a ). So, the optimal technique is acceptable when the mean rela-
ive error is close to 0 and the root mean square error is close to 1; and
he MRE and RMSE are near and the least ( Li et al., 2021a ; Saha et al.,
022a ). The relative distribution of data points in a series around the
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Table 1 

Statistics of metal(loid)s concentrations in agricultural soils of Cerrito Blanco area. 

As Al Fe Mn Sr pH 

Mean (Measured) 76.90 241.85 6933.74 275.27 352.66 7.86 
Standard Error 7.70 7.50 199.16 6.91 25.79 0.02 
Median 72.18 252.17 7063.16 284.00 346.61 7.87 
Standard Deviation 38.48 37.51 995.78 34.54 128.94 0.09 
Sample Variance 1481.07 1406.70 991579.00 1192.86 16626.53 0.01 
Kurtosis 1.41 6.17 6.19 4.09 9.41 6.12 
Skewness 0.72 -1.93 -1.60 -1.84 2.49 -2.15 
Range 177.34 193.22 5390.74 155.62 675.97 0.35 
Minimum 8.03 107.33 3392.66 162.18 178.81 7.60 
Maximum 185.37 300.55 8783.40 317.80 854.78 7.95 
Sum 1922.48 6046.25 173343.53 6881.81 8816.54 N/A 
Coefficient of variation (CV) (%) 50.05 15.51 14.36 12.55 36.56 N/A 
Count 25 25 25 25 25 25 
Confidence Level (95.0%) 15.89 15.48 411.04 14.26 53.23 0.05 
Permissible/Reference values ( mg/kg) 22 10000 300 85 200 N/A 

Fig. 3. Box and whisker plots of the different trace metal(loid)s concentrations. 
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ean is statistically measured by the coefficient of variation (CV). The
V demonstrates the degree of data variability in a soil sample in com-
arison with the value of the mean concentration of metal(loid)s. The
igher degree of dispersion around the mean indicates an increase in
he value of CV. The lower value of CV is preferred because the limited
ispersion of data values is low relative to the mean. Therefore, in this
tudy lower CV value has been considered. 

The optimal interpolation approach for five selected metal(loid)s was
dentified by comparing deterministic and geostatistical interpolation
echniques under various parameters in Table 2 . According to the re-
uired criterion, the MRE value is closest to 0, the least values of RMSE
nd CV are given priority to compare the three deterministic interpo-
ation techniques (IDW, LP, and RBF-CRS) and two geostatistical inter-
olation techniques (OK and EBK) for finding the optimal interpolation
pproach. In summary, the study area’s five different soil- metal(loid)
oncentrations may be interpolated using the following techniques: IDW
f power 2 for As, LP of polynomial order 3 for Al, IDW of power 3 for
e, IDW of power 3 for Mn, and IDW of power 3 for Sr. According to
he outcomes for the comparison of interpolation techniques, the IDW
eterministic interpolation approach is the most suitable interpolation
echnique in this study. 

The spatial distribution of trace metal(loid)s contamination map will
ften be more accurate when there are more collections of samples
 Mueller et al., 2001 ). The collection of numerous samples is typically
ot practicable due to the expense of sample collection and processing
 Xie et al., 2011 ). It can be observed in Fig. 4 , approaches with lower
7 
V values were better at mapping than those with higher CV values.
enerally, the error estimations of interpolation techniques are min-

mised when the RMSE, MRE, and CV values are minimal for the trace
etals, as shown in Table 2 . The interpolation inaccuracy and the vari-

tions in interpolation techniques increased along with the higher val-
es of RMSE, MRE, and CV. The interpolation techniques are used to
ecide how discrete data from a map are transformed into continuous
ata ( Xie et al., 2011 ). The accuracy of the interpolation techniques
epends on how effectively the interpolation approach represents the
patial variation and correlation patterns of soil properties. The study
evealed that deterministic interpolation approaches are often simple to
xecute because models require fewer input parameters. In comparison,
he geostatistical interpolation approach requires more effort to imple-
ent. But geostatistical approaches are usually acceptable as long as the

ollowing procedures are taken: statistical assessments, transformation
f data, fitting of semivariance function, spatial structure analysis, etc
 Xie et al., 2011 ; Liao et al., 2018 ; Saha et al., 2022a ). However, the
ey concern for managing agriculture and the environment is having a
omprehensive awareness of heavy metal distribution. The study shows
hat the IDW interpolation approach is optimal in comparison with any
ther geostatistical method for As, Fe, Mn, and Sr metal(loid)s based
n the results of efficiency and error estimation of interpolation tech-
iques. It may be concluded that IDW analysis uses a linear combination
f values from the captured locations of events to provide a weighting
stimate to the unknown locations by inversely calculating the distance
etween the event location to be estimated and the points captured to
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Fig. 4. Spatial distribution patterns of metal(loid)s of As, Al, Fe, Mn, and Sr content. 

Table 2 

Selection of optimal interpolation techniques for metal(loid)s concentrations in soil (optimal techniques are highlighted in 
bold). 

Metal(loid)s Predictive Errors IDW1 IDW2 IDW3 LP1 LP2 LP3 OK EBK RBF-CRS 

As RMSE 24.05 23.48 23.45 22.15 25.73 20.41 22.23 26.32 28.31 
MRE ( mg/kg) 0.35 0.35 0.36 0.27 0.31 0.26 0.31 0.38 0.29 
CV (%) 12.51 13.04 14.9 23.47 24.62 25.24 15.52 9.64 47.2 

Al RMSE 24.16 24.11 24.08 26.37 26.19 21.11 24.52 24.3 25.6 
MRE ( mg/kg) 0.08 0.08 0.08 0.08 0.07 0.07 0.07 0.07 0.09 
CV (%) 8.01 8.46 8.74 6.86 6.02 8.63 7.91 5.98 8.43 

Fe RMSE 902.42 866.64 840.79 976.55 990.75 1081.39 857.53 949.63 1114.88 
MRE ( mg/kg) 0.06 0.06 0.06 0.08 0.07 0.06 0.06 0.06 0.07 
CV (%) 4.95 4.23 3.63 5.3 3.89 6.42 3.94 4.66 8.94 

Mn RMSE 21.3 19.09 17.39 20.56 20.92 17.2 22.13 20.47 18.63 
MRE ( mg/kg) 0.04 0.04 0.04 0.03 0.05 0.04 0.04 0.03 0.04 
CV (%) 3.7 3.26 3.3 4.35 3.78 4.29 3.99 3.64 2.9 

Sr RMSE 47.86 43.92 40.71 53.85 44.8 57.47 45.68 55.63 42.25 
MRE ( mg/kg) 0.11 0.1 0.09 0.12 0.09 0.14 0.11 0.15 0.08 
CV (%) 12.62 11.57 10.75 14.03 17.12 17.86 12.36 9.43 12.08 
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btain a weighting estimate ( Ikechukwu et al., 2017 ). But for Al the LP
nterpolation technique is suitable, which may be the reason of limited
xploration distance that might result in an empty region of the surface
ithout any restrictions other than the sampling locations. 

.4. Pearson-correlation matrix of trace metal(loid)s 

Pearson’s correlation analysis was used to assess the relationship
etween various trace metal(loid)s in the soil. It is a detailed statisti-
al tool that indicates the level of dependence between two variables
 Belkhiri et al., 2010 ; Khound and Bhattacharyya, 2017 ). The com-
uted correlation coefficients are shown in Fig. 5 . The extraction of
e as FeCO 3 solids might be the source of the weak correlation be-
ween As and Fe in surface soil ( Lee et al., 2010 ; Khound and Bhat-
acharyya, 2017 ). One may also reach the conclusion that As might
8 
e released into irrigated water as a result of the oxidative dissolu-
ion of FeO(OH) or MnO(OH) as bacteria oxidise organic materials to
roduce energy ( Ohno et al., 2005 ; Shamsudduha et al., 2008 ). Trace
etal(loid)s typically have a significant positive correlation coefficient

nd may derive from the same or nearly adjacent sources. 
It is observed that As and Sr ( r 0.85), Al and Fe ( r 0.78), Al and Mn

 r 0.55), and Fe and Mn ( r 0.55) all have a substantial positive correla-
ion, indicating a consistent lithogenic source. The significant positive
orrelation between Fe and Mn in the soil shows that these two metals
aturally originate through the decomposition of soils, rocks, and min-
rals ( Khound and Bhattacharyya, 2017 ). Al, Fe, and Mn possess high
ositive correlations with each other, indicating the three metals’ simi-
ar behaviour in this region, which is confirmed by the geographic dis-
ersion. These results revealed that the parental materials and mineral
omponents of the soil were responsible for these metals occurring natu-
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Fig. 5. Scatter matrix analysis to determine relationships between various trace metal(loid)s. 

r  

s  

M  

t  

e  

s  

d  

f  

i  

s  

s

4

 

t  

p  

o  

p  

c  

n  

m  

t  

r  

K  

s  

9  

w  

v  

e  

v  

B  

n  

K
 

8  

t  

o  

s  

t  

f  

c  
ally in the soil. The main natural sources were the parent rock materials
ince these trace metals are mostly found in the Earth’s crust ( Taylor and
cLennan, 1995 ; Keshavarzi and Kumar, 2020 ). As and Sr had a nega-

ive correlation with other trace metals as opposed to metal(loid)s syn-
rgistic effects and indicating the different sources. In general, As in the
oil could derive from As-contaminated irrigational water, pesticides, in-
ustrial emissions, etc., ( Chung et al., 2014 ) and Sr in the soil is sourced
rom the lithosphere composition of the crustal, groundwater, and min-
ng activities ( Li et al., 2021b ; Wang et al., 2021 ). In this study, the
ource of As is irrigational contaminated water from metal arsenate dis-
olution upstream, while Sr derives from natural gypsum beds. 

.5. Principal component analysis for trace metal(loid)s in soil 

To evaluate the possible source of arsenic contamination and other
race metals in the regions, we have furthermore used principal com-
onent analysis (PCA) to cluster elements that have related patterns
f distribution. Five trace metal(loid)s were chosen for each to com-
ute the extensive concentration levels in accordance with the principal
omponent score. Since it has been confirmed that principal compo-
ent analysis (PCA) with VARIMAX normalised rotation is an effective
9 
ethod for identifying the source of hazardous pollutants; it was utilised
o ascertain the distribution of trace metal(loid)s in the soils by several
esearchers ( Hu et al., 2013 ; Arslan and Turan, 2015 ; Keshavarzi and
umar, 2020 ). The results of the Keiser-Meyer-Olkin (KMO) measure of
ampling adequacy and the Bartlett’s test of sphericity were 0.64 and
7.04 (p < 0.001), respectively, showing that the dimension reduction
as reasonable. The fraction of typical variation generated by inherent
ariables is measured by the KMO, which is an indicator of sampling ad-
quacy. Principal component analysis may be effective when the KMO
alue is close to 1 ( Khound and Bhattacharyya, 2017 ). The results of
artlett’s test of sphericity determine either the variables are not con-
ected, or the correlation matrix is an identical matrix ( Shrestha and
azama, 2007 ; Khound and Bhattacharyya, 2017 ). 

Two main components were identified by PCA, which accounted for
4.62% of the data variability. The first principal component (PC1) and
he second principal component (PC2) represented 70.10% and 14.52%
f the total variance, respectively ( Fig. 6 ). Eigenvalues are a reliable
election criterion for component factors, according to the Kaiser Cri-
erion ( Kaiser, 1960 ). It is appropriate to consider an eigenvalue as a
actor if it is more than one. But according to the variance extraction
riteria, it should be more than 0.7; if the variance is lower than 0.7,
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Fig. 6. PCA component weights plot. 

Table 3 

PCA results of trace metal(loid)s (components greater 
than 0.32 are shown in bold). 

Principal components 
Metal(loid)s PC1 PC2 Communalities 

As -0.416 0.704 0.606 
Al 0.427 0.545 0.640 
Fe 0.471 0.199 0.779 
Mn 0.411 0.282 0.593 
Sr -0.503 0.328 0.887 
Eigen value 3.205 1.026 
% of variance 70.10 14.52 
Cumulative % 70.10 84.62 
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hen it should not be considered as a factor ( Factor Analysis - Statistics
olutions, 2021 ). In the assessment of PCA patterns, component val-
es more than 0.71 are generally considered good, while those below
.32 are considered inadequate ( Nowak, 1998 ; Hu et al., 2013 ). The
oadings of each trace metal(loid)s in principal components and com-
unities are shown in Table 3 , and the PCA component weights plot

s shown in Fig. 6 . The interpretation of the difference between PC1
nd PC2 should not be based on absolute values only, but rather on the
nteraction of all PCA components. Based on the directions of the cor-
esponding arrows on the weighting plot ( Fig. 6 ), PC 1 discriminates
bservations or soil samples based on heavy metal concentration with
igh contents listed on the right half and low ones listed on the left.
C1 was influenced by Al, Fe, and Mn, contributing 70.10% of the total
ariance and it might be affected by both lithogenic and anthropogenic
nfluences. Fertilisers and agrochemicals might be the minor contribu-
ors to trace metal(loid)s contamination in agricultural soils. In addition
o the anthropogenic factors of trace metal(loid)s to fertilisers, limestone
nd compost were already present in the surface soil in lower concentra-
ions. However, it has been observed that Fe and Mn are present in the
arent components of soils. Since the agricultural activities in the region
sed rigorous tillage for many years, long-term fertiliser usage may be
10 
 significant contributor to the formation of trace contaminants in the
urface soil of the study area ( Castro-Larragoitia et al., 1997 ; Razo et al.,
004 ). The component loading of Al (0.427) was not particularly in PC1;
t was partially reflected in PC2 with a component loading of 0.545 and
ndicating a quasi-independent behaviour within this group. PC2 was
ominated by As, Al, and Sr, contributing to 14.52% of the total vari-
nce with As having the highest loading of 0.704. It indicated mining
nd metallurgical factors, specifically for the deposition of construction
astes, metal ore smelter, and past mining activities. The significant

ource of As contamination in industrialised and water-scarce areas of
errito Blanco, Metehuala is irrigational groundwater. It can be a signif-

cant source in this study because all irrigational water for agricultural
and came from the Matehuala-Cerrito Blanco hydraulic complex. Dur-
ng the single growing season, the hydraulic complex is used to supple-
ent rainwater for irrigation ( Ruíz-Huerta et al., 2017 ). The surface and

roundwater in the area have been contaminated due to previous min-
ng activities ( Martínez-Villegas et al., 2018 ). Moreover, it is assumed
hat previous mining operations contributed to the deposition of harm-
ul metal(loid)s in the soil in this study region. 

.6. Cluster analysis of trace metal(loid)s 

The relative homogeneous groups of trace metal(loid)s were identi-
ed in this study using a hierarchical cluster analysis method. The group
verage cluster method of linkage with correlation distance type was
sed to interpret the datasets produced for this study as a measurement
f similarity. As and Sr formed a cluster and had a strong correlation
ith each other, as shown in Fig. 7 . The significant correlations were
lso found between Al and Fe, suggesting similar distribution patterns.
ut Al and Fe cluster groups were also associated with Mn at a later
tage. However, it can be assumed that Mn was not found in interac-
ions with the other trace metal(loid)s, indicating that it was separated
rom other metal(loid)s in the soils. The dendrogram of cluster anal-
sis suggests that there is a substantial variation between these trace
etal(loid)s. 
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Fig. 7. Hierarchical dendrogram of trace 
metal(loid)s by cluster analysis. 
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Based on this study, it is clear that the GIS is an effective technique
or data sampling, data processing, and producing graphical output for
patial analysis. The results of the spatial distribution mapping, prin-
ipal component analysis, Pearson-correlation matrix, and hierarchical
luster analyses are determined on the overall distribution character-
stics of the trace metal(loid)s. PCA indicates the quantity and form
f contamination that could occur as a result of the variation in the
ataset rather than specifically identifying and quantifying contaminant
ources ( Goswami and Kalamdhad, 2022 ). Therefore, this study evalu-
tes or verifies the suggestions of the sources by examining a map of
oil and satellite images nearby the Cerrito Blanco area, Mexico. Over-
ll, the study indicates that the two groups might be used to classify the
race metal(loid)s in the surface soils. The first group comprised Al, Fe,
nd Mn which collectively characterise the most significant component.
he second group consists of As and Sr; whereas As is predominantly

nfluenced by anthropogenic activity and Sr is mostly originated from
atural sources. The results of this study revealed considerable As con-
amination, which may be due to past mining and metallurgical activi-
ies, contaminated irrigational water for farming, and ore smelting. But
here is still concern about the toxicity of the agricultural surface soil
ith negligible concentrations of the other trace metals. To address the

oncerns of worldwide trace metal(loid)s-soil contamination that occurs
ithin the limitations of current legislation, a technically feasible, eco-

ogically sustainable, and economically acceptable method is needed. It
s necessary to conduct an in-depth study on anthropogenic and natural
ources of pollution and put into effect a variety of protective methods
or soil pollution sources. 

. Conclusions 

Agricultural surface soil in the Cerrito Blanco area, Matehuala, Mex-
co has been studied to estimate the concentration level and spatial dis-
ribution pattern of As, Al, Fe, Mn, and Sr. The comparative abundance
f various interpolation approaches has led to the use of several algo-
ithms, and studies are being conducted to determine the optimal ap-
roach for defining the spatial distribution of trace metal(loid)s. The
ffectiveness and error predictions of interpolation techniques are used
o assess the optimal approaches. The results of this study have revealed
hat different interpolation techniques have distinctive aspects and ap-
licability contexts. The study indicates that IDW and LP are more suit-
ble interpolation approaches than other geostatistical techniques. IDW
s the most effective interpolation approach for the conditions of lim-
ted spatial scale, the average number of sampling data, and the sys-
11 
emic approach of data sampling with high spatial autocorrelation. This
tudy also revealed that the assessment of soil sampling data using mul-
ivariate statistical approaches, such as principal component analysis
nd cluster analysis, provides some relevant evidence that is not im-
ediately accessible. The concentrations of all selected metal(loid)s are
igher than their permissible limit or reference values in the studied
oil, except for Al metal. Fe and Mn concentrations might be influenced
y both anthropogenic and natural activities while Sr mostly originated
rom natural sources, and As came from past mining and metallurgi-
al activities as well as from the As-contaminated groundwater use. The
ispersion of industrial operations was spatially coherent with the ac-
umulation of metal(loid)s in agricultural soil. The growth of plants is
ositively influenced by a few metal components in agricultural soils.
ut once their levels in agricultural topsoil reach certain limits, they
xert a negative influence. In this study area, As, Fe, Mn, and Sr concen-
rations in agricultural soil exceeded the permissible or reference values
t regional and international levels. It indicates that if the concentra-
ions of these metal(loid)s continue to rise, the normal development of
lants will be adversely affected. Therefore, necessary action must be
aken to stop further enrichment of these metal(loid)s. While the initial
isk assessment required limited resources, future work would require
ore soil sampling, contamination monitoring, and risk further analysis

or the intermediate-priority regions. 
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