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Abstract: During plant interaction with beneficial microorganisms, fungi secrete a battery of elicitors
that trigger plant defenses against pathogenic microorganisms. Among the elicitor molecules secreted
by Trichoderma are cerato-platanin proteins, such as EPL1, from Trichoderma atroviride. In this study,
Arabidopsis thaliana plants that express the TaEPL1 gene were challenged with phytopathogens to eval-
uate whether expression of EPL1 confers increased resistance to the bacterial pathogen Pseudomonas
syringae and the necrotrophic fungus Botrytis cinerea. Infection assays showed that Arabidopsis EPL1-2,
EPL1-3, EPL1-4 expressing lines were more resistant to both pathogens in comparison to WT plants.
After Pseudomonas syringae infection, there were reduced disease symptoms (e.g., small chlorotic spots)
and low bacterial titers in the three 35S::TaEPL1 expression lines. Similarly; 35S::TaEPL1 expression
lines were more resistant to Botrytis cinerea infection, showing smaller lesion size in comparison
to WT. Interestingly, an increase in ROS levels was detected in 35S::TaEPL1 expression lines when
compared to WT. A higher expression of SA- and JA-response genes occurred in the 35S::TaEPL1 lines,
which could explain the resistance of these EPL1 expression lines to both pathogens. We propose
that EPL1 is an excellent elicitor, which can be used to generate crops with improved resistance to
broad-spectrum diseases.

Keywords: Arabidopsis thaliana; Botrytis cinerea; cerato-platanin proteins; elicitor; Pseudomonas syringae;
Trichoderma atroviride

1. Introduction

The genus Trichoderma comprises many rhizocompetent filamentous fungi found in
different ecosystems [1]. Trichoderma species are fast-growing, opportunistic invaders and
prolific producers of secondary metabolites with antibiotic activity that suppresses diverse
phytopathogens such as bacteria, fungi, and nematodes [2–4]. These properties make these
fungi an ecologically dominant species. Other biocontrol mechanisms used by Trichoderma
include mycoparasitism and competition for space and nutrients [5]. Due to the ability
of Trichoderma spp. to suppress different phytopathogenic fungi, some species have been
widely used in agriculture as biological control agents [6,7].

Some Trichoderma species have the ability to establish symbiotic relationships with
plants. This symbiosis is achieved through crosstalk, in which plants and Trichoderma
produce a wide range of chemical compounds that modify the transcriptomes, proteomes,
and metabolomes of host plants [8,9]. As a result, Trichoderma species produce a wide range
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of compounds such as elicitors, siderophores, phytohormones, and volatile organic com-
pounds (VOCs) that modulate plant growth and defense [10–12]. Elicitors are molecules
that originate from the host plant (endogenous elicitors) or from the microbe (exogenous
elicitors) and can induce biochemical and/or structural responses associated with the
expression of resistance to plant diseases [13]. Among the elicitors produced by Tricho-
derma are the cerato-platanin proteins, which can activate the plant defense system against
different kinds of phytopathogens [14].

Cerato-platanins (CPs) are proteins secreted by fungi that participate in diverse stages
of the host-fungus interaction, acting as virulence factors or elicitors [15]. These CPs are
composed of small cysteine-rich proteins of approximately 100 to 130 residues, and they
have a signal peptide for their secretion [16]. The first CPs elicitors studied in Tricho-
derma were SM1 from T. virens and Eliciting Protein-Like (EPL1) from T. atroviride [14,17].
Exogenous application of SM1 purified from T. virens [14] as well as recombinant SM1
generated in the yeast Pichia pastoris [18] increased the expression of both local and systemic
defense-related genes in cotton and maize plants. It was shown that the exogenous appli-
cation of purified SM1 on cotton cotyledons reduced the size of the lesion caused by the
pathogenic fungus Colletotrichum sp. [14]. In addition, maize and tomato plants inoculated
with T. virens Gv29-8 that overexpressed SM1 were more resistant to necrotrophic and
biotrophic phytopathogens, respectively [19,20].

The Eliciting Plant Response-Like 1 (Epl1) elicitor is produced and exported by T. atro-
viride to the plant, and it is important in the interaction of fungi with plants because it
stimulates the induction of defense responses in the plant [20,21]. T. atroviride strains (TaOE)
that overexpress the EPL1 gene increase disease resistance against different phytopathogens
in tomato plants, whereas Epl1 knockout mutants conferred less protection in tomato plants
against Alternaria solani and B. cinerea [20]. While there is evidence that the EPL1 elicitor of
T. atroviride activates the plant’s defense system, to the best of our knowledge, there are no
reports on the molecular mechanism of this elicitor in plants.

The exogenous application of Epl1 protein from T. asperellum strain T4 (expressed
and purified from Pichia pastoris) to soybean leaves showed protective activity against the
pathogen Cercosporidium sofinum [22]. A similar study showed that the application of EPL1
protein of T. asperellum also produced in P. pastoris significantly reduced the infection of
Populus plantlets by A. alternata [23].

Other fungal CPs have been shown to induce resistance in plants by exogenous
treatments. In the fungus Botrytis cinerea, CP BcSpl1 is one of the most abundant proteins
in the secretome of this plant pathogen. Knockout mutants of bcspl1 showed a reduction
in virulence on hosts [24]. It was shown that the exogenous application of the BcSpl1
protein by infiltration in tobacco leaves induces resistance against Pseudomonas syringae
and B. cinerea, which correlated with the induction of the PR-1α and PR-5 genes [25]. In
addition, the CP Pop1 secreted by Ceratocystis populicola, a poplar pathogen, has been
shown to induce phytoalexin synthesis, production of ROS and NO, and the induction of
defense related genes in Platanus acerifolia leaves [15].

The heterologous expression of the SM1 elicitor of the phytopathogenic fungus Mag-
naporthe oryzae in Arabidopsis and rice plants has also been reported. Transgenic lines of
Arabidopsis and rice that express SM1 have a greater resistance against fungal and bacterial
diseases [26,27]. However, transient expression of MoSM1 in rice leaves or high expression
levels of the MoSM1 gene in transgenic lines of Arabidopsis generated HR-like necrosis.
This could be due to the fact that some CPs of phytopathogenic fungi, such as CP from
Ceratocystis fimbriata f. sp. platani [28], BcSpl1 from B. cinerea [24], and MoSM1 or MoMSP1
from M. oryzae, cause phytotoxic effects in different plants [26,29].

To determine if the SM1 homolog of a symbiotic fungus expressed in Arabidopsis
confers disease resistance but without producing the toxic effect on the plant, we generated
Arabidopsis thaliana plants that express the EPL1 gene from T. atroviride. These Arabidopsis
TaEPL1 expressing lines were infected with the bacterium P. syringae and the necrotrophic
fungus B. cinerea. We achieved a higher resistance against these pathogens in plants
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expressing TaEPL1. We also observed high levels of hydrogen peroxide accumulation in
TaEPL1 expressing lines compared to WT plants. Expression analysis of plant hormone-
related genes showed that the transgenic EPL1 lines induced SA and JA related genes, which
could explain the enhanced resistance of these transgenic lines to the tested pathogens.

2. Results
2.1. Generation of Arabidopsis EPL1 Expressing Lines (35S::TaEPL1)

We generated Arabidopsis transgenic plants expressing the EPL1 elicitor gene from
the beneficial fungus T. atroviride (TaEPL1). The 35S::TaEPL1 construct (Supplementary
Figure S1A) was transformed by floral dip in A. thaliana ecotype Col-0 (WT). The EPL1
gene expression of three 35S::TaEPL1 lines (EPL1-2, EPL1-3 and EPL1-4) was quantified by
RT-qPCR in 15-day-old plants. The highest EPL1 mRNA expression level was found in
the EPL1-3 line, followed by the EPL1-4 and EPL1-2 expression lines. As expected, EPL1
transcript was not detected in the Arabidopsis WT plants (Supplementary Figure S1B).

2.2. The Expression of the EPL1 Gene in Arabidopsis Results in Accelerated Growth

The expression of the Trichoderma EPL1 gene in Arabidopsis (35S::TaEPL1 lines)
resulted in a positive impact on its growth, as observed in 21-day-old plants grown in soil
(Figure 1A). In particular, the 35S::TaEPL1-4 line displayed the highest development among
the three TaEPL1 expressing lines (Figure 1A). As previously observed, 40-day-old plants
of the 35S::TaEPL1-4 exhibited the most significant development, while the parental Col-0
(WT) displayed the lowest growth (Figure 1B). We evaluated the fresh weight of the aerial
parts of each 40-day-old plant, and all three TaEpl1 expressing lines exhibited higher fresh
weights than the WT. Among them, the 35S::TaEpl1-4 line exhibited the highest biomass, as
evidenced by a greater number of developed inflorescences (Figure 1B,C).
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35S::EPL1-4 lines at two different stages: 21-day-old (A) and 40-day-old (B). Data on fresh weight (g)
of the leaf area in 40-day-old plants for the following lines: WT, 35S::EPL1-2, 35S::EPL1-3, and
35S::EPL1-4 (C). Data are means ± SE (n = 6). Statistical analysis between genotypes was determined
by One-way ANOVA, and the letters indicate statistically significant differences by Tukey’s test at
p < 0.05.

2.3. The Arabidopsis 35S::TaEPL1 Lines Are More Resistant to Infection by Pseudomonas Syringae

The Arabidopsis TaEPL1 expression lines were inoculated with P. syringae pv. tomato
DC3000 strain (Pst) to examine whether the expression of the TaEPL1 elicitor confers resis-
tance against bacterial infection. Four-week-old Arabidopsis EPL1-2, EPL1-3, EPL1-4, and
WT plants were inoculated with Pst bacterial suspension. Disease symptoms and bacteria
colony-forming units were recorded after 72 hpi (Figure 2). We observed more severe
symptoms with larger chlorotic spots in the WT plants than the 35S::TaEPL1 expression
lines (Figure 2A). This is in agreement with the low levels of bacterial titers detected in
the Arabidopsis 35S::TaEPL1 expression lines, which were up to 14.8-fold lower than that
obtained in the WT plants (Figure 2B). The EPL1-3 line presented the lowest bacterial titers
(6.3 × 103) at 72 hpi and showed milder symptoms of Pst infection in comparison to the
other two overexpressing lines (Figure 2B). This correlates with the EPL1-3 line having the
highest EPL1 transcript levels among the transgenic lines (Supplementary Figure S1). Our
data reveal that expression of the EPL1 gene from the beneficial fungus Trichoderma in
Arabidopsis plants confers marked resistance to P. syringae infection.
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72 h after infection with P. syringae DC3000 strain. In the images, the scale bar indicates 1 cm. (B) To
determine colony-forming units (CFU), five independent 0.5 cm2 leaf disks from 35S::TaEPL1 and WT
plants were ground, and then the ground leaves extract was spotted onto LB plates with rifampicin
to count the bacterial colonies formed. Data represented graphically. The bars denote the ±SE from
five biological replicates (n = 5). Statistical analysis between genotypes was determined by One-way
ANOVA, and the letters indicate statistically significant differences by Tukey’s test at p < 0.05.

2.4. The Arabidopsis 35S::TaEPL1 Lines Display Increased Reactive Oxygen Species (ROS)

In plants, ROS play an important role in plant defense against phytopathogen infec-
tion [30]. We analyzed whether the 35S::TaEPL1 lines produced a higher amount of ROS as
a possible mechanism for resistance against microbes. We detected ROS in root tips of 10-
day-old 35S::TaEPL1 and WT plantlets using 2,7-dichlorofluorescein diacetate (DCFH2-DA)
dye and fluorescence microscopy. ROS signal, detected as green fluorescence, was more
intense in 35S::TaEPL1 lines compared to WT roots (Figure 3A). Catalase (CAT) is a key
antioxidant enzyme that alleviates oxidative stress through decomposition of hydrogen per-
oxides to water and oxygen. The CAT treatment was carried out to determine its effect on
H2O2 levels between the 35S::TaEPL1 and WT lines. When we applied 250 U/mL CAT on
35S::TaEPL1 and WT plants, H2O2-associated fluorescence in the root tips in all transgenic
lines was decreased, whereas in WT plants, no signal was detected (Figure 3A). A quantita-
tive analysis of H2O2 confirmed that 35S::TaEPL1 lines accumulated a higher amount of
hydrogen peroxide, with the highest levels observed in the 35S::TaEPL1-3 line (3-fold more
than WT) (Figure 3B). Moreover, upon the application of CAT enzyme (250 U/mL), both
the transgenic 35S::TaEPL1 lines and the WT had decreased H2O2 levels, but the transgenic
lines maintained the highest values (Figure 3B).

Plants 2023, 12, 2443 6 of 17 
 

 

a higher amount of hydrogen peroxide, with the highest levels observed in the 

35S::TaEPL1-3 line (3-fold more than WT) (Figure 3B). Moreover, upon the application of 

CAT enzyme (250 U/mL), both the transgenic 35S::TaEPL1 lines and the WT had decreased 

H2O2 levels, but the transgenic lines maintained the highest values (Figure 3B).  

 

Figure 3. Detection of DCFH2-DA fluorescence in Arabidopsis 35S::TaEPL1 lines and WT root tips. 

Representative images in root tips of ten-days-old WT and 35S::TaEPL1 seedlings (TaEPL1-2, 

TaEPL1-3, and TaEPL1-4). (A) Untreated (0.2X MS liquid medium) and catalase treated (0.2X MS + 

250 U/mL CAT) root tips. Images were acquired on a Zeiss Axio Imager M2 microscope under 10X 

magnification. The scale bar corresponds to 100 μm. (B) H2O2 quantification was performed using 

KI in A. thaliana WT and 35S::TaEPL1 seedlings. Conditions shown are untreated (0.2X MS liquid 

medium) and catalase treated (0.2X MS + 250 U/mL CAT). The data show the means ± SE from three 

biological replicates (n = 3). The variance analysis was done by Two-way ANOVA (genotype x cata-

lase), and the letters indicate statistically significant differences by Tukey’s test at p < 0.05. 

WT TaEPL1-2 TaEPL1-3 TaEPL1-4

M
S

M
S

 +
 C

A
T

C

-1 -1 -1 -1 -1 -1 -1 -1
0.0

0.1

0.2

0.3

0.4

0.5

a
a

b

c
d

e

g
f

WT TaEPL1-2 TaEPL1-3 TaEPL1-4 WT TaEPL1-2 TaEPL1-3 TaEPL1-4

H
2
O

2
 C

o
n

te
n

t 
(µ

m
o
l/

g
F

W
)

Untreated Catalase treated

A

B

Figure 3. Detection of DCFH2-DA fluorescence in Arabidopsis 35S::TaEPL1 lines and WT root tips.
Representative images in root tips of ten-days-old WT and 35S::TaEPL1 seedlings (TaEPL1-2, TaEPL1-3,
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and TaEPL1-4). (A) Untreated (0.2X MS liquid medium) and catalase treated (0.2X MS + 250 U/mL
CAT) root tips. Images were acquired on a Zeiss Axio Imager M2 microscope under 10×magnification.
The scale bar corresponds to 100 µm. (B) H2O2 quantification was performed using KI in A. thaliana
WT and 35S::TaEPL1 seedlings. Conditions shown are untreated (0.2X MS liquid medium) and
catalase treated (0.2X MS + 250 U/mL CAT). The data show the means ± SE from three biological
replicates (n = 3). The variance analysis was done by Two-way ANOVA (genotype x catalase), and
the letters indicate statistically significant differences by Tukey’s test at p < 0.05.

2.5. The 35S::TaEPL1-3 Line Shows a Higher Accumulation of Transcripts of SA-Related Genes
under Pseudomonas Syringae Infection

Salicylic acid (SA) and reactive oxygen species (ROS) play important functions in the
activation of plant defense under pathogen attacks. The expression levels of SA-mediated
defense markers such as PR1, PAL1, and WRKY54, as well ZAT1.2 (signaling ROS gene),
were quantified by RT-qPCR in rosette leaves of 28-day-old WT and 35S::TaEPL1-3 plants
inoculated with P. syringae (Figure 4). After 24 h of bacterial infection, we observed higher
mRNA expression levels of the four genes analyzed (PR1, PAL1, WRKY54 and ZAT1.2) in
the 35S::TaEPL1-3 line compared to the WT (Figure 4). This same behavior was observed in
the mock inoculated plants, in which all the measured markers showed a higher expression
in the 35S::TaEPL1-3 line than the WT (Figure 4). This result is in accordance with the
observation that this EPL1 expressing line is also the most resistant to P. syringae.
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Figure 4. Expression analysis of plant defense genes in WT and 35S::TaEPL1-3 line during Pseudomonas
syringae infection. Leaves of four-week-old WT and the 35S::TaEPL1-3 plants were infected or not
with P. syringae for 24 h. The expression levels of PR1, WRKY54, PAL1, and ZAT1.2 genes were
measured by RT-qPCR. Values were expressed as relative expression levels (2−∆Ct) calculated after
normalization to the A. thaliana UBQ5 gene. For each sample, three biological replicates were
analyzed with their respective technical replicates. The variance analysis was done by Two-way
ANOVA (genotype x infection), and the letters indicate statistically significant differences by Tukey’s
test at p < 0.05.

2.6. The Arabidopsis 35S::TaEPL1 Lines Were More Resistant to Botrytis cinerea Infection

The resistance of Arabidopsis EPL1-expressing plants against infection by the necrotrophic
fungus B. cinerea strain B05.10 was assessed. Four-week-old plants expressing EPL1 gene
(EPL1-2, -3, -4) were inoculated with the B. cinerea spore solution and compared with WT
plants. After 72 hpi, the incidence of infection and leaf lesion size were evaluated. Figure 5A
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shows that the 35S::TaEPL1 expressing lines were more resistant to fungus infection than
WT plants, as observed by decreased leaf necrosis and less water-soaking development.
Necrotic lesion formation in the 35S::TaEPL1 lines showed reductions in a lesion size of
4.39 ± 0.1 mm2 for EPL1-3, 5.07 ± 0.1 mm2 for the EPL1-4 line and 6.13 ± 0.2 mm2 for the
EPL1-2 line, while the WT leaves had lesions of 7.77 ± 0.2 mm2 (Figure 5C). Even though
disease incidence was not strongly reduced in the EPL1 expressing lines, the EPL1-3 line
had the lowest necrotic lesion size caused by the fungus (Figure 5B), which agrees that
this EPL1 expressing line is the most resistant to the bacteria (Figure 2). In addition, we
selected the EPL1-3 line for trypan blue staining after inoculation with B. cinerea (Figure 6).
We observed that the blue staining was lower in the EPL1-3 line, while a strong signal was
observed in the WT leaves (Figure 6). This confirms a decrease in plant cell death that
correlates with a smaller lesion size in the transgenic EPL1-3 line.
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Figure 5. Leaf infection of Arabidopsis 35S::TaEPL1 and WT by Botrytis cinerea. (A) Disease symptoms
in leaves from four-week-old 35S::TaEPL1 (TaEPL1-2, TaEPL1-3, and TaEPL1-4) and WT plants at 72 h
after infection with B. cinerea strain B05.10. For each line, three representative images of the infected
leaves are shown. In the images, the scale bar indicates 1 cm. (B) The disease incidence graph shows
the number of infection events with respect to the total inoculated leaves (n = 50) and expressed as a
percentage. (C) Lesion area measurements (mm2) of total infection events. The bars denote the ±SE.
Statistical analysis between genotypes was determined by One-way ANOVA, and the letters indicate
statistically significant differences by Tukey’s test at p < 0.05.
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Figure 6. Trypan blue staining indicating cell death caused by Botrytis cinerea infection in leaves of
35S::TaEPL1-3 line and WT. Representative images of the area of cell death in EPL1-3 and WT leaves
inoculated with B. cinerea. In the images, the scale bar indicates 1 cm. Leaves of four-week-old WT
and EPL1-3 plants were infected with 2 × 105 spores of B. cinerea strain B05.10. Leaves were collected
24 h after inoculation, and then stained in a trypan blue solution. As control, PDB (0.25X) was used
as a mock treatment.

2.7. Expression Changes Plant Defense Genes in the 35S::TaEPL1-3 Line under Botrytis
cinerea Infection

We analyzed the expression levels of the LOX3 and PDF1.2 genes involved in JA
biosynthesis and response, respectively, WRKY33 gene, which is a transcription factor
implicated in plant defense against necrotrophic pathogens [31], and also ZAT1.2 gene
under B. cinerea infection. The gene expression levels were evaluated by RT-qPCR in rosette
leaves of 28-day-old WT and 35S::TaEPL1-3 plants inoculated with B. cinerea for 24 h. In
plants inoculated with the fungus, a higher expression was noticed in the ZAT1.2 and
WRKY33 genes in the 35S::TaEPL1-3 line than WT; whereas, the PDF1.2 and LOX3 genes
were similarly induced by the fungus between the WT and the 35S::TaEPL1-3 line (Figure 7).
In the mock treatment, the 35S::TaEPL1-3 line had higher expression of all marker genes
than the parental WT (Figure 7). Our data show that the 35S::TaEPL1-3 line has up-regulated
plant defense genes against necrotrophic pathogens, which could prevent the spread of the
fungus when plants were inoculated.
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not with fungus for 24 h. Expression patterns of PDF1.2, LOX3, WRKY33, and ZAT1.2 genes of
A. thaliana were assessed by RT-qPCR. Values were expressed as relative expression levels (2−∆Ct)
calculated after normalization to the A. thaliana UBQ5 gene. For each sample, three biological
replicates were analyzed with their respective technical replicates. The variance analysis was done by
Two-way ANOVA (genotype x infection), and the letters indicate statistically significant differences
by Tukey’s test at p < 0.05.

2.8. Determination of H2O2 Content in Arabidopsis WT and 35S::TaEPL1-3 Lines under B. cinerea
and P. syringae Infection

We analyzed the H2O2 accumulation in the 15 day-old WT and 35S::TaEPL1-3 plantlets
under B. cinerea and P. syringae infection at 24 and 48 hpi (Figure 8). As observed in
Figure 3, the 35S::TaEPL1-3 line accumulates a higher amount of ROS than WT under
mock conditions (Figure 8). Despite the WT line showing an increase in H2O2 levels
during bacterial infection at both 24 and 48 hpi, the 35S::TaEPL1-3 line exhibited the highest
H2O2 accumulation (Figure 8). During B. cinerea infection, a decrease in H2O2 levels was
observed at 24 and 48 hpi in the 35S::TaEPL1-3 line compared to their respective mock
controls, whereas in the WT ecotype, there was a reduction in H2O2 levels at 24 hpi followed
by an increase at 48 hpi compared to their mock controls (Figure 8).
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3. Discussion

Trichoderma species are widely used in agriculture as a beneficial fungus due to its
biocontrol activity and promotion of plant growth [1,32]. In the plant-Trichoderma in-
teraction, both organisms secrete molecules for their recognition, initiating a molecular
communication to achieve symbiosis between them [12,33–39]. Among the molecules
reported to be secreted by Trichoderma are elicitors, such as Eliciting Plant Response-Like 1
(Epl1), which is produced and secreted by T. atroviride. There is evidence of a protective role
of Epl1 protein from T. atroviride against foliar maize pathogen C. graminicola [21], and also
strains of T. atroviride that overexpress TaEPL1 gene increased resistance in tomato against
A. solani, B. cinerea, and P. syringae infection [20]. Although the generation of Arabidopsis and
rice plants expressing the SM1 elicitor of the phytopathogenic fungus M. oryzae has been
reported, the effect of the expression in A. thaliana of an elicitor as EPL1 from beneficial
fungus like Trichoderma and its resistance against pathogens has not been studied.

We describe here the response of A. thaliana plants that express the EPL1 elicitor to
the infection by two phytopathogenic microorganisms. One of these pathogens was the
hemibiotrophic P. syringae, in which A. thaliana 35S::TaEPL1 lines were more resistant to
bacterial infection. These Arabidopsis 35S::TaEPL1 lines exhibited less damage caused by
infection as well as lower bacterial load per leaf compared to the WT plants. This suggests
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that the EPL1 elicitor activates a defense response within the plant cells, thus generating a
lower susceptibility to P. syringae.

We report that the expression of the EPL1 elicitor in Arabidopsis triggers H2O2 accumu-
lation even in the absence of pathogen inoculation. Furthermore, despite applying CAT, a
H2O2 scavenger, it did not completely reduce the H2O2-associated fluorescence signal in
root tips of the transgenic lines, as observed in the WT. In this sense, the 35S::TaEPL1-3 line
showed a higher ZAT1.2 transcript level due to the infection of the bacterium as well as
in the control plants (mock), which correlates with ROS accumulation in these transgenic
lines. The ZAT1.2 gene encoding a zinc finger protein is involved in oxidative stress re-
sponses [40]. After inoculation with P. syringae, the TaEPL1-3 expression line had a higher
accumulation of PAL1, PR1, and WRKY54 transcripts, which are involved in the salicylic
acid (SA) biosynthesis, response, and regulation, respectively. An interesting fact is that
the highest accumulation of H2O2 was observed in the 35S::TaEPL1-3 line after bacterial
infection, both at 24 and 48 hpi. The accumulation of ROS and the induction of these SA
response genes could explain the resistance shown by the 35S::TaEPL1 lines to infection
by Pseudomonas. It was previously reported that the plant protective activity of SM1 and
other CP proteins are associated with the accumulation of ROS and phytoalexins [26,41,42].

Likewise, we found that the expression of the TaEPL1 gene in Arabidopsis confers
enhanced resistance against B. cinerea infection. The Arabidopsis 35S::TaEPL1 plants showed
a smaller lesion area and a reduction of leaf cell death caused by the fungus compared
to the WT plants. This is consistent with a higher expression of the WRKY33 gene in the
35S::TaEPL1 line upon infection with the fungus B. cinerea. The WRKY33 transcription
factor has been reported to be involved in defense responses against B. cinerea and other
necrotrophic pathogens [31]. TaEPL1 expression in Arabidopsis reduces fungal colonization
of plant tissue, thus making them more resistant to this phytopathogen. An interesting
observation was that the LOX3, PDF1.2, WRKY33, and ZAT1.2 genes were up-regulated
in the 35S::TaEPL1-3 line under mock conditions (i.e., no fungal infection), which could
suggest that EPL1 expression in the plant causes a priming of genes involved in plant
defense against this necrotrophic pathogen. An important finding was that a reduction
in H2O2 levels was observed in the 35S::TaEPL1-3 line during infection with B. cinerea
at 24 and 48 hpi compared to the mock controls. This behavior suggests that the EPL1
expressing line is actively regulating its ROS levels in response to the presence of this
necrotrophic pathogen.

Our data provide evidence that TaEPL1 expressed in Arabidopsis plants can activate
defense responses against pathogens such as P. syringae and B. cinerea, which activate the
SA- and JA/ET pathways. An ortholog to EPL1 exists in M. oryzae called MoSM1 [27].
Expression of MoSM1 in rice significantly increased SA and JA content, and also induced
SA- and JA-related biosynthesis genes and signaling under normal growth conditions [27].
In addition, the heterologous expression of the MgSM1 in A. thaliana plants confers a
broad-spectrum resistance against B. cinerea, Alternaria brassicicola, and P. syringae [26]. In
the MgSM1-expressing plants, some defense genes such as PR1, PR5, and PDF1.2 were
upregulated, and an accumulation of ROS was reported [26]. The authors changed the 35S
viral promoter to an inducible promoter, since large amounts of MgSM1 protein caused
a hypersensitive response in Arabidopsis, while this phenotype has not been reported in
the case of T. virens SM1 purified protein [18], nor in our study here with TaEPL1. We did
not observe a visible hypersensitive response phenotype in any 35S::TaEPL1 lines. This
could be due to the fact that M. grisea is a phytopathogenic fungus that causes severe
disease in rice and other grasses, and the constitute expression of SM1 in planta generated a
hypersensitive response with a greater accumulation of ROS, while species of the genus
Trichoderma are plant symbionts, and so the higher expression of EPL1 did not generate any
negative phenotype in the plant. In addition to SM1 from M. grisea, phytotoxic effects have
been reported for cerato-platanin, such as BcSpl1 from B. cinerea [24], a CP of 12.4 kDa from
Ceratocystis fimbriata f. sp. platani [28].
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On the other hand, Arabidopsis plants carrying the 35S::TaEPL1 construct exhibited
increased biomass, with the TaEPL1-4 line showing the most pronounced accelerated
growth. It is noteworthy that expressing a fungal elicitor, such as EPL1 (from the strain
T. atroviride IMI 206040), in Arabidopsis results in the generation of more vigorous plants.
Several species of Trichoderma have been reported to exert beneficial effects on plant
growth [11]. In particular, the plant growth-promoting effect has been tested using the
strain T. atroviride (IMI 206040) in tomato plants [20] and A. thaliana plants [12,32,34].
Further studies focused on the mechanism of EPL1 gene are needed to elucidate its role in
plant growth.

4. Materials and Methods
4.1. Plant Growth Conditions

Seeds of Arabidopsis 35S::TaEPL1 lines generated in this work and parental Col-0 (WT)
were sterilized using 20% (v/v) commercial sodium hypochlorite (6% free chlorine) solution
for 5 min, and washed seven times in sterile distilled water. Aseptic seeds were stratified
during 48 h at 4 ◦C and afterwards germinated and grown on agar plates containing 0.2X
MS pH 7, 0.5% (w/v) sucrose, and 0.8% (w/v) agar. Seedlings were incubated in a growth
chamber with a photoperiod of 16 h (100 µmolm−2 s−1)/8 h with a light/dark cycle at a
temperature of 22 ± 1 ◦C until used in the experiments described above.

4.2. Generation of Arabidopsis thaliana 35S::TaEPL1 Lines

The EPL1 ORF (417 bp) was amplified from cDNA of mycelial tissue of the fungus Tri-
choderma atroviride with Pfu DNA Polymerase high fidelity (Thermo Scientific™, Waltham,
MA, USA) using the primers: EPL1-Fw 5′ATGCAGTTCTCCAGCCTCTTCAAG3′ and
EPL1-Rv 5′TTAGAGGCCGCAGTTGCTCACAGC3′. The product was cloned into the
pCR8/GW/TOPO vector (Invitrogen, Carlsbad, CA, USA). The entry clone was verified
by sequencing and recombined into pMDC32 binary vector by the Gateway LR Clonase
enzyme mix (Invitrogen, Carlsbad, CA, USA) to generate the pMDC32-EPL1 construct.
The pMDC32-EPL1 was transferred into Agrobacterium tumefaciens strain GV2260 by elec-
troporation and transformed into Arabidopsis thaliana WT (Col-0) plants by the floral dip
method [43]. Transformant seeds were selected based on their capacity to grow on 0.2X
Murashige and Skoog medium (MS) supplemented with hygromycin at a concentration of
50 mg/mL. Three independent T4 TaEPL1 overexpression lines were obtained and used in
this work (35S::TaEPL1-2, -3 and -4).

4.3. Measurement of Fresh Weight of 35S::TaEPL1 and WT Lines

Arabidopsis thaliana seeds of the WT (Col-0) and 35S::TaEPL1 expression lines (TaEPL1-2,
-3 and -4) were grown on 0.2X MS plates for 7 days. Subsequently, the seedlings were trans-
ferred to soil pots containing a mixture of Sunshine Mix #3 commercial substrate, perlite,
and vermiculite (3:1:1). The pots were placed in a growth chamber with a temperature of
22 ± 1 ◦C with a photoperiod of 16 h (100 µmolm−2 s−1)/8 h, light/dark. The fresh weight
(g) of the aerial part of each 40-day-old plant was measured using an analytical balance.
Data analysis was done from six biological replicates (n = 6).

4.4. Pathogen Inocula Preparation

Pseudomonas syringae pv. Tomato DC3000 was grown to an OD600 nm of 0.8 in Luria
Bertani (LB) medium (pH 7.0) supplemented with 50 mg/mL of rifampicin at 28 ◦C with
shaking. The culture was centrifuged at 13,000 rpm for 10 min. The cells were washed
twice with 10 mM MgCl2 and adjusted at an OD600 nm of 0.2 (1 × 108 CFU/mL) for use
in the infection assays. Botrytis cinerea strain B05.10 was grown on Potato Dextrose Agar
(PDA) in darkness at 28 ◦C for two weeks. Spores were collected in sterile water, filtered
through glass wool to remove hyphae, and quantified in a Neubauer chamber under a
Motic model BA-300 microscope with 40×magnification (Motic®, San Antonio, TX, USA).
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The inoculum was diluted in Potato Dextrose Broth (PDB, 6 g/L) to a concentration of
1 × 106 spores/mL−1.

4.5. Arabidopsis 35S::TaEPL1 Expression Lines—Pseudomonas syringae Inoculation Assays

Fourteen-day-old 35S::TaEPL1 and WT plants were transferred to 50 cell tray inserts
(4.5 cm cell diameter) containing a sterile mixture of sunshine Mix#3 commercial sub-
strate:vermiculite:perlite (3:1:1), and plants were watered every three days. Four-week-old
plants were inoculated with P. syringae (50 plants of each line). For each plant, three leaves
were infected with bacteria suspension at an OD600 nm of 0.2 in 10 mM MgCl2 using
the abaxial injection method [44]. Mock inoculations of 35S::TaEPL1 and WT plants were
made by infiltration with 10 mM MgCl2. Infiltrated plants were covered with a plastic
dome to maintain humidity and incubated in a growth chamber with a photoperiod of
16 h (100 µmolm−2 s−1)/8 h with a light/dark cycle at a temperature of 22 ± 1 ◦C. For
infection symptom evaluation, the leaves were collected 72 h post-inoculation (hpi), pho-
tographed, and sterilized using 70% ethanol for 1 min, and then rinsed with distilled water.
Five independent 0.5 cm2 leaf disks from 35S::TaEPL1 and WT plants (n = 5) were ground
in 10 mM MgCl2 and serially diluted. Ten microliters of a 1:5 dilution was spotted onto
LB agar plates containing 50 mg/mL rifampicin, and colonies were counted after 2 days
growth in the dark at 28 ◦C [44]. All interaction assays with bacteria were done three times
with similar results.

4.6. Arabidopsis 35S::TaEPL1 Expression Lines—Botrytis cinerea Inoculation Assays

Plants of 35S::TaEPL1 and WT were cultivated and prepared for inoculation as de-
scribed above. Four-week-old 35S::TaEPL1 lines and WT plants were inoculated with
B. cinerea (50 plants of each line, n = 50). For each plant, three leaves were infected on
the adaxial surface of leaves avoiding the vascular system with 10 µL drops containing
1 × 106 spores. Control PDB (0.25X) was used as a mock treatment. Inoculated plants were
covered with a plastic dome to maintain the humidity and placed in darkness for 72 h at a
temperature of 22 ± 1 ◦C. After this period, the disease incidence (percentage of leaves that
showed disease symptoms over the total number of inoculated leaves) and leaf lesion area
using Image J software IJ 1.46r version (http://rsb.info.nih.gov/ accessed on 14 June 2023)
were determined. Each assay was repeated three times with a similar result.

4.7. Plant Tissue Trypan Blue Staining after Botrytis cinerea Infection

Trypan blue dye was used to detect plant cell death after fungal infection. Infected
leaves from four-week-old from A. thaliana WT and EPL1-3 plants were collected 24 hpi
with 2 × 105 spores of B. cinerea strain B05.10. PDB medium (0.25X) spore diluent was
applied as a mock inoculation (control). Leaves were stained by immersing in a staining
solution (10 mg of trypan blue, 10 mL of lactic acid, 10 mL of phenol, 10 mL of glycerol, and
10 mL of distilled H2O) for 12 h. Leaves were cleared with consecutive washes in ethanol
(98%) until chlorophyll was completely removed and photographed.

4.8. Hydrogen Peroxide (H2O2) Detection by DCFH2-DA Labeling

In situ localization of reactive oxygen species (ROS) was performed in root tips of ten-
day-old WT and 35S::TaEPL1 lines using the fluorescent molecule 2′,7′-dichlorodihydroflu-
orescein diacetate (DCFH2-DA, Sigma-Aldrich, Burlington, MA, USA), as described by [45],
with some modifications. The effect of the exogenous application of catalase (CAT, Sigma
Aldrich, Burlington, MA, USA) on the H2O2 levels in the WT and 35S::TaEPL1 lines was
also analyzed. Seedlings were placed in 24-well culture plates containing 0.2X MS liquid
supplemented with 0 or 250 U/mL of CAT (dissolved in pH7 phosphate buffer) and
incubated at 22 ± 1 ◦C in a growth chamber for 4 h with continuous light. The seedlings
were then immersed in 25 µmol DCFH2-DA in Tris buffer (10 mM Tris, 50 mM KCl, pH 7.2)
for 30 min in complete darkness. After rinsing with buffer to remove excess DCFH2-DA
and CAT, the roots were observed and photographed with a fluorescence microscope

http://rsb.info.nih.gov/
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(Zeiss Axio Imager M2; Carl Zeiss Microscopy, Pleasanton, CA, USA) at 10× magnification
using excitation and emission wavelengths of 480 nm and 500–550 nm, respectively. Fifteen
seedlings of WT and 35S::TaEPL1 lines were analyzed by treatment; each assay was repeated
at least three times.

4.9. Determination of Hydrogen Peroxide Content with Potassium Iodide (KI)

Hydrogen peroxide content was determined according to Jungle et al., 2014. Ten-day-
old plantlets of WT and 35S::TaEPL1 lines were transferred to plates containing 0.2X MS
liquid supplemented with 0 or 250 U/mL of CAT and incubated at 22 ± 1 ◦C in a growth
chamber for 4 h with continuous light. The CAT treatment was carried out to determine
the reduction of the H2O2 content between the WT and 35S::TaEPL1 lines. In another
experiment, we measured the hydrogen peroxide content in 15-day-old A. thaliana WT and
35S::TaEPL1-3 plants following inoculation with pathogens. Plantlets were infected with
2 µL of P. syringae or B. cinerea inocula for 24 h and 48 h, and as mock treatments, MgCl2
and PDB (0.25X) were used, respectively. Samples of 100 mg of fresh tissue from whole
Arabidopsis plantlets were homogenized in an ice bath with 375 µL 0.1% (w/v) trichloroacetic
acid. The mixture was centrifuged at 4 ◦C, 7000 rpm for 20 min; 250 µL of supernatant was
transferred to a new tube and 250 µL of 10 mM potassium phosphate buffer (pH 7.0) was
added, followed by 500 µL of 1 M KI. The absorbance was read at 390 nm using an Epoch-2
microplate reader (Biotek®, Winooski, VT, USA). The H2O2 content was determined using
a standard curve (10, 20, 30, 50, 70, and 100 µM H2O2). Data analysis was done from three
biological replicates (n = 3).

4.10. RNA Isolation and RT-qPCR Gene Expression Analysis

Total RNA was extracted from 10-day-old seedlings of WT and 35::EPL1-2, -3, and -4
lines using Concert reagent (Invitrogen, Carlsbad, CA, USA), followed by DNAase Turbo
digestion (Ambion, Austin, TX, USA) for genomic DNA removal. Total RNA concentration
was calculated with an Epoch-2 microplate reader (Biotek® Winooski, VT, USA). cDNA
was synthesized using 1 µg total RNA and a SuperScript™ II Reverse Transcriptase kit
(Invitrogen, Carlsbad, CA, USA). RT-qPCR was performed using the Step One Real-Time
PCR Detection System (Applied Biosystems, Waltham, MA, USA). The reaction mixture
was made in a volume of 10 µL containing 100 ng of cDNA, 200 nM of each primer
(Supplementary Table S1), and 5 µL of Maxima SYBR Green/ROX qPCR Master Mix (2×)
Thermo Scientific™ (Waltham, MA, USA). First, the relative expression of the ELP1 gene
in 35S::TaEPL1 Arabidopsis lines was quantified. Then, the EPL1-3 line was selected to
measure the expression levels of SA-mediated defense markers, such as PR1, PAL1, and
WRKY54 and JA-mediated defense markers LOX3 and PDF1.2, WRKY33, as well ZAT1.2
(signaling ROS gene). Expression levels were quantified in rosette leaves of 28-day-old WT
and 35S::TaEPL1-3 plants inoculated with B. cinerea or P. syringae for 24 h. The sequences
of oligonucleotides used are included in the Supplementary Table S1. Gene expression
was analyzed by the delta Ct method [46]. The AtUBQ5 gene was used as a reference. For
each cDNA sample, three biological replicates (n = 3) were analyzed with their respective
technical replicates.

4.11. Statistical Analysis

Results from representative experiments are shown as means ± SE. Statistical signifi-
cance (p ≤ 0.05) among data were determined regarding genotypes by One-Way ANOVA
or Two-Way ANOVA (genotype x infection). Tukey’s post-tests were performed using the
GraphPad Prism version 8.0 software (GraphPad Software, San Diego, CA, USA).

5. Conclusions

Our data show that Arabidopsis lines expressing the EPL1 elicitor of T. atroviride are
clearly resistant to pathogens with different lifestyles and modes of nutrition, namely, the
hemibiotrophic bacteria P. syringae and the necrotrophic fungus B. cinerea. We observed that
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the Arabidopsis EPL1-3 line, which had the highest expression of the TaEPL1 gene, resulted
in greater protection against pathogens. This reduction in pathogen infection in EPL1
expressing plants could be correlated with the increase in ROS levels and the induction
of SA- and JA-related genes. Therefore, EPL1 elicitor is an excellent candidate for use as a
molecule that provides protection against diverse phytopathogens.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/plants12132443/s1, Figure S1: Generation of 35S::TaEPL1 Ara-
bidopsis lines. Table S1: Oligonucleotide sequences used to measure gene expression by RT-
qPCR analysis.
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