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Abstract: High cost, long-range communication, and anomaly detection issues are associated with IoT
systems in water quality monitoring. Therefore, this work proposes a prototype for a water quality
monitoring system (IoT-WQMS) based on IoT technologies, which include in the system architecture
a LoRa repeater and an anomaly detection algorithm. The system performs the data collection, data
storage, anomaly detection, and alarm sending remotely and in real-time for the information to
be captured by the multisensor node. The LoRa repeater allowed the spatial coverage of the LoRa
communication to extend, making it possible to reach a place where originally there was no coverage
with a single LoRa transmitter due to topography and line of sight. The prototype performed well
in terms of packet loss rate, transmission time, and sensitivity, extending the long-range wireless
communication distance. Indoor multinode testing validation for 29 days of the mean absolute
error for average relative errors of water temperature, pH, turbidity, and total dissolved solids (TDS)
were 0.65%, 0.30%, and 14.33%, respectively. The anomaly detector identified all erroneous data
events due to node sensor recalibration and water recirculation pump failures. The IoT-WQMS
increased the reliability of monitoring through the timely identification of any sensor malfunctions
and extended the LoRa signal range, which are relevant features in the scope of in situ and real-time
water quality monitoring.

Keywords: LoRa; anomaly detection; water quality; IoT; real-time monitoring

1. Introduction

Traditional water quality monitoring mainly uses personnel to take manual water
samples, which causes several limitations. These often include high costs, in terms of time
and human resources. It can also be difficult to collect samples from remote or hard-to-reach
locations [1–3]. Additionally, manual sampling can only provide a snapshot of the water
quality at a specific time, rather than continuous monitoring. There is an inability to conduct
trend analysis based on historical data and it is difficult to monitor and control sewage
discharge in real-time [4,5]. In response to the above problems, researchers have proposed
applications for advancements in water quality sensors, wireless communication networks
(WSN), and internet of things technology in the field of water quality monitoring to achieve
automatic and remote online monitoring of water quality [6–8]. However, IoT solutions for

Water 2023, 15, 1351. https://doi.org/10.3390/w15071351 https://www.mdpi.com/journal/water

https://doi.org/10.3390/w15071351
https://doi.org/10.3390/w15071351
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/water
https://www.mdpi.com
https://orcid.org/0000-0003-1168-8544
https://orcid.org/0000-0002-2459-0397
https://orcid.org/0000-0002-7304-2928
https://doi.org/10.3390/w15071351
https://www.mdpi.com/journal/water
https://www.mdpi.com/article/10.3390/w15071351?type=check_update&version=2


Water 2023, 15, 1351 2 of 17

water quality monitoring are generally expensive [9,10], with high energy consumption [11,12],
low computational efficiency [13,14], distance communication issues [15], and outlier
detection methods issues for the generated time series [16,17].

ZigBee is often used in water quality monitoring as a local network communication
and GPRS technology for remote network communication [18,19]. ZigBee transmission
distances of 10 to 100 m cannot meet the requirements for monitoring large areas. Increasing
the ZigBee communication distance by adding additional routing nodes will increase the
power consumption of the device and reduce latency and reliability. GPRS communication
is billed on a per-data throughput basis, meaning the costs of this transmission are high,
and the power consumption of the device is significant.

LoRa is a low-power wide area network communication technology, which was
developed based on the lower frequency band below sub-GHz, with long-distance com-
munication capabilities, low power consumption, and low complexity. The maximum
transmission distance in the open visual distance can reach 15 km [5]. LPWAN (low-power,
wide-area network) technology allows for long-range communication with low-power
devices, making it ideal for IoT devices in remote or hard-to-reach areas [20,21]. By ap-
plying LoRa technology, the transmission radius of the water quality nodes is extended,
similar to other technologies, such as ZigBee and WIFI, where the radius is smaller. As
a result, it can improve the high costs and energy requirements associated with IoT sys-
tems. These characteristics make LPWAN an essential element for the internet of things in
environmental monitoring.

IoT water quality monitoring system is a field data observation technology that collects
extensive, continuous, complex, and diverse data in real time. However, due to the technical
limitations of the sensors and environmental disturbances in the field, abnormalities in
sensor readings and null values are inevitable. In view of the above, IoT monitoring systems
have incorporated real-time data processing services to recognize anomalous events that
allow cleaning and transform them to achieve continuous and accurate observations of
water quality conditions in the monitored area. The processing of massive amounts of data
continuously obtained from IoT systems is an aspect that still needs to be addressed [22].
Automatic anomaly detection methods are mainly used for this task and are mainly divided
into two methods: statistical and physical [17,23]. Among the statistical methods, the most
common is determining whether the observed values exceed the range of three times the
standard deviation [24]. The physical methods are mainly distance-based or density-based
anomaly detections [25]. In addition, in recent years, with the development of data mining
algorithms, artificial neural networks, support vector machines, Bayesian networks, and
other intelligent recognition algorithms have been widely used [16,26–28].

In this work, we developed a water quality monitoring prototype (IoT-WQMS) based
on IoT technologies for surface water bodies. We included a module for anomaly detection
based on unsupervised machine-learning techniques for automatic and real-time monitor-
ing of water quality parameters. The prototype allows in situ pH, total dissolved solids,
and temperature measuring. This was achieved through the implementation of a low-
power, wide-area network (LPWAN), which allows the transmission of information over a
distance of approximately 6.5 km through radiofrequency, before sending this information
through the Internet. Machine-learning-based algorithm services were incorporated into
the prototype to analyze the information captured by the sensors in real time and detect
anomalies in their behavior. To alert users of such anomalies, the program sends messages
through the Telegram application, and they are also displayed on the webpage, depicting
the value and date of the detected event.

The WQSM was experimentally tested so that it was carried out indoor multinode
testing, anomaly detection module validation, and outdoor long-distance communication
tests, while the constructed system was experimentally validated and demonstrated good
system performance in the implemented systems. The coverage of the LPWAN network
was extended with the addition of a repeater to the main gateway, thus, covering areas
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where the signal of a single gateway could not reach. As result, system performance was
satisfactory at a lower cost compared to similar alternatives on the market.

2. Materials and Methods
2.1. The General Design of Water Quality Monitoring System (IoT-WQMS)

In Durango, Mexico, continuous, onsite, and real-time monitoring of the water quality
in the city’s dams, one of the primary sources of water supply in this arid city, was being
sought. Therefore, a LoRa-based IoT-WQMS was designed and developed for monitoring
water bodies within a range of approximately 4 to 7.5 km from the gateway (Figure 1).

Figure 1. (a) The general system architecture diagram of IoT-WQSM; (b) onsite installation diagram
of IoT-WQSM.

IoT-WQMS comprises four layers: monitoring node, LoRa transmitter, server, and
user interface. The general structure of the system is shown in Figure 1. Water monitoring
node includes a quality collection terminal integrated with water temperature, pH, TDS
sensors, and an SX1276 LoRa module. Through the LoRa module, the data were collected
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by the sensors and sent to the LoRa repeater, and then, to the gateway at regular intervals.
The gateway is the center of the star topology network architecture, and the data uploaded
by multiple water quality collection terminals were packaged and sent to the server. The
server was mainly responsible for managing the gateway, processing the data uploaded by
the gateway, by the monitoring terminal ID into the corresponding database. Users login
through the local monitoring computer on the webpage to enable real-time monitoring
of the water quality data and assessment of the water quality status through the user
interface. The system provided the possibility of generating early warnings in the presence
of anomalous events or out-of-range values of monitored parameters.

2.2. Water Quality Monitoring Hardware Design

The hardware of the water quality collection terminal is shown in Figure 2. The
collection terminal node consisted of a microcontroller unit (MCU), a sensor module, a
LoRa RF module, and a power supply module. The LoRa repeater and gateway mainly
consisted of a module for each MCU and LoRa RF. Among them, the microcontroller
was an MCU Arduino Uno, which only has a power consumption of 10 mA current in
power-down sleep, with 5 V-16 MHz Version, satisfying the low-power design scheme
of this system [29]. The energy consumption of the whole acquisition terminal depended
mainly on the working cycle of the system, during which the acquisition of sensor data,
the processing of the microcontroller, and the sending of data by the RF module were
completed. The hardware design process mainly adopted a polled wake-up mode of
operation for the RF module to reduce the energy loss of the acquisition terminal.

Figure 2. LoRA node connection diagram.

2.2.1. Microcontroller Modules

The node had a central unit with an Arduino Uno board, which used the AT-mega328P
microcontroller unit (MCU) (Arduino CC, Turin, Italy). A chip with an AVR CPU core and
a maximum speed of 16 MHz. The product family features 32 kB of flash memory, multiple
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control peripherals, and a USB full-speed interface [30]. Using the chip’s powerful storage
and computing capabilities, the PA6, PA7, and PA8 analog PINS were set to correspond
to the water quality sensor for analog to digital (A/D) acquisition, calculate the water
quality PH value, temperature, and TDS value, the data were packaged and sent to the
radio frequency module through the serial port. The LoRa repeater used a channel on
the TTGO ESP32 development board; TTGO stands for “To Be The Best Go”, which is a
Chinese brand that produces various types of development boards based on the ESP32
chip [31]. The ESP32 is a low-cost, ultra-low power system on a chip, MCU with a Tensilica
32-bit Xtensa LX6 dual-core embedded microprocessor, which includes Wi-Fi and Bluetooth
connectivity. The gateway consisted of two Arduino microcontrollers and one connected
by a serial port. One was to establish communication over the LoRa layer and the other
was for the Ethernet connection.

2.2.2. Sensor Module

The sensor module mainly included sensors and signal conditioning circuits, which
were selected according to technical factors, such as the location of the sensors, cost,
reliability, and power consumption in the actual application. In this system, three main
types of sensors were connected: temperature, pH, and TDS.

The system uses the SKU DFR0198 temperature sensor from [32], which has the
characteristics of small size, high accuracy, and low overhead hardware, while a waterproof
stainless-steel package was selected for the system to measure the temperature of the water
body, from −55 ◦C to 125 ◦C, with an accuracy of ±0.5 ◦C. The module had a configurable
9 to 12-bit resolution and the data were transmitted through the 1-Wire interface; further, it
had a 64-bit unique identifier so that multiple sensors could share the same transmitting
pin, a query time of less than 750 ms, and a current consumption of less than 3 µA. The
pH sensor adopted the Gravity: Analog pH meter pro V2 composite electrode (Copyright
Zhiwei Robotics Corp., Shanghai, China), with a pH detection range of 0 to 14 and a high
measurement accuracy of 0.01, and stability. The composite electrode was a combination
of a pH indicator electrode and a reference electrode, which output via a millivolt (mV)
voltage signal by shifting the electrode’s electric potential through a change in hydrogen
ion activity. This signal was processed by an amplifier circuit based on the CA3140EZ
operational amplifier, provided with the probe. This circuit amplified the output signal of
the pH electrode from a millivolt voltage and converted it into the range of 0–5 V output
voltage to reach the readable voltage required by the analog input of the microcontroller.
The sensor can work in a voltage range of 3.3 to 5.5 V and handle an output signal of 0 to 3 V,
with a current consumption of approximately 3 mA. The included software library allowed
calibration using the two-point method, automatically detecting when the electrode was
immersed in a pH solution of 4 or 7. The module had a response time of less than 1 min and
a probe lifetime of 6 months when working for 24 h a day. The system used Tresd Print Tech
online water quality TDS detection sensor (Copyright Tresd print tech Ltd., Guadalajara,
Mexico) and the GravityTDS library (Copyright Zhiwei Robotics Corp., Shanghai, China),
to convert the voltage to mg/L dissolved solids. This was used to detect the content of the
total dissolved solids (TDS) in the water to determine the degree of cleanliness or pollution
of the water. The operating voltage of the sensor was 3.3 to 5 V, with an output signal of
0 to 2.3 V, and a current consumption between 3 and 6 mA. The measurement range was
0 to 1000 mg/L, with an accuracy of ±10% at 25 ◦C. The GravityTDS library was used for
voltage to mg/L conversion of dissolved solids. The estimated value was compensated
based on the temperature measurement obtained by the system temperature sensor. The
library allowed a one-point calibration of the sensor in a 47 mg/L solution.

2.2.3. LoRa Modules

In the node a Dragino Shield (Dragino Technology Co., Ltd., Shenzhen, China) was
included, this included the SX1276 chip, which allowed us to send and receive messages
by radio frequency at 915 MHz, using the LoRa protocol. The program included the
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LoRa library for LoRa communication. Subsequently, a single-channel LoRa repeater was
implemented in the TTGO development board based in the ESP32 MCU, which also had the
SX176 chip. Finally, the gateway consisted of two Arduino Uno connected by a serial port.
The first used the Draguino Shield for LoRa communication, similar to node configuration,
and the other established an Ethernet connection.

2.2.4. Power Modules

Considering the water quality collection terminal work outdoors, the power supply
module used a 12 V lead acid battery 7.0 Ah power supply. The battery voltage was
stepped down to 5 V through the Mini 560 DC-DC Converter Voltage. The 5 V powered
the processor module and the wireless communication module.

The consumption of the entire system was 26 mA in active mode and 10 mA in
sleep mode, which provided sufficient autonomy, since the selected battery provided
approximately 30 days until it needed to be recharged.

2.3. System Software Architecture

The system software architecture included water quality collection terminal software,
LoRa transmission layer software, server application layer software, anomaly detection,
and user interface software design.

2.3.1. Water Quality Collection Terminal Software Design

After the acquisition terminal started and completed the system peripheral initial-
ization pretest, the whole system entered into low-power sleep mode, the kernel clock
stopped, the processor kernel itself, the memory system, the related controllers, and the
internal buses also stopped working. The dynamic power consumption of these devices
was reduced, and the CPU kernel woke from sleep mode whenever any enabled interrupt
occurred. The PA0 pin rising edge signal was set to trigger an external interrupt. When
the PA0 pin received a rising edge signal pulled high after the LoRa module AUX pin was
pulled low for five minutes, it triggered the MCU’s external interrupt, and the acquisition
terminal restarted to complete data acquisition and transmission, then, entered sleep mode
again and waited for the rising edge signal of the AUX pin to trigger the interrupt again.

2.3.2. LoRa Transport Layer Software Design

The LoRa module sent the data, collected by the collection terminal, to the LoRa
repeater. Afterward, the data were sent to the gateway, which included the data frames
to the server fixed port through the MQTT protocol, and the server parsed the received
data, which should include the information frames of the gateway alongside the collection
terminal and the water quality data frames.

After the gateway started, it entered initialization and established a connection with
the server through the MQTT protocol. After the connection was established, the working
mode of the gateway was set to polling wake-up mode, and the gateway sent wake-up
data to the LoRa module nodes periodically, and the second polling data was replaced
when all nodes were polled with one data. End nodes were polled again in the next
polling cycle. The wake-up period was 55 s. Gateway and LoRa repeater modules, after a
successful connection, the gateway was set to 1 min as a cycle, sent wake-up data to the
LoRa module, polling a wake-up at each collection terminal multichannel parallel collection
and uploaded water quality data. After the gateway collected the data, the whole data
frame was repackaged and uploaded to the MQTT broker in the server. After the end of
polling, the water quality collection terminal went into the sleep state for 30 min, waiting
for the gateway, and then, the second time to wake up the water quality collection terminal;
meanwhile, the Gateway and LoRa repeater remained active in the case data reception
from other nodes was required.
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2.3.3. Server Application Layer Software Design

The server application consisted of all those services installed on the virtual private
server (VPS), making it necessary to perform real-time monitoring of the values sent
from the node (Figure 1a). The VPS was enabled on Amazon Web Services (Copyright
Amazon.com, Inc., Seattle, WA, USA). The database software was MySQL (Copyright
Oracle, Corp., Austin, TX, USA), and the control panel was Vesta CP (Copyright Vesta
CP., San Fernando, CA, USA). The server programs were mainly used for background
procedures, including socket network communication, database connection, port upload
data processing, and storage, front-end interface loading, etc. EMQ X software, as the
MQTT broker, coordinated the management of messages and devices. The server was
the manager for the data collected by each terminal and stored in their corresponding
database using Node.js algorithm, which allowed continuous connection to the broker and
database. The user can monitor the terminal water quality parameters changes in real-time
through Grafana (Copyright Raintank, Inc., New York, NY, USA). It can also allow the
key parameters to be set to judge the conditions, when the water quality changes beyond
the threshold conditions, triggering a mailbox or SMS alarm, and allowing the staff to
respond promptly.

After the server established a connection with the gateway, it received the data in real
time, and completed the parsing of the data packets. First, it judged whether the length
of the data frame is larger than 18 bytes, and if it is smaller, it is judged to be a test data
frame uploaded by the gateway and discards the current data frame. According to the data
frame format, the validity of the data frame was verified, and the command word field
can clarify whether the node is in a normal working state if it is in a non-normal working
state, where the current data frame is discarded. When the data frame was complete and
valid, the data frame was parsed, to determine the corresponding database according to
the ID node of the node in the uploaded data frame, and then, the time and water quality
parameters were added to the corresponding database.

2.4. Multinode, Anomaly Detector, and LoRa Testing of the (IoT-WQMS)
2.4.1. Indoor Multinode Testing

In order to verify that the monitoring node, server, and user interface of (IoT-WQMS)
were all working correctly, indoor multinode testing was carried out. For this, IoT-WQMS
was tested for 29 monitoring days on a continuous flow in a PVC pipe structure, with
a pump for water recirculation (Figure 3). The PVC pipe structure had an individual
sampling port suitable for each sensor and an extra one for taking control measurements.
Control measurements were performed using the multiparameter meter (Thermo Scientific
Orion Star A329) (Copyright Thermo Fisher Scientific Inc., Waltham, MA, USA).

The absolute error is the result of the difference between the estimated value and the
individual value resulting from a measurement [33] and is calculated by the following
Equation (1):

∆an = a− an (1)

where ∆an is the absolute error, a is the reference value, and an is the observed value. In
this context, the reference value was the value obtained by the control instrument and the
observed value was the value obtained by the sensors. The mean absolute error (MAE) was
used as an estimator to calculate the error in the sensor measurements in reference to the
control. Where ∆a = mean absolute error and ∆ai = absolute error (Equation (2)):

∆a =
1
n

n

∑
i=1
|∆ai| (2)



Water 2023, 15, 1351 8 of 17

Figure 3. (a) PVC pipe structure with a pump for water recirculation for indoor multinode testing of
IoT-WQMS, (b) IoT multinode designed for indoor testing, (c) OLED and LCD displays added for
local verification of measurements.

2.4.2. Anomaly Detection Module Validation

The Anomaly Detection Toolkit package (ADTK) (Copyright, Arundo Analytics, Inc.,
Palo Alto, CA, USA), an anomaly detection module of unsupervised learning was integrated
into WQSM. A detector block was used to analyze the time series and report anomalous
data. This function is based on principal component analysis (PCA) and is recommended
for simultaneous analysis of multiple time series, where they are known to be highly
correlated, such as in the case of the water quality parameters.

The trained model was added to the general program, executed via Flask in the VPS.
Figure 4 shows the program’s stages for anomaly detection based on the unsupervised
anomaly detection algorithm. This program allows a constant connection to the MQTT
broker. Each timepoint was received from the node, where it connected to the database to
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obtain and analyze the values through the anomaly detector. If the values are detected as
anomalous, an alert message was sent via Telegram and also displayed in the application
control panel. On the other hand, if the data were correct, the system did not perform
any action.

Figure 4. Flowchart of the process of anomaly detection module of unsupervised learning integrated
with IoT-WQSM.

2.4.3. LoRa Validation

Using the LoRa communication protocol, the quality of the transmission data depends
on the characteristics of the transmitter and receiver antennas, terrain characteristics,
transmitter operating power, and receiver sensitivity. Therefore, it is helpful to model
the transmission coverage to design the architecture needed to achieve connectivity for
LoRa-based IoT systems. The radiofrequency transmission was modeled using the SPLAT
software Vs. 1.4.2 (Copyright, SPLAT, John A. Magliacane, KD2BD) to visualize RSSI
(received signal strength indication), according to the proposed transmitter and receiver
locations and the parameters presented in Table 1. It allows for determining the feasibility
of the communication of LoRa in the area to be implemented IoT monitoring system. A
spatial model was obtained with the RSSI gradient approximating the power received in the
area of interest. In order to test LoRa layer of IoT-WQMS, the radio frequency performance



Water 2023, 15, 1351 10 of 17

of the system was verified in the field by detecting the 0–6 km system RSSI (received signal
strength indication) and PLR [27,28].

Table 1. Parameters used for radiofrequency studies in SPLAT.

Parameter Value

Earth’s dielectric constant (relative permittivity) 15.000
Earth conductivity (Siemens per meter) 0.005
Atmospheric refraction constant (N) 301.000
Frequency (MHz) 915.000
Radio climate Continental temperature
Polarization Vertical
Situation fraction 0.50
Time fraction 0.90
Effective radiated power (ERP) in Watts 0.1
Sensitivity (dBm) −148
Transmitter coordinates 24.050934, −104.702537
Receiver coordinates 23.9917, −104.726421

3. Results
3.1. Indoor Multinode Testing Validation of the IoT-WQMS

Experimental validation of the IoT-WQMS, which included continuous flow, made
it possible to approximate the natural field conditions, under which the system usually
works. Figure 5 shows the pH, temperature, and TDS performance of the IoT-WQMS
sensors compared to the control. The mean absolute error (MAE) for water temperature,
pH, and turbidity and conductivity were 0.65, 0.30, and 14.3, respectively. Large deviations
were found in the sensors used in the IoT-WQMS compared to the control. The TDS sensor
showed two large overestimations on the 5th and 25th day. The pH sensor performed
well during the test period, although it presented two significant underestimates around
the 20th day. In general, the temperature sensor showed the best performance with slight
mismatches compared to the control. It indicates the need to include sensor validation
and calibration processes in IoT monitoring water quality systems, as reported in [34–36],
Furthermore, the recommendations for selecting and maintaining the sensors should be
considered [7,37,38]. At the same time, the inclusion of anomaly detection services in IoT
systems improves the reliability of the operation of these systems by detecting when a
sensor has a serious deviation [39,40].

3.2. Anomaly Detection

A database with 3681 observations was obtained during the 29 days of the IoT-WQSM
test. This database included a column with the date and time (See Supplementary Mate-
rials, Table S1). The database generated during the first 10 days of the sensor validation
experiment was used for training the unsupervised model. Finally, the trained model
was included in the development of a general algorithm for the real-time operation of
IoT-WQSM using the Python library Pickle (Python Vs. 3.8.12, n.d.). Pickle allows Python
objects to be saved in a binary file, in this case, the previously trained model, and sub-
sequently, load this file with all the object information. The anomalies detected by the
program are of scalar type, which uses logical or Boolean values, i.e., a false-true (zero-one)
classification, resulting in the data being divided into anomalous and normal.

The graphical output of the detection of the anomaly detection module integrated into
IoT-WQSM is shown in Figure 6, where the anomalous events detected by the model can be
seen in the red lines, while the blue, orange, and green lines are the generated time series
for TDS, temperature, and pH, respectively, during the experiment.
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Figure 5. Validation of IoT-WQSM sensors, (a) pH, (b) temperature, and (c) total dissolved
solids (TDS).

Figure 6. The graphical output of the anomaly detection module integrated with IoT-WQSM.
Anomaly monitoring of (a) pH (lower green line), (b) temperature (middle orange line), (c) total
dissolved solids (TDS, upper blue line), detected anomalies (red vertical lines).
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The anomalous events presented were erroneous data sent by the node and reached
values of zero in some measurements. On day 7, there was a significant bias in the
measurement of the TDS sensor. However, on day 8, when the sensor was recalibrated
the TDS values returned to stable values, as at the beginning of the experiment. The
anomaly detection module performed well in detecting large deviations, such as the one
presented by the deactivation or failure of the pump, which allowed a continuous flow in
the experiment.

The anomaly detector, implemented in the IoT-WQSM, connects the database via
MQTT to the database. It allows queries to be made to the database in the service and
alerts to be made through a chatbot in real time to the telegram groups or on the webpage.
The use of supervised techniques for detecting anomalies in the IoT requires more human
intervention, as they require the collection of representative training data and manual
labeling [41]. The advantage of incorporating unsupervised classification algorithms is that
they require minimal human intervention. Additionally, the anomaly detection system
should be continually monitored and updated to ensure its effectiveness over time.

Only a few papers address anomaly detection in IoT systems for water quality mon-
itoring. It is a complex task due to the many short- and long-term anomalies that may
arise [42,43]. It is vital to address these issues because the quality of the prediction and
warning applications in monitoring water resources depends on the data generated by
IoT-based water quality monitoring systems.

To address these issues, researchers can explore various anomaly detection techniques
or their combinations, including statistical analyses, Machine learning algorithm techniques
on historical water quality data can identify anomalies in real-time [42–45]. It is important
to note that no single anomaly detection technique is suitable for all IoT-based water quality
monitoring scenarios. Therefore, researchers should evaluate the performance of multiple
techniques and select the one that best suits the specific case. This IoT-WQSM offers the
advantage of including both types of anomaly detection as a statistical process control
(SPC) and an unsupervised anomaly detection algorithm. It is one of the advantages that
allow the development of these ad hoc systems compared to similar commercial systems,
where it is challenging and even illegal to incorporate various anomaly detection or modify
the default configuration.

4. Outdoor Long-Distance Communication Test

The radiofrequency transmission of RSSI signals modeled from the node to the gateway
of the IoT-WQSM system, in the proposed localizations, using the SPLAT software and
RSSI average onsite provide similar results (Figure 7 and Table 2). The RSSI values modeled
for these sites are within the range reported as suitable (up to 146 dbm) for establishing
transmission between the node and the gateway [46]. However, onsite verification found
that transmission was not possible at site 2, as indicated by the radiofrequency model. It
was attributed to the topography, which caused it to be located below the line of sight to
the gateway. The packet loss rate (PLR) was achieved in peripheral locations with low
housing densities (sites 1 and 5) and urban site locations with housing densities (sites 3
and 4), except for the peripheral location, site 2, where it was not possible to receive an
RSSI and PLR signal. Similar behavior for the LoRa radium signal has been reported in
other studies [47–49].
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Figure 7. Modeling of RSSI (received signal strength indication) by SPLAT, according to the configu-
ration of the proposed localization of the node and gateway for IoT-WQSM. (1,2,3,4,5) Locations of
interest tested onsite with the WQSM system.

Table 2. Comparison of RSSI modeled with splat software and measurements obtained with two
different LoRa configurations at the sites of interest.

Site
Coordinates Distance

** (m) PLR (%) RSSI ***
(dBi)

Modeled
RSSI (dBi)

Lat Long Single Lora

1 24.044 −104.702 6312 4.2 −109 −90
2 24.051 −104.702 7055 N.S * N.S N.S
3 23.986 −104.702 6300 16.3 −110 −90
4 23.981 −104.668 6000 4.8 −113 −90
5 23.968 −104.690 4500 4.0 −110 −90

Notes: * No Signal; ** Distance from the node; *** RSSI average onsite.

Standards of power signal communication for IoT are divided into near-and far-
range depending on distance, which determines the practical applications of IoT-based
environmental monitoring. [12,50,51]. A close-range or WPAN allows transmission over
100 m maximum, while a far-range or LPWAN allows transmission over 100 km. Although
LoRa is theoretically described as a technology that can transmit data from a few to ten
kilometers, this is only sometimes available due to interference. Therefore, it is especially
relevant when monitoring the water quality for freshwater resources in situ, where the
availability of the mobile communication network is generally unavailable for remote areas.
In order to overcome the transmission problems in LoRa coverage, on locations where the
LoRa signal was not received, as with the Presa Del Hielo (site 2), we added a LoRa node
repeater to the IoT-WQSM architecture. It allowed a place to be reached where originally
there was no LoRa signal. A similar architecture network with a repeater has been used
in LPWAN layers, as in Lora [52,53], Bluetooth [54], and NB-IoT [55], because including a
repeater increases the expansion of the LPWAN network coverage.
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The modeling results can help to assess the feasibility of different configuration options
for LoRa-based IoT environmental monitoring networks in large areas or cities. They
estimate if gateway localization can provide scalability, signal coverage, and functionality
for the planned IoT network. This study indicates that the localization of CIMAV-DGO
(https://cimav.edu.mx/ (accessed on 19 February 2023)), i.e., a location in a high and
clear place, could maximize the coverage of the city. It has electrical power and Internet
connectivity, and the gateway can be sheltered. The simulation, in this case, confirmed that
the building of CIMAV-DGO is a highly feasible place to locate the gateway for a LoRa-
based wireless sensor network in IoT for monitoring water and air quality in Durango.

5. Conclusions

A prototype was obtained for remote and real-time monitoring of water quality param-
eters (pH, temperature, and SDT) in surface water bodies, through a web application. The
IoT-WQSM automatically performed the data collection, data storage, anomaly detection,
and alarm sending, both remotely and in real time, for the information captured by the
multisensor node. The LoRa repeater allowed the extension of the spatial coverage of the
LoRa communication, making it possible to reach a place, where originally there was no
coverage, with a single LoRa transmitter due to topography and line of sight. Coverage
and line of sight studies using computer software allow the identification and selection of
the best options to send the LoRa signal to its destination, according to the location of the
spatial distribution of system architecture.

The deployment of LoRa networks typically involves setting up gateways that for-
ward data from devices to the network server and requires proper planning, design, and
management to ensure optimal performance and security. As LoRa is designed for specific
cases, it is essential to evaluate if it is the right technology for the specific application and
environment before deploying it. A network simulator can provide much flexibility in
studying many different LoRa scenarios, as they allow modeling for different network
topologies, device configurations, and environmental conditions. However, it is essential to
keep in mind that the accuracy of the simulation results may be limited by the complexity
of the models used in the simulation. For example, the simulator may not accurately
model all of the factors that can affect the performance of a real-world LoRa network,
such as interference from other wireless devices, atmospheric conditions, and the specific
characteristics of the devices and gateways used in the network.

Integrating anomaly detection services to IoT-based water quality monitoring systems
could expand capabilities in monitoring this valuable resource. Unlike most existing com-
mercial systems, this system allows the configuration of algorithms for anomaly detection.
The approach for anomaly detection in IoT-WQSM, where anomaly detection is based on
the construction of numerical features of device profiles, can be more effective in detecting
anomalies in IoT networks because it takes into account the unique patterns of the traffic
generated by each device, rather than relying solely on aggregate statistical measures. It
can also be more robust to changes in traffic patterns, as the numerical features of the
device profiles can be updated dynamically to reflect changes in the behavior of individual
devices, the determination of their normal values, and the search for deviations from the
norm based on statistical methods.

The availability of sensors for in situ monitoring of various types of water quality param-
eters (e.g., E. coli biosensors, heavy metals, pesticides, organic load, anions, cations, etc.) is
increasing in the market. Therefore, there is great variability in price, accuracy, and applica-
tion ranges. To integrate more sensors into the system it is necessary to perform validations
to evaluate their performance because it can vary from manufacturer to manufacturer.

https://cimav.edu.mx/
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