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Riccati equations of opposite torsions from the Lie-Darboux method for spatial curves
and possible applications
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A novel formulation of the Lie-Darboux method of obtaining the Riccati equations for the spatial
curves in Euclidean three-dimensional space is presented. It leads to two Riccati equations that
differ by the sign of torsion. The case of cylindrical helices is used as an illustrative example.
Possible applications in Physics are suggested.
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I. INTRODUCTION

In the differential geometry of spatial curves, which is also equivalent to the kinematics of trajectories in classical
mechanics, a basic result was obtained by J.F. Frenet and J.A. Serret around 1850, when they introduced the Frenet-
Serret system of first-order differential equations for the moving orthogonal frame of tangent, normal, and binormal
vectors

o(s) = K(s)B(s), (1)
B'(s) = —r(s)als) + 7(s)v(s) , (2)
V(s) = —7(s)B(s) , 3)

where the primes stand for the derivatives with respect to the arc length s of the curve, and the coefficients x and
7 are the curvature and torsion of the curve. This linear system of three coupled evolution equations in the arc
length of the curve is of course equivalent to a third-order differential equation in the disguised form of the following
fourth-order differential equation in the tangent vector
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A less known result, but not less important, has been obtained towards the end of the 19th century, by S. Lie and
G. Darboux, who devised a method by which the spatial curves could be described by a first-order nonlinear equation
of Riccati type with coefficients expressed in terms of the curvature and torsion.

The Lie-Darboux (LD) method is mentioned in some classic textbooks in differential geometry, such as Eisenhardt’s
treatise [1] and Struik’s lectures [2]. The goal of this paper is to introduce a more general presentation of the method,
which generates two Riccati equations associated with the change of sign of the torsion.

The organization of the paper is as follows: In section 2, we briefly review the standard LD method following
Struik. In section 3, we present our generalization of the LD method. Section 4 contains the illustrative example of
cylindrical helices for the explicit application of the generalized method to classical Euclidean curves. In section 5, we
suggest some applications ranging from biological areas to wave/quantum optics for the obtained Riccati equations
of opposite torsions and the moving frames formalism. Finally, our conclusions are stated in Section 6.
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II. THE STANDARD LD METHOD

To have an appropriate understanding of the LD method, one should first recall the so-called spherical indicatrix
mapping associated to a spatial curve in three-dimensional Euclidean space E? [1]. This is a one-to-one mapping
between a spatial curve and a corresponding curve lying on the unit sphere centered at the origin, which is constructed
by joining all the extremities of the radii parallel to the positive directions of the tangents to the given spatial curve.
By this means one reduces the study of spatial curves in E? to the study of curves on S?.

For an arbitrary spherical indicatrix curve, its tangent, normal, and binormal unit vectors satisfy the Frenet-Serret
linear system (1) and also the algebraic equation of the unit sphere S?

o+ B+ =1. (5)
The idea of the LD method is to turn this additive definition of S? into the factored form
(a+if)(a—if)=(1+7)(1—7) (6)

and introduce the conjugate imaginary functions w and —z~*

a+iff 14y

1—7 a—i83’
1 a—if  1+7v

z 1—v a+if’

from which one can obtain the tangent, normal, and binormal in rational forms in terms of the functions w and z

1—wz 1+ wz w—+ z
o = y ﬂ:Z y Y= . (7)

w—z w—z w—z

Likewise in the case of the FS system, one may be interested in the evolution in the arclength variable of the functions
w and —1/z. For the derivative of w, we have

w/:o‘/'i'iﬁ/ O‘“"Z.Bﬁy/:
l—y  (1=9)

where in the last step the derivatives from the FS system have been used. The trick in order now is to get « from
the first definition of w and substitute it in the second definition. In the resulting equation, one solves for g and
substitute it in the last equation in (8). The surprising result of the trick is that 7 is eliminated from the equation
which becomes

n=pw (8)

—iKW + T ,
=7

, , i 9 1
w = —tkWw + —TW* — =T, 9
which is a Riccati equation in which the torsion provides both the free term and the coupling to the nonlinearity. A
similar algebraic calculation shows that the function z satisfies the same Riccati equation as w, which implies that

the results for w apply also to z.

The second part of the LD method is to obtain the parametric equations of the curve starting from the Riccati
equation (9). The simplest way to do it is by integrating the three components of the unit tangent vector in (7). One
can see that for each of the components two particular solutions, w and z of (9) are needed. The most convenient
expression for these Riccati solutions is the rational form

woChth _dhth
cfs+ fa’ dfs + fa
where ¢ and d are appropriately chosen constants that should fulfill the orthogonality relations of the FS vectors

written in terms of w and z, and the f; are functions of the arc length s. The formulas for the components of the unit
tangent in this framework have been first obtained by G. Scheffers [3]:

(10)
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The parametric equations of the curve are then obtained by integrating these a; along the curve

o) = [ aro)io . o) = [ axortr . 2() = [ astorao (12)

The main issue of the LD method is to obtain the four functions f;(s), namely to be able to put the Riccati solutions
in the rational form given in (10).

III. A MORE GENERAL APPROACH

Instead of (5), we consider now the more general algebraic equation
ka? + k38 + k3 =1, (13)

which for k; = kg = k3 = k is the equation of the sphere of radius k! in the three-dimensional Euclidean space E3.
Its factored form is

(k1o + ikeB) (k1o — ik2B) = (1 + k3y)(1 — k37) .
The function w is defined in the two ways

- k104+ik2ﬂ - 1+k3’}/

1—ksy  kia—ikyS’ (14)
and derivating the first definition, we obtain
L k1o +ikeB (k1o + ikaB)ksy
1 — ksy (1—ksy)?
Substituting the derivatives of a, 3, and « from the Frenet-Serret system and using (14) we obtain
W — _mkga + k18 Tikg'y — kspw '
1 —ksy 1 — ksy
One can see that we should take k1 = ko = k to obtain
_ tky — ksPw
w' = —ikw + 7"17_7]55 . (15)

On the other hand, we can also obtain « from the first definition of w in equation (14)
w(l — ksvy) — ikB = ka
o

oo MUk =ik _ (k)

Substituting this expression of « in the second definition of w from equation (14), we obtain

1+ ks . 1+ ks
R[U—fsyy —ig) — ik (1= ksy)w — 2ikB

w =

Thus
(1 — kzy)w? — 2ikfw = 1+ k3 .
So, we obtain 3 as
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which upon substitution in equation (15), and after a few easy calculus steps, gives

r iks o i 2Ky — ks(1+ k)
w = mw—l—Tka 3 (1 — k)

Q

Taking k3 = k, we obtain @) = —1, which leads to the Riccati equation

w' = —ikw + %TwQ - %T : (16)

On the other hand, if we take k3 = —k, then Q = 1, which leads to the Riccati equation

@ = —ikd — %mvz + %T . (17)

One can see that the difference between the two Riccati equations resides in the sign of the torsion. We shall come
back to this issue at the end of the next section.

IV. EXAMPLE: CYLINDRICAL HELICES

This is the simplest case of curves of constant slope, i.e., curves having the ratio x/7 = const. For such curves, the
Riccati equations are separable and can be used to show how the LD method works.

The case k3 = k

The Riccati equation corresponding to this case has the form

dw T, 4
— = — 26w —1 18
ds 7 TR (18)
where £ = k/7 is a constant which is taken as a rational number, £ = a/b.
Using separation of variables and integrating, one obtains

In (w_““) :ig /ST(U)dU-‘ran (19)

w — Wa

where w; = £+ /€2 + 1 and wy = & — /€2 + 1 are the roots of w? — 26w — 1 = 0, ¢ = Va2 + b2, and the arbitrary

integration constant has been written as In K for convenience. Solving for w, one obtains

_ Kwoe's ¢(5) —qpy
Kelt o) —1

- o) = [ r(sas' (20)
from where the set of functions f;, 7 =1,2,3,4, is
fr=wee ) o=y, fy=e80) =1

This set leads to the following expressions for the three components «;,

i< P(s wi—1 —1£ P(s
SR S i G =) ST (£ o)
Bl — wy 2 " he *\b ’
i§0(s) 4 (2321) if o(s)
w3 —1 €7 +(w27)e c
as(s) = zw12_ " 5 = zb—(a — ¢) cosy, (5 ¢(s)) , (21)
1 b



where Sink (% ¢(8)) — et ¢(5),€fe*i3 ¢(S), cos, (% ¢(3)) _ it ¢(S)+C2'ke7i3 o(s) and Ck _ 71 _ a+c'

Solving for z,y, z, according to equation (12), we find,

ds’,

C“Iﬁ

7(s) =ii-(a ) / sing (£ o
y(s) =%<a—c> J e

@‘I(‘:

)
) ds’, (22)
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where the integration constants have been taken zero for simplicity.

It is possible to proceed further with the calculations in an easy manner only when the torsion is a constant, say
7(8) = 7 in which case ¢ = 7s and we can write

z(s) = i%(a —c) /S sing (g TS/) ds' = —i%(a —¢)cosy (s/c)
y(s) = i%(a —c) /S CoSk (g TS/) ds' = —i%(a — ¢)sing (s/c) (23)

z(s) = —\/ﬁ = -b(s/c),

where the constant torsion has been chosen as 7 = b/c? in the last step. Using sin} (s/c) + cosi (s/c) = Cy, one finds
that

2y =a?, (24)
which together with the expression of z(s) above shows that the helix is a cylindrical one.

The case k3 = —k

In this case, the Riccati equation (17) reads

dw ZT

— 26w — 1 25
=D 2 - 1) (25)
Proceeding similarly to the previous case, one can get the w function in the form

K’l[)ge_i% #(s) _ 1171
Ke 15 9(s) — 1

w =

; (26)

where the quadratic roots are now w; 2 = —{++/&2? + 1. Notice that 1,2 = —ws, 1 that we shall use in the expressions
for the functions f;, j = 1,...,4 as inferred from equation (26),

flz_wle_i%¢(5) ) f2:w2 ) f3:€_i%¢(s) R f4:—1

When these functions are used to calculate the components «; for this case, they provide the same results as (23).
Therefore the parametric coordinates obtained in the two cases k3 = 4k coincide. This fact confirms a statement of
Struik [2] that the sign of torsion cannot be determined from the parametric equations of the curve and one should
use the defining differential equations to set the sign ambiguity of the torsion. The fact that our generalized approach
provides two Riccati equations that differ by the sign of torsion is just the solution of this sign problem. As a final
point to this section, we mention that the second-order differential equation

72
u’ —i—mu+4u—0 (27)

is not a defining equation in the above sense, although the defining Riccati equations (16) and (17) can be obtained
by the usual logarithmic derivative change of variable w = —(2/i7)u’/u and @ = (2/i7)u’ /u, respectively.



V. POSSIBLE APPLICATIONS IN PHYSICS

Moving to physical applications, one should consider material equivalents of the ideal geometric concept of curve,
such as filaments, ribbons, rods, and waveguides. Firstly, we notice that the two Riccati equations that differ by the
sign of the torsion could enter the discussion of the interesting phenomenon of helix hand reversal, i.e., the spontaneous
switching of a single helical structure of one handedness to its mirror image, as studied in the context of tendrils of
climbing plants in [4], but it may occur in many other biological systems, see the references in [5].

On the other hand, for applications which are closer to quantum mechanics, we outline here some results reported
by Kugler and Shtrikman [6]. These authors noticed the important fact that if one considers scalar products of the
second and third FS equations with the binormal and normal unit vectors, respectively, one obtains

d d
v-d—f:T, B'd—Z:—T, (28)
implying that ¢ = £ [ % rds gives the amount of nonorthogonality of these vectors generated by the intrinsic torsion
under a displacement of ds. In other words, the normal unit vector develops a component along the binormal and
the binormal unit vector develops an opposite equal component along the normal axis in the course of motion, which
means that these vectors do not undergo parallel transport. Thus the Frenet-Serret triad do not form a locally inertial
frame implying more complicated equations of motion.

However, this nonorthogonality can be eliminated by a two-dimensional rotation of angle ¢ of the normal and

binormal vectors
Ui\  [cos¢p —sing)\ (S
(U;) o (singb cos ¢ ) (*y) ‘ (29)

The arclength rates of these rotated unit vectors are given by

dUl dU2 .
d—s——mcosqﬁa, K——Kasmqﬁa (30)
and and easy calculation shows that the U; satisfy the condition of parallel transport
dU;
U,—2L=0. 31
I (31)

Consequently, the triad {a, Uy, Us} forms a locally inertial frame. After a given path along the arclength of a curve,
the inertial frame will differ from the F'S frame by the rotation angle ¢, which is the classical analog of Berry’s phase
that in the context of pendulums in classical mechanics is known as Hannay angle.

The case of the propagation of waves through a twisted waveguide of circular cross section made of isotropic material
can be used as a simple illustration of these considerations. The phase ¢ depends only on the parallel transport of
the transverse coordinates. The center of the circular cross section defines a curve x¢(s) when propagation along the
length of the waveguide is considered and « is the arclength derivative of x¢(s). In the locally inertial frame, the
position of any point inside the twisted waveguide can be written as

x = Ujrcosp + Usrsing + xo(s) . (32)

and the Helmholtz equation for a scalar field ¥ in the neighborhood of an arbitrary point x defined as in (32) takes
the form

0? 1 02 19 9 =«
=+ +-=r—+Djyv=F 33
8s2+r28302+r87°r8r+ v v (33)
where ¢ = 0 + ¢ and Dis an operator whose form for constant x and 7 is given in [6], but also claimed therein to be

negligible under adiabatic conditions which are usually fulfilled in experiments. Thus, if we discard B, we obtain the
Helmholtz equation in the ‘cylindrical’ coordinates s, ¢, and r, which can be solved with the ansatz

1/) = eim%’fm(?a’ S) ) (34)

differing from the true cylindrical ansatz only in the azimuthal factor for which it is e??. Thus, under adiabatic

conditions, if the standard cylindrical coordinate system is used a supplementary phase e~*™? will appear in the
azimuthal circular harmonics.



The authors of a recent arXiv work [7] show that winding and linking topological invariants are functionals of
intrinsic geometric quantities of torsion type characterizing a variety of topological soliton configurations. They
define the vector M = %(B + i) exp (—i(f 7(x)dz + 2772)), where 71 in the last term of the exponent is the so-called

twist number [8], and map it to a normalized quantum state |¢) in Hilbert space. The classical Berry phase can be
expressed as iM* - dM /dx, where M* is the complex conjugate of M, which corresponds through the mapping to the
quantum Berry phase (|0 /0z).

Finally, another interesting wave phenomenon is the Gouy phase, a fundamental phase anomaly of nw/2 when a
convergent light beam passes through its focus, where n = 1 for cylindrical beams and n = 2 for spherical waves.
The physical origin of this phase shift is still debatable despite its centenary history. There are proposals to interpret
it as a Berry phase, e.g., in [9] it is discussed for paraxial Gaussian beam optics whose propagation is described in
terms of the complex beam width parameter evolving under a bilinear Mobius transform as in (10). Very recently, the
Gouy phase shift has been discussed in a pure quantum optical approach [10], i.e., expressing wave modes in terms
of photon number states. In the latter paper, the authors conclude that their results suggest a possible link between
an N-photon state and the Nth harmonic of a classical field, which introduces an increase of the mode order and
decrease of the beam waist, in addition to doubling the frequency.

VI. CONCLUSION

We have revisited the Lie-Darboux method in the differential geometry of E3 curves. A more general approach
than the one in the classic textbooks is worked out and illustrated with the example of cylindrical helices. The new
feature is that two Riccati equations that differ in the sign of the torsion are obtained instead of just one as in the
case of the standard method. Possible physical applications of this finding have been suggested.
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