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Abstract: In this paper, we present a study of the diffusion properties of a deterministic model for
settling particles in two displacement dimensions. The particularities of the novel deterministic
model include the generation of Brownian motion and a two-dimensional displacement model
without stochastic processes, which are governed by a set of six differential equations. This model is
a piecewise system consisting of subsystems governed by jerk equations. With this model, we can
consider different conditions of diffusion in both the dimensions and size of the space where the
particles are dispersed. The settling time versus the dispersion medium and its size, as well as the
average settling time and its probability distributions, are analyzed. Furthermore, the probability
distributions for the settling location are presented for the changes in the diffusion parameters and
space size. Finally, the basins of attraction for the settling positions are shown as a function of each
dimensional diffusion parameter and for the medium size.

Keywords: deterministic Brownian motion; diffusion of particles; particle settling; jerk function
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1. Introduction

The study of particle propagation through hydrodynamic fluids is a topic that has
attracted the attention of many research groups since the reported findings of Brown in
1828 [1]. The diffusion phenomenon has very important implications for real systems
such as porous media [2,3], electrostatic interactions [4,5], liquid films [6,7], magnetic
media [8,9], and biology [10], among others. On the other hand, the study of deterministic
dissipative systems has become very important for facilitating the understanding of the
particle dispersion process in a medium. In 1954, Lónvan Hove used quantum mechanical
theory to study the transport process produced by a small perturbation as a characteristic
property responsible for the diffusive effects in the evolution of the system, eliminating
the need for assuming a random phase during consecutive short-time intervals [11]. One
of the first publications on the deterministic behavior of particles was presented by Russo
in [12], who used three different schemes (based on the approximation of the gradient
on an irregular mesh and a finite-element approach) to study their convergence and
proposed some applications for the Fokker–Plank equation and other problems of the
disposing of particles. However, several approaches have since been presented that provide
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a better understanding, for instance, the deep origin of the stochastic nature of a dynamical
system. Ford et al. Zwanzig, and Caldeira et al. [13–15] were the first to show that
when starting with a Hamiltonian (deterministic) description of both the environment and
system, random noise emerges once the environmental degrees of freedom are somehow
eliminated. Recently, some works [16,17] have been undertaken to formalize Zwanzig’s
approach and understand how to describe stochastic noise given the microscopic details of
the environment. In addition, recent publications on the deterministic behavior of particles
in a fluid have been presented by Trefàn et al. [18], where the results were obtained using a
discrete system. Another ingenious proposal for approaching the deterministic Brownian
motion in a one-dimensional displacement by demonstrating its statistical properties was
presented by Huerta et al., where a continuous time system inspired by the jerk equation
was used [19]. Furthermore, deterministic behavior has been theoretically established for
both integer- and fractional-order derivatives [20–22].

The study of particle diffusion has been addressed in many areas since this paradigm
constitutes the basis of numerous applications ranging from colloidal suspensions, emul-
sions, and simple polymeric solutions to biological systems, among others. Some examples
are the diffusion of proteins and lipids [23,24], the transport of biological cells in crowded
media, and the use of a generalized Langevin equation to describe the lateral diffusion of a
protein in a lipid bilayer [25,26].

One of the most important areas in particle dispersion is pharmacology due to the
interest in achieving more effective drug delivery with smaller doses [27]. Drugs are driven
by physiological transport forces, mainly by solvent-driven flow (convection) but also
by molecular agitation (diffusion). The appropriate combination of these two forces can
determine the effective penetration and distribution of the substances in the arterial walls.
The role of the convection and diffusion processes, along with the local flux conditions and
characteristics of the drug and tissue, will determine the local drug distribution over space
and time [28].

For drugs, the use of stochastic diffusion modeling approaches deserves consideration
in model-informed drug discovery because it considers random events that can have
a significant impact on treatment effects and disease progression, especially when the
population size is small [29]. Furthermore, deterministic systems have the advantage
of greater mathematical simplicity, are computationally less demanding than stochastic
systems, and the parameter estimations are well-established, and a large toolkit is available
to help with model fitting and simulation [29].

In this paper, a deterministic model for particle settling is presented, which is based
on a deterministic model of Brownian motion. A two-dimensional model is constructed
considering piecewise systems and the jerk equation, where each defined domain emulates
a potential that can be modified by a single parameter related to the conditions of the
medium. This model allows us to consider different diffusion conditions along each
dimension in addition to the size of the dispersion medium. Its behavior is analyzed under
different conditions. The generation of deterministic models, such as the proposed model,
provides advantages over other approaches since a purely theoretical derivation, even in
presence of a nonlinear coupling for particle interactions, is still a difficult task in terms of
the mathematical definition for the friction and noise terms [14,17]. The rest of this paper is
organized as follows. In Section 2, the basics of particles, the Langevin equation, and the
construction of the model are presented. Section 3 contains the numerical results obtained
using the proposed model in terms of the changes in the different parameters considered.
The statistical analysis of the time series is presented in Section 4. Finally, the conclusions
are drawn in Section 5.

2. Deterministic Model for Particle Settling

The onset of Brownian motion occurs when a particle is suspended in a fluid. The
motion of this particle occurs due to collisions between the fluid molecules, with each
collision causing a small change in velocity. This is because, under normal conditions, the
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suspended particle suffers about 1021 collisions per second so the accumulated effect is
substantial. Each of these collisions is determined by the previous event, which is produced
by physical interactions within the system. Since it is thought that each collision produces a
kink in the path of the particle, it is not possible to accurately follow the path as the details
are infinitely complex. Thus, the Brownian particle makes a fluctuating movement. So,
stochastic models of Brownian motion follow the average motion of a particle, rather than
the particular path of a particle. The stochastic theory of Brownian motion of a free particle
(in the absence of an external field of force) is generally governed by the Langevin equation
as follows:

dx
dt

= v,

dv
dt

= −γ
dx
dt

+ A f (t),
(1)

where x and v denote the particle position and velocity, respectively. According to
Equation (1), the influence of the surrounding medium on particle motion can be split

into two parts. The first term −γ
dx
dt

stands for the friction applied to the particle. It is
assumed that the friction term used is according to Stokes’ law, which states that the friction
force 6πaηv/m decelerates a spherical particle of radius a and mass m. Hence, the friction
coefficient is given as follows:

γ = 6πaηv/m, (2)

where η denotes the viscosity of the surrounding fluid. The second term A f (t) is the
fluctuation acceleration, which provides the stochastic character of the motion and depends
on the fluctuation force Ff (t) as A f (t) = Ff (t)/m, where m is the particle mass. Two
principal assumptions were made about the stochastic term A f (t) in order to produce
Brownian motion:

• A f (t) is independent of x and v.
• A f (t) varies much faster than v.

The latter assumption is that there exists a time interval ∆t during which the variations
in v are very small. Alternatively, we may say that although v(t) and v(t+∆(t) are expected
to differ by a negligible amount, no correlation between A f (t) and A f (t)(t + ∆(t)) exists
as it is a stochastic term.

In order to generate a deterministic model of Brownian motion, an additional freedom
degree is added to the system in (1). Moreover, the stochastic term is avoided by replacing
the fluctuating acceleration A f (t) with the jerk equation. The class of affine linear systems
considered here presents oscillations (a "one-spiral" trajectory called a scroll) around equi-
libria due to stable and unstable manifolds. This is reached if the linear part of the system
has a saddle equilibrium point.

To generate deterministic Brownian motion, the stochastic term A f is replaced with
a new variable z, which is defined by a third-order differential equation, and a Brownian
motion based on the jerk equation that was reported in [19], which we call jerk-based
Brownian motion. The proposed variable z acts as a fluctuating acceleration and produces a
deterministic dynamical motion without a stochastic term. Its behavior presents the statisti-
cal features of Brownian motion, as demonstrated in a previous work [18]. However, in the
jerk-based Brownian motion model, the fluctuation acceleration has a direct dependence
on the position, velocity, and acceleration due to the jerky equation involved [19]. When
a particle moves in a fluid, the friction and collisions with other particles that exist in the
medium produce changes in the speed and acceleration of the movement; these changes
are considered in the jerky equation (which is usually considered in stochastic terms). The
model based on an unstable dissipative system (UDS) [30–32] in one dimension is defined
as follows:
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ẋ = v,
v̇ = −γv + z,
ż = −a1x− a2v− a3z− a4(x),

(3)

where ai ∈ R are constant parameters, with i = 1, 2, 3, and a4(x) ∈ R acts as a constant
piecewise function, i.e., a step function.

The term a4(x) is driven by a switching law (SW), which is given by a piecewise
function that commutes in the space where the particle crosses a switching surface (SS).
There are many switching surfaces that are defined by planes perpendicular to the x-axis.
Thus, domains are demarcated by these SSs, which are considered the edges of each domain.
In the case of real systems, domains can be seen as having multi-well potential with a short
fluctuation escape time, where each domain is defined by SSs that retain their unstable
behavior according to the linear part of the system. When a particle moves in a fluid,
changes in the speed and acceleration of its movement occur due to friction and collisions
with other particles that exist in the environment. These changes are considered in the
unequal equation. The SS delimits each region of potential, and when a particle crosses the
surface, it represents a change in the particle’s potential, i.e., a collision with other medium
particles. The parameter a4 is defined as follows:

a4(x) = c1 ∗ round(x/c2), (4)

where c1, c2 ∈ R are parameters. The function is defined as follows:

round(x) =
{
dx− 1/2e, para x < 0;
bx + 1/2c, para x ≥ 0.

(5)

Without loss of generality and in the same spirit of the one-dimensional displacement
model, we construct our two-dimensional displacement model considering the boundary
conditions, i.e., settlement conditions, in one of the displacement dimensions. The deter-
ministic model is a jerk-based Brownian motion system that is defined by the following
two-dimensional displacement system:

ẋ = A(K)x + b(x),

ẏ = A(K)y + b(y),
(6)

where x = [xx, vx, ax]′ and y = [yy, vy, ay]′ are state vectors, and b(x) and b(y) are driven
by the round function given in (4). Note that the dynamic of each dimension is governed
by Equation (3). Let B be a 3× 3 matrix with real coefficients defined by B3×3(R), and the
linear operator A(K) ∈ B3×3(R) is given by

A(K) =

 0 1 0
0 −γ 1

Ka1 Ka2 Ka3

, (7)

where ai are real constants that guarantee unstable behavior, with i = 1, 2, 3, and K is
a single parameter that allows us to consider the changes in the type of medium. This
is because different behaviors are obtained by the changes in the bifurcation parameter
K, which correlate directly with the direction and location of their stable and unstable
manifolds, as well as the values of their eigenvalues [33], and can be understood as the
ability of the particle to cross over to the next domain. It is worth mentioning that the
deterministic model (6) is a two-dimensional displacement jerk-based Brownian model and
its dynamics evolve in a six-dimensional space. Then, the proposed bidimensional model
considering the edge conditions is defined as follows:
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ṙ =
(

ẋ
ẏ

)
=



{
A(k)x + b(x)
A(k)y + b′(y)

if y > ytop,

{
A(k3)x + b(x)
A(k2)y + b(y)

if − ytop < y < ytop,

{
A(k)x + b(x)
A(k)y− b′(y)

if y < −ytop,

(8)

where k is a parameter that makes an attractive equilibrium point, k2 and k3 determine
different diffusion conditions for each dimension, b′(y) = c1 + m ∗ c1, ytop = c2/2 + m ∗ c2,
and m is the parameter used to define the space size where the model is defined.

3. Numerical Results of Time Settling of Particles

The study of the settling time of particles in two-dimensional displacement is realized
by the proposed deterministic model (8). To carry out the numerical analysis of the
proposed model, the following parameters are used with the fourth-order Runge–Kutta
method: a1 = 10.5, a2 = 7.0, a3 = 0.7, c1 = 6.3, c2 = 0.6, and k = 3.3. The parameters were
selected in such a way that the conditions of a UDS type I system are met, following the
methodology proposed in Ref. [32], via numerical exploration to guarantee that when the
trajectory reaches the SS, the probability of crossing to the next domain is 1/2. In terms
of the settlement case, let us begin by showing some examples of the dynamics found in
the trajectory of a particle in a two-dimensional displacement system for different sets of
parameters.

Figure 1 shows the analysis of the trajectory of a particle for a fixed initial condition
r0 = [0.1, 0.1, 0.1, 0.4, 0.1, 0.1]′ and different values of the parameter k2 ∈ [0.6, 1.8]. The other
parameters are m = 6, K3 = 1.2, and V0x = 0.1.

We only show three values of the parameter k2 = 0.6, 0.7, and 1.0, to illustrate the
behavior of the particle. The first column in Figure 1 shows the x-position versus the
settling time for the different values of the parameter k2. Figure 1a corresponds to K2 = 0.6
and we can observe that the particle quickly converges to a steady state. When the value
of the parameter k2 increases to 0.7, the particle converges to a steady state in about 500
arbitrary units (A.U.) of time (see Figure 1c). If the value of the parameter k2 continues
to increase, for example, to k2 = 1.0, the particle oscillates more before converging to a
steady state (see Figure 1d) and the trajectory tends toward a Brownian movement as the
parameter k2 increases. The second column in Figure 1 shows the relationship between
the position in y and the settling time, where it can be observed that for a fixed value of
the dispersion medium size, the settling time for y increases as the parameter k2 increases.
Additionally, in Figures 2 and 3, the velocity and acceleration versus time are shown, where
we can observe that this variable remains bound for the parameter changes.
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(a) (b)

(c) (d)

(e) (f)

Figure 1. Times of particle settling for different initial conditions and a single value of the dispersion
medium (m = 6). (a,b) k2 = 0.6; (c,d) k2 = 0.7; (e,f) k2 = 1.0.
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(a) (b)

(c) (d)

(e) (f)

Figure 2. Velocity time evolution for a fixed initial condition and different values of the dispersion
medium (m = 6). (a,b) k2 = 0.6; (c,d) k2 = 0.7; (e,f) k2 = 1.0.

The second case that is analyzed corresponds to changing the value of the parameter
k3 and maintaining the value of the other parameter, that is, k3 = 0.6, 1.1, and 1.4. The
other parameters are m = 8, k2 = 1.0, and V0x = 0.1. The initial condition for all the
values of k3 is fixed to r0 = [0.1, 0.1, 0.1, 0.4, 0.1, 0.1]′. The first column in Figure 4 shows
the relationship between the position in x and the settling time. Figure 4a corresponds to
the case k3 = 0.6, where the particle reaches the edge in about 2200 A.U. of time. Figure 4c
corresponds to the case k3 = 1.1, where the particle reaches the edge in about 2600 A.U. of
time. However, when we continue to increase the value of k3, the settling time decreases,
as shown in Figure 4e, which corresponds to the case k3 = 1.4, where we can observe that
the particle reaches the edge in about 1800 A.U. of time. In contrast to the previous case
where the settling time increased as the parameter k2 increased, for this variation of k3, this
does not occur.
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(a) (b)

(c) (d)

(e) (f)

Figure 3. Accelerations zx, zy versus time evolution for a fixed initial condition and different values
of the dispersion medium (m = 6). (a,b) k2 = 0.6; (c,(d) k2 = 0.7; (e,f) k2 = 1.0.

The second column in Figure 4 shows the relationship between the position in y and
the settling time that it takes to reach the edge for each value of the parameter k3, where,
unlike the first case, the deposit time does not depend on the value of k3.

The final case to be analyzed corresponds to the behavior of the particle trajectory and
the settling time when the size of the dispersion medium (m parameter) changes. As in
the previous cases, the initial condition was fixed to r0 = [0.1, 0.1, 0.1, 0.4, 0.1, 0.1]′ for all
cases, and we calculate how long it takes the particle to reach the edge for each value of
the parameter m. The considered values of the parameter m are 4, 6, and 10, and the other
parameters are K2 = 1.0, k3 = 1.0, and V0x = 0.1.
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(a) (b)

(c) (d)

(e) (f)

Figure 4. Times of particle settling for different initial conditions and a single value of the dispersion
medium size (m = 8). (a,b) k3 = 0.6; (c,d) k3 = 1.1; (e,f) k3 = 1.4.

The first column in Figure 5 shows the trajectory of the particle in x versus the time in
A.U. of time. In Figure 5a, we can observe that the particle quickly converges to a steady
state for a small value of m = 4. When m increases to 6, it takes longer for the particle
to reach a steady state (see Figure 5c). If we continue to increase the value of m = 10,
the settling time increases (see Figure 5e). Therefore, the particle starts to oscillate with
Brownian motion when the value of m increases. The second column in Figure 5 shows the
trajectory of the particle in y versus the time in A.U. of time. The behavior at y agrees with
the behavior at x, that is, an increase in the settlement time of the particle at the edge as the
size of the dispersion medium increases.
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(a) (b)

(c) (d)

(e) (f)

Figure 5. Times of particle settling for a fixed initial condition and different values of the dispersion
medium size. (a,b) m = 4; (c,d) m = 6; (e,f) m = 10.

In Figure 6, the settlement of the particles at the edge of the dispersion medium is
shown on a color map. The colors correspond to the final positions of the particle along the
x-axis for a fixed initial condition and size of the dispersion medium (m), and the other
parameters previously analyzed are varied. The region of color with the highest trend
determines the point of attraction of the system.
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Figure 6. Projections of the switching surfaces perpendicular to the plane (x,y) (black lines). Each
colored line depicts the trajectory of a particle that moves along the two-dimensional plane (x,y)
due to small changes in the initial conditions. The switching surfaces delimit each potential region
that contains a settling point and when the particle crosses it, it represents a potential change in the
particle.

4. Statistical Properties of Settling Model

In order to understand the phenomenon and visualize the dynamical changes induced
for each system parameter, we numerically investigate the long-term behavior of the
solutions to Equation (8). With the temporal series obtained for the cases mentioned in the
previous section, we analyzed the time it takes for the particle to reach its destination and
the location where it settles. By considering the different parameters k2, k3, and m, as well
as the values of the parameters defined in the previous section, the statistical properties
obtained for the time series are presented in this section. The first analysis carried out
consisted of identifying the relationship between the settlement time and the k2 parameter.
For this, a fixed initial condition was considered and the time it takes to reach the edge was
obtained for each value of the parameter k2. This can be seen in Figure 7, where the settling
time shows an exponential trend as the parameter k2 increases.

Another analysis was performed of the settlement time behavior with respect to the
space size (m parameter), as in the previous case, a fixed initial condition was considered
and the time it takes to reach the edge was obtained for each value of the parameter m.
Figure 8 shows the parabolic growth with respect to m, which shows how the size of the
space where the particles disperse has an important impact on the particle settling time.

To generalize the behavior of the settlement time with respect to m and k2 for a
specific initial condition, we analyzed the time distribution for a set of 150 initial conditions.
For this, we analyzed, in particular, a variation of v0x in a range of v0x ∈ [0.1, 1.5] and
r0 = [0.1, v0x, 0.1, 0.4, 0.1, 0.1]′. The settlement times are organized in ten sets of the same
length and the probability of occurrence is estimated. Figure 9 shows the time probability
distribution for different values of m ∈ [4, 14] with an increment of two units and k2 =
k3 = 1.0. In this case, it can be seen that the probability distribution transitions from an
exponential distribution to a uniform distribution as m increases.
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Figure 7. Times of particle settling for a fixed initial condition with respect to the y diffusion
parameter.

Figure 8. Times of particle settling for a fixed initial condition with respect to the space size m.
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(a) (b)

(c) (d)

(e) (f)

Figure 9. Time probability distributions considering different initial conditions r0 =

[0.1, v0x, 0.1, 0.4, 0.1, 0.1]′, v0x ∈ [0.1, 1.5] for different values of m. (a) m = 4; (b) m = 6; (c) m = 8;
(d) m = 10; (e) m = 12; (f) m = 14.

Additionally, the probability distribution of the settlement time from the changes in
k2 ∈ [0.6, 1.3] was analyzed for m = 4 and k3 = 1.0. In Figure 10, we show the probability
distributions for the same set of 150 initial conditions, where it can be observed that the
shape of the distributions has the form of an exponential for small values of k2, and as k2
increases, the distribution converges to a Gamma distribution.

Regarding the settlement positions, similar to the analysis of time, we considered
the same set of initial conditions as the changes in the particle’s final location. In this
analysis, we considered the frequency of occurrence of each settlement location defined
by the system in Equation (8), and then estimated the probability of occurrence. First,
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we analyzed the changes related to m in the range of [4, 14] with increments of 2 and
k2 = k3 = 1.0. In Figure 11, the probability distributions are shown for the different values
of m, where it can be seen that the shapes of the distributions are preserved. However, it is
important to note that the maximum value of the probability decreases as m increases and
the tails of the distribution are larger. This means that for larger values of m, it is possible
to reach positions further away in the x-direction. Furthermore, the settlement positions
were analyzed with respect to the parameter k3 and the changes considered in the range
of [0.6, 1.3] with increments of 0.05, with m = 4 and k2 = 1.0. In Figure 12, the probability
distributions are shown for the different values of k3, where it can be seen that the shapes
of the distributions are preserved. Nevertheless, in contrast with the behavior observed for
m, in this case, the maximum value of the probability increases as K3 increases and the tails
of the distribution are shorter. This means that for larger values of k3, the positions reached
on the x-axis are less far-reaching.

(a) (b)

(c) (d)

(e) (f)

Figure 10. Cont.
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(g) (h)

Figure 10. Probability distributions of time settling with changes in k2. (a) k2 = 0.6; (b) k2 = 0.7;
(c) k2 = 0.8; (d) k2 = 0.9; (e) k2 = 1.0; (f) k2 = 1.1; (g) k2 = 1.2; (h) k2 = 1.3 .

(a) (b)

(c) (d)

(e) (f)

Figure 11. Probability distributions of settling location with changes in m. (a) m = 4; (b) m = 6;
(c) m = 8; (d) m = 10; (e) m = 12; (f) m = 14.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 12. Probability distributions of settling location with changes in k3. (a) k3 = 0.60; (b) k3 = 0.68;
(c) k3 = 0.76; (d) k3 = 0.84; (e) k3 = 0.92; (f) k3 = 1.00; (g) k3 = 1.08; (h) k3 = 1.16.
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Finally, color maps of the settlement positions for the considered initial condition
with changes in k2, m, and k3 are shown in Figures 13, 14, and 15, respectively. The values
of the color bars represent the final positions along the x-axis. Figure 13 shows that for
small values of k2, the solutions converge to a specific region around the origin, and as k2
increases, the final locations no longer present a pattern that can be considered random.
Figure 14 shows that the convergence region of the solutions is maintained for each initial
condition regardless of the value of m (vertical changes). However, if the behavior is viewed
horizontally, it can be seen that for large values of m, the final positions show random
behavior. Regarding the changes in k3, Figure 15 shows that for the largest values of k3,
the solutions converge to a specific region around the origin, and as k3 decreases, the final
locations no longer present a pattern that can be considered random, in contrast to that
observed for k2 in Figure 13.

Figure 13. Basin of attraction of settling locations for v0x with changes in k2.

Figure 14. Basin of attraction of settling locations for v0x with changes in m.

Figure 15. Basin of attraction of settling locations for v0x with changes in k3.
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5. Conclusions

A deterministic dynamical system for settling particles that displays time series with
Brownian motion properties has been presented. This model considers a two-dimensional
diffusion process, as well as parameters that allow the modification of different medium
conditions in each dimension. Additionally, a parameter was included to account for
different space sizes. The statistical properties analyzed showed a parabolic growth in the
deposit time with respect to the distance traveled, which is in accordance with random walk
theory, and exponential growth with respect to the diffusion parameters. Regarding the
settlement positions, we observed that by varying k2 and k3, it was possible to control the
directions in which the particles were dispersed. For small values of k2, displacement along
the y-axis was favored, and for large values, displacement along the x-axis was favored. On
the contrary, for small values of k3, displacement along the x-axis was favored, and for large
values, displacement along the y-axis was favored. Finally, we observed that the changes
in the settling locations with respect to the space size m remained practically unchanged,
with the principal effect of this parameter being the time of deposition. Based on these
results, which were obtained using an unstable piecewise system, it is believed that the
methodology presented in this work can be applied to construct appropriate models using
real experimental time series to study the spread of particles in pharmacology and consider
different transport phenomena. Furthermore, the methodology can be used to determine
the types of diffusions that occur with parameter changes, the types of correlations in the
generated time series, and the effect of the parameters on the statistical properties of the
displacement.
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