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Building micro and macro sized structures using compacted magnetic nanoparticles is a widely used approach that has proven a great
potential as the basis for novel materials made by design. These materials are made by compactation of soft magnetic particles in the nano
or micrometer sizes and their macroscopic properties are mostly governed by magnetostatic effects and the combination of the intervening
shapes, namely those of the individual particles and that of the piece made with these particles. Herein a simplified mean-field model is
presented to describe the magnetostatic effects in soft magnetic composites with cylindrical macroscopic shape made of densely packed
ideal spherical soft magnetic particles. The model allows calculating the main magnetic parameters of the system as well as their most
relevant tendencies as a function of its main parameters. Furthermore, the model has also been successfully applied to arrays of interacting
macroscopic shapes, which provides a further controllable magnetic parameter.
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1. Introduction

Using magnetic particles as building blocks to construct more
complex structures is a well known approach to fabricate
materials with tailored magnetic properties. A well devel-
oped and extensively studied class of such materials are the
so-called soft magnetic composites [1], in which magnetic
powders of a soft magnetic material are compacted to form
a larger, macroscopic shape. These materials are very in-
teresting for their application as soft materials [2, 3]. Such
constructions using densely packed particles has also been
explored with magnetic nanoparticles [4–6]. Another inter-
esting example was reported by Merk,et al. [7], where they
found that using wood as a template, an anisotropic com-
posite material is obtained, related to the hierarchical struc-
ture of wood. In another report, magnetic particles have
been printed using an inkjet printer leading to an anisotropic
printed material [8]. These reports show that when particles
are packed in a given geometry, the assembly tends to show a
magnetic anisotropy having the symmetry of the enveloping
volume [9, 10]. Interestingly, this has been observed when
nearly spherical isotropic particles are packed together. This
anisotropy is due to magnetostatic effects, in particular de-
magnetizing dipolar interaction between the particles. More-
over, there is evidence showing that changing the shape of the
particle packing and forming arrays of such packings can lead
to novel anisotropy properties which show symmetry proper-
ties derived from both the shape of the packing and the array
formed with them [4,5,7,8,11].

Calculation of the magnetic anisotropy properties of these
systems is complex and requires specialized software and
computing resources [12]. In this sense, simple model cal-
culations capable of providing a clear and practical view of
the relation between the packing geometries and the result-
ing magnetic properties are needed. Specially given the cur-

rent progress of current fabrication techniques that provide an
unprecedented control at the nanoscale to produce extremely
complex particle assemblies. In this sense, herein we propose
and validate a simple mean-field model for spherical particle
assemblies which accounts for the magnetostatic properties
of these systems. These properties allow to obtain the mag-
netic shape anisotropy of the assembly. Moreover, we focus
our analysis to cylinder shaped assemblies of packed spheri-
cal particles. The cylindrical shape includes the tube (hollow
cylinder) and the homogeneous cylinder. For both cases, it
is possible to use approximate expressions for the demagne-
tizing factors leading to simple analytical expressions. The
model is extended to include the more complex case of a two
dimensional array of cylinder shaped assemblies of packed
spherical particles. The results show that despite using spher-
ical isotropic particles, the assembly shows an effective mag-
netic anisotropy that originates in the dipolar interaction be-
tween the magnetized particles. The symmetry and magni-
tude of this anisotropy depends explicitly on the geometrical
parameters of the system.

Overall, the model is shown to lead to the expected limit-
ing cases without any inconsistency. Moreover, we show that
it allows to vary independently all the relevant parameters of
the system. The results provide insight into the role played
by each parameter and sheds light to possible mechanisms
viable to control and tailor the magnetic anisotropy of these
particle assemblies.

2. Model for cylinder shaped assemblies of
packed spherical particles

When forming a cylindrical packing of particles, we consider
two main geometries: a homogeneous circular cylinder and
the hollow circular cylinder, or tube, as the ones depicted
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FIGURE 1. a) Two cylindrical packing of particles, a homogeneous
cylinder and a tube, along with their main geometrical parameters.
b) Particle assembly starting from the single isolated particle corre-
sponding to a zero packing fraction, intermediate packing fractions
and the completely filled volumeP = 1.

schematically in Fig. 1a). In the following we assume that the
long axis is along thez-axis. For the cylindrical packing we
have the following parameters: cylinder diameterφ, heighth,
the corresponding aspect ratioτ = h/φ and the packing frac-
tion P, which is the fraction of the total volume of the cylinder
occupied by the particles. For the case of the tubular structure
we have the internal and external radiir1 andr2 (r2 = φ/2),
respectively. Additionally, for the case of several cylinders
(tubes) we use the center to center distance between themD
and the reduced distanced = D/φ.

To describe the magnetostatic effects of these systems we
use the formulation of the effective demagnetizing field for
particle assemblies reported by Martı́nez-Huerta,et al. [13].
The model considers the assembly as a collection of identical
particles contained in a bounding outer volume as ilustrated
in Fig. 1b). This particle is the elemental building block and
it is characterized by its volumeV1 and demagnetizing fac-
tor N1. Hereafter, and in order to evaluate the magnitude
of the relevant parameters, it is assumed that the individual
particles are fully saturated. The external volumeV2 has a
demagnetizing factorN2. The density of particles is taken
into account using the volume packing fractionP occupied
by the particles in the external volume. For such particle as-
semblies, the effective demagnetizing field (HDt), or the ef-
fective (total) demagnetizing factor (NDt = HDt/µ0Ms) is
written as [13],

NDt = N1 + (N2 −N1)P. (1)

This expression corresponds to the sum of the demagne-
tizing effects of the single elementary particle, namely the
first termN1, and the effects of the interaction between par-
ticles which are bounded by the external volume occupying a
volume fractionP , which is the second term(N2−N1)P . As
seen from Fig. 1b), in the limit whereP → 0, Eq. (1) reduces
to the case of a single isolated and non interacting particle
(NDt = N1). Whereas in the other limit,P → 1, Eq. (1) is
reduced to the demagnetizing factor of the homogeneous and
continuous outer volumeV2, this isNDt = N2. In practice,
the geometry of the particles will determine the maximum
attainable packing fraction, which for spheres is less than 1.
Indeed, the maximum 3D packing fraction for spheres can
have different values: for the so-called close random packing
(vibrated bead) of identical spheres it is 0.625-0.64 while the
densest regular packing is 0.7405 [14,15].

Using these effective demagnetizing factors, the total
magnetostatic or shape anisotropy can be determined. To
this end, we recall that the shape anisotropy is defined as
ESt = µ0M

2
s ∆NDt, where∆NDt = ∆NDtx − ∆NDtz.

Here it is assumed that the easy axis is along the long axis
of the cylinder, in this case thez axis while the hard axis is
along thex-axis, see Fig. 1a).

Using Eq. (1) to calculate∆NDt, we obtain

∆NDt = ∆N1 + (∆N2 −∆N1)P. (2)

This expression is proportional to the anisotropy energy
ESt, so that in the following we use and refer to the effective
anisotropy as∆NDt = ESt/(µ0M

2
s ). Equation (2) shows

that the total anisotropy of the assembly is the result of the
competition between the easy axes of the elementary particle
and the outer volume. The competition is weighted by the
packing fractions. Indeed, at low packing fractions the easy
axis approaches that of the single isolated particle asP → 0,
and∆NDt = ∆N1. While, in the opposite limit, asP → 1,
the easy axis will approach that of the outer volume, so that
∆NDt → ∆N1 [13].

This model was used to study the particular cases where
the external volume was a circular cylinder as well as a tube
or hollow cylinder filled with a volume fractionP with spher-
ical particles, as shown in Fig. 1a). Then, the model was
extended to treat the case of a 2D array of such parallel
tubes/cylinders packing of spheres, as those shown schemat-
ically in Fig. 2.

2.1. Cylinder shaped assemblies of packed spherical
particles

Consider an assembly of spherical particles which have no
magnetocrystalline anisotropy. The demagnetizing factor for
this volume isNi = 1/3, i = x, y, z. The external volume is
a circular tube withβ = r1/r2 as the ratio between inner and
outer radii and where the homogeneous (or solid) cylinder
corresponds to the particular case of the tube whenr1 = 0
andβ = 0. In the following, we analyze the case when the
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external volume is a tube, which includes the particular case
of the solid cylinder. The demagnetizing factor for the tube
is N2 = {N2x, N2x, N2z}, where by symmetryN2x = N2y.

Since the particles are spherical,∆N1 = 0. Additionally,
taking advantage of the symmetry in thexy-plane, we have
that2Nx + Nz = 1 and∆N2 = (1 − 3N2z)/2. Therefore,
Eq. (2) for the effective anisotropy can be expressed as,

∆NDt = [1− 3Nz]
P

2
. (3)

Hereon, we drop the number 2 in the sub-index, soN2z =
Nz. For Nz we use the approximate expression for tubes
proposed by Nam,et al. [16]; that relates the demagnetizing
factor the tube with the one of the solid, homogeneous cylin-
derNcz,

Nz = Ncz(1− β2). (4)

While the axial demagnetizing factor of a homogeneous cir-
cular cylinder is computed as a function of the aspect ratio
τ = h/φ using the approximate expression proposed by Sato
and Ishii [17], namely,

Ncz =
1

1 + 4τ√
π

. (5)

Sustitution of Eqs. (4) and (5) in Eq. (3) leads to the following
approximate analytical expression for the shape anisotropy of
a tube containg spherical particles,

∆NDt =

[
1− 3(1− β2)

1 + 4τ√
π

]
P

2
. (6)

As we can see, the effective anisotropy depends on the aspect
ratio of the tube,τ ≥ 0, as well as the thickness of the tube
wall (β) and the volume fraction occupied by the particles
and subject to0 ≤ β < 1 y 0 ≤ P ≤ 1.

2.2. Two dimensional array of cylinder shaped assem-
blies of packed spherical particles

We now extend the model for the case of a two dimensional
array of cylinder shaped assemblies of packed spherical par-
ticles. This case leads to the interaction between tubes. Fig-
ure 2 shows a 2D array of parallel tubes each containing
spherical particles. In this case, we have the same parame-
ters (inner and outer radii, height) with the addition of the
center-to-center distanceD. For this system we have two
packing fractions:P1 corresponding to the volume fraction
of the spherical particles in each tube, and a second packing
fractionP2 corresponding to the tubes in the 2D array.

This system can be described using three different vol-
umes and their respective demagnetizing factors. As previ-
ously, the first volume is that of the spherical particles,N1.
The next volume is that of the cylindrical tube,N2 and now
we include a third volume which corresponds to a thin film,
N3, that contains the 2D array. Figure 2 depicts the system,
where the same geometrical parameters are used as before

FIGURE 2. 2D array of parallel tubes each containing spherical
particles with a volume fractionP1. The geometrical parameters of
the system are the internal and external radii (r1, r2), their heighth
and the center-to-center distanceD between the tubes.

with the addition of the center-to-center distance between
cylindersD.

To extend the model we start with (1). Since the tubesN2

form an array, we callN ′
2 the effective demagnetizing factor

of the tube array, so Eq. (1) reads as,

NDt = N1 + (N ′
2 −N1)P1, (7)

Now, for N ′
2 we use the same equation but introducing the

third volume (thin film) and the packing fraction occupied by
the tube array in the film (P2): N ′

2 = N2 + (N3 − N2)P2.
Substitution in Eq. (7) and rearranging terms, we obtain the
expression for this system,

NDt = N1 + (N2 −N1)P1 + (N3 −N2)P1P2, (8)

as in the previous section, the effective anisotropy is given as
∆NDt, this is,

∆NDt = ∆N1 + (∆N2 −∆N1)P1

+ (∆N3 −∆N2)P1P2, (9)

As done before, from this expression it is possible to ana-
lyze the most important limiting cases. The first one is when
P1 → 0, that corresponds to a single particle and we see that
indeed, the previous expression reduces to∆NDt = ∆N1. If
now we take the limitP1 → 1, which corresponds to a ho-
mogeneous tube, we can see that the terms containing∆N1

are eliminated and we obtain the expression corresponding to
a 2D array of tubes having a packing fractionP2 analogue
to Eq. (1). Taking nowP2 → 0 in Eq. (9), we recover the
case of a single tube containing spherical particles. For the
limit P2 → 1, we have that the tubes ideally fill entirely the
volume of the thin film. From Eqs. (8) and (9) we see that the
terms containingN2 are eliminated and we obtain the expres-
sion for a film (N3) containing spherical particles (N1) that
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occupy a volume fractionP1. These are the four expected
limits.

The corresponding demagnetizing factors can be entered
in Eq. (9). For the spheres and tubes, we use the same as
before and for the thin filmN3 = {0, 0, 1}.

Taking again∆N = Nx − Nz, we have that∆N1 = 0,
∆N2 = (1− 3Nz)/2 y ∆N3 = −1. This leads to,

∆NDt =
[
1
2
− 3

2
Nz

]
P1 −

[
3
2
(1−Nz)P2

]
P1. (10)

To further simplify, we use Eqs. (4) and (5) for Nz as be-
fore. For the packing fraction of the tubes in the thin film (P2)
we use the expression reported previously for a 2D hexagonal
array of tubes with external diameterφ separated by a center-
to-center distanceD and reduced distance asd = D/φ [18],

P2 =
π

2
√

3
(1− β2)

d2
. (11)

Note that the first term in Eq. (10) reduces to Eq. (6). Substi-
tution of the expressions forNz andP2 leads to the following
analytical expression for the (reduced) effective anisotropy,

∆NDt =

[
1− 3(1− β2)

1 + 4τ√
π

]
P1

2

−
[

π
√

3
2

(
1− (1− β2)

1 + 4τ√
π

) (
1− β2

)

d2

]
P1

2
. (12)

This expression contains the sum of two terms and they
both correspond to dipolar interaction field contributions.
Comparing to Eq. (9), the first term in Eq. (12) is the dipolar
interaction between the particles in a given tube. While the
second term represents the dipolar interaction between tubes
in the 2D array. Here again∆N1 = 0 as the spherical parti-
cles have zero shape anisotropy. Then the anisotropy in this
systems originates in the dipolar interaction between the con-
stituent particles and their spatial arrangement.

We note thatP1/2 appears multiplying both terms,
which, as discussed in the previous section, will simply mod-
ulate the amplitude of the effective anisotropy. Besides from
P1, the anisotropy depends on the width of the tube wall
(β), the tube aspect ratio (τ ) and the reduced center-to-center
distance (d). The particular case of a 2D array of continu-
ous/homogeneous tubes is obtained whenP1 = 1, so Eq. (12)
reduces to the expression reported previously [19].

3. Results and discussion

In the previous sections analytical approximate expressions
have been obtained for the 2D array of tube shaped spheri-
cal particle arrays. These expressions can be easily evaluated
making it practical and easy to obtain curves of the different
quantities of interest. We analyze first the case of a single
cylinder shaped assembly of packed spherical particles, and
then we consider the 2D array of such cylinder shaped assem-
blies.

3.1. Single cylinder shaped assembly of packed spheri-
cal particles

From the expression derived in the previous sections it is pos-
sible to analyze the properties of the effective demagnetizing
field and the effective shape anisotropy of the system.

As a first point, we note that the system has a finite mag-
netic anisotropy despite the fact that it is built using isotropic
spherical particles. Indeed, despite∆N1 = 0, ∆NDt 6= 0
implying a magnetic shape anisotropy. This anisotropy fol-
lows from the dipolar interaction between the spherical parti-
cles and can be written in general form using Eq. (2), namely,

∆NDt = ∆N2P. (13)

We can see that forP → 0 we obtain the expected limit for
a single isotropic particle,∆NDt = 0. While for P → 1
we obtain the shape anisotropy of the homogeneous tube of
arbitrary aspect ratio∆NDt = ∆N2.

From Eq. (6) it is possible to derive some important limit-
ing values of the effective shape anisotropy. The first impor-
tant limit is for very tall tubes, this isτ → ∞. In this case,
∆N2 = 1/2 and

∆NDt =
P

2
. (14)

The case of an infinitely tall homogeneous cylinder fol-
lows whenP = 1, which leads to the well known value of
the shape anisotropy of∆NDt = 1/2. This anisotropy value
of 1/2 is an upper bound since it is obtained forP = 1, for
packed spheres this value is not achieved.

Another important property is the sign of∆NDt as it re-
flects the direction of the anisotropy easy axis. As pointed out
above, it has been assumed that the easy axis is along thez-
axis which is parallel to the long axis of the tube and the hard
axis is perpendicular or in thexy-plane. Since the anisotropy
is calculated as∆NDt = Nx − Nz, it is clear that the easy
axis is along thez-axis whenNx > Nz and inversely, it is
perpendicular to the tube axis whenNz > Nx.

Analyzing Eq. (3), we can see that the sign of∆NDt is
determined by the quantity in the square brackets. Taking
1−3Nz = 0 it follows thatNz = 1/3 and∆NDt = 0 which
corresponds to the isotropic case. However, ifNz < 1/3 then
∆NDt > 0, and whenNz > 1/3 it follows that∆NDt < 0.

To analyze this in more detail,Nz has been calculated as
a function of the aspect ratio using Eqs. (4) and (5), for dif-
ferent values of the tube wall thicknessβ, including the case
of the homogeneous cylinder (β = 0). The results are shown
in Fig. 3.

As seen in the figure, the curves show the same general
variation. They reach their maximum value whenτ = 0 and
they decrease as the aspect ratio increases, tending asymptot-
ically to zero for large values ofτ . For the particular case of
the homogeneous cylinder (β = 0), the well known curve for
Nz is obtained [17]. However, for larger values ofβ the
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FIGURE 3. Axial demagnetizing factor,Nz as a function of the
aspect ratioτ , for different tube wall thicknessesβ. For reference,
the horizontal dashed line indicates the case whereNz = 1/3.

corresponding curves shift downwards, so that for a given
value of the aspect ratio, the corresponding demagnetizing
factor decreases. This behaviour is characteristic for contin-
uous and homogeneous tubes [18]. Relating the values of the
demagnetizing factor to the anisotropy, we can see thatNz

takes values larger and smaller than 1/3, shown as a horizon-
tal dashed line in Fig. 3. However, the value of the aspect
ratio at whichNz=1/3 depends on the value ofβ. In partic-
ular, for values ofβ ≥ 0.816 Nz does not take values larger
than 1/3. This will be discussed in more detail in the follow-
ing sections, however at this point we note that this implies
that when the tube wall thickness decreases,β → 1, the tube
can no longer have its easy axis perpendicular to thez-axis
regardless of the value ofτ .

Besides the effects of the aspect ratio and tube wall thick-
ness on the demagnetizing factor and the resulting magnetic
anisotropy, the packing fraction of the particles is another im-
portant parameter. Consider first the limiting caseP = 1 and
the material is a continuous and homogeneous tube (β 6= 0)
or cylinder (β = 0). This case serves as a reference to com-
pare with previous results reported for tubes [19].

Figure 4a) shows the reduced effective anisotropy as a
function of the aspect ratio for different tube wall thickness
β for the particular case of the continuous tube (P = 1).
As seen in the figure, the curves show an increase of the
anisotropy with the aspect ratio. However, this increase is
faster as the value ofβ increases, corresponding to a re-
duction of the tube wall thickness. So that a reduction of
the tube wall thickness enhances the shape anisotropy of the
tube [18,19].

From the figure it can also be noted that for small val-
ues ofβ, the anisotropy goes from positive to negative as the
aspect ratio decreases. This change in sign corresponds to a
change of the easy axis direction below a critical aspect ratio.
For an homogeneous (continuous) cylinder this critical value
has a well-known value ofτ = 0.906 [19]. However, as the
value ofβ increases, the value of the aspect ratio where the
anisotropy is equal to zero decreases, and forβ > 0.8 it

FIGURE 4. Reduced effective anisotropy as a function of the as-
pect ratio for different tube wall thicknessβ for a) the particular
case of the continuous tubeP = 1 and b)a particle volume fraction
of P = 0.5.

no longer reaches zero. In this case, the easy axis no longer
reverses regardless of the aspect ratio. As expected, these re-
sults (P = 1) are equivalent to those reported for continuous
tubes [19]. Regarding the effect of the packing fraction, we
note from Eq. (6) that the packing fraction is a multiplicative
factor and therefore it only modulates the amplitude of the
total anisotropy. As expected, the anisotropy is zero when
P = 0, which is the case of a single isotropic sphere and it
reaches its maximum value of 1/2 forP = 1 for large aspect
ratio values. This modulating effect of the packing fraction is
shown in Fig. 4b), where the total anisotropy as a function of
the aspect ratio for different values of the tube wall thickness
is shown for the particular case whereP = 0.5. Comparing
to the results shown in Fig. 4a), we see the same behavior
but, as expected, the amplitude is reduced. We can see that
the maximum value of the anisotropy isP/2.

To gain further insight on the role of the packing fraction
the effective anisotropy was calculated as a function of the
aspect ratio while keeping the value of the tube wall thick-
ness constant (β = 0.5) for different values of the packing
fraction. The results are shown in Fig. 5a). As seen from the
figure, the volume fraction simply modulates the amplitude
of the anisotropy and its general variation with the aspect ra-
tio is independent. Here we note that the point where the
anisotropy is zero is the same regardless of the value ofP
and therefore the reorientation of the easy axis only depends
on τ y β. This is clear in Eq. (6), where a change of sign in
∆NDt can only result from the quantity in the brackets.
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FIGURE 5. a) Reduced effective anisotropy as a function of the
aspect ratio for different values of the packing fractionP for the
particular case ofβ = 0.5. b) Zero anisotropy curve, showing
the critical aspect ratio value at which the anisotropy is zero as a
function of the tube wall thicknessβ.

To find the condition for the isotropic point, we equate
Eq. (6) to zero an solve to find the critical aspect ratioτc,
which is given by:

τc =
3
√

π

4

(
2
3
− β2

)
. (15)

This expression is equal to Eq. (13) in Ref. [19] which re-
flects a quadratic dependence onβ. This expression can be
evaluated to obtain the zero anisotropy curve for the critical
aspect ratio as a function ofβ, which is shown in Fig. 5b),
where, as shown schematically, those values above the curve
correspond to an easy axis parallel to the tube axial axis,
∆NDt > 0, while those values below the curve correspond
to an easy axis perpendicular to the tube axis,∆NDt < 0. In
addition, we note that the curve goes to zero atβ ≈ 0.8. This
means that above this value ofβ the total anisotropy has the
easy axis parallel to the tube axis (∆NDt > 0) regardless of
the value of the aspect ratio. This is the same result pointed
out in Figs. 4a) and b), where above a value ofβ ≈0.8 the
anisotropy no longer reaches negative values. Takingτc = 0
in Eq. (15) we obtain the value ofβ above which it is no
longer possible to reverse the easy axis by changing the tube
aspect ratio. This value isβ2

c = 2/3 or βc = 0.82.
This condition related to the tube wall thickness (β) as

well as Eq. (15) have already been identified and predicted
for the case of a 2D array of homogeneous tubes [15]. How-
ever, for the cylinder shaped assembly of packed spherical
particles considered herein, this diagram becomes important
since it is independent of the packing fraction. This is, to tai-
lor the easy axis direction it is only necessary to adjustτ and

β following Eq. (15), regardless of the volume packing of the
spherical particles.

3.2. 2D array of cylinder shaped assembly of packed
spherical particles

In contrast to the single tube/cylinder, the 2D array intro-
duces additional contributions to the effective anisotropy
which originate in the classical dipolar interaction between
the tubes/cylinders.

Equation (12) shows the sum of two terms. The first one
is the interaction between spherical particles in a given tube.
This is the case already analyzed in the previous section. The
second term is the dipolar interaction between tubes in the
2D array. The second term is always negative which indi-
cates that this interaction term favors an easy anisotropy axis
perpendicular to the tube axis, or in thexy-plane. The ampli-
tud of this term is modulated by both packing fractions:P1

of the particles in the tube andP2 volume occupied by the
tubes in the thin film containing the 2D array.

To analyze the behavior and the effects of this second
term, we have calculated separately the values of this term
alone as well as the total anisotropy, Eq. (12). For this cal-
culation, the tube aspect ratio was kept constant at a value of
τ = 10, and we varied the tube wall thicknessβ.

The results are plotted as a function of the inverse of the
reduced distance, this is1/d since it is more practical. In-
deed, it varies between[0, 1], the value1/d = 0 corresponds
to the case were the tube and infinitely apart and the interac-
tion goes to zero. Inversely, when1/d = 1 corresponds to
the limiting case where the tubes touch and its the smallest
possible distance between them.

Figure 6a) and b) show the reduced interaction field, (c)
and (d) the reduced anisotropy as a function of the inverse
reduced distance (1/d) for different values of the tube wall
thicknessβ and a constant aspect ratio ofτ=10. In (a) and
(c) P1=1, while (b) and (d) were obtained forP1=0.5.

For the interaction field between the tubes in the 2D ar-
ray, Fig. 6a), it goes to zero when the tubes are separated
(1/d = 0). When the distance between them is reduced,
the interaction field increases following a quadratic behavior
(1/d2), until reaching its highest value when the tubes come
into contact (1/d = 1). We can see that as the tube wall thick-
ness decreases,β increases; the magnitude of the interaction
field decreases. This is similar to the effect described for a
single tube in the previous section, this is, the anisotropy of
the tube is reinforced when the tube wall becomes thinner.

As pointed out before, the amplitude of both terms in
Eq. (12) is modulated by the factorP1/2. To this end we
compare the reduced interaction field forP1=1 aP1=0.5 in
Figs. 6a) and b). As expected, the same behavior is obtained
in both cases, the only change being the amplitude of the in-
teraction field.

Regarding the effective magnetic anisotropy, this is
shown in Fig. 6c) and d). The overall behavior reflects the
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FIGURE 6. a) and b) Reduced interaction field, c) and d) reduced
anisotropy as a function of the inverse reduced distance1/d for
different values of the tube wall thicknessβ and a constant aspect
ratio ofτ = 10. In a) and c)P1 = 1, while b) and d) were obtained
for P1 = 0.5.

sum of the shape anisotropy, the first term in Eq. (12), and the
dipolar interaction between tubes, second term in Eq. (12),
which is preceded by a negative sign. As seen in the fig-
ure, the total anisotropy is maximal when the tubes are apart,
1/d = 0, and as the distance between them is reduced, the in-
teraction between them (with its negative sign) leads to a re-
duction of the total anisotropy, leading to a change in sign for
certain values ofβ. At large separation,1/d = 0, the effec-
tive anisotropy reduces to that of the single (non-interacting)
tube, which as discussed above, increases as the width of the
tube wall decreases (β approaches 1), in agreement with the
results shown in Fig. 4.

As mentioned before, the amplitude of the effective
anisotropy is proportional to the packing fraction of the
spheresP1/2, which also defines the upper limit value of
the anisotropy. This is shown as horizontal dashed lines
in Fig. 6c) and d). So by increasing the distance between
tubes,1/d → 0, we see that the anisotropy tends to this up-
per limit and as this distance is reduced (increasing1/d),
the anisotropy decreases as the interaction field becomes
stronger. The rate at which the anisotropy decreases and
changes sign,1/d = 0, depends on the tube wall thicknessβ.

As already mentioned, the packing fraction of the parti-
cles in the tubeP1 modulates the amplitude of the effective
anisotropy but its not expected to change its behavior. To
verify this we have calculated the effective anisotropy as a
function of the inverse of the reduced distance for different
packing fractions of the spherical particles in the tubes with
constant tube aspect ratioτ = 10 and thickness of the tube
wall β =0.2. The results are shown in Fig. 7 where we ver-
ify that the volume fraction of the particles in the tube only
change the amplitude of the anisotropy. For the case shown
in Fig. 7 we see that the point where the anisotropy is zero is

FIGURE 7. Reduced anisotropy as a function of the inverse of the
reduced distance for different packing fractions of the spherical par-
ticles in the tubesP1 with constant tube aspect ratioτ = 10 and
thickness of the tube wallβ = 0.2.

the same for all the values ofP1. This is in agreement
with the results from the previous section, in particular those
shown in Fig. 5a).

As observed for the case of a single tube, the effective
anisotropy shows a change of sign, as seen in Figs. 6c), d)
and 7. However, this does not happen above certain values
of β. As before, the change in sign indicates that the easy
axis direction changes from being parallel to the tube axis
(positive anisotropy) to perpendicular to the axis (negative
anisotropy). However, this easy axis reorientation is inhibited
as the tube wall thickness decreases. To find the conditions
where the effective anisotropy vanishes, we equate to zero
Eq. (12) and solve to find the critical aspect ratioτc, leading
to,

τc =
√

π

4

(
π
√

3
2d2

(
1− β2

)− 3
π
√

3
2d2 (1− β2)− 1

(
1− β2

)− 1

)
. (16)

This expression shows that the critical aspect ratio (τc ≥
0) is given solely by the tube wall thickness (0 < β < 1) and
the reduced distance between tubes (d ≥ 1).

Equation (16) allows calculating the zero anisotropy
curves for the tube aspect ratio (τ ) as a function of the re-
duced distance between them for different values of the tube
wall thicknessβ. Figure 8 shows these results.

As we can see, each value ofβ provides a different curve.
Each curve corresponds to the aspect ratio and the corre-
sponding reduced distance for which the effective anisotropy
vanishes. Points above and to the right of the curve corre-
spond to an easy axis along the tube axis (z-axis). On the
contrary, those points below the curve are those with the easy
axis perpendicular to the tube axis. An important property
is that, as mentioned before, reducing the tube wall thick-
ness (increasingβ) reinforces the easy axis direction along
the tube axis. So that above a certain value, it is no longer
possible to reverse the easy axis when the aspect ratio is de-
creased.

A final remark is that Eq. (16) for the 2D array of tubes
made of spherical particles is the same as equation (17) in
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Ref. [19] for the case of continuous tubes. This despite of be-
ing different systems. However, the case reported in Ref. [19]

FIGURE 8. Isotropic curves for the tube aspect ratioτ as a func-
tion of the reduced distance between them for different values of
the tube wall thicknessβ.

is obtained as a particular case of Eq. (12) whenP1 = 1.
In this sense, the main reason why the same expression is
obtained is that the spherical particles are isotropic and there-
fore they do not contribute to the shape anisotropy. Indeed, as
seen from Eqs. (10) and (12), the only variable related to the
spherical particles present in the effective anisotropy is their
packing fractionP1 which, as discussed above, only mod-
ulates the magnitude of the anisotropy without changing its
behaviour.

To validate the model, we analyze selected experimen-
tal reports based on systems with affine geometrical features.
The first case of interest is that of individual magnetic par-
ticles packed into, or confined to, a well defined geometry
where the dipolar interaction between particles leads to an
observable magnetic anisotropy. In these regards, there are
two notable examples, the first one involves packing mag-
netic nanoparticles into cylinders, ideally as shown schemat-
ically in Fig. 1a). In a report, Pal,et al. [20], filled carbon
nanotubes with small magnetic nanoparticles. In another re-
port, Duong,et al. [5], filled cylindrical nano holes made in
a polyacrylinitrile substrate with magnetite nanoparticles. In
these two studies, the magnetic characterization showed an
increase of both remanence and coercive field in the cylin-
drically confined particles with respect to the non-confined
particles. This is an indication of the presence of a mag-
netic anisotropy. In both cases, these effects are attributed
to the enhancement of the dipolar interaction between the
confined particles. The other example is the work of Merk
et al. [7], and Segmehl,et al. [21], who have performed the
synthesis of magnetic nanoparticles within the hierarchical
structure of wood. This structure is highly anisotropic with
a predominant cylindrical structure as building block, similar
to an array of pores aligned parallel to each other. The in-
situ growth of nanoparticles from liquid solutions leads to an
important fraction of the particles being fixed on the walls of
the pores, leading to a tubular structure. This corresponds ap-
proximately to the situation depicted in Fig. 1a). In both stud-

ies, the analysis of the magnetic properties of the magnetic
wood shows a magnetic anisotropy favoring an easy axis par-
allel to the symmetry axis of the tubes. This anisotropy is
attributed to the dipolar interaction between particles that are
confined to the tubular shape. In the context of our model,
this follows from either Eq. (3) or (6), where it is clear that
a finite magnetostatic anisotropy arises from the dipolar in-
teraction between the particles. Moreover, from Eq. (3) we
see that the magnitude of the resulting anisotropy is a func-
tion of the cylinder aspect ratioNz and the packing fraction
P of the particles. For the more complex case of analyzing
the inter-cylinder dipolar interaction, these studies do not ex-
plore experimentally these effects, although they recognize
its importance.

The model is also well suited for 2D arrays of magnetic
nanowires grown by electrodeposition into nanoporous tem-
plates. These are 2D arrays of circular cylinders, arranged so
that their long exes are parallel to each other and distributed
spatially forming a film. In this case, the geometrical features
are the circular cylinder and the thin film containing the 2D
array. For this system, Eq. (12) needs to be simplified by tak-
ing P1 = 1 corresponding to ideal case of a continuous mag-
netic material and then, to treat the case of a homogeneous
cylinder, we need to takeβ = 0. Leaving only a dependence
on the wire aspect ratio and the distance between wires, this
is,

∆NDt =
1
2

[
1− 3

1 + 4τ√
π

]
− π

√
3

4d2

[
1− 1

1 + 4τ√
π

]
. (17)

This expression shows the competition between two
terms: (a) the shape anisotropy which favors an easy axis
parallel to the wires long axis thez-axis and (b) the dipolar
interaction between wires, which due to the negative sign pre-
ceding it, favors an easy axis perpendicular to the long axis
of the wires. The effective anisotropy of the system, in the
absence of other anisotropy contributions, is the result of this
competition. In this sense, a well known effect observed in
arrays of NWs is the rotation of the easy axis from parallel
to perpendicular to the long axis of the wires when the dipo-
lar interaction overcomes the shape anisotropy [22, 23]. For
the case of an array of continuous cylindrical NWs, the ex-
pression defining the easy axis rotation is given by Eq. (16)
for β = 0. In this case, it only depends on the interwire dis-
tance and the aspect ratio of the wires. As mentioned above,
this leads to a curve defining the limit where the system is
isotropic, this is, where the shape anisotropy of the single
wire and the dipolar interaction cancel out and the effective
anisotropy of the system is zero.

This effect can be analyzed using the model and compar-
ing it with reported experimental results where the easy axis
is shown to rotate as a function of either the distance between
wires or their aspect ratio. To this end, we have selected data
for Ni [24–26] and NiFe [27] NWs in order to avoid other
materials that can have other magnetic anisotropy contribu-
tions.

Rev. Mex. Fis.69041605



MAGNETOSTATIC MODEL FOR MAGNETIC PARTICLE AGGREGATES WITH CYLINDRICAL SHAPES 9

Figure 9a) shows the easy axis diagram as a function of
the aspect ratio and the inverse of the reduced distance. The

FIGURE 9. a) Effective anisotropy diagram for an array of
nanowires as a function of the wire aspect ratioτ and the inverse re-
duced distance1/d. The continuous line corresponds to the model,
Eq. (17). The horizontal dashed line at1/d = 0.606 corresponds
to the distance for the critical packing fraction ofP2 = 1/3 in
an hexagonal array. The data points correspond to examples of
Ni [24–26] and NiFe [27] NWs. (b) Axial component of the re-
duced interaction field calculated from the model (continuous line)
and compared to experimental results reported for arrays of very
tall nanowires [28–31].

continuous curve corresponds to Eq. (16) for β = 0. The hor-
izontal dashed line at1/d= 0.606 corresponds to the distance
for the critical packing fraction ofP2 = 1/3 in an hexagonal
array at which the easy axis rotates for the limiting case of
infinitely tall nanowires [23]. Notice that this is the value at
which the continuous curve tends asymptotically.

In this diagram, the region above and to the left side of the
curve, corresponds to an easy axis parallel to the long axis of
the wires. The region below and to the right of the curve,
corresponds to the case where the easy axis is perpendicular
to the long axis of the wires.

Consider first the experimental data for the case when the
aspect ratio is varied while keeping constant the distance be-
tween wires [24, 25]. As seen in the figure, the easy axis ro-
tates from parallel to perpendicular to the cylinder axis when
the aspect ratio is reduced. Moreover, as seen from the two
series of data shown in the figure, the aspect ratio at which
the transition takes place is lower for larger interwire dis-
tance (1/d → 0). The easy axis rotation is conditioned by the
wires having an easy axis parallel to the symmetry axis. For
a single, non-interacting, cylinder this requires an aspect ra-
tio larger than 0.91, since at this point the system is isotropic.
Wires with aspect ratios larger but close to the critical value
require a small interaction field to reverse the easy axis. As

the wire aspect ratio increases, the distance between wires
required to reverse the easy axis needs to be reduced (1/d
increases) in order to increase the strength of the interaction
field. The largest value of the shape anisotropy for the circu-
lar cylinder is attained when the aspect ratio is very large. In
this case, as mentioned before, the easy axis rotates when the
packing fraction is larger than 1/3. This is seen in Fig. 9a) for
the data corresponding to those series of samples where the
packing fraction is larger than 1/3 [24, 26, 27]. Furthermore,
we can see that the easy axis rotation takes place at differ-
ent aspect ratio values. The predictions of the model are in
excellent agreement with the experimental results.

The other measurements that can be compared with the
model are those of the axial component of the dipolar interac-
tion field. To compare the model with available experimental
results on arrays of tall NWs, we have taken the date obtained
using FORC diagrams for Co (MS =1400 emu/cm3) [28]
and CoFe (MS =1991.5 emu/cm3) [29], as well as those ob-
tained using remanence curves in Ni (MS =485 emu/cm3),
NiFe (MS =788 emu/cm3) and CoFe (MS =1900 emu/cm3)
NWs with diameters of 71 nm and below [30]. In addition,
we have extracted the data obtained from the width of the
switching field distribution (SFD) for Ni NWs [31]. To obtain
the value of the interaction field from the width of the SFD we
assume that the reported widthw is the sum of the constant
intrinsic widthw0 and the shearing due to the interaction field
Hint(d), this is,w = w0+Hint(d). By interpolating the data
for infinite separation between NWs (Hint = 0), we obtain
w0 so thatHint(d) = w − w0.

The values reported in these studies correspond to the
interaction term of the axial component of the interaction
field [13], so to convert these values to dimensionless effec-
tive field, we have divided their magnitude by4πMs (CGS)
or µ0Ms (MKS), using the values ofMS mentioned above.
Moreover, Eq. (17) is the total effective anisotropy field, so
to obtain the axial component, we have to divide the second
term by 3 [13]. The axial component of the interaction field
is given by the second term in Eq. (17), which for infinitely
tall NWs, requires takingτ → ∞. By doing so, and using
the inverse of the reduced distance, we can compare a single
interaction curve for all the experimental points as shown in
Fig. 9b). Here, the continuous line corresponds to the model
while the points correspond to the experimental data. As seen
in the figure, the entire data set shows a very good agreement
with the model.

4. Conclusions

A simple mean field model has been presented to describe
magnetostatic effects in assemblies made of isotropic spher-
ical particles. For a two dimensional array of cylinder
shaped assembly of packed spherical particles we derive ap-
proximate analytical expressions for the effective magnetic
anisotropy. We find that in such particle assemblies, the
shapes of the volumes that contain the particles lead to a mag-
netic anisotropy related to the dipolar interaction despite the
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fact that the particles in the assembly are isotropic. We have
analyzed the main limiting cases for the anisotropy of a single
tubular structure containing the particles as well as the 2D ar-
ray of tubular assemblies, finding for each case the expected
results. Since the expressions are analytical it is simple to
derive the corresponding curves of the anisotropy as a func-
tion of the geometrical parameters of the system. The results

compare well with results reported in other studies.
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