
INSTITUTO POTOSINO DE INVESTIGACIÓN
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Sistemas Dinámicos, fue elaborada por Nazul Bonfilio Merino Negrete y aprobada

el 27 de agosto de 2024 por los suscritos, designados por el Colegio de Profesores de

la División de Control y Sistemas Dinámicos del Instituto Potosino de Investigación

Cient́ıfica y Tecnológica, A.C.

———————————————————

Dr. César Octavio Maldonado Ahumada

Director de la tesis

———————————————————
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Resumen

Presentamos un estudio de señales electrocardiográficas utilizando su irreversibilidad

temporal. Realizamos un análisis exhaustivo de los datos clasificándolos en tres categoŕıas

diferentes, a saber, (1) la señal electrocardiográfica, (2) la señal de intervalos RR y (3)

las señales de variabilidad conjunta. Se propone una técnica de codificación que nos

permite un análisis conjunto de cualquier par de variables obtenidas en cada latido, a

saber, la duración del latido y la amplitud de las ondas P, R y T. Nuestro método de

codificación define particiones no uniformes del espacio de estados, lo que nos permite

considerar las fluctuaciones t́ıpicas de la señal. Utilizamos directamente las secuencias

simbólicas de las señales para construir emṕıricamente estimadores de irreversibilidad

temporal encontrados en la literatura, a saber, el estimador de la Tasa de Producción de

Entroṕıa, el estimador de la Divergencia de Kullback-Leibler y el estimador del Tiempo

de Coincidencia. Además, introducimos un estimador de irreversibilidad temporal, la

Función de Irreversibilidad Desfasada.

Aplicamos nuestra metodoloǵıa a cuatro conjuntos de datos, a saber, sujetos sanos

jóvenes y ancianos, pacientes con fibrilación auricular y con insuficiencia card́ıaca; estos

datos se obtuvieron de la base de datos de libre acceso PhysioBank. Encontramos que al

analizar la señal electrocardiográfica, es posible discriminar los cuatro grupos de pacientes

utilizando los tres estimadores encontrados en la literatura. Sin embargo, en el caso de

la señal de intervalos RR, no tenemos resultados concluyentes con estos estimadores,

ya que no podemos distinguir el grupo de pacientes ancianos sanos de los grupos con

condiciones médicas. Estos resultados mejoran cuando analizamos conjuntamente las

señales de variabilidad. Por último, respaldamos nuestros resultados utilizando el análisis

ROC, que demostró que nuestra metodoloǵıa es eficiente hasta en el 90% de los casos

cuando analizamos la señal electrocardiográfica utilizando su tasa de producción de

entroṕıa.

Palabras clave. Tasa de producción de entroṕıa, electrocardiogramas, intervalos RR,

señales de variabilidad, codificación, estimadores de irreversibilidad temporal, función

de irreversibilidad desfasada, análisis ROC.
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Abstract

A study of electrocardiographic signals using their time-irreversibility is presented.

We achieved a comprehensive analysis of the statistical features of the data by classifying

them into three different categories, namely, (1) the electrocardiographic signal, (2)

RR-intervals signal and (3) joint variability signals. We propose an encoding technique

that allows us a joint analysis of any pair of variables obtained in each heartbeat, namely,

the duration of the heartbeat and the amplitude of the P, R, and T waves. Our encoding

method defines partitions whose widths are not necessarily the same size, allowing us to

consider the typical signal fluctuations. We directly use the symbolic sequences of the

signals to empirically construct the time-irreversibility estimators found in the literature,

namely, Entropy Production Rate estimator, Kullback-Leibler Divergence estimator and

the Matching Time estimator. Additionally, we introduce an estimator for determining

the time-irreversibility of a given process, the so-called Lag Irreversibility Function,

whose main advantage is that the number of parameters to be estimated is relatively

small compared to other methods.

We apply our methodology to four datasets, namely, young and elderly healthy

subjects, patients with atrial fibrillation and with cardiac heart failure; these data were

obtained from the free access database PhysioBank. We found that when analyzing

the complete electrocardiographic signal, it is possible to discriminate the four groups

of patients using the three estimators found in the literature. Still, in the case of the

RR-intervals signal, we do not have conclusive results with these estimators, since we

cannot distinguish the group of healthy elderly patients from the groups with medical

conditions. These results improve when we jointly analyze the variability signals. Finally,

we support our claim using the ROC analysis, which showed that our methodology is

efficient in up to 90% of the cases when we analyze the electrocardiographic signal using

its entropy production rate.

Keywords: entropy production rate, electrocardiograms, RR-intervals, variabili-

ty signals, encoding, time-irreversibility estimators, lag irreversibility function, ROC

analysis.
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Chapter 1

Introduction

An intrinsic property of irreversible thermodynamic processes is the breaking of

time-reversal symmetry of the microscopic trajectories, which is manifested by the

entropy production of the process [1]. This feature is common in most real-life processes,

such as chemical reactions [2] and living systems [3]. Then, the study and quantification

of time-irreversibility in such systems might be useful for their general understanding.

In particular, in biological time series, there is an increasing interest in assessing the

directionality of the processes. For instance, time irreversibility in DNA sequences [4],

entropy production in whole-brain models of consciousness levels [5], in Spike Trains [6],

as well as, irreversibility in human heart rate analysis [7], and so on. Furthermore,

time-irreversibility is important from a theoretical point of view, since it is related to the

presence of non-linear correlations as well as the presence of non-Gaussian fluctuations,

among other interesting properties [8]. All these characteristics of time-irreversibility as

a tool for understanding systems of different natures have encouraged its study.

In this regard, several approaches have been proposed to recognize and quantify time-

irreversibility in time series. The most natural way to quantify temporal irreversibility

is through the comparison of the probability distribution of the trajectories of the

process and its temporal reversal [9]. Perhaps the best-known quantity as a measure of

time-irreversibility in discrete symbolic sequences is the Kullback-Leibler Divergence

between the process forward and backward in time ( [10], [11]). In [8], it is given

an algorithm to detect time-irreversibility by a symbolization of the time series and

comparing the frequency of words and their time-reversed counterparts. Many other

indices of time-irreversibility can be used in time-series analysis, such as permutation

patterns [12], visibility graphs [13], recurrence-time statistics ( [14], [15]) and so on (see

for instance [16] and the references therein, for a review and further details).

In this work, we are particularly interested in the time-irreversibility of electro-

cardiographic signals. The main idea underlying the present analysis is that cardiac

activity in healthy conditions should display a more evident broken time-symmetry than

in non-healthy conditions. The latter means that in healthy patients, the succession of

waves, segments and intervals of the electrocardiogram have an orderly behavior such

that it is possible to distinguish the arrow of time (see Section 3). This may not be true

in non-healthy conditions where the the fluctuations of these signal components are less

regular. This phenomenon might cause time-irreversibility to decrease in the presence of

1



diseases and aging. This behavior of temporal–irreversibility in electrocardiograms may

be useful in understanding how cardiac electrical activity discloses abnormal functional-

ity of cardiac cycle leading to diseases or heart health disorders (as actually has been

reported in [7]).

On the other hand, different approaches have been proposed to test time-irreversibility

in electrocardiograms ( [17], [7], [18]). One of them is based on the analysis of fluctuations

in the heart rate variability through Poincaré Plots (see Section 7.2.1). Employing these

graphs, it is possible to visualize the behavior of the heartbeat data and different

authors have used it to estimate the time-irreversibility from the imbalance that exists

between the instantaneous accelerations and decelerations of the heart rate (see for

example [18–21]). Concerning the other methods, most of them carry out an encoding of

the data and statistically analyze the dissimilarities between the patterns that are formed

in the original sequence and the sequence reversed in time (see for example [7], [17,22,23]).

In Section 7.2 we provide a review of the state-of-the-art methodology developed so far

to quantify the time-irreversibility in electrocardiograms.

In this thesis, we study the time irreversibility of the cardiac electrical activity by

means of the entropy production rate in the electrocardiographic signal. We perform

our analysis by segmenting the signal into three different categories, namely, (1) the

electrocardiographic signal, (2) RR-intervals and (3) joint variability signals; this allowed

us to have a comprehensive analysis of the statistical features of the electrocardiograms.

We propose an encoding technique that allows us a joint analysis of any pair of variables

obtained in each heartbeat (see Section 8.10). With this method, we derive information

about the oscillation of two important signal variables in each heartbeat, namely, the

duration of the heartbeat and the amplitude of the P, R, and T waves. This joint analysis

is important since each variability signal represents different stages of each heartbeat.

Besides, with our encoding method, we define partitions for the state space of the signals

in such a way that the typical fluctuations are considered; that is, we consider partitions

whose width does not necessarily have the same size. After the data encoding process

is completed, we directly use the symbolic sequences of these signals to construct the

entropy production estimators, assuming that the system meets the Markovian property

(see Section 8.5). Next, we compute the entropy production rate from the empirically

constructed estimators, namely, Entropy Production Rate estimator, Kullback-Leibler

Divergence estimator and the Matching Time estimator. Additionally, we introduce an

estimator for determining the time-irreversibility of a given process, the so-called Lag

Irreversibility Function, whose main advantage is that the number of parameters to be

estimated is relatively small compared to other methods.

We apply our methodology considering four electrocardiograms dataset. The first

and second groups correspond to young and elderly subjects without cardiac conditions,

respectively. The third group considered corresponds to patients with atrial fibrillation.
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1.1. Objetives of the thesis

Finally, the fourth group is made up of patients with congestive heart failure. The four

electrocardiograms groups were obtained from the free database PhysioBank [24]. We

found that when analyzing the complete electrocardiographic signal, it is possible to

discriminate the four groups of electrocardiograms dataset using the three estimators

found in the literature. Still, in the case of the heart rate variability signal, we do not have

conclusive results with these estimators, since we cannot distinguish the group of healthy

elderly patients from the groups with medical conditions. These results improve when

we jointly analyze the fluctuations in each heartbeat duration and the wave amplitudes.

This joint analysis of the signals has made it possible to discriminate the group of healthy

elderly subjects from the ill groups. We support our claim using the ROC analysis (see

Chapter 9), in which we obtain an accuracy of above 90% in the case of the entropy

production rate using electrocardiograms. Moreover, achieving that level of accuracy

with our methodology has the advantage that, concerning previous works, we use up to

30 minutes of electrocardiographic signal, compared with some previous works that use

up to 24 hours (see for instance [17]).

1.1 Objetives of the thesis

The main objective of the thesis is to propose a methodology to distinguish between

electrocardiograms of groups of patients under different medical conditions, using the

approach of time-irreversibility of the signal. Achieving this objetive through the approach

proposed in this thesis, sets the following research sub-objectives:

1. State of art . We will present a review of the state-of-the-art methodology developed

so far to quantify the time-irreversibility of electrocardiograms.

2. Electrocardiogram encoding . We will propose an encoding technique that considers

different features of the signal, such as the duration of the heartbeats and the

amplitude of the waves, which are affected when a medical condition arises.

3. Time-irreversibility estimator . We will use the entropy production and the Kullback-

Leibler divergence in order to quantify the irreversibility degree in the ECGs.

Additionally, we will introduce the Lag-Irreversibility Function, which quantifies

the degree of temporal asymmetry between the probability distribution of two

joint events that are lagged in time, in the sequence in natural order and in the

time-reversed sequence.

4. Construction of estimators . This goal consists of estimating, from the signal data,

the parameters of theoretical irreversibility indicators.
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1.1. Objetives of the thesis

5. Electrocardiogram discrimination. We will show that the entropy production rate in

electrocardiograms can be used as a tool to discriminate between electrocardiograms

of different groups of patients. As well as, the Lag-irreversibility function for joint

variables.
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Chapter 2

Preliminaries

For this thesis to be self-contained, in this chapter we introduce some basic definitions

that will serve for further analysis. It is possible to find a large amount of literature on

these subjects and the interested reader may look at these topics in [25–29], for instance.

First, in Section 2.1, we define stochastic processes and the strong law of large numbers.

In Section 2.2 we introduce Markov processes and some of their properties. In particular,

in this section we address the issue of irreversible Markov chains. Next, in Section

2.3, we discuss the symbolic representation of time series analysis and its relationship

with stochastic processes. The use of the autocorrelation function as a measure of

predictability in time series is addressed in Section 2.4. Finally, The Kullback-Leibler

Divergence is defined in Section 2.5. We emphasize that we analyze discrete time series,

and consequently, the theory provided in this chapter focuses on the case of discrete

data. [?], [30], [31], [32], [33], [34]

2.1 Basic definitions

Definition 2.1.1 (Probability measure). Given a measurable space (Ω,F ), the mapping

P : F 7→ [0, 1] is a probability measure if it satisfies:

1. P(∅) = 0, P(Ω) = 1;

2. P(A) ≥ 0,∀Ai ∈ F ;

3. For A1, A2, ... with Ai ∩ Aj = ∅, i ̸= j then

P(∪∞
i=1Ai) =

∑∞
i=1 P(Ai).

Definition 2.1.2 (Probability space). A probability space is a three-tuple (Ω,F ,P),
where Ω is a sample space, F is a σ-algebra of subsets of Ω and P is a probability

measure on the measurable space (Ω,F ).

Definition 2.1.3 (Random variable). Let (Ω,F ,P) and (R,B(R)) a probability space

and measurable space, respectively, where B(R) are measurable Borel sets. A random

variable over a probability space (Ω,F ,P), is a mapping X : Ω 7→ R measurable, that is,

X−1(B) ∈ F ,∀B ∈ B(R).
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2.2. Markov processes

Given a random variable X, we can associate the probability mass function or

probability distribution p(x) = P(X = x), which gives the probability that a random

variable takes a specific value.

Definition 2.1.4 (Probability distribution). The probability distribution of a discrete

random variable p(x) = P(X = x), is the mapping p : R 7→ [0, 1], satisfying:

1. p(x) ≥ 0;

2.
∑

x p(x) = 1.

Definition 2.1.5 (Expected value). For a discrete random variable X with probability

function P(X = x), with i = 1, 2, ...n, its expected value is defined as:

E[X] =
n∑

i=1

xiP(X = xi). (2.1)

Definition 2.1.6 (Stochastic processes). Let (Ω,F ,P) be a probability space, (R,B(R))
a measurable space and T ⊂ N an ordered set. A stochastic process X , is a collection of

random variables {Xn : n ∈ N}, such that for each fixed n ∈ T , Xn is a random variable

from the mapping X : T × Ω 7→ R.

Definition 2.1.7 (Almost sure convergence). Let us consider a sequence of random

variable {Xn : n ∈ N}. We say that {Xn : n ∈ N} converges almost surely (a.s.) to a

random variable X if

P({ω ∈ Ω : lim
n→∞

Xn(ω) ̸= X(ω)}) = 0. (2.2)

Equation (2.2) means that the set of events for which convergence does not occur

has a measure equal to zero. We can also abbreviate this convergence as

lim
n→∞

Xn = X a.s. (2.3)

Definition 2.1.8 (Strong Law of Large Numbers). Let {Xn : n ∈ N} be a sequence of

i.i.d. random variables defined on the same space, with expected value µ = E[X] <∞.

Then

lim
n→∞

1

n

n∑
j=1

Xj = µ a.s. (2.4)

2.2 Markov processes

Definition 2.2.1 (Markov process). Consider a stochastic process X : T × Ω 7→ R
defined in a probability space (Ω,F ,P), whose state space is S and T ⊂ N. A stochastic
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2.2. Markov processes

process is said to be a Markov process or a Markov chain if for all n ≥ 1 and for all

i0, i1, ..., in, j ∈ S, it satisfies the Markov property:

P(Xn+1 = j|Xn = in, Xn−1 = in−1, ..., X0 = i0) = P(Xn+1 = j|Xn = in). (2.5)

In a Markov process, the probability of knowing the future state of the process at

time n+ 1 only depends on knowing the probability of being in a given state at present

n. The right-hand side of Equation (2.5) is called one-step transition probability.

A Markov process is stationary or time-homogeneous if its transition probabilities

do not depend on the time evolution, that is, for any k ∈ T , a stationary Markov process

satisfies that

P(Xn+1 = j|Xn = in) = P(Xn+k+1 = j|Xn+k = in). (2.6)

Definition 2.2.2 (Transition matrix). The transition matrix P of a stationary Markov

process X , is defined as:

[P ]i,j∈S = P(X1 = j|X0 = i). (2.7)

A transition matrix P describes the probabilities of moving from one state to another

in a Markov process; the rows correspond to the current state (X0 = i) and the columns

to the future state (X1 = j) of the process. A transition matrix P is a stochastic matrix

if it has non-negative entries and
∑

j pi,j = 1. The transition probability in n steps, is

given by the (i, j) entry of the nth power of the transition matrix, i.e.:

P(Xn = j|X0 = i) =
[
P (n)

]
i,j∈S . (2.8)

Definition 2.2.3 (Stationary probability distributions). For a Markov process with

transition probability Pi,j, its probability distribution π = (π0, π1, ..., πn) is stationary or

invariant if

πj =
∑
i

πiPi,j. (2.9)

Equation (2.9) means that if the initial random variable X0 has that distribution

π, then the distribution of Xn is also π, that is, P(Xn = j) =
∑

i πiP
(n)
i,j = πj,∀n ∈ N,

which is a result of the fact that this distribution is independent of the time evolution.

The latter can also be expressed in matrix terms by

π = πP (n),∀n ∈ N. (2.10)

Let {Xn} be a Markov chain realization with transition probabilities Pi,j and

stationary distribution π. Consider the process {Yn} = {Xm−n} for n = 0, 1, ...,m, that

is, {Yn} is the original chain but seen backwards, now from time m to time 0. It turns

out that this new process {Yn} is also a Markov chain. To see this, we must verify that,

for some integer r ∈ N such that 1 ≤ r < n ≤ m, it holds that
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2.2. Markov processes

P(Yr = j|Yr−1 = ir−1, Yr−2 = ir−2, ..., Y0 = i0) = P(Yr = j|Yr−1 = ir−1),

which, in terms of process {Xn}, can be expressed as

P(Xm−r = j|Xm−r+1 = im−r+1, Xm−r+2 = im−r+2, ..., Xm = im) = P(Xm−r =

j|Xm−r+1 = im−r+1).

Next, suppose that the present time is m− r + 1. Since {Xn} is a Makov process, then

the future time states Xm−r+2, Xm−r+3... are independent of the past time state Xm−r.

On the other hand, independence is a symmetric property, that is, if A is independent of

B, then B is independent of A. This implies that past time state Xm−r is independent

of future time states Xm−r+2, Xm−r+3..., which is what we wanted to verify.

One may ask whether this new process {Yn}, which is the time reversal version of

{Xn}, up to time m, is indistinguishable from {Xn}, i.e., one may wonder whether the

process {Xn} is reversible within the finite time interval {0, 1, ...,m}. In other words,

we would like to know if the path probability distribution for {Xn} y {Yn} coincides.

The following definition of reversible Markov chains can help answer these questions.

Definition 2.2.4 (Reversible Markov processes). A Markov process with transition

probabilities Pij and stationary distribution π is reversible in time if for any states

i, j ∈ S, it satisfies that:

πiPi,j = πjPj,i. (2.11)

The Equation (2.11) is known as the detailed balance equation. When a Markov

process does not meet the conditions of this equation, the process is said to be irreversible

in time; that is, the probability distribution of the Markov process {Xn} differs from

the probability distribution of the process {Yn}. Such processes are characterized by

their entropy production rate (see Section 3.3.1).

2.2.1 Some properties of Markov processes

Definition 2.2.5 (Irreducible Markov processes). States i and j are said to be commu-

nicating if m ≥ 0 and n ≥ 0 exist, such that P
(m)
i,j > 0 and P

(n)
j,i > 0. A Markov chain is

irreducible if ∀i, j ∈ S there exist m ≥ 0 and n ≥ 0 such that P
(m)
i,j > 0 and P

(n)
j,i > 0.

That is, a Markov chain is irreducible if all states communicate with each other.

Let {Xn} be a Markov chain realization and A ⊂ S. The time of first visit to set A

is the random variable:

TA =

{
min{n ≥ 1 : Xn ∈ A} if Xn ∈ A for any n ≥ 0

∞ other way
(2.12)

When set A consists of a single state j and the chain starts at state i, the time of the

first visit to state j is written Ti,j. A state i is considered recurrent if there exists n
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2.3. Time series analysis

such that P(Ti,i = n) = P(Xn = i|X0 = i) = 1, that is, the probability of eventually

returning in a finite time n to i, starting from i, is one. Similarly, a state is transient if

P(Ti,i = n) = P(Xn = i|X0 = i) < 1.

Definition 2.2.6 (Positive recurrent Markov processes). The mean recurrence time of

a recurring state j from a state i is defined as the expectation of Ti,j, and is denoted by

µi,j = E(Ti,j) =
∑∞

n=1 nP(Ti,j = n). A state i is said to be positive recurrent if µi <∞;

is null recurrent if µi = ∞.

Definition 2.2.7 (Period). The period of a state i is a non-negative integer, defined as

d(i) = m.c.d.{n ≥ 1 : P
(n)
i,i > 0}, where m.c.d. means “greatest common factor”. When

P
(n)
i,i = 0 for all n ≥ 1, we define d(i) = 1. In particular, a state i is said to be aperiodic

if d(i) = 1. When d(i) = k ≥ 2 it is said that i is periodic of period k.

For an irreducible, positive recurrent and aperiodic Markov chain, its stationary

distribution is unique and is given by πj = 1
µj
, which is the main statement for the

Ergodic theorem for Markov chains, which we display below.

2.2.2 Ergodic theorem for Markov chains

Definition 2.2.8. In a Markov chain realization {Xk} of size n, the number of visits

that a chain makes to state j, starting at state i, defines the random variable:

Ni,j(n) :=
n∑

k=1

1j(Xk), (2.13)

where 1j(Xk) is a indicator function.

Theorem 2.2.1 (Ergodic theorem for Markov chains). For any states i and j of an

irreducible Markov chain it holds that:

lim
n→∞

Ni,j(n)

n
=

1

µj

a.s. (2.14)

Equation (2.14) tells us that for an irreducible Markov chain, the average time,

in the limit, that the chain spends in a state j, is given by its stationary distribution

πj =
1
µj
, which constitute the only solution to the system of equations π = πP .

2.3 Time series analysis

A discrete time series is a sequence of observed data indexed according to the order

in which they were obtained in uniform time intervals, which we denote as

Y := {Yt : t ∈ N}. (2.15)
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2.3. Time series analysis

Figure 2.1: (a) Deterministic time series. The sinusoidal function z(t) was simulated for a

frequency ω = 0.5 and t = 6 seconds. (b) Statistical time series. Using µ = 1 and σ = 5, we

generate n = 100 realizations r(n) of the normal distribution.

For example, in the sequence {Y1, Y2, ..., Yn} formed by n consecutive values, the element

Y1 denotes the value taken by the time series at the first instant, Y2 denotes the value

taken by the time series at the second instant and Yn denotes the value taken by the

series at instant n. If the future values of a time series can be determined precisely

by some mathematical function, such as z(t) = cos 2πωt, we have a deterministic time

series, that is, in a deterministic time series, it is possible to know the exact value it

takes at each instant t. . When the future values of the time series can only be described

by a probability distribution, such as the normal distribution f(x) = 1
σ
√
2π
e−(x−µ)2/22 ,

we have a statistical time series (STS) [35]. For example, in Figure 2.1, we show an

example of a deterministic time series (a) and a statistical time series (b). In the case

of Figure 2.1(a), at each instant t, it is possible to know the exact value z(t) that the

time series will take. On the other hand, in Figure 2.1(b), at each instant n, we generate

a realization r(n) of the process, that is, we only know the probability that the series

takes a set of values.

In the case of STS, it is impossible to forecast the future values that the time series

will take; that is, we can only know the probability that the time series will take a

specific value. Therefore, an STS can be considered as a sequence of random variables

indexed according to the order in which they were obtained over time. In this sense, a

time series can be thought of as a realization produced by some underlying probability

law P; in other words, STS can be considered as realizations of a stochastic process [35].

This is the type of time series that we will be working within this thesis.
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2.4. Autocorrelation function

2.3.1 Inverse problem: symbolic representation of time series

In Figure 2.1(b), we have shown a time series generated by taking independent

realizations of a normally distributed random variable. However, in real-life time series,

the corresponding distribution is usually unknown. This means that we face the inverse

problem: we would like to infer the law P, from which the real-life time series was

generated. This can be done using the symbolic representation of the observed sample,

i.e., the time series [36]. The symbolic representation of a time series is a powerful

tool that allows processing the data in a simplified way than the original data, while

preserving, up to some extent, the information of interest.

Let us suppose that discrete time series Y = {Y1, Y2...Yn} takes values on a state

space S, which can be segmented into disjoint cells by α = {A1, A2, ..., Aκ}, whose cells

will be labeled with the elements of set A = {1, . . . , κ}, which we will call alphabet

of size κ; that is, the symbols will indicate in which partition each data falls. This

allows us to obtain a symbolic sequence sα = {si1 , si2 , . . . , sin} of the time series, which

defines the itinerary of the time series visiting cells Ai1 ,Ai2 ,...,Ain . Formally, we say that

sik = ik if yi ∈ Aik , where yi is the value of the time series at instant i. It is essential

to emphasize the fact that sα depends on the chosen partition α, that is, a different

partition of the state space will generate a different symbolic representation [36]. This

motivates introducing the following definition of symbolic representation of time series.

Definition 2.3.1 (Symbolic representation of time series). Let us consider a discrete time

series Y = {Y1, Y2...Yn}, which takes values in the state space S. Let α = {A1, A2, ..., Aκ}
be a disjoint partition of S, whose alphabet of size κ is A = {1, . . . , κ}. The function

Sα
n : S 7→ A, mapping each yi ∈ S to the i-th component of its symbolic sequence sα, is

called the symbolic representation of Y with respect to the partition α.

It turns out that the mapping Sα
n defines a stochastic process [36]. In this way, the

symbolic sequences sα become realizations of the stochastic process of Sα
n .

2.4 Autocorrelation function

The autocorrelation refers to the cross-correlation of a signal with a version of itself

as a function of a time delay. Informally, we can interpret it as a measure of the similarity

between the observations of the random variable and its lagged version.

Definition 2.4.1 (Autocovariance function). The autocovariance between the random

variable Xt and a copy of itself Xt+τ delayed τ time units, is given by [37]:

γ(Xt, Xt+τ ) := cov(Xt, Xt+τ ) = E [(Xt − E[Xt])(Xt+τ − E[Xt+τ ])]

=
1

n

n−τ∑
i=1

(
xi − E[Xt]

)(
xi+τ − E[Xt+τ ]

)
, (2.16)
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2.5. Entropy and Kullback–Leibler Divergence

as long as E[Xt] < ∞, E[Xt+τ ] < ∞, E[XtXt+τ ] < ∞, where E[Xt], E[Xt+τ ] and

E[XtXt+τ ] denotes the expected values of the random variables Xt, Xt+τ and XtXt+τ ,

respectively.

As an interpretation, γ(Xt, Xt+τ ) > 0 indicates a positive dependence. This means

that when the Xt values are above the mean, the Xt+τ values will also be higher than it;

similarly, when Xt values are below the mean, so will Xt+τ values. When γ(Xt, Xt+τ ) < 0,

we have a negative dependence. In this case, Xt values above the mean imply that the

Xt+τ values are below it; likewise, Xt values below the mean imply that Xt+τ values are

above it. In the case of γ(Xt, Xt+τ ) = 0, there is no linear relationship between the two

variables.

Definition 2.4.2 (Autocorrelation function). The autocorrelation function (ACF) of

the variables Xt and Xt+τ is given by [37]:

ρτ (Xt, Xt+τ ) :=
γ(Xt, Xt+τ )√

γ(Xt, Xt)γ(Xt+τ , Xt+τ )
. (2.17)

The autocorrelation function satisfies the following properties:

1. If Xt and Xt+τ are independent, then ρτ (Xt, Xt+τ ) = 0.

2. −1 ≤ ρτ (Xt, Xt+τ ) ≤ 1

3. |ρτ (Xt, Xt+τ )| = 1 if and only if there exist the constants β1 and β2 such that

P
(
Xt+τ = β1Xt + β2

)
= 1, with β1 > 0 if ρτ (Xt, Xt+τ ) = 1 and β1 < 0 if

ρτ (Xt, Xt+τ ) = −1.

Due to these properties, the ACF can be interpreted as a measure of the linear pre-

dictability of the variable Xt+τ from Xt [37].

2.5 Entropy and Kullback–Leibler Divergence

Consider the well-known random experiment of rolling a die. Let A1 be the event

“the face of the die is greater than or equal to 3” and A2 be the event “the face of the

die is equal to 3”. If we compare both events, we would be more surprised that event A2

occurs since the probability of this event occurring (p = 1/6) is less than the probability

of event A1 occurring (p = 4/6); that is, the “amount of surprise” depends on the

probability of the event occurring. The “amount of surprise” regarding the outcome of a

random experiment can be quantified by a quantity known as entropy.
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Definition 2.5.1 (Entropy). Let X be a discrete random variable with state space S

and probability distribution p(x) = P(X = x) for all x ∈ S. The entropy h of X is given

by [38]:

h := −
∑
x∈Ω

p(x) log p(x). (2.18)

In this equation, we will use the convention 0 log 0 = 0; that is, events with a

probability equal to zero do not change the value of the entropy of the process. Equation

(2.18) is a measure of the uncertainty of the random variable X. Intuitively, the more

disordered a process is, the more significant the uncertainty regarding the value the

random variable will take and, consequently, the greater the entropy. For example, for a

random variable that follows a Bernoulli distribution, the entropy is at its maximum for

p = 1/2 and decreases as p approaches 0 or 1. A concept related to the entropy of a

random variable is the relative entropy or Kullback-Leibler Divergence, which measures

the similarity or difference between two probability distributions.

Definition 2.5.2 (Kullback-Leibler Divergence). Let X be a discrete random variable

with state space S, and let p(x) and q(x) be two probability distributions of X. The

relative entropy or Kullback-Leibler Divergence (KLD) is defined as [38]:

D(p||q) :=
∑
x∈S

p(x) log
p(x)

q(x)
. (2.19)

In this equation, we will use three conventions: (1) 0 log 0
0
= 0, (2) 0 log 0

q
= 0 and

(3) p log p
0
= ∞. We have that D(p||q) = 0 when p(x) = q(x) and D(p||q) > 0 when

p(x) ̸= q(x), that is, KLD is always positive. As an interpretation, the larger the value

of D(p||q), the less similar the distributions p(x) and q(x) are; conversely, lower values

of D(p||q) indicate that these two distributions are more similar. In Section 3.3.3, we

will see that KLD between the forward and backward paths of a process can be used to

quantify its time-irreversibility.

2.6 Chapter summary

The definitions and theory presented in this chapter will serve as background to

introduce the irreversibility indicators in Chapter 3 and to perform different statistical

analyses. Specifically, we will use the ACF to evaluate the degree of memory of the

electrocardiographic signal, which is related to the Markovianity of the process. The

concept of irreversible Markov chains will allow us to define the entropy production rate

of the process in Section 3.3.1. In addition, we will use the definition of relative entropy

introduced in this chapter to define, in Section 3.3.3, an indicator of irreversibility,

namely, the indicator of the KLD between the process and the time-reversed process.
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Chapter 3

Time-irreversible processes

In this chapter we introduce the indicators of temporal irreversibility that we use for

our study. First, in Section 3.1, we give a brief introduction to irreversible processes and

entropy production from the point of view of classical thermodynamics. Then, Section

3.2 relates entropy production in time series and the physical mechanisms that generate

them. In Section 3.3 we define some time irreversibility indices found in the literature and

introduce the lag-irreversibility function. Finally, we provide two examples to illustrate

the meaning of irreversible processes in Section 3.4.

3.1 Time-irreversible processes: classical thermody-

namics approach

The first law of thermodynamics states that if work is done on (or from) a system

or if it gains (or loses) heat, its internal energy will change. In other words, this law

expresses that after an energy exchange, in the form of heat or work, between a system

and its surroundings, the total energy of the universe remains constant (Figure 3.1).

This principle can be expressed by [39]:

U = Q+W, (3.1)

where U is the internal energy of the system,Q the heat it exchanges with its surroundings

and W the work done by or towards the system.

Figure 3.1: Scheme of the first law of thermodynamics. The change in the internal energy of

the system is the sum of the heat and work done to or from the system. The signs of Q and W

are positive when the system receives heat or work is done on it. When the system gives off

heat or does work on the surroundings, the signs of Q and W will be negative.

The first law of thermodynamics is a universal law and no exceptions have been

observed. For example, suppose that our system is an ice cube that, at an initial instant

14



3.1. Time-irreversible processes: classical thermodynamics
approach

Figure 3.2: Example of an irreversible process. At the molecular level, in the solid state, water is

a more ordered system compared to the liquid state. Naturally, systems tend to get disordered,

that is, the system goes from a state of lower entropy to one of higher entropy. These pictures

were taken from [41] and [42].

ti, is in a room at room temperature (T ≈ 25◦C) (Figure 3.2(a)). Spontaneously, that

is, without work being done towards or from the system, the ice cube will absorb heat

from its surroundings, until it is in thermal equilibrium with the room and reaches the

liquid state at some final instant tf (Figure 3.2(b)). In this case, since there is no work

done, the change in the internal energy of the system will be equal to the heat gained

from the room, that is, ∆U = Uf − Ui = Q. Once this equilibrium state is reached, the

reverse process will not occur spontaneously. This means that the process is irreversible,

since we will not observe the liquid releasing heat until the ice cube forms again. For

the process to be reversible, that is, for the ice cube to form again, it is necessary that

at the end of the reverse process, the net heat exchange between the ice cube and the

room is equal to zero, which is impossible, since part of the heat transferred was lost

during the heat exchange. In thermodynamics, this restriction in the direction in which

the process occurs can be described in terms of the entropy S of the process, which

is a physical quantity that measures the degree of molecular disorder of a system. In

our example, our system goes from an equilibrium state A, water in a solid state, to

another equilibrium state B, water in a liquid state. In the solid state, molecules exhibit

a more ordered configuration than they do in the liquid state (Figure 3.2); if we define

the entropy of the system in the equilibrium states A and B as SA and SB, we have

that SA < SB, so that the entropy change ∆S = SB − SA > 0, is positive; that is, the

system went from a state of lower entropy to one of higher entropy. This happens since

when a system is not in thermodynamic equilibrium, it tends to seek such a state, where

the entropy is maximum ( [39], [40]). To understand this positive entropy change and

its relationship with the second law of thermodynamics, we will first define entropy.

In classical thermodynamics, the entropy S can be considered as differential quantities
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of heat transfer divided by the temperature, by [40]:

dS =
δQ

T
, (3.2)

since the heat Q is not a state function, δ is used instead of d, that is, δ is an inexact

differential. The entropy change of a system during a process can be defined by integrating

the equation (3.2), as [40]:

∆S = SB − SA =

∫ B

A

δQ

T
. (3.3)

On the other hand, for a cyclic process that consists of a reversible part and an irreversible

part, from the Clausius inequality [40],∮
δQ

T
≤ 0, (3.4)

it is possible to obtain the inequality

∆S = SB − SA ≥
∫ B

A

δQ

T
, (3.5)

which can be expressed in differential form as

dS ≥ δQ

T
. (3.6)

In equation (3.6), equality is met for reversible processes and inequality for irreversible

processes. This implies that, in an irreversible process, the entropy change ∆Sirre is

greater than the integral of δQ
T

evaluated for that process. In the case of a reversible

process, the entropy change ∆Srev is equal to the integral of δQ
T
, which represents the

entropy transfer with heat. Therefore, the entropy change in an irreversible process is

always greater than the entropy transfer, i.e. ∆Sirre > ∆Srev. This implies that in an

irreversible process, entropy is generated or produced. The entropy produced during

a process is called entropy production, which we will denote as Sprod. We can deduce

that the difference between the entropy change of a system and the entropy transfer, is

the entropy production, and consequently, using equation (3.5), we can can express the

entropy production as [40]:

Sprod = ∆S −
∫ B

A

δQ

T
. (3.7)

where
∫ B

A
δQ
T

is the entropy transfer and the entropy production Sprod is a quantity

always positive or zero. In the absence of entropy transfer, the entropy change of the

system is equal to the entropy production. Additionally, entropy production is related

to the work dissipation (Wdiss) or dissipation, which we can define as the surplus of
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work necessary to take a system from an equilibrium state A to an equilibrium state B,

by [43]:

Wdiss = W −∆F, (3.8)

where ∆F = FB − FA is the minimum amount of work needed to take a system from

state A to B. In this equation, the terms FB and FA are the free energy in states B and

A, respectively [39]. For irreversible processes, the work dissipation is always positive,

while for reversible processes it is equal to zero, that is, Wdiss ≥ 0. For an isothermal

process (constant temperature) at temperature T , the work dissipated can be expressed

in terms of entropy production, as [43]:

Wdiss = TSprod. (3.9)

On the other hand, equation (3.6) is the classical expression of the second law of

thermodynamics, which states that the change in entropy S is always greater than or equal

to the heat transfer Q, divided by the equilibrium temperature T of the system; in other

words, this law expresses that the amount of entropy in the universe tends to increase over

time [40]. This means that the second law of thermodynamics describes the direction

in which processes occur. In our example in Figure 3.2, the system spontaneously

went from the solid state to the liquid state; however, the reverse process will not

happen spontaneously. This change happened because there was a thermodynamic

force that drove such a transformation, temperature and pressure. Other examples of

thermodynamic forces could be the concentration gradient, electric potential gradient,

pressure gradient, and many others, which drive different irreversible processes such as

diffusion (concentration gradient) or an electric discharge (electric potential gradient).

These examples of irreversible processes happen spontaneously in one direction, since

when they occur, there is some loss or dissipation of energy, and therefore they produce

entropy, which is proportional to the energy dissipation (equation (3.9)).

3.2 Time-irreversible processes: statistical thermo-

dynamics approach

From a thermodynamic point of view, all natural processes are irreversible. When

we want to understand, from the perspective of irreversible processes, different natural

processes, it is not possible to do so using the tools of classical thermodynamics and we

need to make use of the statistical definition of entropy and entropy production. This is

because the tools of statistical thermodynamics of irreversible processes can be applied to

the analysis of time series, which in turn can be used as graphical representations of some

natural processes. In this context, the relationship between the classical thermodynamic

definition and the statistical definition of the entropy production in irreversible processes
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can be established through the Kolmogorov-Sinai entropy of its forward (h) and backward

(hr) trajectories, by ( [44], [9]):

Ṡ

kB
= lim

n→∞

1

n
Dn(P(xn1 )|P(x1n)) = (hr − h), (3.10)

where Ṡ is the entropy production of a thermodynamic system, kB is the Boltzmann

constant and Dn(P(xn1 )|P(x1n)) is the KLD of n-strings (see equation (3.20)). P(xn1 ) is
an abbreviated form of P(Xn

1 = xn1 ) and denotes the probability of a realization of

the process, from time 1 to n; in the next section we introduce this notation in detail.

In this equation, the left-hand side is a physical quantity that defines the entropy

production rate of a system at the macroscopic level, while the right-hand side is a

statistical quantity that defines the entropy production rate, which depends only on

the trajectory of the system (x1, x2, . . . , xn) and does not take into account the physical

mechanism generating the data ( [44]). In this thesis, we are interested in analyzing

the time-irreversibility of a process from the approach defined by the right-hand side

of the equation (3.10), that is, from the observables of a process, seen as a time series.

Next, we address the issue of temporal irreversibility of a process from the statistical

approach, which is manifested by the time asymmetry and the entropy production rate

of its trajectories.

A stationary process X := {Xn : n ∈ N} is said to be reversible in time, if for

the joint probability distribution up to time n, P(xn1 ) and the joint distribution of the

time-reversed sequence P(x1n), it is true that ( [45]):

P(xn1 ) = P(x1n), (3.11)

i.e., both trajectories are equally probable for all n, which is an outcome of the fact that

the trajectories of these systems do not exhibit preferential direction. In contrast, in

the cases of irreversible processes, its trajectories are described by the breaking of the

time-reversal symmetry or are said to exhibit time asymmetry. This breaking of the time-

reversal symmetry is directly related to the entropy production rate at the microscopic

dynamical level [46]. In addition, the time asymmetry quantifies the distinguishability

between the process paths and their time reversal, which is an interpretation of an

irreversible process. Therefore, the main characteristic of irreversible processes is their

preferred direction and their proficiency in discerning the arrow of time ( [10], [43], [47]).

When equation (3.11) is not met in the context of irreversible processes, we ask

whether general methods exist to estimate the temporal asymmetry or the entropy

production rate, since these quantities are essential for quantifying how far from thermo-

dynamic equilibrium a system is. In this regard, different approaches have been proposed

to address the problem of estimating these quantities, such as permutation patterns,

ternary coding, micro-scale trends, visibility graphs, and some others; for a review see [16]
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3.3. Time-irreversibility indices

and the references therein. Therefore, in order to test and quantify the time-irreversibility

of the process under study in this thesis (see methodology Section ??), we consider

three indices of irreversibility found in the literature, namely, entropy production rate,

the Kullback-Leibler divergence between the forward and backward process and the

matching time. Furthermore, we introduce the Lag-irreversibility function, as index of

time irreversibility in time series. Next, in Section 3.3, we introduce each of these indices.

3.3 Time-irreversibility indices

The entropy production rate quantifies how far a system is from equilibrium. It is

well known that a Bernoulli process is reversible and thus can be seen as in equilibrium;

also, Markov processes are reversible whenever they are in detailed balance [9]. In [48],

the entropy production rate was defined for general stochastic processes and dynamical

systems at the level of their trajectories. Here, we assume that our data sequences are

produced by a discrete stationary Markov chain that is not in detailed balance.

We will begin by providing useful definitions to introduce the indices. Let X = {Xn :

n ∈ N} be a discrete-valued stationary process generated by the law P, which takes

values from the state space S = {s1, s2, ..., sκ}. A realization of length n of process X will

be denoted as x = x1, x2, x3, · · · , xn, which one can write as a sequence in Sn. Next, let

k < n be a positive integer; the chain of the first k symbols of x is denoted as xk1. A finite

string ak1 := a1a2a3 · · · ak comprised of k symbols will be called either k-word or k-block.

We say that the k-word “occurs” at the j-th site of x, if xj+k−1
j = ak1. We will denote by

Xn
1 the process up to time n and X1

n will denote the process reversed in time, analogously,

we write xn1 for a realization of the process and x1n for its corresponding time-reversed

realization. For convenience, we will denote the probability of the realization xn1 , as

P(xn1 ) instead of P(Xn
1 = xn1 ). Analogously, the probability of sequence s = s1s2 . . . sn

will be denoted as P(s).

3.3.1 Entropy production rate

LetX be a Markov process with transition matrix [Pi,j]i,j∈S = P(Xm = sj|Xm−1 = si)

and a finite state space S. Let us consider the finite sequence s = s1s2 . . . sn, which

represents the trajectory of the process. The invariant probability of the process visiting

the state si is given by πi := π(si), which is the i-th entry of the eigenvector π defined as

π = Pπ. This invariant probability vector π is unique for an ergodic Markov process that

is irreducible, aperiodic and positive recurrent. We have that π and P are independent

of time when the Markov process X is stationary. Due to the Markov property, the

probability P(s) of the sequence s is [2]:

P(s) = P(s1s2 . . . sn) = P(s1)P(s2|s1)P(s3|s2)...P(sn|sn−1) (3.12)
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The entropy of the sequence h(s) and the time-reversed one hr(s) are given by [2]:

h(s) = −
∑
i,j

P(si)P(sj|si) lnP(sj|si), (3.13a)

and

h(sr) = −
∑
i,j

P(sj)P(si|sj) lnP(si|sj), (3.13b)

respectively. For a discrete stationary Markov process, its Entropy Production Rate

(EPR) can be estimated as [2]:

ep := h(sr)− h(s) =
1

2

∑
i,j

[
P(si)P(sj|si)− P(sj)P(si|sj)

]
ln

P(si)P(sj|si)
P(sj)P(si|sj)

≥ 0, (3.14)

where P(si) = πi and P(sj) = πj.

3.3.2 Matching time

As stated by Gaspard in [2], in Markov processes the EPR can be obtained as

the difference between the time-reversed and standard entropies, ep = hr − h (see

equation (3.14)). Accordingly, this difference between the entropy rate in the time-

reversed sequence and the entropy rate in the original sequence, can be used as an index

of temporal irreversibility. On the other hand, it is possible to derive expressions for

the entropy rate h and the time-reversed entropy rate hr, based on matching times

(MT) [49].

For a finite realization x = x1, x2, ..., xn, of a process X , the matching time L+
n is

defined as [4]:

L+
n (x) := min{ℓ : xℓ1 ̸= xk+ℓ−1

k ,∀k = 1, 2, ..., n− ℓ+ 1}. (3.15)

Analogously, the reversed matching time L−
n is defined as [4]:

L−
n (x) := min{ℓ : x1ℓ ̸= xk+ℓ−1

k ,∀k = 1, 2, ..., n− ℓ+ 1}. (3.16)

It turns out that matching time L+
n , obeys the strong law of large numbers when

n→ ∞ [50], in the sense that:

L+
n

log(n)
−→ 1

h
a.s. (3.17)

Correspondingly, the reversed matching time L−
n , obeys the strong law of large numbers

when n→ ∞, in the sense that:

L−
n

log(n)
−→ 1

hr
a.s. (3.18)

20



3.3. Time-irreversibility indices

Equations (3.17) and (3.18) suggest that the entropy rate h and the time-reversed

entropy rate hr can be estimated by means of:

ĥ =
log(n)

L+
n

, (3.19a)

and

ĥr =
log(n)

L−
n

, (3.19b)

respectively. In Ref. [4], the author derives estimators of h and hr from the matching

times (MT) and estimates the EPR as M = hr − h. In Section 4.2 we describe the

estimation procedure.

3.3.3 Kullback-Leibler Divergence

As we saw in Section 2.5, KLD is a tool that can measure the difference between

two probability distributions. The latter is a consequence of the Chernoff-Stein lemma

(see Theorem 11.8.3 in [38]), which states that the probability of incorrectly assigning

the distribution p(x) to the sequence {Xi : 1 ≤ i ≤ n}, when its true distribution is

q(x), is proportional to e−nD(p||q). As an interpretation, the larger the value of KLD, the

easier it is to distinguish between the two probability distributions; conversely, lower

values of KLD indicate that it is more difficult to distinguish between the two probability

distributions.

In this thesis, we are interested in the KLD between the process forward and backward

in time, which gives its EPR in the case of Markov processes; in [10], the authors provide

a broader discussion of KLD and its relationship with EPR. From a practical point of

view, probability distributions are constructed from the data, with which we can directly

estimate the KLD. Given a process X with trajectory x = x1, x2, · · · , xn, one can define

the n-block KLD of the process, with respect to its time reversal, as follows [9]:

Dn(P(xn1 )|P(x1n)) =
∑

x1x2···xn

P(xn1 ) ln
P(xn1 )
P(x1n)

. (3.20)

The EPR is given by the limit:

D = lim
n→∞

1

n
Dn(P(xn1 )|P(x1n)), (3.21)

and it exists for almost every realization of the process whenever it is an ergodic process.

Equation (3.21) has been used for estimation of the entropy production rate or as an

index of irreversibility in [9, 10].
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3.3.4 Lag-irreversibility function

As we mentioned above, the main problem in evaluating time-irreversibility in time

series is the finiteness of the sample. Here, we propose an index for determining the

time-irreversibility of a given process, the Lag Irreversibility Function, whose main

advantage is that the number of parameters to be estimated is relatively small compared

to other methods (see [16]). Let X = {Xn : n ∈ N} a discrete-valued stationary process

generated by the law P as defined previously, and let τ ∈ N be a non-negative integer.

Let us consider the joint probability function of two events that are τ -lagged in time,

P(Xn = xi;Xn+τ = xj), and equivalently in the backward process, P(Xn = xj;Xn+τ =

xi). Equation (3.11) implies that if the process P is irreversible, the joint probability

function of the forward and backward process will follow the asymmetry property [51]:

P(Xn = xi;Xn+τ = xj) ̸= P(Xn = xj;Xn+τ = xi). (3.22)

Equation (3.22) motives the next definition of pairwise reversibility.

Definition 3.3.1. We say that a stochastic process X = {Xn : n ∈ N} is pairwise

reversible if for all τ ∈ N, we have that [51]:

P(Xn = xi;Xn+τ = xj) = P(Xn = xj;Xn+τ = xi). (3.23)

Otherwise, we say that the process is pairwise irreversible.

A natural way to evaluate the pairwise irreversibility is to compute the KLD between

the joint probability P(Xn = xi;Xn+τ = xj) and P(Xn = xj ;Xn+τ = xi), which leads to

the following definition of the Lag Irreversibility Function.

Definition 3.3.2. Let X = {Xn : n ∈ N} a discrete-valued stationary process generated

by the law P. We define the Lag Irreversibility (LI) Function, L(τ), as the Kullback-

Leibler Divergence between the joint probability P(Xn = xi;Xn+τ = xj) and P(Xn =

xj;Xn+τ = xi), [51] as:,

L(τ) := Dτ

(
P(Xn = xi;Xn+τ = xj) ||P(Xn = xj;Xn+τ = xi)

)
=

∑
i

∑
j

P(Xn = xi;Xn+τ = xj) log

(
P(Xn = xi;Xn+τ = xj)

P(Xn = xj;Xn+τ = xi)

)
. (3.24)

The LI function can be described as a two-point statistic time-irreversibility index,

which measures the breaking of the time-symmetry of the process probability distribution

P(Xn = xi;Xn+τ = xj) of two events that are τ -lagged in time, regarding the probability

distribution P(Xn = xj;Xn+τ = xi) of the process reversed in time. However, in some

cases, although the process is irreversible, it may exhibit pairwise symmetry between

these probability distributions, resulting in the process being pairwise-reversible. The
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3.4. Some examples of time-reversible and irreversible processes

latter might suggest that the property of lag-reversibility is less stringent than the

general condition of reversibility defined in equation 3.11. Therefore, the question of

whether the pairwise-reversibility criterion defined by equation (3.23) is equal to the

general reversibility criterion defined by equation 3.11, remains open [51].

3.4 Some examples of time-reversible and irreversible

processes

We provide two examples to illustrate the meaning of irreversible processes. The

first is a Markov process whose EPR can be obtained explicitly; that is, we know the

probability law P of the process and we can generate realizations of it, which can be

displayed as time series. The second example is a time series, representing the opposite

case; that is, the probability law P generating the realization displayed as a time series

is unknown.

In the first example, when we know the law P that generates the process, we can

directly use the equation (3.14) to obtain the exact value of the EPR of the process.

The second example is more complex because we first need to obtain the symbolic

representation of the time series, from which it is possible to construct time-irreversibility

estimators. In Chapter 4 we introduce the corresponding estimators of the irreversibility

indices we presented above and we show how to construct them directly from symbolic

sequences, using a numerical example.

Example 3.4.1. Let us consider a Markov chain whose EPR can be obtained explicitly.

Let S := {1, 2, 3} be the state space of the discrete-time Markov chain with stochastic

matrix A : S × S → [0, 1], defined by

A =

 0 p 1− p

1− p 0 p

p 1− p 0

 , (3.25)

where p is the probability to jump from one node to the next one and (1 − p) to go

backwards (see Figure 3.3). This matrix is doubly stochastic and the unique invariant

probability vector is given by π = (1
3
, 1
3
, 1
3
). The corresponding EPR of this process is

given by:
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ep(p) =
1

2

{[(1
3
(1− p)− 1

3
p
)
ln

1
3
(1− p)

1
3
p

]
+

[(1
3
(p)− 1

3
(1− p)

)
ln

1
3
(p)

1
3
(1− p)

]

+

[(1
3
(p)− 1

3
(1− p)

)
ln

1
3
(p)

1
3
(1− p)

]
+

[(1
3
(1− p)− 1

3
p
)
ln

1
3
(1− p)

1
3
p

]

+

[(1
3
(1− p)− 1

3
p
)
ln

1
3
(1− p)

1
3
p

]
+

[(1
3
(p)− 1

3
(1− p)

)
ln

1
3
(p)

1
3
(1− p)

]}

=
1

2

{
3

[
1

3
(1− p)− 1

3
(p) ln

1
3
(1− p)

1
3
p

]
+ 3

[
1

3
(p)− 1

3
(1− p) ln

1
3
(p)

1
3
(1− p)

]}

=
1

2

{[
ln

1− p

p
− 2p ln

1− p

p

]
+

[
2p ln

p

1− p
− ln

p

1− p

]}

= (2p− 1) ln p− (2p− 1) ln(1− p) = (2p− 1)

[
ln p− ln(1− p)

]
= (2p− 1) ln

( p

1− p

)
, (3.26)

which is obtained directly from equation 3.14 and the probabilities given by the transition

matrix 3.25. From the equation 3.26 it is clear the process is reversible, i.e., ep = 0,

only for the case p = 1/2, and irreversible otherwise. The number p can be thought as a

parameter that quantifies the degree of irreversibility of the process.

1

2 3

(1− p)(1− p)

(1− p)

p

Figure 3.3: Three-states Markov chain cycle

Example 3.4.2. Let us consider the time series generated by an irreversible process

depicted in Fig. 3.4(a). If we compare the original trajectory (graph in blue) with its

version reversed in time (graph in red), we can distinguish the direction of the arrow

of time; we can distinguish that there is a change in the pattern that the trajectory

follows since the original trajectory is in the form of stairs that are inclined towards the
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Figure 3.4: (a) Trajectory of a time series generated by an irreversible process; it is clear to

distinguish the direction of the arrow of time. (b) Trajectory of a time series generated by a

reversible process; the direction of the arrow of time is not clear.

right-hand side, while in the trajectory reversed in time, we see that these stairs appear

inclined in the opposite direction. This means that the time series exhibits temporal

asymmetry and suggests that it has a positive entropy production rate.

Let us consider the time series generated by a reversible process depicted in Fig.

3.4(b). If we compare the original trajectory (graph in blue) with its version reversed in

time (graph in red), in this case, it is not clear to distinguish the direction of the time

arrow, it seems that we are observing the same pattern of behavior in both cases. This

means that the time series preserves its time-reversal symmetry, that is, the probability

distribution of the process and its time-reversed version satisfy equation (3.11). The

latter implies that it has an entropy production rate equal to zero.

As we mentioned before, in this case, to estimate the EPR of the process, an alter-

native to do so is to obtain the symbolic representation of the time series, from which

we can construct the irreversibility estimators.

3.5 Chapter summary

In this chapter we have defined different irreversibility indices found in the literature

and we have introduced the lag irreversibility function. However, when we want to
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use these tools to estimate the temporal irreversibility in time series generated by real

life systems, the parameters of these indicators are not known exactly and we have to

estimate them from the time series data. In this regard, in Chapter 4, we will introduce

the estimators of the different irreversibility indicators discussed in this chapter. In

particular, these estimators will be based on empirically estimating the probabilities of

the events in the symbolic sequences.
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Chapter 4

Estimators of time-irreversibility in-

dices

In Section 3.3, we discussed different temporal irreversibility indices, namely, the

Entropy Production Rate, the Kulback-Leibler Divergence, the Matching Time and the

Lag-Irreversibility Function. This chapter introduces the corresponding estimators of

those irreversibility indices in an analogous way to the “plug-in” estimators for the

entropy rate as in [52]; that is, we construct empirical probabilities from the data.

For this purpose, we assume that the samples are produced by a Markov chain whose

transition matrix is unknown, but that can be estimated directly from the trajectories.

In particular, when introducing each estimator, we provide an example to illustrate

the general idea of the estimation procedure. Next, we test these estimators using time

series coming from Markov chain models. We introduce these irreversibility estimators

using the notation described in Chapter 3.

4.1 Entropy production rate empirical estimator

Let S = {s1, s2, ..., sκ} be the state space of a discrete Markov chain X with a finite

realization x = x1, x2, ..., xn of size n. We say that the process at time i is at the state

sj if xi = sj . So, for every j = 1, . . . , κ, and a given n, we define the empirical frequency

of the state sj in a typical sequence x of size n, as follows [53]:

f(sj;x
n
1 ) :=

n∑
i=1

χsj(xi), (4.1)

where χsj(·) is the indicator function of sj. Moreover, for i = 2, . . . , n, the transition

probabilities P(xi = sj|xi−1 = sk), are estimated using the empirical probabilities from

the sequence x of size n, and thus defined by [53]:

P̂n(sj|sk) =
1

f(sk;xn1 )

n∑
i=2

χsj(xi) · χsk(xi−1). (4.2)

In other words, in a sequence of length n = 20, the empirical transition probability

from state sk to state sj, is obtained by dividing the number of transitions from state

sk to state sj by the empirical frequency of state sk. For example, let us consider the
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sequence x = 2 3 1 211212 33 2122 3 1 2 3 2 (with n = 20), the empirical probability of

transitions from state 3 to state 1 is P̂n(1|3) = 2
5
, since state 3 appears five times (blue

shaded text) and make two transitions to the state 1 (green shaded text).

The empirical conditional probabilities obtained with equation (4.2), are used to

estimate the êp by directly plugging them into equation (3.14), giving the following

expression [53]:

êp :=
1

2

∑
j,k

[
π̂kP̂n(sj|sk)− π̂jP̂n(sk|sj)

]
ln
π̂kP̂n(sj|sk)
π̂jP̂n(sk|sj)

, (4.3)

where π̂ represents the left eigenvector of the empirical transition matrix P̂n (correspond-

ing to the eigenvalue 1).

4.2 Matching time estimator

In [49], Kontoyiannis and Antos introduced an estimator of entropy rate based

on Matching Times (MT) (see Section 3.3.2). On the other hand, in [4], the authors

propose a procedure to estimate the matching time from the symbolic sequences of

the system, whose lengths are not necessarily uniform. Let us assume we have the set

M := {xi : |xi| = ni, 1 ≤ i ≤ m}, which is made up of m finite samples sequences, each

with a different length ni and coming from the process X . Let I := {ni : 1 ≤ i ≤ m}
be the collection of all lengths ni of the sequences. By applying the equations (3.15)

and (3.16), each sequence in M yields a sample of its corresponding matching time ℓ+

and a sample of the reversed matching time ℓ−, respectively. In addition, the collection

of all the outcomes of applying equation (3.15) to each sequence in M , that is, all the

resulting matching times ℓ+i , can be expressed as [4]:

L + := {ℓ+i = L+
ni
(xi) : xi ∈ M , 1 ≤ i ≤ m}. (4.4)

Equivalently, using equation 3.16 for each sequence in M , we can obtain the collection

of matching times of the time-reversed process, denoted as [4]:

L − := {ℓ−i = L−
ni
(xi) : xi ∈ M , 1 ≤ i ≤ m}. (4.5)

For example, let us consider the set M := {x1,x2}, where x1 = 122 2 32122313322

(n = 15) and x2 = 211 31 32122222133112 (n = 19). In the case of x1, we have ℓ+ = 4

and ℓ− = 3 since the blocks 1222 (green shaded text) and 221 (blue shaded text) appear

once, respectively. For x2 the parameters are ℓ+ = 3 and ℓ− = 5 since the blocks 211

(green shaded text) and 13112 (blue shaded text) appear once, respectively. Now we can

build the sets I := {15, 19}, L + = {4, 3} and L − = {3, 5}.
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4.3. Kullback–Leibler Divergence empirical estimator

Up to this point, it is possible to define the estimators for the entropy rate h and

the time-reversed entropy rate hr, for a set of m samples, as [4]:

ĥ =
1
m

∑m
j=1 log(nj)

1
m

∑m
j=1 ℓ

+
j

, (4.6a)

and

ĥr =
1
m

∑m
j=1 log(nj)

1
m

∑m
j=1 ℓ

−
j

, (4.6b)

respectively, where ni ∈ I , ℓ−i ∈ L − and ℓ+i ∈ L +. Given the process X , equations

(4.6a) and (4.6b) provide us with the estimators of the entropy rate of its symbolic

sequence (h) and of its time-reversed symbolic sequence (hr), which were defined in

equation (3.19). The EPR of the process can be estimated by [4]:

M̂ := ĥr − ĥ. (4.7)

4.3 Kullback–Leibler Divergence empirical estima-

tor

Let sk1 be a k-block and s1k its reversed order version. We define the empirical

probability of the block sk1 in the sequence x of size n, as follows [53]:

f(sk1;x
n
1 ) :=

1

n− k + 1

n−k+1∑
i=1

χsk1
(xi+k−1

i ). (4.8)

Analogously, equation (4.8) is used for the empirical probability of the reversed

block s1k.

For example, for the sequence x = 21 132 111212 132 33 132 21 231 2 (n = 25), for

k = 3, let us consider the randomly chosen k-block sk1 = 132 and its reversed order

version s1k = 231. Then, the empirical probability of sk1 and s1k are given by f(sk1;x) =
3
23

and f(s1k;x) =
1
23
, respectively.

Equation (4.8) provides us with the empirical probabilities of the k-blocks that will

be used to estimate the KLD, by substituting them directly into the equation (3.20),

which in turn yields [53]:

D̂n,k :=
∑
sk1∈S

f(sk1;x
n
1 ) ln

f(sk1;x
n
1 )

f(s1k;x
n
1 )
. (4.9)

In an ergodic process, for each k and for almost every realization, the empirical

probability f(sk1;x
n
1 ) of each k-block converges to its theoretical probability P(sk1) when

the size of the sequence x goes to infinity (see [54]). So, one must have that limn→∞ D̂n,k =
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4.4. Lag irreversibility function estimator

Dk(P(sk1)|P(s1k)), where the expression in the right-hand side is (3.20), and is obtained

as the limit of the empirical frequencies. Furthermore, for an ergodic process it is known

that the EPR is given by the limit [9]:

D = lim
k→∞

Dk

(
P(sk1)|P(s1k)

)
k

. (4.10)

Moreover, one can take the two limits at once k(n) → ∞, by choosing k ∼ log(n).

This holds by the Ornstein-Weiss theorem (see [54], for a reference). This gives us the

mathematical foundations for the consistency of this estimator.

Let us remember that sk1 ∈ Sn is one of all possible words of size k that can be

formed from the state space S. When k = 3, we have 3 possible cases [22]: (1) blocks

like “222”, which are read the same regardless of whether the process runs forward or

backward in time and we will call them homogeneous words ; (2) words like “121”, which,

as in the previous case, are read the same regardless of the direction of the time arrow

and we will call them symmetric words ; (3) the remaining words, like “213”, which we

will call asymmetric words. In the case of homogeneous and symmetric words, we will

have ln
f(sk1 ;x

n
1 )

f(s1k;x
n
1 )

= 0, since f(sk1;x
n
1 ) = f(s1k;x

n
1 ), that is, these words do not contribute to

the quantity defined in equation (4.9). The above implies that the time-irreversibility of

the process is related to the probability distribution of asymmetric words.

4.4 Lag irreversibility function estimator

The empirical LI function estimator is defined by the empirical joint probability of

the variables xn and xn+τ , both in the original and time-reversed sequences. We assume

that an unknown process produces these variables, but that they can be estimated

directly from the trajectories. Let x = x1, x2, . . . , xn be a realization of the stationary

process X = {Xt : t ∈ N}, with state space S = {s1, s2, ..., sκ}. The joint probability

functions P(xt = si;xt+τ = sj) and P(xt = sj ;xt+τ = si), can be estimated by means of:

P̂ (xt = si;xt+τ = sj) =
1

n− τ

n−τ∑
t=1

χsi(xt)χsj(xt+τ ), (4.11a)

and

P̂ (xt = sj;xt+τ = si) =
1

n− τ

n−τ∑
t=1

χsj(xt)χxsi
(xt+τ ), (4.11b)

respectively, where χs(x) is the indicator function for the state s.

For example, let us consider the sequence x = 1 32 3 3 1 1 2 3 1 12 3 21 1 1211

(n = 20). For τ = 3, the joint probability that at instants t and t + τ the process is

in states 1 and 3 (blue shaded text), respectively, is P̂ (xt = 1; xt+τ = 3) = 3
17
; for the

time-reversed version (green shaded text) we have that P̂ (xt = 3;xt+τ = 1) = 2
17
.
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4.5. Numerical example

Equations (4.11a) and (4.11b) give us the empirical joint probability that we use to

estimate L(τ), by directly substitute them in Equation (3.24), which yields [51]:

L̂(τ) =
∑
si

∑
sj

P̂ (xt = si;xt+τ = sj) log

[
P̂ (xt = si;xt+τ = sj)

P̂ (xt = sj;xt+τ = si)

]
(4.12)

4.5 Numerical example

Figure 4.1: Exact values of the entropy production rate is depicted in the solid black line.

Its empirical estimations are shown in red and blue colors for samples of size n = 5500 and

n = 1500000, respectively, for the four estimators discussed, namely, êp, D̂, M̂ and L̂.

In order to assess the performance of the estimators defined in the previous section,

we performed numerical simulations of the three-states Markov chain with transition

matrix A, defined by the equation (3.25) in Section 3.4. Firstly, we generate m = 15

realizations of length n = 5, 500 and n = 1, 500, 000, which corresponds to the length

of the real samples we will use in Section ??; we do this for each value of p coming

from the interval [0.01, 0.99]. Next, For every sequence x = x1, x2, ..., xn, we used the
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4.5. Numerical example

equations (4.3), (4.10), (4.7) and (4.12) to empirically construct the time-irreversibility

estimators defined in this chapter. Afterwards, we compared the results derived from

these estimators and the exact value of the EPR using the equation 3.26. In Figure 4.1

we show these quantities as a function of p.

In Figure 4.1, we depict the exact value of the EPR and the average value of the

estimates, as well as their respective error bars. We observe that while the estimators êp
and L̂ give the best approximations of the EPR (Figures 4.1(a) and 4.1(d)), the D̂ and M̂

estimators underestimates it (Figures 4.1(b) and (c)). We will use the same methodology

to analyze the electrocardiographic signal using the different irreversibility estimators.

Afterwards, we will use the significant values of these estimators to discriminate between

groups of healthy patients and those with medical conditions.

Figure 4.2: Exact values of the entropy production rate and...

As we saw in Figure 4.1(d), the L̂ estimator yields a good estimate of the EPR of

the process for n ≥ 5500. In order to numerically find minimum values of n for which

such behavior can be observed, we now perform additional estimations for n < 5500.

Specifically, in Figure 4.2 we show the results for n = 1000, n = 500, n = 250 and

n = 100, since for 1000 < n < 5500, the estimator L̂ exhibits results similar to those

shown for n ≥ 5500. In Figure 4.2(b) (n = 500), we can observe that while the average

estimated EPR value still remains close to the exact value, the error bars grow as p

moves away from p = 1/2. In Figure 4.2(c) (n = 250), we can notice that the error bars

are even larger and that the average estimated EPR value is less accurate than in the

case corresponding to n = 500. For n = 100, we can see that the estimated average value

of the EPR departs significantly from the exact value and that the error bars are large.

For the case of the êp estimator, we follow the same procedure described in the

previous paragraph, obtaining similar results. When comparing both estimators, we see
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4.6. Chapter summary

Figure 4.3: Exact values of the entropy production rate and...

that when n = 250, in the case of êp, the estimated average value moves away faster

from the exact value, with respect to that obtained with L̂.

These numerical results allow us to suggest that with values of n ≥ 1000 we can have

results similar to those obtained when n is large, using both estimators. Additionally,

we can see that the L̂ estimator works better when we have short sequences, since for

n = 250, the average value of L̂ remains closer to the exact value of the EPR, with

respect to what is obtained with the êp estimator.

4.6 Chapter summary

In this chapter we have introduced irreversibility estimators, which can be imple-

mented using directly the symbolic sequence of the data. According to the numerical

results shown in Figure 5, in Markov processes, these estimators give a good approxima-

tion of the EPR. In Section 8.8, we give a more specific description of the estimation

procedure for time series analysis. We then use these estimators to estimate the EPR in

the electrocardiographic signal.
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Chapter 5

Electrocardiography

This Chapter introduces the basic concepts for the study and interpretation of

electrocardiograms. First, in Section 5.1, we define electrocardiograms as a recording of

cardiac electrical activity and the medical significance of each component in the signal

are discussed in Section 5.2. The main characteristics of a normal electrocardiogram

are introduced in Section 5.3. In Section 5.4, we discuss Heart Rate Variability and its

use in detecting medical conditions. Finally, we give a description of Atrial Fibrillation

(Section 5.6) and Congestive Heart Failure (Section 5.5), which are medical conditions

that we will be working on within Chapter 10.

5.1 Electrocardiograms

An electrocardiogram, abbreviated as ECG, is a recording of the cardiac electrical

activity (CEA), whose x- and y-axes represent time (in s) and electrical potential (in

mV), respectively (see Figure 5.1). This recording is obtained through an electrocar-

diograph, placing electrodes in specific areas of the body of a patient, according to

Einthoven’s triangle. By using various combinations of these electrodes, twelve different

CEA recordings are obtained, called electrocardiographic leads [55]; in this thesis, we

will always be working with lead II.

The different upward and downward curvatures that an ECG trace takes are called

waveforms. These waveforms repeat periodically from one heartbeat to the next and

have been arranged alphabetically as P, Q, R, S, T, and U. For lead II, a normal ECG

consists of a P wave, a QRS complex, a T and a U wave; the QRS complex is made up

of Q, R, and S waves, while the small U wave usually is invisible. The QRS complex

appears as its main and most dominant pattern in a normal cardiac cycle (see Figure

5.1). The “flat” sections between the above mentioned waveforms are called segments

and intervals (see Section 5.3). Each of these waveforms, segments and intervals on the

ECG represents electrical pulses from the atria and ventricles, as we describe in Section

5.2 ( [55]). Another essential feature of each cycle is the RR interval, which defines the

heart rate and is the distance between two consecutive peaks of the R wave (see Section

5.4).

Nowadays, electrocardiographic devices allow the digitization of electrocardiograms,

which simplifies their computational analysis through discrete time series of the form
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5.2. Cardiac cycle

x = (x1, . . . , xN). We give further details about the databases used in this thesis in

Section 8.2.

Figure 5.1: Schematic diagram of an electrocardiogram. A normal electrocardiogram is made

up of the P, Q, R, S, T and U waveforms, which represent the ordered spread of electrical

stimuli through the atria and ventricles. The P, R, T and U waveforms are in the form of convex

curves, while the Q and S waveforms are found as concave curves. This electrocardiogram was

artificially generated using the algorithm proposed in [56].

5.2 Cardiac cycle

At resting conditions, the cells of the muscle tissue of the heart, or myocardium, are

polarized. This means that myocardial cells carry electrical charges, with the outside of

the cell positively charged and the inside negatively charged (Figure 5.2(a)); this electric

charge gradient is approximately 90 mV. When cells receive an electrical stimulus (e),

this produces a difference in electrical voltage, which in turn causes an electrical current

that spreads throughout the cell and initiates depolarization (Figure 5.2(b)). Then, when

depolarization is complete, the cell is positively charged on the inside and negatively

charged on the outside (Figure 5.2(c)). Finally, repolarization begins when the completely

depolarized cell begins to return to the resting state, causing a small area on the outside

of the cell to become positive again, which in turn causes the repolarization current to

spread throughout the cell (Figure 5.2(d)). The repolarization process ends when the

cell is completely repolarized, that is, the outside of the cell is positively charged and

the inside is negatively charged [55].

35



5.2. Cardiac cycle

Figure 5.2: Scheme of depolarization and repolarization. From the electrical point of view, we

can consider that the cardiac cycle has four stages: polarized cardiac muscle tissue (a), onset of

depolarization (b), complete depolarization (c) and onset of repolarization (d). The polarized

state of the cells at the beginning of the cardiac cycle is due to differences in the concentration

of ions inside and outside the cell, with the inside of the cell membrane being negative in

relation to the outside. The electrical charge gradient between the inside and outside of the

cell is 90 mV, which is the action potential that triggers each cardiac cycle.

On the other hand, the depolarization and repolarization of cardiac tissue is associ-

ated with the contractions of the chambers that make up the heart. Although the heart

has four chambers, from an electrical point of view, it can be considered that it only has

two, the atria and the ventricles, since the left and right atria contract simultaneously

(depolarization), as do both ventricles (see Figure 5.3). The muscle mass of the atria is

small compared to that of the ventricles, so the electrical variation accompanying atrial

contraction is weaker than the electrical variation due to ventricular contraction [57].

Figure 5.3: Chambers of the heart. The heart comprises four chambers: the right and left atria

and the right and left ventricles. The atria are located at the top of the heart, with an atrium

on each side, and are responsible for receiving blood flow. The ventricles are located at the

bottom of the heart and are responsible for discharging blood from the heart. This picture

was taken from [58].

In a normal cardiac cycle, the electric firing begins in a particular area of the right
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atrium called the “sinoatrial node” (Figure 5.4(a)). Depolarization then spreads through

the atrial muscle fibers, generating the P wave (Figure 5.4(b)). After that, to complete

atrial depolarization, the depolarization wave travels very quickly through a specialized

conduction tissue, called the bundle of His, thus generating the PQ segment (Figure

5.4(c)). Afterwards, the electrical impulse propagates through the ventricular muscle,

at the same time that atrial repolarization begins, which generates the QRS complex

(Figure 5.4(d)). When ventricular depolarization is being completed, the ST segment is

generated (Figure 5.4(e)). Finally, ventricular repolarization begins, forming the T wave

(Figure 5.4(f)) [57].

Figure 5.4: Cardiac cycle. The cardiac cycle is a sequence of events that occur in strict order,

related to the flow of blood through the chambers that make up the heart, atria and ventricles.

The alternating contraction and relaxation of these chambers, as a consequence of the spread

of the electrical current through the cardiac tissue, is recorded in the form of deflections

(waveforms) and flat areas (intervals and segments) of the electrocardiogram. These pictures

were taken from [57].

We point out that in the previous paragraph, we omitted specific information on

the different stages of the cardiac cycle, which would allow us to have a more detailed

description of it (function of the atrioventricular node, depolarization of the atrioventric-

ular septum, sinoatrial node-atrioventricular node-bundle of His interaction, division of

the bundle of His, isovolumetric contraction, absolute refractory period, etc.). However,

this general description of the process provides us with sufficient information to address

the problem of analyzing electrocardiograms using the temporal irreversibility approach

(see Chapter 8). In other words, up to this point, we know that an electrocardiogram is

a graphic representation of a directional process, which consists of an ordered succession
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5.3. Characteristics of a normal electrocardiogram

of waves and segments, which are repeated in each heartbeat; any alteration in this

pattern of behavior could imply the presence of a medical condition.

5.3 Characteristics of a normal electrocardiogram:

waveforms, segments and intervals

As we saw in the previous Section (5.2), an electrocardiogram, broadly speaking,

records two events. The first of them is depolarization, that is, the directional propa-

gation of electrical stimuli through the myocardium. The second event recorded in the

electrocardiogram is repolarization, that is, when the stimulated heart muscle returns to

the resting state. These two depolarization and repolarization processes are responsible

for the waveforms, segments and intervals in the ECG (see Figure 5.1) [55]. Next, we

give more detailed information on the components of the ECG.

In Table 8.1, we summarize the biomedical meaning of each wave, as well as the

respective values of durations (s) and amplitudes (mV). In relation to the U waveform

(see Figure 5.1), which is a small, flattened wave that sometimes appears before the

next P waveform and after the T waveform, although it represents the final phase of

ventricular repolarization, its exact mechanism is unknown [57].

Regarding the flat zones of the electrocardiogram, that is, the segments and intervals,

although they do not represent any electrical change, their correct interpretation is also

essential for the analysis of electrocardiograms. A segment refers to the portion of the

electrocardiogram bracketed by the end of one wave and the beginning of the next.

Similarly, an interval is a portion of the electrocardiogram that includes at least one

entire waveform (see Figure 5.1) [55]. In Table 5.2, we show a summary of each of the

segments and intervals of the ECG, which will help us define our variability signals in

Section 8.4.

Waveform Duration (s) Amplitude (mV) Description

P 0.08− 0.11 less than 0.25 Atrial depolarization

QRS 0.06− 0.11 less than 3.5 Ventricular depolarization

T less than 0.20 0.20− 0.30 Ventricular repolarization

U 0.06− 0.09 less than 0.1 Final phase of ventricular repolarization

Table 5.1: Parameters of ECG waveforms. Each waveform in the electrocardiogram is defined

in a well-specified interval of duration and electrical potential. Any alteration in this pattern

of behavior could indicate the presence of medical conditions ( [55], [57]).

Perhaps the best known interval is the RR interval, since it is used to measure heart

rate (see Section 5.4). Another important component is the TP segment, representing the
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electrical resting state and is used as a baseline reference (see Figure 5.1). This segment

evaluates changes in ST and PR segments when there are medical conditions. Additionally,

when the electrocardiographic signal is under noisy conditions and interferences such

as baseline wandering appear (see Section 6.1), the TP segment is used to assess the

deviation of the ST and PR segments.

Description

PR segment: from offsets of the P wave to onsets of the QRS complex.

ST segment: from offsets of the QRS complex to onsets of the next T wave.

TP segment: from offsets of the T wave to onsets of the P wave.

PR interval: from the onsets of the P wave to the onsets of the QRS complex.

QRS interval: from the onsets to the offsets of the same QRS complex.

QT interval: from the onsets of the QRS complex to the offsets of the T wave.

RR interval: from the peak on a given QRS complex to the corresponding point

on the next.

Table 5.2: Segments and intervals of the electrocardiographic signal. Although these components

in the electrocardiogram do not represent the spread of the electrical charge directly, the order

in which each interval and segment appears is useful for analyzing electrocardiograms, since

they allow the beginning and ending points of each waveform to be identified [55].

5.4 Heart rate variability

Heart Rate Variability (HRV) refers to the oscillation in RRi intervals duration

between two consecutive heartbeats (see Figure 5.5). With this signal it is possible

to analyze the status of the autonomic nervous system (ANS), which is in charge of

regulating cardiac activity, through a balance between the sympathetic nervous system

(SNS) and the parasympathetic nervous system (PNS), the two components of the ANS

( [59], [60], [61]). An increase in the activity of the SNS or a decrease in the activity of

the PNS, results in an acceleration of the heart rate. Conversely, a low SNS activity or

high PNS activity results in a deceleration of the heart rate [62]. On the other hand,

this balance does not imply that the two branches of the ANS contribute equally in each

heartbeat since this balance can change to either of the two branches under different

conditions in each heartbeat, which gives rise to an imbalance between accelerations

and decelerations of the heart rate [63].

The HRV has different uses for monitoring and studying biomedical conditions,

such as type 1 diabetes [64], myocardial infarction [65], ventricular tachycardia [66],

early detection of sudden cardiac death [67], among others. These features we can
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5.5. Congestive Heart Failure

Figure 5.5: Heart rate variability. Fluctuations in time intervals between one heartbeat and

another are inherent to the heart rhythm, since the heart, even under normal conditions, does

not function as a metronome.

find in the HRV for the analysis of ECGs have encouraged their study using different

methodologies (see [68] for a review). In this thesis, we analyzed the HRV using the

temporal irreversibility approach, with the aim of discriminating between groups of

healthy young and elderly patients from those under medical conditions, specifically,

congestive heart failure and atrial fibrillation. We will talk about these medical conditions

in Sections 5.5 and 5.6.

5.5 Congestive Heart Failure

Congestive Heart Failure (CHF) occurs when the ventricular walls become weak,

damaged, or thickened, disrupting the normal function of the heart, causing a buildup

of blood in the veins, lungs, abdomen, liver, and other parts of the body. Over time,

CHF weakens and enlarges the ventricles, so they send insufficient amounts of blood to

the body.

In the case of lead II, when CHF occurs, we can observe that there is a higher voltage

in the P wave, with a value greater than 0.25 mV, as a consequence of an enlargement

of the right atrial chamber. Another effect of CHF is an enlargement of the left atrial

chamber, which we can verify when the P wave has a duration greater than 120 ms and

exhibits 2 peaks separated by 40 ms, with an M-like morphology (see Figure 5.6).

5.6 Atrial Fibrillation

Atrial Fibrillation (AF) occurs when the electrical signal is generated in different
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Figure 5.6: Congestive Heart Failure. The M-like pattern of the P wave is a consequence of

the enlargement of the left branch of the atria.

parts of the atria and not normally in the SA node, causing rapid depolarization of

the atria, making the atrial chambers rapidly contract and become disordered, that

is, they “vibrate” or “fibrillate”. This causes the atria to not be able to pump blood

adequately and not emptying completely. During this irregular heart beating process it

can be observed [55]:

• There is no clear formation of the P wave.

• Absence of baseline.

• Variable ventricular rate.

• The frequency of the fibrillatory waveforms can achieve up to 300 to 600 per

minute.

All the characteristics of this arrhythmia affect the normal rhythm of the heart.

Furthermore, fibrillatory waves can mimic or resemble the P wave, which can lead to

erroneous diagnosis (see Figure 5.7).

Figure 5.7: Atrial Fibrillation. This arrhythmia is characterized by the contraction and

relaxation of the atria occurring in a disorganized manner, the absence of the P wave and

disturbed baseline.
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5.7 Chapter summary

In this chapter we have given a brief description of electrocardiograms, as well

as their interpretation based on their different components (waveforms, segments and

intervals). In summary, we know that electrocardiograms are an orderly succession of

waveforms, segments and intervals, which appear in a strict order, which is repeated

in each heartbeat, unless there is some medical condition that alters such behavior.

However, in addition to medical conditions, this cyclic and orderly behavior can be

altered by the presence of noise in the signal, which is the subject of Chapter 6. In

addition, in Chapter 7 we will see that the orderly behavior of the electrocardiographic

signal is related to its time-irreversibility.
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Chapter 6

Electrocardiogram preprocessing: sig-

nal noise removal

In the data preprocessing stage, noise removal in the electrocardiographic signal

plays a vital role in subsequent analysis, such as obtaining variability signals (Section

8.4) and the encoding process (Section 8.6). In this Section, we provide the theoretical

framework for noise removal in electrocardiograms using the wavelet transform approach.

On the other hand, there is a large amount of literature on the use of the wavelet

transform for the denoising process in electrocardiograms (see [32] for review) and there

are powerful software packages for its implementation. Here, we merely present funda-

mental concepts for the processing of electrocardiograms using the wavelet transform,

with which we also introduce the terminology and notation that we will use later in

Section 8.3, where we perform the denoising of the signal, using the software package

Wavelet Signal Denoiser for MATLAB.

6.1 Noise in electrocardiograms

The electrocardiographic signal is composed of signals of different frequencies, of

which a certain range of frequencies is due to the normal functioning of the heart.

Specifically, the frequency range of the P and T waves is between 0.5 and 10 Hz, while

the frequency range of the QRS complex is between 4 and 20 Hz. In this context, signal

noise refers to signals from high and low frequencies that do not correspond to cardiac

electrical activity. The different sources of noise that the signal can present corrupt the

signal and prevent its correct analysis. Therefore, removing noise in the data is a vital

part of the preprocessing stage [30]. Noise sources include low (respiratory movement

and muscle noise) and high frequency (equipment power line) signals, which can appear

in combination (see Figure 6.1) [31]. Next, we describe the different noise sources.

6.1.1 Electric line noise

This type of noise is produced by medical equipment and occurs due to the influence

of the electromagnetic field of the devices. Since its frequency range is between 50 and 60

Hz, this noise spectrum does not overlap with the frequencies of the electrocardiographic
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signal, and therefore, does not distort it, which in turn makes its removal relatively

easy [31].

Figure 6.1: Some types of noise in the electrocardiographic signal. Among the different types

of noise that affect the signal, low-frequency noise is the most difficult to process.

6.1.2 Electrode Contact Noise

This noise originates as a result of the loss of contact between the measuring device

and the skin, and is usually an intermittent noise. The frequency content of this type of

noise is around 60 Hz [30].

6.1.3 Muscle noise

This type of noise, whose frequency content is around 10 Hz, is due to the contraction

of skeletal muscles and occurs when the patient moves, which is most evident in two cases.

The first of them is during stress tests through physical examinations, which causes

intense muscle contractions. The second case is during prolonged electrocardiographic

recordings, such as ambulatory electrocardiography. In this case, the noise level will

depend on the activity level [31].

6.1.4 Base Line Wander

Baseline wandering refers to the deviation of the PR and ST segments with respect

to the TP segment, which can interfere with the reading of the electrocardiogram. For

example, due to this deflection, the peak of the T wave could be higher than the R

peak, causing the T peak to be detected as R peak. Therefore, this type of noise, whose

frequency range is between 0.15 and 0.3 Hz, must be removed before signal analysis.

This interference can be due to different sources such as movement, breathing and

exercise [30].
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6.2 Noise removal in electrocardiograms

6.2.1 Backgrounds: Fourier Transform

Definition 6.2.1 (Fourier Transform). The Fourier Transform (FT) of a time-dependent

function f(x) is given by

F [f(t)](ω) =

∫ ∞

−∞
f(t)e−i2πωt dt, (6.1)

where ω is the frequency of the complex exponential function and f(t) has to be integrable

in the sense of the Lebesgue integral.

The FT decomposes a signal into its constituent frequencies and their respective

amplitudes. For example, Figure 6.2(b) graphs the frequency spectrum of the signal

f(t) = sin 2πωit (Figure 6.2(a)), whose parameter ωi varies according to:

ωi =


4 if 0 ≤ t ≤ 0.5

60 if 0.5 < t < 0.6

12 if 0.6 ≤ t ≤ 1

In Figure 6.2(b) we can see that the FT gives information about the different frequencies

that make up the signal but does not provide information about the location of these

frequencies in the signal. Therefore, the main disadvantage of FT is the lack of ability

to provide information about when, in time, the signal components appear. On the

other hand, data of biomedical origin, such as electrocardiograms, are characterized by

high-frequency components of short duration and components of lower frequency but

of long duration. Therefore, to analyze these signals, we need tools that provide good

resolution in both, the time and frequency domain [34]. In this context, it is possible to

analyze this type of signal using the wavelet transform (WT) approach, which provides

signal information at different time and frequency resolutions.

6.2.2 Wavelet transform

Definition 6.2.2 (Continuous Wavelet transform). The Continuous Wavelet transform

(CWT) of a signal f(t) is given by [32]:

W (s, τ) =

∫ ∞

−∞
f(t)ψ

(t− τ

s

)
dt, (6.2)

where ψ( t−τ
s
) is called mother wavelet, s is scale or dilation parameter and τ is the

location parameter of the wavelet. The word “mother” means that this function is used

as a model for generating the other window functions during the analysis.

45



6.2. Noise removal in electrocardiograms

Figure 6.2: (a) Simulation of the signal f(t) = sin 2πωit, whose values ωi vary in different time

windows. (b) Frequency spectrum of f(t). The FT allows us to know the different frequencies

that make up a signal, but not their location.

Analogously to FT, the WT decomposes a signal into a set of wavelet signals obtained

from the mother wavelet, by means of dilations and contractions that depend on the

parameter s, as well as displacements in time that depend on the parameter τ . Since the

relationship between the frequency ω of the signal and the parameter s is s = 1
ω
, then,

for large values of parameter s (i.e., s > 1 and 0 < ω < 1), we have more low-frequency

information; conversely, for small values of s (i.e., 0 < s < 1 and ω > 1), we can better

analyze the information from high frequencies. In this way, one of the key advantages

of WT over FT, is the temporal resolution; that is, it captures frequency information

and its respective location in time. The other advantage is the multiresolution; that is,

compression and dilation of the parameter s, allow the signal to be analyzed on a wide

set of scales

Regarding the practical aspects of implementing the WT, that is, when we deal

with discrete time series, it is possible to implement the Discrete Wavelet transform,

which we define below.

Definition 6.2.3 (Discrete Wavelet transform). The Discrete Wavelet transform (DWT)

of a discrete signal f(t) is given by [32]:

C(a, b) =
Z∑

z=1

f(tz)ψ
(tz − b

a

)
, (6.3)

where ψ
(
t−b
a

)
is the discrete mother wavelet, a represents the scaling parameter, b the

translation parameter and Z is is the number of samples taken from the signal for

discretization.

Estimating the wavelet coefficients, i.e., the C(a, b), for all possible scales would

generate a large amount of data and is computationally expensive. Therefore, sets of

scales and translations based on powers of base two yield more optimal and precise
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results; that is, the parameters a, b are chosen according to a = 2j and b = 2jk, for

j, k ∈ N ( [32], [33]).

6.2.3 Selecting mother wavelet

In the process of denoising electrocardiograms using WT, the choice of the appro-

priate mother wavelet is essential, since the transform coefficients contain important

information about the signal, and if the choice of the mother wavelet is optimal for a

given signal, this leads to maximizing the values of the transform coefficients; that is,

vital signal information will be preserved when reconstructing the signal. In [33], the

authors present a procedure for mother wavelet selection and use it for noise elimination

in electrocardiograms. The results show that their procedure allows the signal to preserve

essential signal information, so that it can be used for analysis and diagnosis. In Table

6.1 we show the types of basic mother wavelet functions and their respective order, with

which optimal results are obtained for both noise elimination and signal reconstruction,

according to the authors in [33].

Mother Wavelet Order

Daubechies 4,6,8,10,12.

Symmlet 4,5,6,7,8.

Coiflet 1,2,3,4,5.

Battle–Lemarie 1,3,5

Table 6.1: Some type of Mother Wavelet basis function applied for denoising of the ECG signal.

6.2.4 Noise removal

Filtering noise in a signal using WT consists of three general stages: (1) take the

DWT of a noisy signal, (2) filter the values of the transform coefficients using a threshold,

eliminating the coefficients whose values are less than the threshold and (3) obtain the

inverse WDT, with which it is possible to reconstruct the signal. Perhaps the best-known

threshold value selection procedure is based on Stein’s unbiased risk estimator, which

provides an indication of the precision of an estimator [33].

The three stages of signal processing using WT can be viewed as a process of

multilevel decomposition of the signal. Given a signal f(t), first, a high-pass filter and

a low-pass filter are used, with which the transform coefficients are obtained. The

coefficients of the low pass filter are called approximation coefficients (A1) and the

coefficients of the high pass filter are called detail coefficients (D1) (see Figure 6.3). Half

of the samples are discarded after filtering, according to the Nyquist criterion. For the
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next level of decomposition, subband A1 is filtered using the same technique to produce

narrower subbands, A2 and D2. Following the same filtering process iteratively, we have

a set of approximation coefficients An and detail coefficients Dn at the end of the process.

Figure 6.3: Multilevel decomposition scheme.

As an example of multilevel decomposition using WT for noise removal in ECG,

Figure 6.4 graphs the decomposition of an electrocardiographic signal for 3 levels of

decomposition of its detail coefficients and approximation coefficients; in the case of

approximation coefficients, we only show level 3. The detail coefficients at levels 1,

2 and 3 show the high frequencies, that is, the noise in the signal. At level 3 of the

approximation coefficients, which correspond to the outputs of the low-pass filter, we

can observe that the information of interest in the signal is preserved, that is, we can

easily find the waves and segments of the ECG.

6.3 Chapter summary

In this chapter we have described the general procedure for noise elimination in

electrocardiograms. The methodology described is based on an algorithm that uses WT

as a denoising tool. In Section 8.3, we will use this methodology for ECG denoising.

As we will see in the results shown in that section, this process allows preserving the

components of interest in the signal, such as the onset and peak of each waveform, as

well as keeping the isoelectric line unaltered.
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Figure 6.4: Multilevel decomposition of the electrocardiographic signal, using the order 8

Symlet wavelet. At each level of decomposition, half of the samples are discarded, according to

the Nyquist criterion. That is, as the original signal has 50000 samples, in the first level of

decomposition we have 25000 samples, while in the second level of decomposition, we have

12500 samples and so on.

49



Chapter 7

Irreversibility and electrocardiograms

In this chapter we address the underlying idea of analyzing temporal irreversibility

in the electrocardiographic signal as a tool to discriminate between groups of patients

under different medical conditions. First, in Section 7.1, we analyze electrocardiograms

as a time series that exhibits an ordered pattern of behavior, which is related to the

irreversibility of the CEA. This characteristic, in turn, can be quantified by different

indicators of irreversibility. In Section 7.2.1, we give an introduction to Poincaré plots

and their usefulness for quantifying irreversibility in electrocardiograms. Next, we make

a general review of previous research where electrocardiograms are analyzed with the

time-irreversibility approach and make a comparison between them.

7.1 Time asymmetry of the electrocardiographic sig-

nal

To address the issue of temporal irreversibility in the signal, we will consider an

artificially generated electrocardiogram, which simulates the behavior of a normal electro-

cardiogram, that is, of a healthy subject (Figure 7.1). A normal electrocardiogram consists

of an ordered succession of waves and segments that are repeated in each cardiac cycle,

unless there is some medical condition that alters it (Figure 7.1(a)). If we write the signal

as a symbolic sequence representing the succession of waveforms in a normal electrocar-

diogram (ωH = {PQRSTPQRST...PQRST}) and compare it with the time-reversed

sequence (ωr
H = {TSRQPTSRQP...TSRQP}), we can notice that there is a change

in the pattern with which the symbol strings appear regarding the original sequence

(Figure 7.1(b)), that is, we can straightforward distinguish the change in the direction of

the arrow of time between both sequences. This means that the time series exhibits time

asymmetry, which is an indicator of the time-irreversibility of the process generating the

electrocardiogram (CEA) and this irreversibility can be measured by means of its EPR.

Additionally, let us denote with subscripts unhealthy conditions, such as P2 portrays the

P waveform altered by the presence of some medical disorder. Let us suppose that the

trajectories of an electrocardiogram of an unhealthy patient and its version reversed in

time are described by the sequences ωUH = {P2Q3RS2T3PQ2RST2...P2Q3RS3T2} and

ωr
UH = {T2S3RQ3P2, T2SRQ2P, ..., T3S2RQ3P2}, respectively (Figure 7.2). Here, since

the sequences represent a more disordered system, it is less accessible to distinguish the

50



7.1. Time asymmetry of the electrocardiographic signal

change of the arrow of time when comparing both sequences.

Figure 7.1: (a) Orderly behavior pattern on a normal ECG. (b) Time reversed electro-

cardiogram. We can write a symbolic sequence ωH = {PQRSTPQRSTU...PQRSTU}
that represents the different signal waves, as well as its time-reversed version as ωr

H =

{UTSRQPTSRQP...UTSRQP}. We can see that it is clear to distinguish the arrow of

time, since the waves and segments appear in strict order. This electrocardiogram was artifi-

cially generated using the algorithm proposed in [56] and represents the behavior of a normal

electrocardiogram.

When we make a comparison between the string of symbols of an ECG of a healthy

patient (ωH) and that of a diseased patient (ωUH), we can clearly distinguish a different

typical pattern in the sequence of each patient group. This difference in the typical

pattern of symbols suggests that, on average, the EPR in each group of patients differs.

Furthermore, Costa and Goldberger [7] have reported that cardiac electrical activity

loses temporal irreversibility with aging and in the presence of medical conditions; that

is, the average EPR is expected to be higher in healthy and young patients, which can

be used to evaluate the functionality of the heart using electrocardiograms. Therefore,
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we propose to use the EPR as an indicator to analyze electrocardiograms coming from

different patient groups. In section 10, we show that it is possible, up to some extent, to

discriminate between groups of patients using our method.

Figure 7.2: (a) Disordered behavior patterns of electrocardiograms under unhealthy conditions

(atrial fibrillation). (b) Time reversed electrocardiogram. The symbolic sequence of this signal

and its corresponding time-reversed version are ωUH = {P2Q3RS2T3PQ2RST2...P2Q3RS3T2}
and ωr

UH = {T2S3RQ3P2, T2SRQ2P, ..., T3S2RQ3P2}, respectively. It is more difficult to dis-

tinguish the arrow of time in ECG signals under medical conditions since they represent more

disordered processes.

Up to this point, some comments regarding the concepts we are dealing with and

their notation are necessary. The temporal asymmetry of a time series (electrocardio-

grams) indicates the time-irreversibility of the process (Cardiac Electrical Activity) that

generated it. The degree of irreversibility of a process can be quantified by its entropy

production rate. On the other hand, temporal asymmetry and entropy production are

quantities that can be estimated directly from time series. However, making an abuse of

notation, we will use the expression ¨temporal irreversibility in electrocardiograms” to
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refer to the temporal irreversibility of Cardiac Electrical Activity, which, as we have

just said, can be quantified through its entropy production rate.

7.2 State of art of the time-irreversibility in ECG

Here, we present a review of the state-of-the-art methodology developed so far to

quantify the time-irreversibility of electrocardiograms, from a conceptual perspective,

without delving into the numerical details, to focus on the importance of the time-

irreversibility phenomenon for the analysis of the electrocardiographic signal.

7.2.1 Poincaré Plots based-methods

When we are interested in testing time-asymmetry in electrocardiograms, one

proposal to do so is through the fluctuations of HRV, using Poincaré plots (PP). This

graphic, in addition to being a visual tool to recognize patterns hidden in time series, is

a quantitative technique, in the sense that there are different numerical tools to quantify

the visual information contained in these graphs [69]. First, we describe the PP, their

construction from electrocardiograms and their interpretation, which will be helpful to

discuss the review of our research.

Let us consider the vector RR := (RR1, RR2, ..., RRn−1, RRn) where RRi is the

i-th RR-interval and n is the number of heartbeats in the electrocardiogram, i.e., n− 1

represents the number of points in the PP. From vector RR, we can define the PP as the

set of ordered pairs Pi = (RRi, RRi+1), where i = 1, 2, ..., n− 1 ( [70], [69]); that is, the

duration of the current heartbeat (RRi) is plotted on the abscissa, while the subsequent

beat (RRi+1) is plotted on the ordinate (see Figure 7.3). The points above, below or

on the identity line have the property ∆RR > 0, ∆RR < 0 or ∆RR = 0, respectively,

where ∆RR = RRi+1 −RRi; the number of points above or below the identity line is

denoted as nup y ndown, respectively. The points above or below the identity line reflect

an instantaneous deceleration or acceleration of the heart rate, respectively. Since the

cloud of points Pi is distributed above and below the identity line in an unbalanced

way, this suggests that the heart rate pattern during acceleration is different from the

deceleration pattern ( [19], [18]). For each point Pi, in [20], the authors defined phase

angle θi as θi = arctan RRi+1

RRi
. Additionally, For each point Pi, it is possible to define Di

as the perpendicular distance between the i-th point and the identity line, as 1001[70]:

Di =
| RRi+1 −RRi |√

2
. (7.1)

Different indices of time-irreversibility in the CEA have been proposed. One of them

is time-asymmetry in HRV, which can be tested using PP. Employing these graphs,
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Figure 7.3: Poincaré plot. This graph allows us to visualize the asymmetric dispersion of the

cloud of points, concerning the identity line. Furthermore, this asymmetry we can verify by

inspection, can be quantified using the quantitative information that the graph provides us,

such as the Euclidean distance Di or the angular distance θi of each point Pi regarding the

identity line.

different authors have proposed asymmetry indices constructed from the dispersion of the

points Pi around the identity line. These asymmetry indices represent the contribution

of the SNS and PNS to the irreversibility of CEA.

Frequency index IF

In [71], the authors propose a frequency index IF , which assigns to each point Pi in

the plot the same “weight” regardless of its position on the graph. The asymmetry in

the signal is measured as the percentage of the number of accelerations, concerning the

total number of accelerations and decelerations of the heart rate, by:

IF =
ndown

nup + ndown

× 100. (7.2)

Distance index ID

With the distance index ID, proposed in [19], the weight of each point is assigned

from its Di perpendicular distance to the identity line. The asymmetry in the signal is

measured by the percentage of decelerations in the heart rate, which is estimated from

the distance Di generated by the points above the identity line (∆RR > 0) with respect

to the distance generated by all the points on the graph, as:

ID =

∑nup

i=1 u
2
i∑n−1

i D2
i

× 100, (7.3)

where ui has the same meaning as Di but for points above the identity line.
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Phase index IPh

The disadvantage of ID is that we could find two points with the same Euclidean

distance Di but with a different angular distance θi, and consequently, there could exist

electrocardiograms that using ID turn out to be symmetrical, although they exhibit

phase asymmetry. Consequently, in [20] they proposed the phase index IPh, which takes

into account the phase asymmetry and is defined as:

IPh =

∑nup

i=1 |Rθi|∑n
i=1 |Rθi|

× 100, (7.4)

where Rθi = θIL − θi and θLI is the phase angle of the identity.

Area index IA

The indicator IPh does not consider the Di distance of the points concerning the

identity line, which represents a disadvantage in the robustness of IPh, when recordings

of different duration are analyzed. In this regard, in [21] the authors report that the

IF , ID, IPh indices exhibit sensitivity to changes in the duration of the recordings since

separately, each of these indices only consider one parameter of the Pi points, namely,

the frequency of points above or below the identity line (nup and ndown respectively),

their perpendicular distance Di, or the phase angle θi. To complement these results,

in [21], they proposed the area index IA, which combines the information obtained from

nup, Di and θi, of each point Pi regarding the line identity; this indicator exhibits greater

robustness to variations in the duration of the electrocardiographic signal used. With

IA, the asymmetry of the HRV is estimated from the area generated by points that are

located above the identity line, as:

IA =

∑nup

i=1 |Ai|∑n
i=1 |Ai|

× 100, (7.5)

where Ai =
1
2
× Rθi × r2; r is the radius of the sector (see Figure 7.3), while Rθi, θLI

and θi have the definition used in the equation 7.4. IA exhibited greater robustness to

variations in the duration of the electrocardiographic signal used.

Increments-decrements patterns-based indices

In [18] the authors propose a definition of time-asymmetry which is independent of

the identity line; in this proposal, to define whether a Pi point represents an increase or

decrease in heart rate, its position regarding the identity line is not considered. In this

new definition, the authors propose to consider two points Pi = (RRi, RRi+1) and Pi+1 =

(RRi+1, RRi+2), which require three consecutive RR-intervals, i.e. {RRi, RRi+1, RRi+2},
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and the point Pi is classified in a set with an increasing (I), decreasing (D) or stable

pattern (N ), regarding the cloud of points, according to:

Pi ∈ I :
(
RRi < RRi+1 ∧RRi+1 < RRi+2

)
∨(

RRi ≥ RRi+1 ∧RRi+1 < RRi+2

)
∨(

RRi > RRi+1 ∧RRi+1 ≤ RRi+2

)
Pi ∈ D :

(
RRi > RRi+1 ∧RRi+1 > RRi+2

)
∨ .(

RRi ≤ RRi+1 ∧RRi+1 > RRi+2

)
∨(

RRi < RRi+1 ∧RRi+1 ≥ RRi+2

)
∨

Pi ∈ N : RRi = RRi+1 = RRi+2

(7.6)

Subsequently, the authors redefine IF and ID, to obtain:

IFp =
nD

nI + nD

× 100 (7.7)

and

IDp =

∑nI

i=1 u
2
i∑n−1

i D2
i

× 100, (7.8)

respectively. In this new approach, the number of points above the identity line is

equivalent to the set of points belonging to I and the set of points below the identity

line is equivalent to D. Consequently, the authors substitute nup for nI and ndown for

nD, on equations 7.2 and 7.3, from which they obtained equations (7.7) and (7.8).

Comparison

Up to this point, we have presented a review of methods based on Poincaré plots

to analyze temporal asymmetry in HRV. Intending to compare compare these results

with those we obtained, we applied this methodology to four groups of patients, namely,

healthy young (HY) and healthy elderly patients (HE), patients with atrial fibrillation

(AF), and another with congestive heart failure (CHF), which were obtained from the

PhysioBank database (see Section 8.2). Since these works show their results to exhibit

temporal asymmetry and not for the purpose of distinguishing between different groups

of patients, we make the comparison using only the average values of their results, instead

of a comprehensive statistical analysis.

Figure 7.4 shows the average percentage values of the time-asymmetry indicators

presented so far. We can observe that these estimators work to exhibit temporal asymme-

try in the signal, but their usefulness in discriminating between patient groups needs to
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be clarified; that is, we cannot distinguish a significant difference between the percentage

of temporal asymmetry of the different patient groups. Furthermore, these results show

some inconsistencies in the sense that in some cases (IF , ID, IFp and IA), the groups of

unhealthy patients exhibit higher temporal asymmetry concerning the group of young

healthy patients. On the contrary, in the remaining works (IPh and IDp), the young

healthy patients exhibit higher temporal asymmetry than the others. According to what

was discussed in Sections 3.2 and 7.1, temporal asymmetry in the group of young healthy

patients is expected to be the greatest and its value decreases under medical conditions

and aging, since the electrocardiogram of a young healthy patient represents a more

orderly process.

Figure 7.4: Percentage of temporal asymmetry in HRV, using Poincaré plots. We make a

comparison of the average temporal asymmetry of four groups of patients. These methods

allow us to exhibit temporal asymmetry in the signal, but it is not possible to distinguish a

significant difference between the four groups of patients.

7.2.2 Different methods

Slope index IS

With the same objective of estimating time-irreversibility in electrocardiograms by

HRV fluctuations, different authors have proposed alternative methods to Poincaré plots.

In [72] the authors proposed to estimate the time asymmetry using the first derivative

of RR := (RR1, RR2, ..., RRn−1, RRn), which they called slope asymmetry, as:

IS =

∑n−1
i=1 (RRi −RRi+1)

3

(
∑n−1

i=1 (RRi −RRi+1)2)3/2
. (7.9)
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Multiscale asymmetry time index Iaτ

In [7] the authors propose a time-irreversibility estimator constructed from the

increases and decreases of a time series at different scales τ ∈ N, under the hypothesis that
if the HRV signal is a symmetric time series, the the number of increments (RRi+1−RRi >

0), on average, is equal to the number of decrements (RRi+1 − RRi < 0). With this

method, the time series RR := (RR1, RR2, ..., RRn−1, RRn) is mapped to the sequence

of increments and decrements {γi : i = 1, 2, ..., n − 1}, where γi = RRi+1 − RRi.

To capture information on multiple time scales, the authors construct a new coarse-

grained time series, taking the average within a moving window with τ ∈ N points, as

γτ (i) =
1
τ

∑τ−1
j=0 γi+j. From the probability distribution P(γτ ) of the variable γτ and for

a τ fixed, the authors define a(τ) as a measure of time-irreversibility, as:

a(τ) =

∑
γτ>0 P(γτ ) ln [P(γτ )]∑
γτ
P(γτ ) ln [P(γτ )]

−
∑

γτ<0 P(γτ ) ln [P(γτ )]∑
γτ
P(γτ ) ln [P(γτ )]

. (7.10)

Finally, using a(τ), they propose the time-irreversibility index Iaτ as the sum of the

irreversibility values obtained for each value of τ , as:

Iaτ =
L∑

τ=1

a(τ). (7.11)

The authors report that using this index, it was possible to evaluate time-irreversibility

in electrocardiograms at different scales τ , and they found that values of Iaτ are higher

for a time series from young healthy subjects and decrease with aging or heart disease.

Multiscale asymmetry time index Idτ

Following a similar procedure of seeking to capture the imbalance between in-

creases and decreases, in [73], the authors propose a multiscale method to measure time-

asymmetry in time series based on the difference between increments and decrements, for

different values of the scale τ ∈ N. First, given the vector RR := (RR1, RR2, ..., RRn−1,

RRn), they define the variable zi = RRi+τ −RRi, for 1 ≤ i ≤ n− τ . Next, the authors

estimate the difference dτ between the rate of increases and decreases by:

dτ =

∑
zi<0H(−zi)−

∑
zi≥0H(zi)

n− τ
(7.12)

where H is the Heaviside function (H(zi) = 0 if zi < 0 or H(zi) = 1 if zi ≥ 0). The

time-irreversibility estimator is defined for range of scales τ as:

Idτ =
L∑

τ=1

dτ . (7.13)
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Entropy of differences index ED

Given the vector RR := (RR1, RR2, ..., RRn−1, RRn), in [22], the authors perform

a symbolic encoding of the data using a uniform partition of state space S. Let ak1 =

a1a2...ak be a word of length k that can be formed in the sequence, that is, ak1 ∈ Sk.

Next, for the probability distributions P(ak1) and P(a1k) of all k-length words that can be

formed in the sequences and their inverted version in time, ak1 and a1k, respectively, the

authors define an irreversibility estimator based on the entropy of differences between

P(ak1) and P(a1k), as:
ED = −

∑
Nd ̸=0

Nd logNd, (7.14)

where Nd is the normalized difference between P(ak1) and P(a1k), defined as:

Nd =
|P(ak1)− P(a1k)|∑

ak1∈Sk |P(ak1)− P(a1k)|
. (7.15)

Natural time-based index Λτ

In [17] the authors propose to measure the breaking of temporal symmetry in HRV

by means of the entropy change in natural time of the system. This entropy change

∆S = S −Sr, is defined as the difference between the entropy S of the original sequence

of RR-intervals and the entropy of the sequence reversed S in time; the time series

formed by the RR-intervals is read in the natural time domain of the system. In an

HRV signal, the natural time χ is introduced by assigning to the m-th heartbeat of the

signal consisting of n beats, the value χm = m/n and the analysis is done in terms of

the pair (χm, RRm) , where RRm denotes the duration of the m-th beat. S y Sr are

defined respectively as:

S = ⟨χ lnχ⟩ − ⟨χ⟩ ln ⟨χ⟩ , (7.16)

and

SR = ⟨χ lnχ⟩R − ⟨χ⟩R ln ⟨χ⟩R , (7.17)

where ⟨χ⟩ =
∑n

m=1 pmχm, pm = RRm∑n
i=1 RRi

, ⟨χ lnχ⟩ =
∑n

m=1 pmχm lnχm and ⟨f(χ)⟩R ≡∑n
m=1 f(χm)pn−m+1. In order to evaluate ∆S at different scales τ , the authors estimated

∆Sτ for τ = 1, 2, . . . , L; τ denotes the number of successive pulses used to estimate

∆Sτ . That is, from a moving window of size τ that slides through the time series

RR = {RR1.RR2, ..., RRn} composed of n heartbeats, the entropy in natural time is

determined for each position j of the sliding window, considering pm =
RRj+m∑τ

m=1 RRj+m
for

m = 1, 2, ..., τ . Next, they focus on the application of the complexity measures

Λτ =
σ(∆Sτ )

σ(∆S3)
(7.18)

for moving window of τ length heartbeats.
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Permutation method index IO

In [74], the authors construct an irreversibility indicator based on permutation

patterns. Broadly speaking, given a time series X = {X(1), X(2), ..., X(t)}, they first

build a space windowed of size m as Xτ
m(i) = {X(i), X(i+ [m− (m− 1)]τ) + ...+X(i+

(m− 1)τ)}. Next, the elements of Xτ
m(i) are sorting. For example, in ascending order

as {X(j1) ≤ X(j2) ≤ ...X(jm)}, from which they obtain a vector of ordinal patterns as

ζm = (j1, j2, ...jm), whose time-reversed version is ζrm = (jm, jm−1, ...j1). For instance,

let us consider the time series X = {401, 805, 703, 823, 712, 505, 600, 485, 610, 570},
containing the duration of 10 consecutive heartbeats (in milliseconds). For m = 4, i = 4

and τ = 1, we have that X1
4 (4) = {823, 712, 505, 600}, ζ4 = (3, 4, 2, 1) and ζr4 = (1, 2, 4, 3).

Let Om be the set of all possible ordinal patterns that can be formed by sliding the m-

length window over the time series X. Let P(ζm) and P(ζrm) the probability distributions

of ζm and ζrm, respectively. The authors propose an irreversibility estimator given by [74]:

IO =
∑

ζm∈Om

P(ζm)
P(ζm)− P(ζrm)
P(ζm) + P(ζrm)

. (7.19)

Comparison

In Figure 7.5, we show the values of the indices constructed with additional ap-

proaches to Poincaré plots, which were obtained using the same four groups of patients

as in Figure 7.4. Most of these indices (Iaτ ,Idτ ,Λτ and IO) exhibit a higher asymmetry

in young healthy patients, which is lost under medical conditions and aging. The IS and

ED estimators performed the poorest in distinguishing between the different groups of

patients, while the Λτ estimator seems to show the best performance, in the sense that

its value in the case of the HY group is approximately twice higher than that of AF and

CHF.

7.2.3 Final comments on the review

The previous research we just discussed in this section was accomplished by analyzing

merely the RR-intervals. Perhaps except for what was reported in [17], with none of

the tests carried out have they been able to discern a clear difference between groups of

patients. Additionally, results reported in preceding works were achieved using signal

times ranging from 30 minutes to 24 hours, which from a practical point of view turns

out to be too long. Hence, this leads us to search for new alternatives. In this thesis, we

propose to perform our analysis by segmenting the signal into three different categories,

namely, (1) the electrocardiographic signal, (2) RR-intervals and (3) joint variability

signals; this allowed us to have a comprehensive analysis of the signal.
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Figure 7.5: Temporal asymmetry in HRV, using different methods. Four of these methodologies

are consistent (figures (b),(c), (e) y (f)) in the sense that they indicate greater irreversibility

in the case of the HY group. In the case of Λτ , it exhibits the greatest difference between the

HY group and the groups with medical conditions (AF and CHF).

7.3 Chapter summary

In this chapter, we have described the electrocardiographic signal as a time series that

exhibits temporal asymmetry, which can be measured by irreversibility indicators such as

Poincaré plots, permutation patterns, natural time, etc. Next, we made a comparison of

the indicators found in the literature by analyzing the HRV. We found that analyzing only

HRV does not take into account other signal components, such as waveform fluctuations

when medical conditions are present. Therefore, in Chapter 8, we will derive other signal

components and use them to study temporal irreversibility. Additionally, in the same

chapter, we will analyze the data using the entropy production rate as an indicator of

irreversibility.
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Chapter 8

Methodology

This chapter describes the methodology followed to analyze the temporal irreversibil-

ity in electrocardiograms, which is a process consisting of different stages. An important

stage of the process is the one described in Section 8.5, where we carry out an autocor-

relation analysis of the data and these results supported us to assume that our data

are of a Markovian nature. Each of the remaining stages are explained in detail in this

chapter, except the ROC analysis, for which we devote Chapter 9.

As we discussed in Section 7.2, in the literature we can find works that use different

irreversibility indicators to analyze electrocardiograms, using only the RR-intervals

signal (HRV). In some of them, the authors display their results only as irreversibility

test for ECGs ( [71], [19], [70], [18], [23], [73]); in the other works, the authors show

how to use their proposed temporal irreversibility indicators to discriminate ECGs

from different groups of patients ( [20], [21], [22], [7], [74], [17]). However, except for

what is reported in [17], according to our knowledge, in none of these studies have they

been able to discern a clear difference between groups of patients with different health

conditions. Additionally, results reported in preceding works were achieved using signal

times ranging from 30 minutes to 24 hours, which from a practical point of view turns

out to be too long.

Improving the effectiveness of the methodology to distinguish between different

groups of patients, while reducing the signal time necessary to carry out the analysis is a

significant challenge that leads us to look for new alternatives. In this thesis, we propose

to use EPR as an index to discriminate between electrocardiograms of different groups

of patients. First, we use estimators found in the literature, namely, Entropy Production

Rate (equation (4.3)), Matching Time (equation (4.7)) and Kullback-Leibler Divergence

(equation (4.10)). Next, we introduce the Lag Irreversibility Function as an estimator of

time-irreversibility (equation (4.12)), which has shown some advantages to discriminate

ECGs from four groups of patients (see Section 10). Aiming to achieve a comprehensive

analysis of the signal, we propose to analyze the electrocardiographic signal in three

categories, namely, (1) the entire electrocardiographic signal, (2) heart rate variability,

and (3) joint variability signals. The latter refers to jointly analyzing heart rate and

the variation of wave amplitudes in each heartbeat, for which we proposed an encoding

technique (see Section 8.10). When comparing with what is reported in the literature,

our proposal is a more complete analysis and represents an advantage, since previous
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works have reported research that only analyzes heart rate variability.

8.1 Outline

The problem of analyzing time series coming from real-life systems, such as electro-

cardiograms, could be considered as the problem of obtaining the symbolic representation

of the time series, from which it is possible to analyze the data, similar to the inverse

problem we discussed in Section 2.3.1. In this thesis, we propose a methodology to

discriminate between electrocardiograms of different groups of patients, for which the

symbolic representation of the signal is an essential stage. Therefore, in Section 8.6,

we provide a detailed description of the procedure for the symbolic representation of

electrocardiograms.

Figure 8.1: Entropy production in electrocardiograms. The analysis of electrocardiograms using

our approach is a process divided into three main stages. The first stage corresponds to data

acquisition, while the preprocessing stage is composed of two sub-stages, denoising and deriving

signals. The main stage of the process consists of five sub-stages: autocorrelation analysis,

symbolic encoding, construction of the estimators, estimation of EPR and ROC analysis.

As we mentioned above, the main purpose of this work is to use time-irreversibility

as a property for discriminating two groups of healthy patients, Healthy Young (HY)

and Healthy Elderly (HE), from those with medical conditions, Congestive Heart Failure

(CHF) and Atrial Fibrillation (AF). However, quantifying the degree of time-irreversibility

from ECG recordings is neither a direct nor a trivial task, so we propose a methodology

consisting of eight stages (see Figure 8.1): (1) data acquisition, (2) denoising of the

ECG signal, (3) deriving signals, (4) autocorrelation analysis, (5) symbolic encoding, (6)
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construction of the estimators, (7) estimation of EPR for classification and (8) ROC

analysis and discrimination. Next, we give a description of stages (1)-(6), which are the

preliminary steps before presenting our main results in stages (7) and (8), which are

fully described in Chapter 10 below.

8.2 Data acquisition

PhysioBank is an archive of digital recordings of physiological signals that can be

used for biomedical science research [24]. This archive currently includes databases of

neuronal, pulmonary, cardiac and other biomedical signals, for healthy patients and

with a wide variety of medical conditions, which have important implications for public

health, such as sudden cardiac death, atrial fibrillation, congestive heart failure, epilepsy

and many others. Currently, PhysioBank contains more than 75 databases that can be

freely downloaded, for which it has PhysioToolkit, which is a collection of software to

visualize, analyze and simulate biomedical signals; in particular, PhysioToolkit provides

the WFDB Software Package for MATLAB [75]. With this open-source toolbox, we

can access more than 50 databases contained in PhysioBank, which include ECG, EEG,

EMG, fetal ECG, PLETH (PPG), ABP, respiration, and more. This software package

has 65 functions for visualization, annotation, signal processing and automated analysis,

such as rdsamp (to read the signals in the files).

Datasets were obtained from the PhysioBank database, by means of the open-source

WFDB Software Package, using the command rdsamp. HY and HE groups were selected

from FANTASIA database [76], while CHF and AF groups were selected from the

BIDM Congestive Heart Failure [77] and MIT-BIH Atrial Fibrillation [78] databases,

respectively.

The Healthy Young group, as well as the Healthy Elderly group, are comprised of

20 electrocardiograms (ECGs) each, which were acquired from patients at supine rest.

The sampling frequency is 250 Hz and every ECG record is 120 minutes long. It is also

important to mention that the HY patient group is comprised of 10 men and 10 women

aged between 21 and 34. On the other hand, the HE patient group is also comprised of

10 men and 10 women but aged between 68 and 85.

For the CHF group, the databases provide 15 ECG recordings from which, 11

correspond to men aged from 22 to 71 and 4 correspond to women aged from 54 to 63.

Every ECG record in this group is 20 hours long with a sampling frequency of 250 Hz.

For the AF group the database provides 25 ECG records of adult subjects 1 and each

recording is 10 hours long with a sampling frequency of 250 Hz. ECG recordings for AF

and CHF groups were obtained by means of ambulatory electrocardiography.

1No mention about the patient age is found in the database.
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We point out that, although HY, HE and AF databases have 20 or more electro-

cardiographic recordings, CHF database contains only 15 ECG samples. Therefore, we

considered 15 ECG recordings for each group, so we have homogeneity in the number of

samples used. Moreover, in order to have homogeneous samples, we take the first 100

minutes of the ECGs samplings. Also, we consider 5500 heartbeats from ECGs to carry

out all the estimates, which corresponds to the common length of heartbeats within all

the considered sequences. In Table 8.1 we give a summary of the information described

in the last paragraphs about the databases.

Patient group Database Recordings Age

HY FANTASIA 20 (10 M,10 W) 21-34

HE FANTASIA 20 (10 M,10 W) 68-85

CHF BIDM 15 (11 M,4 W) 22-71

AF MIT-BIH 15

Table 8.1: Patient groups. All signals were obtained with a sampling frequency of 250 Hz. Each

group is composed of men (M) and women (W).

8.3 Denoising of the ECG signal

As we discussed in Section 6.1, when we implement methods for discriminating

electrocardiograms from different groups of patients, the removal of noise in the data

is a vital part of the preprocessing stage. This is not only due to the physiological

oscillation of the signal but also due to the different sources of noise that the signal

may present, which corrupt the signal and prevent its correct analysis. These noise

sources include the power line of the equipment, respiratory movement, muscle noise,

and baseline wander, among others [33]. Here, we employ one of the most used tools for

filtering ECGs which is the Discrete Wavelet Transform (DWT) (see [32] for a review).

It allows us to implement a band pass filtering by eliminating high- and low-frequency

signals that do not correspond to the range of electrocardiographic signal frequencies

(see Chapter 6).

The denoising process in MATLAB can be implemented using the Wavelet Signal

Denoiser app, which is an interactive tool for visualization and denoising in signals

using the Wavelet transform (see Chapter 6). In particular, this app provides the wden

function, which receives the raw signal as an argument and returns a denoised version

of it. To obtain the WT coefficients, the wden function decomposes the received signal

using a specific wavelet; in our case, following the methodology proposed in [33], we

use the Symlets wavelet family. Next, wavelet denoising consists of passing the WT
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coefficients through a threshold, which removes those coefficients below a specific value.

Finally, it is possible to reconstruct the signal using inverse DWT. This can be done

without affecting the signal quality since its characteristics are concentrated in the

highest magnitude wavelet coefficients ( [33], [32]).

Figure 8.2 plots a raw ECG signal (green line) and its denoised version (red line).

As we mentioned above, when we process electrocardiograms, it is important not to

affect the important information of the signal. In Figure 8.2 we can see that after the

denoising process, the signal preserves the significant points that interest us for the

encoding process later, namely, the peak and the onsets and offsets points of each wave

(see Figure 8.3). Additionally, we can see that the signal preserves the amplitude and

duration of each wave.

Figure 8.2: Raw and denoised signals. In this example, the raw signal exhibits high-frequency

noise (green color). After the noise removal process, the clean signal (red color) preserves the

characteristic points of the electrocardiogram.

8.4 Deriving signals

In addition to the electrocardiographic signal, the other components under study

were obtained using the NeuroKit2 package, which is The Python Toolbox for Neuro-

physiological Signal Processing ( [79]). This tool allows to detect the components of the

electrocardiographic signal. In particular, we can locate the onsets and peaks of the P,

R and T waves (see Figure 8.3(a)), using the ecg-delineated command.

Next, using the onsets and peaks of P, R and T waveforms, we compute the waveform

amplitude through the difference between the voltage at its onset point and its peak.

Specifically, the wave amplitude is defined as Wpeak −Wonset, where Wonset is the voltage

at the starting point of the wave and Wpeak is the voltage that reaches the peak
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of the wave. For example, for the i-th heartbeat, the R-wave amplitude is given by

RWi = RWpeaki −RWonseti ; we repeat the procedure analogously for the P and T waves

(see Figure 8.3(b)). Regarding the RR intervals, it is possible to obtain them using the

hrv function of Neurokit.

Figure 8.3: Components of the ECG signal. The amplitudes of waves P, R and T, at the i-th

heartbeat, are obtained by means of PWi = PWpeaki − PWonseti , RWi = RWpeaki −RWonseti

and TWi = TWpeaki − TWonseti , respectively.

This definition of wave amplitude gives us four time series, namely, PW = {PWi :

i = 1, 2, . . . , n}, RW = {RWi : i = 1, 2, . . . , n}, TW = {TWi : i = 1, 2, . . . , n} and

RR = {RRi : i = 1, 2, . . . , n}, where n = 5 500, is the number of heartbeats contained in

data. These quantities are those that, in Section 10.4, we refer to as variability signals.

Moreover, the electrocardiographic signal itself is a signal under study of the form

x = (x1, . . . , xN), where N corresponds to the recorded signal time.

8.5 Markovianity of the electrocardiographic signal

In Section 2.3, we discussed that the time series we are working with (electrocardio-

graphic signal) can be considered as a realization of a stochastic process. In particular,

we assume that our data are realizations of Markov processes, which can be tested by

cross-correlating the signal with itself, considering a temporal lag τ . Therefore, in this

section, we first show the autocorrelation function (ACF) of the electrocardiographic

signal and of the variability signals we analyze in this work. This will serve as background

to present the assumptions of the Markov model of the signal.

In Figure (8.4), we show the ACF of each of the variability signals with a version of

itself lagged τ units in time, that is, we show the ACF of the pairs of signals (RRt, RRt+τ ),

(PWt, PWt+τ ), (RWt, RWt+τ ) and (TWt, TWt+τ ). We can see that the signals in all cases

show similar autocorrelation properties. For example, for the RR-intervals signal (see

Figure (8.4)(a)), the highest autocorrelation value of |ρ(RRt,RRt+τ )(τ)| ≈ 0.5 is obtained
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with τ = 1. For values of 2 ≤ τ ≤ 5 the function quickly approaches zero, while for

τ > 5, we have |ρ(RRt,RRt+τ )(τ)| ≈ 0. On the other hand, as we saw in Section 2.4, if

|ρ(RRt,RRt+τ )(τ)| = 1, then there are constants β1, β2 ∈ R such that RRt+τ = β1RRt+β2,

that is, we can derive RRt+τ from RRt. This suggests that when |ρ(RRt,RRt+τ )(τ)| > 0

(significantly different from zero), we have an rough measure to forecast RR at time

t+ τ from its value at time t. In our analysis of the RRt and RRt+τ signals, in the four

groups of patients, we have that |ρ(RRt,RRt+τ )(1)| > |ρ(RRt,RRt+τ )(τ)|, for τ = 2, 3, ...20,

that is, the highest autocorrelation is found for τ = 1. This suggests that this signal

has the highest degree of memory for τ = 1, which in turn can be interpreted as the

signal being of Markovian nature. We have similar results for the other three variability

signals in Figures (8.4)(b), (8.4)(c) and (8.4)(d).

Figure 8.4: Autocorrelation function of variability signals. Each ACF was obtained by cross-

correlating each variability signal with itself (using 5000 heartbeats), for lags of τ = 1, ..., 20.

The values shown in this figure are the average of 15 subjects in each group.

In Figure 8.5, we display the ACF of the electrocardiographic signal with a version

of itself lagged ι units in time; that is, we show the ACF of the signals (ECGt, ECGt+ι).

We can see that ACF exhibits non-zero values for ι = 1, 2, ..., 8 and for values of ι > 8

we have that |ρ(ECGt,ECGt+ι)(ι)| ≈ 0, for the four groups of patients. However, as in the

case of variability signals, we can see that |ρ(ECGt,ECGt+ι)(1)| > |ρ(ECGt,ECGt+ι)(ι)|, for
ι = 2, 3, ...20, that is, the highest degree of memory is obtained for ι = 1. Since there is

a more significant correlation for ι = 1, here we only study the memory of the previous

step (ι = 1), which is related to the markovianity of the electrocardiographic signal.

The ACF results provide us with the necessary arguments to assume Markovianity

in the electrocardiographic signal. Next, we present the assumptions of the signal Markov

model, with transition matrix P :

68



8.6. Encoding

Figure 8.5: Autocorrelation function of the electrocardiographic signal. Each ACF was obtained

by cross-correlating the electrocardiographic signal with itself (using 100 minutes), for lags of

ι = 1, ..., 20. The values shown in this figure are the average of 15 subjects in each group.

1. Stationary Markov process.

2. Irreducible Markov process.

3. Positive recurrent Markov P process.

4. Aeriodic Markov process.

5. The length of the signals is large enough, such that the convergence of the law of

large numbers in equation (2.14) is achieved. This condition allows us to obtain the

invariant probability distribution π of the process using π = Pπ, from which we

can estimate the EPR of the process using equation (4.3); this invariant probability

distribution π is unique in an ergodic Markov process that is irreducible, aperiodic,

and positive recurrent.

8.6 Encoding

Let us recall that the data under study is a discrete sequence of the form x =

x1, . . . , xN , corresponding to 100 minutes of ECG recordings sampled at 250 Hz. That

gives us a 1500000-long discrete vector for each one of the samples we analyze.

In order to avoid spurious non-stationary characteristics, in the case of variability

signals, once we have obtained the PW , RW , TW and RR vectors, we consider the

differences between consecutive entries, eliminating the non-stationary characteristics.

For instance, in the case of the RR intervals, we consider the time series of differences

δ = (δ1, . . . , δn−1), where n is the total number of heartbeats in our samples and

δi = RRi+1 − RRi is the difference between the (i + 1)-th and the i-th heartbeats
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duration (see Figure 8.6); we repeat the procedure analogously for the PW ,RW and TW

vectors. Specifically, for the RR intervals, P-wave, R-wave, and T-wave, their respective

difference time series are given by ∆RR = {∆RRi : ∆RRi = RRi+1 − RRi, i =

1, 2, . . . , n − 1}, ∆PW = {∆PWi : ∆PWi = PWi+1 − PWi, i = 1, 2, . . . , n − 1},
∆RW = {∆RWi : ∆RWi = RWi+1 − RWi, i = 1, 2, . . . , n − 1} and ∆TW = {∆TWi :

∆TWi = TWi+1 − TWi, i = 1, 2, . . . , n − 1}. We call these signals variability signal

differences, according to the signal being studied, i.e., in the cases of the RR intervals

and PW (P-wave amplitude), they are called RR-interval differences signal and PW

differences signal, respectively. Regarding the ECG signals, after the process of denoising,

we proceed similarly to the variability signals, eliminating non-stationary characteristics.

That is, we consider the vector y = (y1, . . . , yN−1) where yi = xi+1−xi, for i = 1 . . . , N−1;

vector y will be called ECG differences signal (see Figure 8.7).

Figure 8.6: (a) Original RR-intervals signal. (b) RR-intervals signal differences.

Figure 8.7: (a) Original ECG signal. (b) ECG signal differences.

Once we have our vectors y and δ, we encode them by partitioning the state space

of the time series. An intuitive encoding technique was proposed in [8], which considers

a uniform state space partition. However, this uniform partition does not consider the

typical signal fluctuations. In order to capture these fluctuations inherent to physiological

processes, we propose different partitions composed of elements with non-uniform sizes.

That is, we consider a “center cell” around the mean µ value of the time series, and

the size of the partition element is defined using the standard deviation σ of the data

and fitted by means of a parameter γ. Considering non-uniform size for the elements of
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the partition represents a novelty in the literature and we show that our method has

advantages compared with previous works.

Let us consider κ = 2j+1, for j ∈ N. Now, let A = {1, . . . , κ} be the alphabet of size

κ and whose symbols will represent the labels of elements of the partition. Given a signal

y (respectively δ), one considers its mean value µ and its standard deviation σ, which

will be used for our method. Using the ‘center cell’ of the data, we carry out the partition

of the state space of the time series. That cell is considered to be centered at µ (see

Figure 8.8, for an example with j = 2). We construct its width employing the standard

deviation σ, modulated by a parameter γ1. We proceed with building up symmetrically

from this center cell to both sides. The second layer of cells is defined analogously, by

considering an interval centered at µ, but now with another width that is modulated by

the parameter γ2 (satisfying γ2 > γ1). So the second layer will be defined by subtracting

the previous layer (in this case, the center cell) to the new obtained interval. Thus, the

second layer will be composed by the segments (µ− γ2σ, µ− γ1σ) ∪ (µ+ γ1σ, µ+ γ2σ).

We continue in this way until we reach the most external layer which is defined by

taking µ ± γj and that considers the segments (−∞, µ− γjσ) and (µ + γjσ,∞) from

the other side. It is important to mention that by this construction we keep the number

of parameters low, but at the same time we let the layers to vary its width. This feature

is relevant for our method since represents a novelty concerning the existent literature.

Its importance relies in the fact that, by letting vary the width of the intervals, one can

detect in a better way the typical fluctuations of the data and take into account the

transitions between different behaviors of the time series. This turns to be important

for the estimation of the entropy production as we will see below. So, for instance, by

letting γ1 be large, then small fluctuations around the mean value will not be noticed.

On the contrary, if we make γ1 very small, then large fluctuations will be missed. That

is why, here we perform an exploratory study to find the values of the parameters that

allow us to better discriminate the groups of patients using the time-asymmetry of the

data sequences.

Given a fixed partition, to generate a symbolized sequences ω(y) corresponding to

the data sequences y, we label the atoms as follows:

ω(yi) :=



1 if and only if yi ∈ (−∞, µ− γjσ],

2 if and only if yi ∈ (µ− γjσ, µ− γj−1σ],
...

...

j + 1 if and only if yi ∈ (µ− γ1σ, µ+ γ1σ),
...

...

κ if and only if yi ∈ [µ+ γjσ,∞).

Observe that the label j +1 is assigned to the center cell, the label 1 to the first atom at
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first layer: “center cell’
µ

µ± γ1σ

µ+ γ2σ

µ− γ2σ

second layer

third layer

Figure 8.8: Schematic diagram for the build up of the partition for j = 2. The cells can be

expanded or contracted based on an adjustment of the γ parameter values.

the bottom and the label increases up to κ (see Figure 8.9). The procedure is analogous

(mutatis mutandis) for the case of ω(δ) (variability signals).

In Figure 8.9, we provide an illustrative example of simbolization for j = 2, that is,

for κ = 5. In this case, the labels of the elements of the partition are given as follows:

i) Label 1 for (−∞, µ− γ2σ],

ii) Label 2 for (µ− γ2σ, µ− γ1σ],

iii) Label 3 for (µ− γ1σ, µ+ γ1σ),

iv) Label 4 for [µ+ γ1σ, µ+ γ2σ),

v) Label 5 for [µ+ γ2σ,∞).

So, we end up with the symbolic space Ω = AN (where N = n− 1, for ECGs and

N = m− 1, for the variability signals sequences) containing the symbolic sequences ω(y)

for each sample y, and ω(δ) for each sample δ.

In order to have a comprehensive analysis of the signal, we will perform numerical

tests to find the best possible values of the parameter γj . This means that we will present

our results for different partitions and an exploration of the size of the intervals in the

partition.
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µ± γ1σ

µ+ γ2σ

µ− γ2σ

Figure 8.9: Schematic diagram of the symbolization procedure for j = 2. The symbols in the

sequence are assigned according to the partition in which the value of the signal signal y (or δ)

falls.

8.7 Joint encoding

Considering that the variability signals are not necessarily independent and represent

different stages of a heartbeat, we performed a joint encoding of these signals. This

procedure allows us to jointly analyze the fluctuations of the RR intervals and the

amplitudes of the P, R and T waves.

Using the methodology described in Section 8.6, with the same approach of consider-

ing a non-uniform size of the partition elements, in this section we consider the simplest

case of partitioning the state space, which is the ternary partition, but implementing

two signals jointly, using the following rule. Given two variability signals differences

δ1 = (δ11, . . . , δ
1
n−1) (with parameters µ1 and σ1) and δ

2 = (δ21, . . . , δ
2
n−1) (with parameters

µ2 and σ2), their joint symbolic sequence can be obtained by means of (see Figure 8.10):

ω(δ1i , δ
2
i ) =



1 if and only if δ1i ∈ [µ1 + γσ1,∞) ∧ δ2i ∈ [µ2 + γσ2,∞),

2 if and only if δ1i ∈ [µ1 + γσ1,∞) ∧ δ2i ∈ (µ2 − γσ2, µ2 + γσ2),

3 if and only if δ1i ∈ [µ1 + γσ1,∞) ∧ δ2i ∈ (−∞, µ2 − γσ2],

4 if and only if δ1i ∈ (µ1 − γσ1, µ1 + γσ1) ∧ δ2i ∈ [µ2 + γσ2,∞),

5 if and only if δ1i ∈ (µ1 − γσ1, µ1 + γσ1) ∧ δ2i ∈ (µ2 − γσ2, µ2 + γσ2),

6 if and only if δ1i ∈ (µ1 − γσ1, µ1 + γσ1) ∧ δ2i ∈ (−∞, µ2 − γσ2],

7 if and only if δ1i ∈ (−∞, µ1 − γσ1] ∧ δ2i ∈ [µ2 + γσ2,∞),

8 if and only if δ1i ∈ (−∞, µ1 − γσ1] ∧ δ2i ∈ (µ2 − γσ2, µ2 + γσ2),

9 if and only if δ1i ∈ (−∞, µ1 − γσ1] ∧ δ2i ∈ (−∞, µ2 − γσ2],

(8.1)
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Figure 8.10: Diagram of the joint coding of time series. Given two variability signals differences

δ1 = (δ11 , . . . , δ
1
n−1) and δ2 = (δ21 , . . . , δ

2
n−1), the symbolic sequence is generated depending on

the partitions in which the i-th elements of each time series jointly fall. In our diagram, each

color represents the i-th site in both time series jointly. For example, the i + 1-th position

of the symbolic sequence is assigned the symbol 7, because the i+ 1-th point of time series

δ1 falls in partition (−∞, µ1 − γσ1], while the i-th point of time series δ2 falls in partition

[µ2 + γσ2,∞), according the mapping (8.1).

8.8 Construction of the estimators

Once we have finished the symbolic encoding process of the data, the next step

is to build the Markov model that approximates the process. After that, we continue

to build up the estimators for the entropy production rate we defined in Section 4.1.

Firstly, using equation (4.2), the transition probabilities Pij were directly estimated from

the data sequences of size n. This allows us to get an approximation for the transition

matrix P . Next, we compute the invariant probability distribution for each subject by

finding the left eigenvector of the corresponding estimated matrix. Finally, we estimate

the Entropy Production Rate êp, for every electrocardiogram of each group of patients,

using equation (4.3).

Regarding the Kullback-Leibler Divergence Estimator D̂n,k (see Equation (4.9)),

once we have our symbolic sequence ω(y) (or respectively, ω(δ)), we need first to find the

set of all k-words ak1, that occur within the sequence ω(y) (or ω(δ)) and their respective

time-reversed versions (a1k). Further, we estimate the empirical probabilities of all ak1 and

a1k. This is done using equation (4.8) for the words and their time-reversed versions. As

a final step, we estimate the KLD D̂n,k, for all the ECG and variability signal sequences

of each group of patients, using equation (4.9). We remind that, when k and n are

large enough, then one can obtain good estimations. As provided by the Ornstein-Weiss

theorem [54], one should have that n is exponentially larger than k in order to assure the

convergence of the estimations. This represents a disadvantage when dealing with short

data sequences. Here, for both cases (ECG and variability signals sequences), we use

k = 3, that is, words of length 3. For longer words, the statistics of the appearance of

the words is poor due to the size of the sequences, especially for the variability signals.

In the case of the Lag-irreversibility function, given a symbolic sequence ω(y) (or
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respectively, ω(δ)), we have estimated the joint probability functions P(xt = si;xt+τ =

sj) and P(xt = sj;xt+τ = si), for τ = 1, . . . 20, using equations (4.11a) and (4.11b),

respectively. Once we have the joint probability function, we directly plug them into

equation (4.12), which in turn provides us with the estimated lag irreversibility function,

L̂(τ).

Finally, for the Matching time estimator, given the set M made up of m finite

symbolic sequences ω(y) (or respectively, ω(δ)) of the data, we first find the matching

time ℓ+ and the time-reverse matching time ℓ− for each of the m sequences, using

equations (3.15) and (3.16), respectively. This allows us to construct the sets L + and

L − composed of all ℓ+ and ℓ−, respectively. Once we have the sets L + and L −, we

estimate the entropy of the sequence (ĥ) and the entropy of the process reversed in time

(ĥr), using equations (4.6a) and (4.6b), respectively. In the case of our data, to estimate

ĥ and ĥr, we have that ni = nj for all the i, j sequences in M , that is, all sequences

have the same length. Finally, we estimate the EPR of the process by substituting ĥ

and ĥr in equation (4.7).

8.9 Chapter summary

This chapter has described the methodology followed for the analysis of temporal

irreversibility in electrocardiograms. Although we tried to give as much detail as possible,

this could not always be achieved. For example, in Section 8.8, where we discuss the

estimation process, we only give a general description of the algorithm implemented,

without stopping to explain the different functions used for the calculations, some of which

are previously programmed in MATLAB, while others were programmed by ourselves. In

Chapter 10 we will show the results obtained by analyzing the electrocardiograms using

the methodology explained here. To evaluate the efficiency of this proposed methodology,

we performed a ROC analysis of the results, which is the subject of the Chapter 9.
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Chapter 9

Receiver operating characteristics

graphs: ROC analysis

The Receiver Operating Characteristic (ROC) analysis, or ROC analysis, is a

graphical method that is used to visualize and evaluate the efficiency of a binary

classifier. In particular, in the area of medicine, ROC analysis has been widely used in

medical decision making and diagnostic tests (see for example [80], [81], [82]). In this

section we provide the theoretical framework necessary to carry out the ROC analysis

of our results in Chapter 10.

9.1 ROC analysis

Let us consider the set J = {j1, j2, . . . , jm} formed by all possible instances, U =

{Y,N} the set of hypothesized classes and u = {p,n} the set of true classes. The

mapping R : J → U defines a classification model or classifier, that is, a classifier maps

the set of all possible instances to the set of predicted classes. This means that, given

an instance ji and a threshold value λ ∈ R above which, instances can be classified as

positive, there are four possible outcomes. If the instance is classified as positive by

the model (ji > λ, that is ji ∈ Y) and it actually is positive (ji ∈ p), it is counted as

true positive (TP ); it is counted as a false negative (FN) if the model classifies it as

negative (ji ≤ λ), but it is truly positive (ji ∈ p). If the instance is classified as negative

by the model (ji ≤ λ, that is ji ∈ N) and it actually is negative (ji ∈ n), it is counted

as a true negative (TN); it is counted as a false positive (FP ) if the model classifies it

as positive (ji > λ), but it is genuinely negative (ji ∈ n) ( [83], [84]). In Figure 9.1 we

show a diagram of this data distribution.

From a classifier and these four possible outcomes, we can build a confusion matrix

like the one shown in Figure 9.2, which represents the arrangement of the possible

instances in J and is the basis for the ROC analysis. In Figure 9.2 we show the equations

of the main metrics that can be estimated from the positive and negative instances. In

particular, the true positive rate (h) is [83]:

h :=
positives correctly classified

Total positives
=

1

P

P+N∑
i=1

1 [ji > λ] , (9.1)
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9.1. ROC analysis

Figure 9.1: ROC analysis: data distribution. The green curve represents true positive (TP)

cases and the blue curve represents true negative (TN) cases. All cases of true positives below

the threshold λ are classified as false negatives (FN), while cases of true negatives above the

threshold are classified as false positives (FP).

where 1 [ji > λ] is the identity function, which is equal to 1 whenever ji > λ, otherwise

it is equal to zero.

The false positive rate (g) is [83]:

g :=
negatives incorrectly classified

Total negatives
=

1

N

P+N∑
i=1

1 [ji ≤ λ] , (9.2)

where 1 [ji ≤ λ] is the identity function, which is equal to 1 whenever ji ≤ λ, otherwise

it is equal to zero.
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Figure 9.2: Confusion matrix.
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9.2 ROC space

From the information provided by the confusion matrix, it is possible to construct

a two-dimensional graph whose axes x and y are the false positive rate (g) and the

true positive rate (h), respectively. This graph is known as ROC space (see Figure

9.3). Depending on the area in which each point (h, g) falls in the ROC space, it has a

different interpretation. For example, the point (0, 0) represents a classifier that never

issues positive classifications, that is, with this classifier there are never false positive

errors. The opposite case is represented by the point (1, 1), which always returns positive

classifications, that is, with this classifier there are never false negative errors. The

particular case of the point (0, 1) represents a classifier that is correct 100% of the time,

that is, all positive classifications actually are true positives [83].

Figure 9.3: ROC space. Points in ROC space are considered best on the northwest side of the

graph, since the true positive rate is higher and the false negative rate is lower in that zone.

When we apply ROC analysis to analyze data arising from practical topics such as

medical sciences, the above cases rarely happen and consequently there is no interest

in analyzing them. In Figure 9.3, we depict points A, B, C, and D of the ROC space,

which are most commonly encountered in data analysis. It can be said that the ROC

space is better on the upper left-hand side of the graph (true positive rate increases and

false positive rate decreases), that is, the points in this area make positive classifications

only when there is strong evidence and it makes them incur fewer false positive errors.

Point A gives predictions with fewer occurrences of false positives than point B. Point C

represents random classifications because it is located on the identity line. For example,

if the classification model returns 80% of instances as positive, its false positive rate will
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also increase to 80%, generating the point (0.80, 0.80). When we have a point that is

located in the lower right-hand triangle of the ROC space, as in the case of point D, it

will show a confusion matrix opposite to that of point A and its predictions must be

inverted to produce points in the left-hand upper triangle [83].

Each point in the ROC space describes a discrete classifier that assigns each instance

a decision regarding the class it belongs to, but these points do not give information

about the performance of the classifier, that is, the individual points in the ROC space

do not provide information of the effectiveness of the classification decision made by the

classifier. This problem can be addressed using ROC curves ( [85], [83]).

9.3 ROC curve

By using discrete classifiers like those that produced points A, B, C, and D, we

obtain a single classification decision, that is, we obtain a single point in the ROC space.

To construct a ROC curve, we first choose a threshold value, above (or below) which,

instances can be classified as positive (or negative). This allows us to take advantage of

the regularity of classifications through threshold values, that is, any instance that is

classified as positive for a certain threshold value, will be positive for higher (or lower)

threshold values. In this way, we can sort the instances under analysis and move up

the ordered data set, classifying each instance and updating TP and FP at the same

time. The result of this series of steps is a vector with the points of the ROC curve

(see Figure 9.4), generated by a linear scan of the data previously ordered. With this

procedure, there is a single point in the ROC space for each threshold value. Although it

is theoretically possible to take threshold values in the interval (−∞,∞), in the analysis

of data generated by real-life systems, such cases do not have an important meaning,

since a very high threshold value (trending to infinity) produces the point (0, 0) and a

very low threshold value (trending to minus infinity) produces (1, 1), which represent

classifiers with no positive classifications and classifiers with all positive classifications,

respectively ( [83], [84]).

9.4 Area under an ROC curve

When we are interested in evaluating the efficiency of a classifier to distinguish

between two classes, it is necessary to be able to interpret the information depicted in

the ROC curve, as a scalar value that represents the performance of the classifier. A

common method to obtain such a scalar is to calculate the Area Under the ROC Curve

(AUC). In the case of discrete data, the AUC can be computed using a polynomial

approximation ( [83], [86]). Let R : J → U be a classifier and J = {j1, j2, . . . , jm}
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9.4. Area under an ROC curve

Figure 9.4: ROC curve. An example of a ROC curve formed in the upper left triangle of the

graph, which represents the type of graph we want to work with. This is because the ROC

curves in the lower right triangle indicate that the data is being analyzed incorrectly.

be the set of all possible instances (both defined as before), which can be segmented

into the set of negative (n) and positive samples (p), that is, n = {j01 , j02 , . . . , jm0
1} and

p = {j11 , j12 , . . . , jm1
2}, respectively, where m = m1 +m2. The AUC of the classifier R

can be estimated from the Mann-Whitney-Wilcoxon test, which tests whether positives

instances are ranked higher than negatives, using ( [87], [88]):

AUC :=

∑
j0i ∈n

∑
j1j∈p

1 [R(j0) < R(j1)]

|n| · |p|
, (9.3)

where 1 [R(j0) < R(j1)] is the identity function, which is equal to 1 whenever R(j0) <

R(j1). From a statistical point of view, the AUC can be interpreted as the probability

that a classifier R can discriminate between a positive and a negative instance when

both are selected randomly.

Broadly speaking, we can have three cases when estimating AUC. The first of

them happens when there is no intersection between both data curves (Figure 9.5i.(a)),

therefore, we will have AUC = 1 (Figure 9.5ii.(a)). This means that the classifier can

distinguish or classify between the two classes in 100% of cases. The second case occurs

when there is a partial overlap of the data (Figure 9.5i.(b)), and as a consequence, there

are cases of false positives and false negatives, that is, errors are made. These errors are

minimized or maximized for each threshold value λ. In this case, the AUC values fall

in the interval 0.5 < AUC < 1, which is very common in practical situations (Figure

9.5ii.(b)). For example, if AUC = 73, we can interpret that the classifier is effective
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up to 73% of the cases. The worst situation occurs when the data completely overlap

(Figure 9.5i.(c)), resulting in AUC = 0.5 (Figure 9.5ii.(c)). In this case, the classifier

cannot distinguish between either class at all.

Figure 9.5: Three general cases of ROC data analysis. (a) There is no overlapping of the

data, it is the ideal case. (b) There is a partial overlap of the data distribution and cases of

false positives and false negatives are generated. (c) The distributions of the data overlap

completely.

For the sake of clarity, the ROC curve can be interpreted according to the following

intervals [89]:

• AUC = 0.50: the classifier does not have discriminative capacity.

• AUC ∈ (0.50, 0.60]:bad classifier.

• AUC ∈ (0.60, 0.75]:regular classifier.

• AUC ∈ (0.75, 0.90]:good classifier.

• AUC ∈ (0.90, 0.97]:very good classifier.

• AUC ∈ (0.97, 1.0]:excellent classifier.
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9.5 Chapter summary

As we have seen throughout this chapter, ROC analysis is a powerful tool for

analyzing the efficiency of a classifier to distinguish between two classes. In Chapter 10, we

will show the results of using ROC analysis to evaluate the efficiency of our methodology

to discriminate between electrocardiograms from different groups of patients.
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Chapter 10

Results and discussion

In this Chapter, we estimate time-irreversibility in electrocardiograms. We propose

to analyze the electrocardiographic signal in three different categories, namely, (1) the

electrocardiographic signal, (2) RR-intervals and (3) joint variability signals, which

allowed us to have a comprehensive analysis of the signal. After the data encoding

process is completed, following the procedure discussed in Section ??, we directly use

the symbolic sequences of these signals to construct the time-irreversibility estimators,

for which we assume that the signal presents a Markovian nature (see Section 8.5).

We estimate the time-irreversibility of the ECG signal using the estimators empirically

constructed from the data, namely, the Entropy Production Rate êp (equation 4.3), the

Kullback-Leibler Divergence D̂ (equation 4.10), the Matching time M̂ (equation 4.7)

and the Lar-irreversibility function L̂(τ) (equation 4.12).

We separate our results into three parts. First, we show the results by analyzing the

electrocardiographic signal (Section 10.1). Later on, we analyze the HRV (Section 10.2)

and make a comparison between the performance of the electrocardiographic signal and

the HRV to discriminate between the four groups of patients (AF, CHF, HE and HY),

through a ROC analysis of the results (Section 10.3). Finally, in Section 10.4, we display

the results of analyzing the joint variability signals using the LI function, introduced in

Section 3.3.4.

The results shown in this chapter are based on the following previously published

material:

• MALDONADO, Cesar; MERINO–NEGRETE, Nazul. Irreversibility indices as

discriminators of heart conditions from electrocardiographic signals. Physica A:

Statistical Mechanics and its Applications, 2024, vol. 637, p. 129584.

• MERINO-NEGRETE, Nazul; MALDONADO, Cesar; SALGADO-GARCÍA, Raúl.

Sorting ECGs by lag irreversibility. Physica D: Nonlinear Phenomena, 2024, vol.

459, p. 134022.

10.1 Time-irreversibility in electrocardiographic sig-

nal

First, we estimate the EPR of the ECG signals. In figures 10.1, 10.2 and 10.3, we

show the values of the estimators êp, D̂ and M̂ , respectively, which were empirically
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10.1. Time-irreversibility in electrocardiographic signal

estimated from the symbolized ECG differences signal of 100 minutes (n = 1500000)

long and using the three different partitions we already have specified. The results shown

in these figures correspond to the average value obtained with 15 subjects for each group.

For each size of the partition (κ = 3, 5, 7), we make an exploratory study to find the

best values for γj. This is done for the four groups of patients (as we have described in

Section ??).

Figure 10.1, shows that the EPR is higher for the two groups of healthy subjects (HE

and HY) than in the other two groups with medical conditions (CHF and AF), having

the highest value the group of healthy young patients, for all the tested partitions and

for all the tested parameters. We point out that for γ1 larger than 2.5 it is expected to

have no conclusive results since most data falls into the central cell with high probability.

For the simplest case, κ = 3, one has the best discrimination between the groups of

patients for γ1 between 0.8 and 1.2. Furthermore, for κ = 5, we see that in the HY and

HE groups, the EPR is found to have values in a range from ≈ 0.04 to ≈ 0.06, compared

with both AF and CHF subjects which are in a range from ≈ 0.007 to ≈ 0.014. For

κ = 7 one can obtain different values for AF which are in a range from ≈ 0.012 to

≈ 0.021 and for CHF the values are found between ≈ 0.012 and ≈ 0.020. Based on these

results, the condition that provides better discrimination between different groups is to

use a partition with seven symbols (i.e. κ = 7) and parameters values of γ1 = 0.8, γ2 = 3

and γ3 = 4.25. Therefore, in the case of EPR, we propose to employ this collection

of parameter values to discriminate electrocardiographic signals coming from group of

patients under different medical conditions.

Figure 10.1: Average entropy production rate in symbolized ECG differences signals for different

partitions with κ = 3, 5, 7 as a function of the parameters γj . In the case of κ = 5, γ1 = 0.8

is the value we kept constant to make the corresponding calculations for different values of

γ2. Regarding κ = 7, γ1 = 0.8 and γ2 = 3 are the values we kept constant to make the

corresponding calculations for different values of γ3.

Next, in Figure 10.2 we show the estimated Kullback-Leibler Divergence (KLD)

in ECG signals. From now on, D̂n,k will be denoted only as D̂, since we use words of

length three (k = 3) for all cases; it is important to mention that one would require

much more data to make the estimations for longer words. We obtain our results for
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the same conditions as for EPR. This means that we study the same three different

number of the partitions, that is, we consider κ = 3, 5, 7. We observe that it is possible

to distinguish between healthy subjects and unhealthy patients, which is a consistent

result regarding the EPR.

For κ = 3 and γ1 = 1.5, we have the best result, in the sense that one can better

discriminate between groups, that is, for young and elderly healthy subjects we have

D̂ ≈ 0.0108 and D̂ ≈ 0.00738, respectively, while for the AF group D̂ ≈ 0.0025 and

for the CHF group we have D̂ ≈ 0.0014. For κ = 5 the best result was obtained using

γ2 = 3 given that γ1 = 1.5, and for κ = 7 the best selection of parameters is γ3 = 5,

given that γ1 = 1.5 and γ2 = 3. This means that using the average value of the KLD,

these parameter values allow us to have the greatest difference between the groups of

healthy and sick patients.

Let us emphasize that the KLD estimator was built from the empirical frequency of

3-words and that for short dataset sequences the fluctuations are typically large. Thus,

as we have already said, aiming to achieve a better estimations using words of length

four or longer, it is necessary to carry out the estimation procedure employing longer

dataset sequences.

Figure 10.2: Average Kullback-Leibler Divergence in symbolized ECG differences signals, for

different partitions with κ = 3, 5, 7 as a function of the parameters γj .

Finally, Figure 10.3 shows that the Matching time estimator allows us to discriminate

between healthy subjects (young and elderly) and unhealthy patients, for the same

three different number of atoms in the partitions (κ = 3, 5, 7). For the case κ = 7 using

γ1 = 1.6, γ2 = 3 and γ3 = 5, we have the best discrimination, that is, for the HY group,

the value of the estimator (M̂ > 0.22) is approximately two times greater than the

groups of ill patients (M̂ ≈ 0.11 for the CHF group).

We emphasize that discriminating between the two healthy groups (HY and HE) or

between the two ill groups of patients (AF and CHF) becomes a difficult task, given that

in all cases, each pair of groups show very similar values (in average) for the irreversibility

indices under study.
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Figure 10.3: Average matching time in symbolized ECG differences signals, for different

partitions with κ = 3, 5, 7 as a function of the parameters γj .

10.2 Time-irreversibility in HRV

Figure 10.4: Average entropy production rate for symbolized RR-interval differences signals

(using 5,500 heartbeats, that is, n = 5, 500), for different partitions (κ = 3, 5, 7) as a function

of the parameter γj .

Aiming to achieve a comprehensive comparison, in this thesis, we study the RR-

interval sequences, since most of the existent works (see for example [19], [20], [21], [7])

dealing with time-irreversibility features in the electrocardiographic signal analyze the

HRV from the the RR-interval sequences. Figure 10.4 displays the empirical EPR for

the symbolized RR-interval differences signal, obtained using the same methodology

described above.

We obtain compatible results with those obtained for the EPR in ECG signals.

This means that the EPR is higher in healthy young patients than in those with

medical conditions. However, when we analyze the RR-interval sequences using the

methodology applied to the analysis of the electrocardiographic signal, these estimators

fail to discriminate the group of healthy elderly patients from those who exhibit medical

conditions. Furthermore, according to what was reported in [7], it is expected that, on

average, the EPR in the healthy elderly group is higher compared to the ill patient

groups. Therefore, given that analyzing the HRV with this methodology, we do not have

conclusive results to discriminate between the group of healthy elderly patients from

those with medical conditions, in Section 10.3, the ROC analysis will focus on discussing
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the obtained results when analyzing the HY, AF and CHF groups. Later, in Section

10.4, we will discuss the obtained results with the proposed Lag-irreversibility estimator

(see Section 3.3.4), with which it is possible to discriminate between the four groups of

patients.

Regarding the unhealthy groups, granted that the difference between them was not

statistically significant, the values of EPR were slightly larger for patients with CHF than

for those with AF. We believe that, due to the properties of the RR-intervals sequence

and the nature of these medical conditions, some of them can be better detected than

others using this signal. For instance, RR-intervals fluctuations are lower in patients

with CHF than in patients with AF, since the latter exhibit high variation in heartbeat

frequency [55]. In this context, concerning the EPR and its usefulness for analyzing

groups of patients with these medical conditions, further research must be done.

Figure 10.4 shows that in a partition of κ = 3 atoms and γ1 = 8/10 one has that

the healthy patients have an EPR of ≈ 0.1745, while the CHF group shows an EPR

≈ 0.0556, and the AF group an EPR ≈ 0.0170. For κ = 5 and γ1 = 0.8, the parameter

γ2 which gives the most distinguishable results between the groups (excluding the group

HE) is γ2 = 0.9, giving values of the EPR ≈ 0.2277 for the HY group, ≈ 0.0608 for CHF

and ≈ 0.0246 for the AF group. And finally, for κ = 7 with the previous mentioned

optimal values for γ1 and γ2, one obtains the most distinguishable results for γ3 = 1.

That is, ≈ 0.2463 for HY, ≈ 0.0770 for CHF and ≈ 0.0445 for AF (see Figure 10.4).

Figure 10.5: Average Kullback-Leibler divergence based-entropy production rate for symbolized

RR-interval differences signals, for a partition with κ = 7, as a function of the parameter γ3.

Figure 10.5 displays the estimated KLD in the RR-interval sequences using a

partition with κ = 7.

For this signal, with the KLD estimator, we do not achieve convincing results

employing a few partitions (κ = 3 and 5), since we obtain large fluctuations of the

frequencies of 3-words empirically estimated. Hence, we show the results of the KLD

estimator considering a partition with κ = 7 and taking the values for the parameters
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γ1 = 0.8 and γ2 = 0.9, as in the case for the EPR, above. Observe that the results

are compatible with those obtained for the EPR. Distinguishable values are obtained

for γ3 = 1, that is, a D̂ ≈ 0.048 for the HY group, ≈ 0.0127 in the case of CHF, and

≈ 0.0089 for the AF subjects. We can see that using RR-interval sequences it is also

possible to discriminate between healthy and unhealthy subjects, although these results

are less conclusive than those obtained with the electrocardiographic signal.

Regarding the Matching time, we do not obtain conclusive results for any size of

the partition (κ = 3, 5, 7). We consider this to be due to the length of the RR-interval

differences signals and longer sequences are required to obtain good estimates.

10.3 ECG signal vs HRV: comparison and ROC

Analysis

Figure 10.6: Estimated êp (a), D̂ (b) and M̂ (c) in average and their respective standard

deviation bar, for symbolized sequences of ECG differences (for κ = 7). In the case of the

Kullback-Leibler divergence estimator, the selected length of the words was k = 3. Additionally,

in black, we plot the average results of our method applied to shuffled data (SD).

As a summary, in Figure 10.6 we make a comparison of the estimated average

EPR using the symbolized ECG signal. We also plot, in black bars, the results of our

method applied to shuffled data (SD); this means that before starting the encoding

process of the original data (the ECG signal), they were subjected to a randomization

process, which eliminates their original structure. The results show values very close

to zero, which means that the EPR values obtained come from the irreversible nature

of the data and are not a consequence of the methodology or estimator used. We can

see that under our methodology using these three estimators, in the case of the ECG

signals, we can discriminate the healthy patients (young and elderly) from the unhealthy

ones. Furthermore, regarding the EPR estimated from the ECGs, we obtain quite

satisfactory results using only 20 minutes of signal, which, from a practical point of view,

represents an advantage over the existent literature, in which the used signals range

from 30 minutes to 24 hours (see for instance [17,22,90]). In Figure 10.7 we do the same
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for the case of RR-interval differences signals. We can observe that by applying the

same methodology to both signals (ECG signal and RR-interval differences signal), it is

possible to discriminate between the group of young healthy patients and the groups

with unhealthy patients, since in all cases, EPR is at least two times higher in the HY

group compared to the AF and CHF groups. However, for the case of the RR-interval

differences signal, this methodology does not give conclusive results when we want to

discriminate between the group of healthy elderly patients from the unhealthy ones.

As we said previously, in Section 10.4, we will discuss the results obtained with the

Lag-irreversibility estimator, with which it is possible to have more evident discrimination

between these two groups of patients.

Figure 10.7: Estimated êp (a) and D̂ (b) in average and their respective standard deviation bar,

for symbolized sequences of RR-interval differences (κ = 7). In the case of the Kullback-Leibler

divergence estimator, the selected length of the words was k = 3. Additionally, in black, we

plot the average results of our method applied to shuffled data (SD).

Next, we perform the ROC analysis on our method (see Chapter 9). This evaluates

the accuracy of our methodology in distinguishing between groups of patients under

different medical conditions, using time-irreversibility indices as a discrimination tool.

To build the ROC curve, we choose a threshold value of EPR, and above that value,

the patient is predicted as a negative instance (healthy, for example) and below the

value, as a positive instance (unhealthy). For each threshold value, one obtains a number

of TP and TN instances and their respective errors (false positive or false negative).

Next, we assess the accuracy of our method for discriminating between pairs of patient

groups, namely, HY vs AF, HY vs CHF, AF vs CHF and finally, HY vs both AF or

CHF, which we denote by UHG (unhealthy in general). Under this analysis, one can

quantitatively evaluate the performance of the method by means of the AUC, which

takes values in the range of [0, 1]. The closer the values of AUC are to 1, the greater the

efficiency of the method to discern between the two evaluated groups ( [83], [86]). As

we specified previously, given that we do not have conclusive results with the healthy
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elderly patients, we did not include the HE group in our ROC analysis of the pairs of

groups of patients, and we leave its respective ROC analysis for Section 10.4.2.

In Figure 10.8 we show the ROC curve for the obtained results using the EPR of

the ECG signals for each pair of the three groups we have considered. We show the ROC

curves for the results obtained in the three different partitions defined in Section 8.6. We

obtain values close to 1 for our estimators, for instance, for the case of the EPR on ECG,

using a partition of κ = 3, one obtains values of AUC > 0.92 discriminating between

HY and AF groups. For HY vs CHF, one obtains AUC > 0.94, and AUC > 0.93 for

the discrimination between healthy patients and any of the two diseased groups. These

values are interpreted as “very good tests” (see Section 9.4). The values increase for

partitions with more atoms. For instance, for κ = 7, one has AUC > 0.96 for HY vs

AF using a threshold value of 0.0511. For HY vs CHF, one has AUC > 0.98 using a

threshold value of 0.0513 and AUC > 0.97 for HY vs UHG using a threshold value of

0.0534. The threshold value mentioned above provides us with the optimal operating

point of the ROC curve, i.e., it is the threshold value at which we can obtain the highest

efficiency for discriminating between the two groups under analysis. Concerning the

ROC analysis to discriminate between the two groups of unhealthy patients, we can

see that the method yields results with a lower precision of approximately 60% (see

Table 10.1). This represents a challenging problem that needs to be addressed with

further research, since our methodology does not seem to be good enough to distinguish

between these two groups of patients.

Figure 10.8: ROC curve for the EPR method for discriminating ECG signals.

Regarding the KLD estimator, the ROC analysis yielded comparable results (see

Figure 10.9). For instance, for a symbolic encoding with κ = 3 one has AUC > 0.98

discriminating between HY and AF, AUC > 0.94 for HY vs CHF and AUC > 0.96 for

HY vs UHG. These are very good results, also concerning the existent literature. Similar

results were obtained for κ = 5. For κ = 7 one has a AUC > 0.95 for HY vs AF using a

threshold value of 0.0162, AUC > 0.98 for HY vs CHF using a threshold value of 0.0163

and AUC > 0.96 for HY vs UHG using a threshold value of 0.0162 (see Table 10.1).

As we have previously pointed out, the method fails to discriminate between the two

diseased groups, having AUC > 0.59, only.
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Figure 10.9: ROC curve for the KLDB method for discriminating ECG signals.

In the case of the Matching Time, the best results were obtained with κ = 7 (see

Figure 10.10). That is, one has a AUC > 0.81 for HY vs AF using a threshold value of

0.079, AUC > 0.75 for HY vs CHF using a threshold value of 0.161 and AUC > 0.71

for HY vs UHG using a threshold value of 0.137 (see Table 10.1).

Figure 10.10: ROC curve for the MT method for discriminating ECG signals.

We observe outstanding results using the estimators êp and D̂, and we have less

conclusive results with M̂ in the ECG signals. According to our literature review, our

methodology applied to the analysis of the electrocardiographic signal yields better

results than most of the researches found in the literature. Additionally, in order to have

an exhaustive investigation and for comparison purposes with other results available, we

performed ROC analysis of the results obtained by analyzing the RR-interval sequences.

Figure 10.11 displays the ROC curves using the three different partitions schemes for

the EPR in RR-interval sequences.

When estimating the EPR using RR-interval signals, we have that the best perfor-

mance is obtained for κ = 7. One has that AUC > 0.72 for HY vs AF using a threshold

value of 0.0512, AUC > 0.81 for HY vs CHF and AUC > 0.74 for discriminating

between HY and UHG, both of them using a threshold value of 0.0596. These are

interpreted as “good tests”. These results show that using the HRV signal it is possible

to distinguish between the group of young healthy patients and those with a medical

condition, although the percentage of effectiveness is lower than in the case of the ECG

signal. Analogous to what was obtained in the previous cases, the methodology does

not show good results for discriminating between the AF and CHG groups, in which
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one obtains that AUC > 0.66, only.

Figure 10.11: ROC curve for the EPR method for discriminating RR-interval sequences.

Additionally, we compute the ROC curve for the KLD method using RR-interval

signals with a partition of the state space with κ = 7 as we did in the previous section,

see Figure 10.12. We obtain that in this case AUC > 0.77 for HY vs AF with a threshold

of 0.0219, AUC > 0.84 for HY vs CHF using a threshold of 0.0111 and AUC > 0.81 for

HY vs UHG using a threshold value of 0.0166.

Figure 10.12: ROC curve for the KLD method for discriminating RR-interval sequences.

We collect quantitative results in Table 10.1 for the area under the ROC curve, for

each pair of groups for which we tested our methodology. This is done for both time series

(ECG signal and RR-intervals) and the three estimators (êp, D̂ and M̂) under study.

The results show that using our methodology, it is possible to distinguish the group of

young healthy subjects from those with medical conditions, with a high percentage of

effectiveness. For the analysis of the ECG signals these results are slightly more accurate

when we use the estimator êp and less conclusive with M̂ . For the RR-interval signals,

we have the best results with the estimator D̂, although in that case, we need to consider

a partition with a larger number of atoms. In Table 10.1, we show the obtained values

with a partition of a number of atoms equal to κ = 7, which is the one we finally suggest.
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AUC

ECG HRV

êp D̂ M̂ êp D̂

HY vs AF 0.960 0.951 0.7978 0.7233 0.7718

HY vs CHF 0.9867 0.9822 0.7578 0.8144 0.8489

HY vs UHG 0.9733 0.9667 0.7178 0.7408 0.8133

AF vs CHF 0.6422 0.5931 0.6333 0.6656 0.7333

Table 10.1: Area under the ROC curve, using a partition of κ = 7.

For practical reasons, we would like to use as less signal recording as possible and still

be able to discriminate between the three groups of patients with our method. In Figure

10.13, we plot the AUC as a function of time, for the symbolized ECG differences signals;

(a) in the case of the estimator êp, (b) for the estimator D̂ and (c) for the estimator

M̂ . We observe that values of AUC near 0.9 can be reached using approximately 20

minutes of signal in the case of the estimator êp. This represents an advantage over

other methods that use very long sequences.

Figure 10.13: AUC for different values of length of the recording and the comparisons of pairs

of patient groups, using the symbolized ECG differences signals and the three estimators (for

κ = 7). (a) in the case of the estimator êp, (b) for the estimator D̂ and (c) for the estimator M̂ .

In Figure 10.14, we plot the AUC as a function of time, for the symbolized RR-

interval differences signals; (a) in the case of the estimator êp and (b) for the estimator

D̂. We observe that nearly the maximum values of AUC for each pair of groups were

achieved using 5500 heartbeats. Nonetheless, in this case, we expect that one would be

able to improve the results applying the present methodology in longer sequences. So,

we suggest that further research should be done in this direction.

The results suggest that, under our methodology, it is possible to discern between

young healthy patients group and unhealthy ones, using data sequences of 20-30 minutes

of electrocardiographic signal. This is because with our methodology, an efficiency greater

than 90% (AUC > 0.90) can be achieved with this signal time, according to Figure 10.13

and Table 10.1. We suggest as an adequate partition that with κ = 7 and whose atoms
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Figure 10.14: AUC for different values of length of the recording and the comparisons of pairs

of patient groups, using the symbolized RR-interval differences signals (for κ = 7). (a) in the

case of the estimator êp and (b) for the estimator D̂

have sizes according to the values of the parameters γ1 = 0.8, γ2 = 3 and γ3 = 4.25, for

the case of the EPR estimator. For the KLD estimator, we suggest considering blocks of

size 3, using a partition with κ = 7 and the sizes of the atoms scaled by the parameters

γ1 = 1.5, γ2 = 3 and γ3 = 5. Finally, for the MT estimator, the best results were achieved

considering a partition with κ = 7 and γ1 = 1.6, γ2 = 3 and γ3 = 5.

10.4 Time-irreversibility in variability signals

As we saw in Section 10.2, using the HRV as a signal, the methodology used with the

estimators of EPR found in the literature, does not give conclusive results when we try

to distinguish between the four groups of patients. That is, with this signal, it was not

possible to discriminate the healthy elderly group from groups with medical conditions.

Aiming to improve these results, we proposed an encoding technique that allows us a

joint analysis of any pair of variables obtained in each heartbeat (see Section 8.10). With

this encoding technique, in each heartbeat we derive information about the oscillation

of two important variables of the ECG signal, namely, the duration of the heartbeat

(duration of the RR-interval) and the amplitude of the P, R and T waves; as we saw

in Section 8.4, we call these variables variability signals. The joint encoding technique

is important since each variability signal represents different stages of each heartbeat.

Additionally, we use the lag irreversibility function, which was introduced in Chapter 3,

to discriminate between four groups of patients with different health conditions. First, in

Section 10.4.2 we show the results of analyzing the variability signals individually. Next,

in Section 10.4.3 we show the results of analyzing the variability signals jointly. We do

this using an empirical estimation of the joint probabilities, as described in Section 8.8.

Since L̂(τ), the estimator of the LI function, can be estimated for different time

scales τ , in Section 10.4.1 we first find the optimal value of γ, from which we estimate
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the LI function of single variability signals (Section 10.4.2) and joint variability signals

(Section 10.4.3) as a function of τ .

10.4.1 Fixing the value of γ

In Figure 10.15 we show the values of the LI function for single variability signals, for

different values of γ and τ = 1. In this figure we can see that the RR-interval differences

signal (∆RR) exhibits a higher value of LI for the HY group and it decreases with aging

and disease. Furthermore, we see from the latter that a suitable choice for the parameter

is γ = 3/10, in the sense that it allows a better discrimination between groups, i.e., for

healthy young subjects the LI value (≈ 0.01832) is more than three times higher than

the LI value for CHF (≈ 0.00526) and about five times higher than the LI value for AF

group (≈ 0.00354). For healthy elderly subjects its LI value (≈ 0.00614) is approximately

16% higher than for CHF (≈ 0.00526) and 73% higher than for AF (≈ 0.00354). Finally,

the LI value in AF is roughly 48% higher respect the CHF group. From these results

we suggest that γ = 3/10 is a suitable choice to estimate L̂(τ) as a function of τ (see

Section 10.4.2 below). Additionally, we plot the results of our method applied to shuffled

data (SD), which shows values very close to zero as expected. As we said before, this

means that the LI function values obtained come from the irreversible nature of the

data and are not a consequence of the methodology or estimator used.

Figure 10.15: Lag-irreversibility function of single variability signals, for different values of γ

and for τ = 1. (a) For ∆RR signal, (b) for the P-wave variability signal ∆PW , (c) for the

R-wave variability signal ∆TW and (d) for the T-wave variability signal ∆RW .

The main advantage of the LI function is found in the case of the joint variability

signals. We carry out the same exploratory study, that is, we estimate LI function for τ = 1
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and different values of γ, which we show in Figure 10.16. We can see that joint encoding

cases involving RR-interval differences signal ((∆RR,∆PW ), (∆RR,∆RW ), (∆RR,

∆TW )) allows better and consistent discrimination between groups of healthy patients

from those with some adverse health condition. For example, for the case (∆RR,∆PW ),

the LI value of the healthy young group is ≈ 0.0421, which is four times greater than

that for the CHF group (≈ 0.0106) and two times greater than the value for the AF

group (≈ 0.0207), while the LI value of the group HE (≈ 0.0356) is three times greater

than that for the CHF group and two times greater than the value for the AF group.

Similar results are obtained for (∆RR,∆RW ), (∆RR,∆TW ). All these results were

obtained using γ = 3/10 for the three cases (see Table 10.2 below). Accordingly, we will

use that value to estimate L̂(τ) as a function of τ , in Section 10.4.3.

Figure 10.16: Lag-irreversibility function of joint variability signals differences, for different

values of γ and for τ = 1. There are six possible pair joint signals: (a) (∆RR, ∆PW ), (b)

(∆RR, ∆RW ), (c) (∆RR, ∆TW ), (d) (∆PW , ∆RW ), (e) (∆PW , ∆TW ) and (f) (∆RW ,

∆TW ).

10.4.2 Lag-irreversibility of single variability signals

In Figure 10.17 we can see the LI function of all the single variability signals

differences as a function of τ . We can see in Figure 10.17(a) that the LI function of

∆RR signal for the HY group is larger than for the other groups. The latter means that

LI function of the RR-intervals signal might be used as a tool for discriminating between

healthy young individuals from the other individuals under study. However, we can see

in Figure 10.17(a) that by individually encoding each variability signal, this estimator

does not seem to yield conclusive results to separate the healthy elderly group from the
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∆RR,∆PW ∆RR,∆RW ∆RR,∆TW

HY 0.04217 0.11155 0.09455

HE 0.03566 0.09478 0.06762

CHF 0.01063 0.02748 0.02745

AF 0.02075 0.02993 0.02519

L̂(τ = 1) and γ = 3/10

Table 10.2: L̂(1) values for joint variability signals differences (∆RR,∆PW), (∆RR,∆RW)

and (∆RR,∆TW) using parameter γ = 3/10. The obtained values for the L̂(1) function are

consistent with the hypothesis that healthy patients exhibit higher values than unhealthy

subjects.

two groups with medical conditions, as happened with the EPR and KLD estimators.

Additionally, in Figure 10.17 (b), (c) and (d), we observe that the LI function of ∆PW ,

∆RW and ∆TW , respectively, does not allow us to achieve consistent results, since it is

expected that the group of young healthy patients exhibits the highest irreversibility

values, according to what was reported in [7]. Aiming to obtain results that allow us

to discriminate between the four groups of patients, we jointly analyze the variability

signals in the following Section.

Figure 10.17: Lag-irreversibility function of single variability signals differences. We show the

estimated LI functions, L̂(τ), for (a) RR-interval differences signal, (b) PW differences signal,

(c) RW differences signal and (d) TW differences signal. This figure suggests that L̂(τ) for the

∆RR signal might be used as a discriminator of healthy patients from the other groups.
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10.4.3 Lag-irreversibility of joint variability signals

Provided that the LI function of a single variability signal differences gives concluding

results only for the ∆RR signal, we go further and consider a joint variability signal

study. We expect that the joint analysis provides us with information related to the

irreversible properties of the process that cannot be drawn by individually analyzing a

single variability signal. This is because variability signals are not necessarily independent,

since they represent different stages of the cardiac cycle.

In Figure 10.18 we can see the resulting LI functions estimated from the six cases

of pair variability signals differences: (a) (∆RR, ∆PW ), (b) (∆RR, ∆RW ), (c) (∆RR,

∆TW ),(d) (∆PW , ∆RW ), (e) (∆PW , ∆TW ) and (f) (∆RW , ∆TW ). In order to

estimate the LI function, we first performed the symbolic encoding scheme described in

Section 8.10. For every pair of variability signals differences, we obtained a symbolic

time series made up of nine symbols, which we used to estimate the LI function using

the method described in Section 8.8. In every panel of Figure 10.18 we show the average

LI function for every case of joint encoding. We can qualitatively observe in that figure

that almost all cases allow us to distinguish between healthy individuals (young and

elderly) from those individuals with an adverse health condition. A clear exception

is observed in Figure 10.18(d) where the analysis of the pair (∆PW , ∆RW ) fails to

achieve satisfactory discrimination between health conditions. Next, in section 10.4.4, we

test the performance of this methodology of discrimination by quantifying its accuracy

using ROC analysis (see Chapter 9).

10.4.4 ROC analysis

In this section, we perform the ROC analysis of our results (see Chapter 9). We use

this methodology to discriminate between eight pairs of patient groups, namely, HY vs

AF, HY vs CHF, HY vs UHG, HY vs HE, HE vs AF, HE vs CHF, HE vs UH and AF

vs CHF; the group UHG (unhealthy group), is made up of patients exhibiting any of

the adverse health conditions, AF or CHF. On the other hand, for practical reasons,

we are interested in having the highest value of AUC, using the shortest signal time as

possible. Consequently, in Figure 10.19, we show the AUC values as a function of time

(heartbeats), for the eight pairs of patient groups and the six encoding cases.

In Figure 10.19, we can see that with cases (∆RR, ∆PW ), (∆RR, ∆RW ) and

(∆RR, ∆TW ), which involve RR-interval differences signal (∆RR), it is possible to

distinguish more clearly between the two groups of healthy patients (HY and HE) and

those with medical conditions. Specifically, the two pairs of groups that show the greatest

area under the curve (AUC> 0.80) are HY vs AF, HY vs CHF and HY vs UHG, i.e.,

the methodology makes it possible to better distinguish between the group of healthy

young patients from those with any of the medical conditions. The two pairs of groups
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Figure 10.18: Lag-irreversibility functions of joint variability signals differences. We show the

estimated LI function of joint signal, i.e., we consider two signals obtained from an ECG to

obtain the LI function. (a) (∆RR, ∆PW ), (b) (∆RR, ∆RW ), (c) (∆RR, ∆TW ),(d) (∆PW ,

∆RW ), (e) (∆PW , ∆TW ) and (f) (∆RW , ∆TW ). This encoding procedure results in a time

series with a states space of nine symbols (see Section ??).

that yield the lowest AUC value (≈ 5.5) are HY vs HE and AF vs CHF. In cases (∆RR,

∆RW ) and (∆RR, ∆TW ), the maximum AUC values (> 0.8) can be obtained using

approximately 3 000 heartbeats. Regarding cases (∆PW , ∆RW ), (∆PW , ∆TW ) and

(∆RW , ∆TW ), they yield AUC values similar to the previous cases, but to distinguish

between the unhealthy groups. Explicitly, the case (∆PW , ∆TW ) allows reaching AUC

values close to 0.8, to distinguish between the two groups with medical conditions.

The results described above are shown quantitatively in Tables 10.3 and 10.4, which

show the AUC values obtained when using the full signal (5 500 heartbeats). We can see

that values close to 0.80 or greater are reached with pairs HY vs CHF, HY vs AF and HY

vs UHG, when joint encoding includes RR-interval differences signal ((∆RR, ∆PW ),

(∆RR, ∆RW ), (∆RR, ∆TW )). In other words, we can say that, within the accuracy

of our statistical analysis, this methodology is good enough for distinguishing between

these groups of patients (up to 80% of the analyzed cases). An interesting case not yet

reported in the literature is the group of HE patients. We see that our methodology

makes it possible to discriminate this group from healthy young or individuals with

AF or CHF up to 70% of the analyzed cases (AUC> 0.70). As mentioned above, these

maximum AUC values can be achieved using approximately 3 000 heartbeats, which, in

real time, is approximately 25-30 minutes of electrocardiographic signal.
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Figure 10.19: AUC as a function of time for the joint variability signal analysis, for (a) (∆RR,

∆PW ), (b) (∆RR, ∆RW ), (c) (∆RR, ∆TW ), (d) (∆PW , ∆RW ), (e) (∆PW , ∆TW ) and

(f) (∆RW , ∆TW ).

AUC

∆RR,∆PW ∆RR,∆RW ∆RR,∆TW

HY vs AF 0.7300 0.8266 0.7966

HY vs CHF 0.7833 0.8488 0.8300

HY vs UHG 0.7566 0.7466 0.8033

HY vs HE 0.7433 0.5722 0.6611

HE vs AF 0.6200 0.7600 0.6677

HE vs CHF 0.6866 0.7733 0.7344

HE vs UHG 0.6133 0.8066 0.7011

AF vs CHF 0.6511 0.6188 0.6988

Table 10.3: Area under the ROC curve for joint variability signals with ∆RR, using τ = 1.

One can see from this table that under our method using signals with ∆RR one can obtain

a good discrimination between healthy groups (HY and HE) and the unhealthy groups (AF,

CHF and UH).
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AUC

∆PW,∆RW ∆PW,∆TW ∆RW,∆TW

HY vs AF 0.5333 0.5200 0.6844

HY vs CHF 0.7333 0.6622 0.8044

HY vs UHG 0.6422 0.5711 0.7444

HY vs HE 0.6222 0.5244 0.5088

HE vs AF 0.5555 0.5822 0.7022

HE vs CHF 0.6711 0.6144 0.7555

HE vs UHG 0.6066 0.5377 0.7244

AF vs CHF 0.7333 0.7777 0.6666

Table 10.4: Area under the ROC curve for joint variability signals, using τ = 1. Despite the

fact that the results using variability signals without considering the ∆RR signal are not

completely conclusive, one can still have a good discrimination between HY and CHF groups

using (∆RW,∆TW ) joint variability signals, or even discriminating between AF and CHF

group using (∆PW,∆TW ) joint variability signals, for instance.
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Chapter 11

Final remarks

In this thesis, we study the time-irreversibility of Cardiac Electrical Activity. Ex-

pressly, we use the entropy production rate in the electrocardiographic signal to discrim-

inate between four groups of patients: HY, HE, AF and CHF. We propose to analyze

the signal in three different categories, namely, (1) the electrocardiographic signal, (2)

RR-intervals signal and (3) joint variability signals, for which we proposed an encoding

method. After the data encoding process is completed, we directly use the symbolic

sequences of these signals to empirically construct the entropy production rate estimators

found in the literature (êp, D̂ and M̂).

In the case of the electrocardiographic signal, we show that, under this scheme,

these estimators exhibited good results in separating the 4 groups of patients. However,

when we analyze the RR-intervals, the results show that these estimators do not give

conclusive results to discriminate between the group of healthy elderly subjects from

the two ill groups. Aiming to improve these results, we proposed an encoding technique

that allows us to derive additional information in each heartbeat, namely, the duration

of the heartbeat and the amplitude of the P, R and T waves. In addition, we introduced

a time-irreversibility indicator, the so-called Lag Irreversibility Function, which allows

us to analyze any pair of variables obtained in electrocardiograms. We show that this

methodology allows discrimination in the four groups of patients.

In order to provide a quantitative study of the accuracy of our results, we apply the

ROC analysis to our methodology to discriminate between different groups of patients.

According to this analysis, we obtain a very good performance. Our method has the

feature that we let the partition have atoms of different sizes in the symbolization

procedure. Another difference with related research is that we start the construction of

the partition centered at the mean value of the time series itself and selecting the best

set of parameters permits us to detect the typical fluctuations of the signals. A practical

advantage of our method, with respect to similar methods in the literature, is that we

obtain satisfactory results using around 20 to 30 minutes of signal recordings.

We point out that for the case of the RR-interval sequences, one observes that a

5500-heartbeats-long signal might not be a sufficiently large data sequence for having

conclusive results. However, it is still valid for the discrimination of the healthy group

from the diseased patients, which can be attained up to a certain level of accuracy. As a

matter of discussion, we think that the method applied to RR-interval sequences and
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11.1. Future directions

ECG signals are, somehow, complementary in the sense that in the case of the ECG

signals, the CHF group shows lower irreversibility features, while the AF group does for

the case of the RR-interval signals.

As a final comment, we should mention that Lag Irreversibility Function is a

function depending on the time delay (i.e., the lag). This characteristic distinguishes

it from most irreversibility measures documented in existing literature. Consequently,

comparing this approach with other measures becomes a challenging task. Nevertheless,

for our research, what truly matters in comparing time-irreversibility indices, is their

efficacy in categorizing ECG signals from different health conditions based on their

time-irreversibility property. The actual assessment of the Lag Irreversibility Function

performance is accomplished through ROC analysis. In principle, any time-irreversibility

index (for example, those we can found in Ref. [16]) could be employed to determine

whether the signals extracted from electrocardiograms are reversible or not, aiming

to accomplish electrocardiograms classification based on health condition. However,

according to what we discussed in Section 7.2, some indices may prove more or less

successful in classifying electrocardiograms solely based on the irreversibility property.

This serves as an initial step in comparing our technique with others outlined in the

current literature.

11.1 Future directions

We hope that the results obtained in this thesis can enrich the literature on electro-

cardiogram analysis using the temporal irreversibility approach. Furthermore, we hope

that our future work will also allow us to obtain information with which it is possible to

predict medical conditions. In this context, during the development of this research, a

series of ideas emerged that make it possible to improve its scope.

11.1.1 State of the art

Although in this thesis we reproduce the methodology proposed so far to analyze

electrocardiograms using the temporal irreversibility approach, a statistical evaluation

of the performance of each of these methodologies is needed, which is not easy work.

Considering practical aspects, this analysis should show which estimator allows us to

obtain more evident discrimination between the different groups of patients and the one

that allows these results to be obtained using the shortest amount of signal possible

(sampling time).
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11.1. Future directions

11.1.2 Encoding techniques

In this thesis, we encode the data from the electrocardiographic signal and the

variability signals. In principle, we could conduct an experimental design to test different

combinations of variables (intervals, segments, duration and amplitude of the waves) that

can be obtained from the ECG for data encoding. However, different medical conditions

could allow us to reduce the number of tests and provide us with new insights. For

example, analyze data based on QT and RR intervals. This is because in a normal

heartbeat, the QT interval should measure less than half the length of the previous RR

interval [57]. This suggests that we could encode the data considering fluctuations in

the QT interval with respect to the RR interval. Furthermore, in normal sinus rhythm,

the PP interval is equal to the RR interval, which is altered in the presence of some

arrhythmias [55]. This represents an opportunity to encode ECG from these variables.

11.1.3 Scope of the results

Our results include threshold values of the entropy production with which the

maximum AUC values are obtained, that is, the threshold values that allow us to

discriminate between pairs of patient groups best. A complementary work is to obtain

electrocardiograms of healthy people with the same medical conditions (AF and CHF)

and evaluate the prediction capacity of our results when using the threshold values

obtained.

11.1.4 Open-source libraries

Develop open-source libraries to implement our algorithm in MATLAB and Python.

Furthermore, in the context of future applications, if the results are satisfactory, an

interesting work would be to optimize the computational algorithms developed, so that

they can be programmed into smart devices.

11.1.5 Analysis of electroencephalograms

On the one hand, in [91] the authors use the permutations-based time irreversibility

to characterize electroencephalographic signals. On the other hand, the lag irreversibility

function can be used to evaluate irreversibility in discrete time series, regardless of their

source. In this context, the analysis of electroencephalograms arises as an application area.

A proposed work would be to use the LI Function as a tool for discrimination between

electroencephalograms of different groups of patients and then evaluate the effectiveness

of the results obtained and make a comparison with the existing methodology.
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11.1. Future directions

11.1.6 Properties of L(τ)

Figure 11.1: EPR in a Markov process, whose transition matrix is given by the equation 3.25.

In black we show the exact value of the EPR for p = 0.80 and in red we show the value

estimated using the L̂(τ) estimator, for τ = 1 and n = 100000.

The simulations in Figure 4.1(d) show numerical evidence that the proposed ir-

reversibility estimator, L(τ), is equal to zero, for all τ , when the process is reversible.

Therefore, proof that L(τ) = 0 for all τ if and only if the process is reversible is an unfin-

ished problem. Additionally, Figure 11.1 shows numerical evidence that L(τ), converges

to the enropy production rate and therefore, an interesting work would be to study such

convergence from a rigorous point of view.
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Mexicana, del 18 al 22 de octubre de 2021.

• Merino Negrete, Nazul; Maldonado Ahumada, César. Irreversibilidad temporal de
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