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Resumen.

Demostramos la existencia de la monoestabilidad y la biestabilidad en el
sentido de Lyapunov en dinámicas no lineales discretas y discutimos las
propiedades asociadas con este comportamiento. Específicamente, introduci-
mos las condiciones necesarias para asegurar la ocurrencia de biestabilidad
dentro de una familia paramétrica de mapeos bimodales, basados en el mapeo
diferencia. El mapeo bimodal está definido dentro de una partición regular
que consiste en dos subintervalos. En esta investigación, presentamos tres
casos de estudio: el primer caso corresponde a mantener fijo la primera moda,
mientras que la segunda moda cambia según un parámetro de bifurcación.
En el segundo caso, la primera moda cambia según otro parámetro de bi-
furcación mientras que la segunda moda permanece fija. En el tercer caso,
ambos puntos críticos asignados a las modas cambian según un parámetro
de bifurcación. Se muestran diagramas de bifurcación para los tres casos
de estudios y nos permiten identificar conjuntos invariantes o regiones de
atrapamiento en cada subintervalo. Posteriormente, se definen dos conjuntos
invariantes para habilitar biestabilidad. Por lo tanto, la monoestabilidad y
biestabilidad aparecen en familias paramétricas de acuerdo con el control de
conjuntos invariantes y regiones de atrapamiento al variar un parámetro de
bifurcación. Los resultados numéricos se alinean con la teoría desarrollada.
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Abstract.

We demonstrate the emergence of monostability and bistability in Lyapunov
sense in discrete-time nonlinear dynamics and discuss the properties associ-
ated with this behavior. Specifically, we introduce the necessary conditions
to ensure the occurrence of the bistability within a parametric family of bi-
modal maps, based on the difference map. The bimodal map is defined within
a regular partition consisting of two subintervals, and we present three case
studies: the first case corresponds to keeping the first modal fixed, while the
second modal changes according to a parameter. In the second case, the
first modal changes according to another parameter while the second modal
remains fixed. In the third case, both critical points assigned to the modals
change according to a bifurcation parameter. Bifurcation diagrams are shown
for three case studies and let us identify invariant sets or trapping regions in
each subinterval. Subsequently, two invariant sets are defined to enable the
bistability. Therefore, monostability and bistability emerge in parametric
families based on the control of invariant sets and trapping regions through
variations in a bifurcation parameter. The numerical results are consistent
with the developed theory.

xiv



Chapter 1

Introduction

In this chapter, we provide a historical overview of multimodal maps, as well
as monostability and bistability, including their study and analysis within
dynamical systems. We also introduce the concepts of trapping regions and
invariant sets, examined in both discrete-time and continuous-time dynami-
cal systems, such as the logistic map and the Lorenz attractor. Additionally,
we discuss the motivation behind this work and outline the objective we aim
to achieve. The chapter is structured into five sections: the first provides a
brief overview of multimodal maps; the second delves into the background of
multistability, with examples of monostable and bistable dynamical systems
and important applications of multistability, as well as the concepts of trap-
ping regions and invariant sets. The third section explains the motivation for
this thesis, and the fourth section concludes with the objective of this work
and an outline of the thesis.

1.1 Multimodals maps

A monoparametric multimodal map f(x, α) : I → I, where I ⊂ D ⊆ R is a
map that contains more than one maximum critical point in the interval I,
which in this context are called modals and are denoted by Ci. These modals
represent local maxima or minima, so if there is only one modal denoted by
C0 within I, then the map is called unimodal; if it exhibits two modals Ci in
I with i = 0, 1, then it is a bimodal map. [1].
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Two well-known examples of monoparametric unimodal maps are the lo-
gistic map [1]

fL(x, α) = αx(1− x) where α ∈ (0, 4] ⊂ R,

and the tent map [3]

fT (x, µ) =


µx for x <

1

2
,

µ(1− x) for x ≥ 1

2
,

where µ ∈ (0, 2] ⊂ R,

since we know that both maps have a single modal in the interval I = [0, 1] ⊂

R, where these modals are located at (C0, fL(C0, α)) =

(
1

2
,
α

4

)
for the lo-

gistic map and at (C0, fT (C0, µ)) =

(
1

2
,
µ

2

)
for the tent map. Figures 1.1

and 1.2 depict the logistic map and the tent map for different values of their
respective parameters. Once a brief introduction of what a unimodal map is
given, we will address what a multimodal map is. We know that a unimodal
map has only one modal in the interval where it is defined; consequently, a
multimodal map exhibits multiple modals within the defined interval. Figure
1.3 shows a family of multimodal maps. A family of maps that satisfy the
brief definition given of a multimodal map are bimodal maps, which exhibit
two modals within the interval where they are defined. An example of a
monoparametric bimodal map is the difference map [4]

fD(x, β) =


2βx(1− 2x) for 0 ≤ x <

1

2
,

2β(x− 1)(1− 2x) for
1

2
≤ x ≤ 1.

Where β ∈ (0, 4] ⊂ R. The difference map fD is constructed by taking the dif-
ference between the logistic map and the tent map, thus creating a quadratic
map that contains two unimodal maps within the interval I = [0, 1] ⊂ R.
Further elaboration on the aforementioned is provided in Chapter 2. The
difference map serves as inspiration for the study carried out in this research
work, turning the difference map into a biparametric map (dependent on
parameters β1 and β2). Figure 1.4 illustrates the difference map.
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Figure 1.1: The logistic map for different values of the parameter α.

Figure 1.2: The Tent map for different values of the parameter µ.
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Figure 1.3: Family of multimodal maps based on the logistic map [1].

Figure 1.4: Difference map showing different values of the parameter β.

After providing a brief explanation of multimodal maps, we will gain a
clearer understanding of what constitutes a family of monoparametric and
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biparametric bimodal maps. This concept is crucial because, within this fam-
ily, we will investigate the necessary conditions for achieving monostability
and bistability.

1.2 Monostability, bistability, trapping region
and invariant set in dynamical systems

Stability can have different meanings and definitions in the field of dynami-
cal systems, but in this chapter, our goal is to provide a clear interpretation.
We use the term stable (specifically monostable in this context) to describe
a system that maintains a consistent behavior within a defined set of bound-
aries over time, showing only one stable state. If the same system exhibits
this behavior within two different sets of boundaries, it is termed bistable,
indicating two stable states. Generally, if a system exhibits this behavior
across multiple separate sets of boundaries, it is called multistable, meaning
it has multiple stable states.

To explain further, a stable discrete dynamical system is one where initial
conditions lead to orbits—sequences of points that describe the system’s
evolution as time progresses—that converge towards a fixed point. When
orbits converge towards a specific region instead of a single fixed point, we
refer to it as generalized stability. In monostable systems, all orbits from
initial conditions converge towards a single fixed point. In bistable systems,
orbits from different initial conditions converge towards one of two possible
fixed points. Similarly, in multistable systems, orbits can converge towards
multiple distinct fixed points.

The term multistability was first introduced in 1971 in the context of a
psychological study on visual perception [2]. This study explored how a single
image could be interpreted in fundamentally different ways depending on the
viewer’s initial visual focus. It demonstrated that the same visual input could
lead to various distinct perceptions, each representing a different stable state.
This observation gave rise to the concept of multistability, which suggests
that an image—or more broadly, a system—can exhibit multiple stable states
or attractors, each of which can be perceived or realized depending on initial
conditions or contextual factors. In essence, multistability reflects the idea
that certain visual stimuli or dynamic systems can possess several equally

5



Figure 1.5: Image first presented in 1915 with the title ’My Wife and My
Mother-in-law ’, where the bistability in visual perception is demonstrated
[2].

valid and stable interpretations or states, depending on how they are observed
or interacted with. In the field of dynamical systems, in brief, a multistable
system has the ability to have multiple stable states [5]. If we relate visual
multistability to dynamical systems, we say that the initial visual focus is
analogous to the initial condition, which, depending on where we place our
initial visual focus, will be the perception we have of a multistable image,
where each possible perception is a stable state.

In Figure 1.5, we observe a bistable image, a classic example of multi-
stability in visual perception. This type of image illustrates how the same
visual stimulus can be interpreted in multiple stable ways. Specifically, if we
focus our attention on point c in the image, the figure that appears is that
of a young woman. This interpretation is based on the characteristics of the
face and profile that are configured when focusing on point c. On the other
hand, when we direct our attention to point a, the image reveals the figure
of an elderly woman. In this perspective, the facial features are rearranged
in such a way that the image is perceived as the face of an older woman.

6



Figure 1.6: Bistability in the energetic description of a system.

In this work, as mentioned earlier, the characteristics of interest are
monostability and bistability. In Figure 1.6, we can observe the energy graph
of a system that exhibits two stable states (bistability), in which three equi-
librium points are denoted by colored spheres and marked with the numbers
1, 2, and 3. Let us observe that equilibrium points 1 and 3 are stable,
while equilibrium point 2 is unstable. Note that if we consider only the
interval X1 ≤ X < X2, the system is monostable, similarly considering
X2 < X ≤ X3. Additionally, note that the equilibrium point X2 is both the
upper and lower bound in these defined intervals. With this, it is evident
that under any arbitrary initial condition, regardless of how close it is to the
unstable equilibrium point, the trajectory will converge to the respective sta-
ble equilibrium point depending on the interval in which the initial condition
lies.

The logistic map fL(x, α) = αx(1− x) is clearly an example of a monos-
table system, exhibiting two equilibrium points (fixed points in discrete time)

in the interval I = [0, 1] ⊂ R, which are x = 0 and x =
α− 1

α
. We say that

the logistic map is a monostable system because for 0 < α ≤ 4, the dynamics
converge to a fixed point of fL or remain within the interval I. It is observed
that when the parameter 0 < α < 1, the point x = 0 is the only stable point
in the interval I = [0, 1] ⊂ R. However, when 1 < α < 3, the origin changes

7



(a) (b)

Figure 1.7: Logistic map for different values of α ∈ (0, 4] ⊂ R: (a) α = 3.8
and (b) α = 4.

from stable to unstable, and the point x =
α− 1

α
becomes stable. However,

when 3 < α ≤ 4, both equilibrium points are unstable. Nonetheless, if we
wish to study when the dynamics diverge, that is, when the dynamics no
longer remain within the interval I, we can observe that for α > 4, the dy-
namics escape from the interval I after a certain number of iterations. This

is because the modal of fL is located at (C0, fL(C0, α)) =

(
1

2
,
α

4

)
, so we

observe that for α > 4, the modal does not belong to the interval I, since
α

4
> 1. Therefore, when α > 4 the logistic map is not a monostable system.

However, two important concepts arise here, which are trapping region and
invariant set.

Let us observe in Figure 1.7a the behavior of the logistic map when the
parameter α = 3.8, while in Figure 1.7b when α = 4, both for initial condi-
tions within I. We can observe from Figure 1.7a that when α = 3.8, it holds
that fL(I) ⊂ I since it does not cover the entire interval I, whereas when
α = 4, we satisfy fL(I) = I as we see that the trajectory covers the entire in-
terval I. With this, two fundamental concepts for the study of monostability
and bistability in a family of bimodal maps are introduced, namely trapping
region and invariant set. Thus, briefly, we can observe that when 0 < α < 4,
there exists a trapping region since fL(I) ⊂ I, and when α = 4, there is an
invariant set, as fL(I) = I is fulfilled. The precise definitions of trapping
region and invariant set are provided in Chapter 2.
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We will review some applications and studies of the multistability in dy-
namic systems of science and technology. As mentioned earlier, multista-
bility appears in different dynamic systems within science and technology.
For example, in Biology, genetic switches have been constructed in biological
systems that exhibit multistability [6]. In physics, the study of multistabil-
ity in networks of oscillators [7], and within Chemistry, the bi-stability and
multi-stability occurring within an ethanol reactor have been studied using
numerical tools [8]. Some other studies include the investigation of multi-
stability in symmetric chaotic systems [9], multistability of self-reproducing
chaotic systems [5], the study of multistability in a discrete economic model
[10], multistability in a memristive chaotic system [11], the multistability in
social systems [12], among others [13].

The bistability is essential in neuronal dynamics, as it is present in neu-
ronal interactions as well as in cellular signaling [14]. Within climatolog-
ical dynamics, coexisting attractors related to bistability have been found
through deep oceanic convection [15, 16]. Similarly, in electronics, multivi-
brators—classified as astable, monostable, and bistable—play a crucial role.
An astable multivibrator alternates continuously between two states, gener-
ating a square wave without an external input signal, and is commonly used
in clock generators and oscillators [17]. A monostable multivibrator has one
stable and one unstable state; upon receiving a trigger, it switches to the
unstable state for a period before returning to the stable state, making it
useful for timing applications such as pulse generators [17]. A bistable multi-
vibrator, or flip-flop, has two stable states and remains in one state until an
external signal switches it to the other. This type is fundamental in digital
memory construction and data storage registers [18]. These configurations
are widely used in digital and analog electronics for various synchronization,
storage, and signal generation functions.

1.3 Motivation

The dynamics of a family of multimodal maps with non-uniform intervals
have been previously studied [19], where it was found that a bifurcation
parameter could induce changes in the dynamics of this family. That work
serves as motivation, as multistability was numerically observed; however,
the study of multistability was not the primary objective of that research.
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Inspired by the multistability observed in this previous work, this investi-
gation focuses specifically on monostability and bistability within a family of
parametric bimodal maps with uniform intervals, from both theoretical and
numerical perspectives.

This work takes as its starting point the investigation of a family of bi-
modal maps with uniform intervals, with the purpose of approaching this
work from a less complex standpoint, as well as becoming familiar with
the study of multimodal maps. Subsequently, once the considerations for
the existence of bistability in a family of bimodal maps are established, the
conditions for the existence of monostability within this map are provided.
Later, to verify the theoretical study, the relevant simulations are carried out
to demonstrate a relationship between the numerical and theoretical results.

1.4 Objective

The general objective of this thesis is to study the necessary conditions to
guarantee the existence of monostability and bistability in a parametric fam-
ily of bimodal maps. Specific objectives include constructing a series of
propositions to ensure monostability and bistability, followed by conduct-
ing numerical simulations based on these propositions to verify and observe
bistability. Another specific objective is to characterize trapping regions, as
well as invariant sets and points within this family of maps.

1.5 Organization

This thesis is divided into chapters. Chapter 1 provides a brief overview of
multimodal maps, including a historical review of multistability. A dynamical
system is presented to illustrate monostability, as well as to define invariant
sets and trapping regions. Finally, the applications of monostability and
bistability in science and technology are discussed. The chapter concludes
with an explanation of the motivation behind this work and the general and
specific objectives of the thesis.

Chapter 2 introduces the definitions and theorems that form the foun-
dation for demonstrating the obtained results and enriching the theoretical
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development. Additionally, this chapter defines the parametric bimodal map
based on the difference map, which will be used to study bistability. Chapter
3 presents the analytical results, including a series of propositions that ensure
bistability in the proposed bimodal map from Chapter 2.

Chapter 4 presents three case studies based on the proposed bimodal map.
For each case, the relevant analytical and numerical results are provided using
the findings from Chapter 3, aiming to demonstrate the relationship between
theoretical and numerical results and to observe monostability and bistabil-
ity. Chapter 4 concludes with the presentation of bifurcation diagrams for
each case study. Finally, Chapter 5 presents the conclusions and outlines
directions for future work.
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Chapter 2

Mathematical preliminaries

In this chapter, important mathematical foundations that appear throughout
the development of this research are presented. The content presented in this
chapter consists of definitions and theorems within the field of real number
topology, linear algebra, mathematical analysis, and discrete dynamical sys-
tems. Additionally, definitions of unimodal and bimodal maps are provided
in this chapter, along with examples of these aforementioned maps, conclud-
ing with the bimodal map used for the development of this research.

2.1 Topology of the Real Numbers

Below are some definitions found in the field of real number topology. These
definitions will help us better understand concepts presented in this chapter,
as well as the analytical results obtained. The definitions and theorems
within this section include: the existence of a norm, interior point, open set,
closed set, bounded set, compact set, and metric space [20].

Definition 1 Let x = (x1, x2, · · · , xn−1, xn) and y = (y1, y2, · · · , yn−1, yn) be
in Rn. We define;

a) Equality:

x = y if, and only if, x1 = y1, x2 = y2, · · · , xn−1 = yn−1, xn = yn.

12



b) Sum:

x+ y = (x1 + y1, x2 + y2, · · · , xn−1 + yn−1, xn + yn).

c) Multiplication by real numbers (scalars):

ax = (ax1, ax2, · · · , axn−1, axn) a ∈ R.

d) Difference:
x− y = x+ (−1)y.

e) Zero vector or origin:

0 = (0, 0, · · · , 0, 0).

f) Inner product or dot product:

x · y =
n∑

k=1

xk yk

g) Norm o length

∥x∥ = (x · x)1/2 =

(
n∑

k=1

x2
k

)1/2

Theorem 1 Let x and y be points in Rn, then

1. ∥x∥ ≥ 0

2. ∥ax∥ = |a|∥x∥ ∀a ∈ R

3. ∥x · y∥ ≤ ∥x∥∥y∥ Cauchy-Schwarz inequality

4. ∥x+ y∥ ≤ ∥x∥+ ∥y∥ Triangle inequality.

With the existence of a norm in the space Rn, we can provide the definition
of an n-ball. This definition is presented in order to enunciate and define in
a clearer way the concepts of sets presented later.
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Definition 2 Let a be a point in Rn and let r ∈ R+. The set of all points x
in Rn such that

∥x− a∥ < r

is called an open n-ball of radius r with center at a, usually denoted as B(a, r)
or B(a) [20].

Definition 3 Let S ⊂ Rn and a ∈ S. Then a is called an interior point of
S if there exists a B(a) where all its points belong to S [20].

From Definition 2, we observe that we have an n-ball whose boundary is
not contained since the distance between any point x contained in the ball
(different from its center) and its center x must be strictly less than its radius
r. In Definition 3, an interior point is defined, where this point is interior if
it belongs to a set S and there exists an ε > 0 such that the n-ball centered
at a with radius ε is completely contained in S. In mathematical context, it
is expressed as

∃ε > 0 such that B(x, ε) ⊆ S.

Note that the radius r presented in Definition 2 is replaced by ε, however,
the interpretation is the same for both cases. Next, the definition for an open
set is presented, this definition is given since following Definition 4, using the
definition of an open set, what a closed set is defined.

Definition 4 A set S ∈ Rn is called open if all its points are interior points
[20].

Definition 5 Let S ⊂ Rn be a set, S is said to be closed if its complement is
an open set [20].

If we observe, the previous definition mentions a set operation called com-
plement, let us remember that this operation generates a new set, usually
denoted as Sc ⊂ Rn containing the elements that do not belong to the set S,
mathematically it is expressed as

Sc = {x ∈ Rn : x /∈ S}

so that if we take the union of these two sets

Sc ∪ S = Rn
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and according to the definition of complement, we know that the elements
not contained in the set S necessarily have to be in Sc, therefore, Sc has to
be a closed set in order to generate the entire space Rn where these sets are
defined. Despite the previous definition, an alternative definition of a closed
set will be presented later, however, to reach this definition, it is necessary
to present the definition of a limit point.

Definition 6 If S ⊆ Rn and x is a point in Rn where x is not necessarily
contained in S. Then x is a limit point of S if every n-ball B(x) contains at
least one point of S [20].

A limit point is also known as a limit or accumulation point. In simple words,
a point contained in S is considered a limit point if, no matter how small the
n-ball is, it will always be possible to find at least another point belonging
to S and within the n-ball. Knowing what a limit point is, we proceed to
provide the definition of a closed set.

Definition 7 A set S ∈ Rn is closed if and only if it contains all its limit
points [20].

Definition 8 A set S ∈ Rn is said to be bounded if it is completely contained
within an n-ball B(a, r) for some r > 0 and some a ∈ Rn [20].

Definition 9 A set S ∈ Rn is compact if it is closed and bounded [21].

Definition 10 A set X is said to be a metric space if to every two points
p, q ∈ X there is associated a real number d(p, q) called distance from p to q,
such that

1. d(p, q) > 0 if p ̸= q; d(p, p) = 0;

2. d(p, q) = d(q, p);

3. d(p, q) ≤ d(p, r) + d(r, q), for all r ∈ X.
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2.2 Linear Algebra

In this section, some concepts used in Linear Algebra are defined. The pre-
sented definitions are; field, vector space, and linear transformation. These
definitions are presented in order to enunciate what a linear transformation
is since when defining the derivative of a function, it is mentioned that the
derivative is a linear transformation.

Definition 11 A field F is a set with two operations + and · called addition
and multiplication respectively, they are defined such that, for each pair of
elements x, y ∈ F there exist unique elements x+ y and x · y in F for which
the following conditions are satisfied. Let a, b, c ∈ F

1. a+ b = b+ a and a · b = b · a (commutativity in addition and multipli-
cation).

2. (a+b)+c = a+(b+c) and (a ·b) ·c = a · (b ·c) (associativity in addition
and multiplication).

3. There exist distinct elements 0 and 1 in F such that

0 + a = a 1 · a = a

(existence of identity elements in addition and multiplication).

4. For each element a ∈ F and for each element b ∈ F with b ̸= 0, there
exist elements c, d ∈ F such that

a+ c = 0 b · d = 1

(existence of inverse for addition and multiplication).

5. a · (b + c) = a · b + a · c (distributivity of multiplication over addition)
[22].

Definition 12 A vector space V over a field F consists of a set in which two
operations are defined (called addition and multiplication), such that for any
x, y ∈ V there exists a unique x+y in V, and for each a ∈ F and x ∈ V there
exists a unique element ax ∈ V, so that the following conditions are met. Let
x, y, z ∈ V
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1. x+ y = y + x (commutativity in addition).

2. (x+ y) + z = x+ (y + z) (associativity in addition).

3. There exists an element in V denoted by 0 such that x+ 0 = x for any
element x ∈ V (additive identity).

4. For each element x ∈ V there exists a unique element y ∈ V such that
x+ y = 0 (additive inverse).

5. For each element x ∈ V, 1x = x (multiplicative identity).

6. For each pair of elements a, b ∈ F it holds that (ab)x = a(bx) (associa-
tivity in multiplication).

7. For each element a ∈ F it holds that a(x + y) = ax + ay (distributive
property).

8. For each pair of elements a, b ∈ F it holds that (a + b)x = ax + bx
(distributive property) [22].

Definition 13 Let V and W be vector spaces over F. We call a function
T : V → W a linear transformation from V to W if, ∀x, y ∈ V and c ∈ F,
the following conditions are met:

1. T (x+ y) = T (x) + T (y).

2. T (cx) = cT (x).

2.3 Mathematical Analysis

In the development presented in the following Chapter, functions with a set
of specific characteristics are worked with, among these are continuity and
differentiability. Therefore, the definitions of function are presented, the limit
operator of a function and its existence are defined, furthermore, once the
limit operator is defined, continuity and derivative of a function are defined.
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Definition 14 A function f is a rule that assigns each element of a set D
to a unique element of a second set C. The sets D and C are called the
domain and codomain of the function. The set of elements of the codomain
C that have an element of the set D assigned to them is called the range of
the function. The notation f : D → C is used to indicate a function f with
domain D and codomain C. If we use f : D → D, it indicates that the
domain and codomain are the same set [23].

Definition 15 Let f : D → R be a function, I ⊆ D ⊆ R an open interval
and let x ∈ I be a point of I. Then L ∈ R is the limit of a function f at x
denoted as

lim
z→x

f(z) = L

if and only if for every ε > 0 there exists a δ > 0 such that |z − x| < δ, then
we have |f(z)− L| < ε [24, 25].

Definition 16 Let D ⊆ R be an open interval of nonzero length from which
at most a finite number of points have been removed, and let f : D → R be a
function. Then f is called continuous if and only if

1. f(x) is defined, i.e., x ∈ D, and

2. limz→x f(z) exists, and

3. limz→x f(z) = f(x), and

4. if x is an endpoint of D, use the left or right limits in 2 and 3, as
appropriate.

f is called continuous on D if and only if f is continuous at each x ∈ D [24].

Definition 17 Let f : R → R be a function and let x ∈ R be a point. f is
said to be differentiable at x if there exists a linear transformation Df(x) ∈ R
that satisfies

lim
|h|→0

|f(x+ h)− f(x)−Df(x)h|
|h|

= 0

The linear transformation Df(x) is called the derivative of f at x [26].
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It is worth noting that the previous definition may confuse the reader
since, as such, the usual definition of derivative is not provided. However, it
should be noticed that for the limit presented in Definition 17 to be zero, it
is necessary that the linear transformation Df(x) has the following form

Df(x) = lim
|h|→0

|f(x+ h)− f(x)|
|h|

which is the definition that is usually presented when starting with the con-
cept of derivative.

Definition 18 Let f : D → R be a function. Suppose f is differentiable on
D. Then f ∈ C1 if the derivative Df : D → R is continuous on D [26].

2.4 Discrete-time Dynamical Systems

In this section, definitions within the area of dynamical systems are pre-
sented, which involve the definitions of discrete dynamical system, fixed
point, periodic point, and orbit. Subsequently, the conditions for a fixed
point to be an attractor or a repeller are presented, as well as the conditions
for an orbit to be attractive or repulsive. Finally, the definition of chaos in
the sense of Devaney, multimodal map, and some examples of unimodal and
bimodal maps are given.

Definition 19 A discrete dynamical system is a relation of the form

xk+1 = f(xk), k ∈ 0, 1, 2, .., N (2.1)

where xk ∈ R and x0 is the initial condition [27].

Definition 20 Let f : I → I be a function and let c ∈ I be a point. Then,
if it satisfies that f(c) = c, then c is a fixed point of f [23].

Theorem 2 Let I = [a, b] be a closed interval and let f : I → I be a
continuous function. Then f has a fixed point in I [23].
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Definition 21 Let f be a function. Then x is a periodic point of f with
period k if fk(x) = x. In other words, a point is a periodic point of f with
period k if it is a fixed point of fk. The periodic point x has primary period
k0 if fk0(x) = x and fn(x) ̸= x when 0 < n < k0 [23, 28]. Where

f 2(x) = (f ◦ f)(x)
f 3(x) = (f ◦ f ◦ f)(x) = (f ◦ f 2)(x)

f 4(x) = (f ◦ f ◦ f ◦ f)(x) = (f ◦ f 3)(x)

...
fk(x) = (f ◦ f · · · f ◦ f)︸ ︷︷ ︸

k− times

(x) = (f ◦ fk−1)(x) with k ∈ N

Definition 22 Let f : I → I be a function and x0 ∈ I a point, we define
the orbit of x0 under f , denoted as O(x0, f), as the sequence of points

O(x0, f) = x0, f(x0), f
2(x0), · · · fk−1(x0), f

k(x0)

The point x0 is called the initial condition of the orbit [29].

Definition 23 Let x∗ ∈ I be the fixed point of the discrete-time dynamical
system defined by the equation xk+1 = f(xk) denoted by (2.1) Then;

• the fixed point x∗ is stable in the Lyapunov sense if for each ε > 0
there exists δ = δ(ε) such that for any x ∈ I with |x− x∗| < δ, then
|fn(x∗)− fn(x)| < ε, for all n ∈ N large enough.

• The fixed point x∗ is unstable if it is not stable.

• the fixed point x∗ is asymptotically stable in the Lyapunov sense if it
is stable in the Lyapunov sense and also if there exists δ = δ(ε) such
that for any x ∈ I with |x− x∗| < δ, then limn→∞ |fn(x∗)− fn(x)| = 0
[27, 30].

Definition 24 Let f : I → I be a C1 function and let x ∈ I be a fixed point
of f . Then x is an attracting fixed point if |Df(x)| < 1. The point x is a
repelling fixed point if |Df(x)| > 1. Finally, the fixed point x is a neutral
fixed point if |Df(x)| = 1 [29].
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Definition 25 Let f : I → I be a C1 function and let x1, x2, · · · , xk be a
periodic orbit of period k, where xi ∈ I for all i ∈ 1, 2, ..., k. Then, the
periodic orbit is attracting if [31];

|Df(x1) ·Df(x2) · · ·Df(xk)| < 1

and repelling if
|Df(x1) ·Df(x2) · · ·Df(xk)| > 1

Definition 26 Suppose X is a set and Y ⊂ X. We say that Y is dense in
X if, for every point x ∈ X, there exists a point y ∈ Y arbitrarily close to x
[29].

Definition 27 A dynamical system f is transitive if for every pair of points
x, y and any ε > 0 there exists a third point z within ε of x whose orbit is
within ε of y [29].

Definition 28 A dynamical system f exhibits sensitive dependence on initial
conditions if there exists a β > 0 such that, for any x and any ε > 0, there
exists y ∈ R+ within ε of x and k ∈ N such that the distance between fk(x)
and fk(y) is at least β [29].

Definition 29 A dynamical system f is chaotic if;

1. The periodic points of f are dense.

2. f is transitive.

3. f exhibits sensitive dependence on initial conditions [29].

Definition 30 Let I = [0, 1] be a compact set, the mapping f : I → I is
called k-modal if it is continuous on I and moreover, it has k critical points
denoted by ci with i ∈ 0, 1, .., k − 1 in I. Furthermore, there exist intervals
Ii such that

⋃k
i=1 Ii−1 = I such that ∀i = 0, 1, .., k − 1 it holds that ci ∈ Ii

and f(ci) > f(x, γ, βi) ∀x ∈ Ii and xi ̸= ci, where γ, βi are parameters. The
case when it has only one critical point, i.e., k = 1, the mapping is called
unimodal, while the case when it has two critical points (k = 2) is called
bimodal [4].
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The logistic map and the tent map are examples of unimodal maps, as both
are continuous on I with a single critical point, moreover, they are increasing

for x ∈
[
0,

1

2

)
and decreasing for x ∈

(
1

2
, 1

]
[4]. Additionally, in Chapter

1, Section 1.1, we discuss and analyze the monostability of the logistic and
the tent map. The definitions of these maps are provided below.

Definition 31 Let I = [0, 1] ⊂ R. We refer to fL : I → I as the logistic
map defined as

fL(x, α) = αx(1− x), (2.2)

where the parameter α ∈ (0, 4] ⊂ R [4].

Definition 32 Let I = [0, 1] ⊂ R. We refer to fT : I → I as the tent map,
expressed as

fT (x, µ) =


µx for x <

1

2
,

µ(1− x) for x ≥ 1

2
,

(2.3)

where µ ∈ (0, 2] is a parameter [4].

The bimodal map used for this work is based on the difference map fD(x, β),
which is introduced in [4].

Definition 33 Let fL and fT be the logistic map and the tent map shown in
(2.2) and (2.3) respectively, taking the maximum value of their parameters
α = 4 and µ = 2. We define fD(x.β) as the difference between the logistic
map and the tent map multiplied by the parameter β ∈ (0, 4], i.e., fD(x, β) =
β(fL(x, 4)− fT (x, 2)), as follows:

fD(x, β) =


2βx(1− 2x) for 0 ≤ x <

1

2
,

2β(x− 1)(1− 2x) for
1

2
≤ x ≤ 1.

(2.4)
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We can observe that the difference map fD(x, β) is continuous on I and

has two critical points located at c0 = (x, fD(x, β)) =

(
1

4
,
β

4

)
and c1 =

(x, fD(x, β)) =

(
3

4
,
β

4

)
and fD(c0, β) = fD(c1, β) =

β

4
.

Definition 34 A subset A ⊂ I is said to be an invariant set for a discrete-
time dynamical system (2.1) if it satisfies that fn(A) = A, ∀;n ∈ N [32].

Definition 35 A subset A ⊂ I is called a trapping region of a discrete-time
dynamical system (2.1) if for every orbit of x0 ∈ A will move to the region’s
interior and remain there as the system evolves fn(A) ⊂ int(A), ∀;n ∈ N
[32].

Definition 36 A family of functions fβ undergoes a saddle-node (or tan-
gent) bifurcation at the parameter value β = β0 if there exists an open inter-
val I and an ε > 0 such that:

1. For β0 − ε < β < β0, fβ has no fixed points in the interval I.

2. For β = β0, fβ has one fixed point in I, and this fixed point is neutral.

3. For β0 < β < β0 + ε, fβ has two fixed points in I, one attracting and
one repelling [29].

Definition 37 A family of functions fβ undergoes a period-doubling bifur-
cation at the parameter value β = β0 if there exists an open interval I and
an ε > 0 such that:

1. For each β in the interval [β0 − ε, β0 + ε], there exists a unique fixed
point pβ for fβ in I.

2. For β0 − ε < β ≤ β0, fβ does not have period-2 cycles in I, and pβ is
an attractor.

3. For β0 < β < β0 + ε, exists a unique period-2 cycle q1β, q2β in I with
fβ(q

1
β) = q2β. This period-2 cycle is attractive, while the fixed point pβ

is repelling.
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4. As β → β0, we have qiβ → pβ0, ∀i = {1, 2} [29].

In the next chapter, the parametric family of bimodal maps that will be used
is introduced and defined. Additionally, a series of theoretical results are
presented that ensure bistability within this family. These results include
an analysis of fixed points, saddle-node and period-doubling bifurcations, as
well as the characterization of invariant sets and trapping regions that give
rise to bistability.
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Chapter 3

Bistability in a bimodal map

The family of bimodal maps based on the difference map (2.4) that will be
used for this study is defined as follows:

fD(x, γ, β1, β2) =


fD1 for ζ0 ≤ x < ζ1,

fD2 for ζ1 ≤ x ≤ ζ2.
(3.1)

Where fD1 and fD2 are unimodal maps defined as:

fD1(x, γ, β1) = γβ1(x− ζ0)(ζ1 − x), (3.2)

fD2(x, γ, β2) = γβ2(x− ζ1)(ζ2 − x), (3.3)

and the parameters γ, βi ∈ (0, 4] ⊂ R must satisfy that:

0 < γβi ≤
4

(ζi − ζi−1)2
, (3.4)

for i = 1, 2 and ζk ∈ [0, 1] ⊂ R for k = 0, 1, 2 where it holds that ζ0 < ζ1 < ζ2.

The bistability arises when a dynamic system presents two invariant sets,
for the same parameter values, i.e. for a dynamical system f : I → I there
are two invariant sets A1 and A2 such that f(A1) ⊂ A1 and f(A2) ⊂ A2,
with A1 ⊂ I and A2 ⊂ I. In this Chapter, we show that the dynamical
system (3.1) presents two invariant sets in the interval I = [0, 1] for a set of
parameter values and the system oscillates in one of them depending of the
initial condition x0.
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The analysis of fixed points and their stability are of great importance to
understand the bifurcations that a dynamical system presents. Therefore we
will begin to study the fixed points of the system (3.1).

Proposition 1 The bimodal map defined in (3.1) presents fixed points in
the interval ζ1 ≤ x ≤ ζ2 if:

1

γ

(√
ζ1 +

√
ζ2

ζ2 − ζ1

)2

< β2 ≤
4

γ(ζ2 − ζ1)2
. (3.5)

Proof. For find the upper bound of the interval where the parameter β2

take it values with the purpose that the map fD has fixed points in the interval
[ζ1, ζ2] ⊂ (0, 1] ⊂ R it is suffices to find the maximum point that the second

modal can take, which, it is located at the point (x, f(x)) =

(
ζ1 + ζ2

2
, 1

)
,

knowing the maximum point that fD can take, we can substitute into the
equation fD2(x, γ, β1) showed in (3.3), thus obtaining

fD2

(
ζ1 + ζ2

2
, γ, β1

)
≤ 1,

analogously, we have the following expression

γβ2

(
ζ1 + ζ2

2
− ζ1

)(
ζ2 −

ζ1 + ζ2
2

)
≤ 1,

by simplifying, we obtain

γβ2

(
ζ1 + ζ2 − 2ζ1

2

)(
2ζ2 − ζ1 − ζ2

2

)
= γβ2

(
ζ2 − ζ1

2

)(
ζ2 − ζ1

2

)
≤ 1,

again, by simplifying and solving the preceding inequality for the parameter
β2, we obtain the maximum bound

β2 ≤
4

γ(ζ2 − ζ1)2
, (3.6)

now, for find the lower bound of the interval ζ1 ≤ x ≤ ζ2, we proceed to find
the fixed points for the second modal showed by (3.5), thus, to located the
fixed points, we perform fD2(x, γ, β2) = x, thus

γβ2(x− ζ1)(ζ2 − x) = x,
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by expanding the preceding equation, thus obtaining

γβ2x
2 − γβ2(ζ1 + ζ2)x+ γβ2ζ1ζ2 = x,

by simplifying and setting equal to zero, thus

γβ2x
2 − [γβ2(ζ1 + ζ2)− 1]x+ γβ2ζ1ζ2 = 0, (3.7)

by solving (3.7), the expression for the fixed point is obtained

x =
γβ2(ζ1 + ζ2)− 1±

√
[γβ2(ζ1 + ζ2)− 1]2 − 4γ2β2

2ζ1ζ2
2γβ2

, (3.8)

the preceding equation involves solutions in the complex numbers and the
real numbers field, however, the difference map described in (3.1) that maps
into the real numbers field, hence the discriminant ∆ of (3.8) must satisfy
that ∆ > 0 since we desire that fD2 has two fixed points, thus

∆ = [γβ2(ζ1 + ζ2)− 1]2 − 4γ2β2
2ζ1ζ2,

with the above, the inequality holds

[γβ2(ζ1 + ζ2)− 1]2 − 4γ2β2
2ζ1ζ2 > 0, (3.9)

by expanding the preceding inequality, and use the parameter β2 as variable,
is obtained

γ2β2
2(ζ1 + ζ2)

2 − 2γβ2(ζ1 + ζ2) + 1− 4γ2β2
2ζ1ζ2 > 0,

grouping terms, we obtain

[γ2(ζ1 + ζ2)
2 − 4γ2ζ1ζ2]β

2
2 − 2γ(ζ1 + ζ2)β2 + 1 > 0, (3.10)

by solving the preceding expression by the general formula, is obtained

β2 =
γ(ζ1 + ζ2)±

√
[γ(ζ1 + ζ2)]2 − [γ2(ζ1 + ζ2)2 − 4γ2ζ1ζ2]

γ2(ζ2 − ζ1)2
, (3.11)

by simplifying the terms within the square root

β2 =
γ(ζ1 + ζ2)±

√
4γ2ζ1ζ2

γ2(ζ2 − ζ1)2
,
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by simplifying the preceding equation, we obtain

β2 =
1

γ

(√
ζ1 ±

√
ζ2

ζ2 − ζ1

)2

,

finally, by the preceding expression, we obtain the following solution sets that
satisfied the inequality (3.10)

β2 >
1

γ

(√
ζ1 +

√
ζ2

ζ2 − ζ1

)2

and β2 <
1

γ

(√
ζ1 −

√
ζ2

ζ2 − ζ1

)2

,

thus, the solution set that adequately satisfies the condition of the problems
is

β2 >
1

γ

(√
ζ1 +

√
ζ2

ζ2 − ζ1

)2

, (3.12)

thus obtaining the lower bound for the parameter β2 in which, fD in the
interval (ζ1, ζ2] ⊂ [0, 1] ⊂ R has fixed points. Finally, if we combine the
inequalities (3.6) and (3.12) we obtain the interval that we desired showing.

1

γ

(√
ζ1 +

√
ζ2

ζ2 − ζ1

)2

< β2 ≤
4

γ(ζ2 − ζ1)2
. (3.13)

Proposition 1 defined two fixed points, denoted by x∗
2,1 and x∗

2,2 in the interval
ζ1 ≤ x ≤ ζ2 when β2 fulfills (3.13) as follows

x∗
2,1 =

γβ2(ζ1 + ζ2)− 1 +
√

[γβ2(ζ1 + ζ2)− 1]2 − 4γ2β2
2ζ1ζ2

2γβ2

, (3.14)

and

x∗
2,2 =

γβ2(ζ1 + ζ2)− 1−
√

[γβ2(ζ1 + ζ2)− 1]2 − 4γ2β2
2ζ1ζ2

2γβ2

. (3.15)

■

Proposition 2 The fixed point x∗
2,2 of the bimodal map fD (3.1) in the in-

terval ζ1 ≤ x ≤ ζ2 given by (3.15) is always repulsive if

1

γ

(√
ζ1 +

√
ζ2

ζ2 − ζ1

)2

< β2 ≤
4

γ(ζ2 − ζ1)2
. (3.16)

28



Proof. For this proof, it is enough verifying that the following condition∣∣DfD2(x
∗
2,2, γ, β2)

∣∣ > 1 is fulfilled. If we find the condition for β2 such that
the absolute value of the derivative of fD2 evaluated at the fixed point x∗

2,2 is
greater than one then this fixed point is always repulsive. Thus, we proceed
to find the derivative of the (3.3) we obtain

DfD2(x, γ, β2) = −γβ2[2x− (ζ1 + ζ2)], (3.17)

by substituting the fixed point (3.15) into (3.17) and applied the condition∣∣DfD2(x
∗
2,2, γ, β2)

∣∣ > 1 is obtained∣∣−γβ2

[
2x∗

2,2 − (ζ1 + ζ2)
]∣∣ > 1, (3.18)

by simplifying the last expression, results∣∣∣∣∣γβ2

[
γβ2(ζ1 + ζ2)− 1−

√
∆− γβ2(ζ1 + ζ2)

γβ2

]∣∣∣∣∣ > 1,

where
∆ = [γβ2(ζ1 + ζ2)− 1]2 − 4γ2β2

2ζ1ζ2,

by simplifying, we have∣∣∣1 +√
∆
∣∣∣ = ∣∣∣∣1 +√[γβ2(ζ1 + ζ2)− 1]2 − 4γ2β2

2ζ1ζ2

∣∣∣∣ > 1,

by properties of absolute value, the preceding expression can expressed into
two inequalities that which can be described by (3.19) and (3.20)

1 +
√

[γβ2(ζ1 + ζ2)− 1]2 − 4γ2β2
2ζ1ζ2 < −1, (3.19)

1 +
√

[γβ2(ζ1 + ζ2)− 1]2 − 4γ2β2
2ζ1ζ2 > 1, (3.20)

in the inequality (3.19) we can check that if we substrates one to both sides,
is obtained √

[γβ2(ζ1 + ζ2)− 1]2 − 4γ2β2
2ζ1ζ2 < −2,

the preceding inequality has not solution in the real numbers field, however,
if doing the same processing in the inequality (3.20) we can see that the
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solutions of this inequality are included in the real numbers field, thus, we
obtain √

[γβ2(ζ1 + ζ2)− 1]2 − 4γ2β2
2ζ1ζ2 > 0,

squaring both sides, results

[γβ2(ζ1 + ζ2)− 1]2 − 4γ2β2
2ζ1ζ2 > 0,

by expanded and group terms, using the parameter β2 as variable, the in-
equality (3.10) are obtained. Thus, by solving it using the general formula,
we concluded that the solution set for β2 that satisfying the conditions in our
problem was the next

β2 >
1

γ

(√
ζ1 +

√
ζ2

ζ2 − ζ1

)2

, (3.21)

by the last result, we concluded that the fixed point x∗
2,2 is always repulsive

if β2 satisfies (3.21).

For prove the upper bound of the interval (3.13), we know by the propo-
sition one that β2 has upper bound described by

β2 ≤
4

γ(ζ2 − ζ1)2
,

thus, it is enough verifying that take the upper bound of the parameter β2,
the fixed point x∗

2,2 of the ζ1 ≤ x ≤ ζ2 substituted into the fD2 expressed in
(3.3) is repulsive. Thus, took the upper bound

β2M =
4

γ(ζ2 − ζ1)2
(3.22)

by substituting the preceding equation into (3.3), we obtained

fD2(x, γ, β2M ) = γβ2M (x− ζ1)(ζ2 − x), (3.23)

when differentiating the preceding equation, results

DfD2(x, γ, β2M ) = −γβ2M [2x− (ζ1 + ζ2)]. (3.24)

Now, by substituting (3.15) into of the derivative (3.24) we obtained

DfD2(x
∗
2,2, γ, β2M ) = −2γβ2MΛ,
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where

Λ =
γβ2M (ζ1 + ζ2)− 1−

√
[γβ2M (ζ1 + ζ2)− 1]2 − 4γ2β2

2M
ζ1ζ2

2γβ2M

,

by simplifying the previous expression

DfD2(x
∗
2,2) = 1 +

√[
4

(ζ2 − ζ1)2
(ζ1 + ζ2)− 1

]2
− 64

(ζ2 − ζ1)4
ζ1ζ2. (3.25)

Now, let us analyze the discriminant to verifying that ∆ > 0, we know that

∆ =

[
4

(ζ2 − ζ1)2
(ζ1 + ζ2)− 1

]2
− 64

(ζ2 − ζ1)4
ζ1ζ2,

by expanding

∆ =
16

(ζ2 − ζ1)4
(ζ1 + ζ2)

2 − 8

(ζ2 − ζ1)2
(ζ1 + ζ2) + 1− 64

(ζ2 − ζ1)2
ζ1ζ2,

by grouping terms, we obtain

∆ =
16

(ζ2 − ζ1)4
[
(ζ1 + ζ2)

2 − 4ζ1ζ2
]
− 8

(ζ2 − ζ1)2
(ζ1 + ζ2) + 1,

∆ =
16

(ζ2 − ζ1)4
(ζ2 − ζ1)

2 − 8

(ζ2 − ζ1)2
(ζ1 + ζ2) + 1,

by simplifying

∆ =
16

(ζ2 − ζ1)2
− 8

(ζ2 − ζ1)2
(ζ1 + ζ2) + 1.

Finally, we obtain that

∆ =
8

(ζ2 − ζ1)2
[2− (ζ1 + ζ2)] + 1,

and since ζ1 < ζ2 and ζ2 ≤ 1 then ζ1 + ζ2 < 2 therefore

∆ =
8

(ζ2 − ζ1)2
[2− (ζ1 + ζ2)] + 1 > 0.
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Based on the previous analysis, we conclude that

∆ =

[
4

(ζ2 − ζ1)2
(ζ1 + ζ2)− 1

]2
− 64

(ζ2 − ζ1)4
ζ1ζ2 > 0,

and therefore, (3.25) is always upper than one. Consequently, if the param-
eter β2 took the upper bound expressed by

β2 =
4

γ(ζ2 − ζ1)2
,

then, the fixed point

x∗
2,2 =

γβ2(ζ1 + ζ2)− 1−
√
[γβ2(ζ1 + ζ2)− 1]2 − 4γ2β2

2ζ1ζ2
2γβ2

,

satisfies that DfD2(x
∗
2,2) > 1. Therefore, the fixed point is repulsive if (3.16)

is satisfied. ■

Proposition 3 Consider the bimodal map given by (3.1). The fixed point
x∗
2,1 in the interval ζ1 ≤ x ≤ ζ2 expressed by (3.14) is attractive if:

1

γ

(√
ζ1 +

√
ζ2

ζ2 − ζ1

)2

< β2 <
ζ1 + ζ2 + 2

√
(ζ1 + ζ2)2 − 3ζ1ζ2

γ(ζ2 − ζ1)2
, (3.26)

and repulsive if:

ζ1 + ζ2 + 2
√

(ζ1 + ζ2)2 − 3ζ1ζ2
γ(ζ2 − ζ1)2

< β2 ≤
4

γ(ζ2 − ζ1)2
. (3.27)

Proof. For find the interval where the parameter β2 makes that the fixed
point x∗

2,1 is repulsive in the interval [ζ1, ζ2] is repulsive, we use the condition
that

∣∣DfD2(x
∗
2,1, γ, β2)

∣∣ < 1, thus, the derivative of (3.3) results

DfD2(x, γ, β2) = −γβ2[2x− (ζ1 + ζ2)].

By substituting the fixed point x∗
2,1 shown in (3.14) into the preceding ex-

pression, by simplifying we obtain

DfD2(x
∗
2,1, γ, β2) =

∣∣∣∣1−√[γβ2(ζ1 + ζ2)− 1]2 − 4γ2β2
2ζ1ζ2

∣∣∣∣.
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Now, we choose a ε > 0 and the lower bound of the interval for the parameter
β2 that which is expressed by (3.26). The lower bound will be denoted by

βm =
1

γ

(√
ζ1 +

√
ζ2

ζ2 − ζ1

)2

. (3.28)

An analogously way to write the parameter βm can be seen below

βm =
ζ1 + ζ2 + 2

√
ζ1ζ2

γ(ζ2 − ζ1)2
. (3.29)

Previously, we mention an ε, this is mentioned with the purpose that the
parameter β2 can not took the upper and lower bounded, since the inter-
val shown in (3.26) is open and consequently, this interval not include the
boundaries. Now, the purpose is found the lower and upper value that ε
can take it, for this, we know, by the interval expressed in (3.26) the upper
bound of β2, that which will be denoted by βM and is expressed by

βM =
ζ1 + ζ2 + 2

√
(ζ1 + ζ2)2 − 3ζ1ζ2

γ(ζ2 − ζ1)2
. (3.30)

Thus, we can write (3.30) of the following way

βM =
ζ1 + ζ2 + 2

√
(ζ1 − ζ2)2 + ζ1ζ2

γ(ζ2 − ζ1)2
.

Now, let β0 the parameter shown in (3.29) but adding ε within of the radical,
results

β0 =
ζ1 + ζ2 + 2

√
ζ1ζ2 + ε

γ(ζ2 − ζ1)2
(3.31)

such that if we want to find the interval where ε can be chosen arbitrarily, it
is enough to determine the interval of values that ε must take on β0 in order
to satisfy

βm < β0 < βM . (3.32)

By substituting the previously denoted values, we obtain

ζ1 + ζ2 + 2
√
ζ1ζ2

γ(ζ2 − ζ1)2
<

ζ1 + ζ2 + 2
√
ζ1ζ2 + ε

γ(ζ2 − ζ1)2
<

ζ1 + ζ2 + 2
√
(ζ1 − ζ2)2 + ζ1ζ2

γ(ζ2 − ζ1)2
. (3.33)

By simplifying the preceding inequality, it results√
ζ1ζ2 <

√
ζ1ζ2 + ε <

√
(ζ1 − ζ2)2 + ζ1ζ2,
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analogously, we obtain

ζ1ζ2 < ζ1ζ2 + ε < (ζ1 − ζ2)
2 + ζ1ζ2.

Finally, results
0 < ε < (ζ1 − ζ2)

2. (3.34)

The preceding interval is the interval where ε can be chosen arbitrarily. now,
we proceed to verify if the following condition

∣∣DfD2(x
∗
2,1, γ, β2)

∣∣ < 1 is sat-
isfying. Previously was obtain the following expression

DfD2(x
∗
2,1, γ, β2) =

∣∣∣∣1−√γ2(ζ2 − ζ1)2β2
2 − 2γ(ζ1 + ζ2)β2 + 1

∣∣∣∣. (3.35)

The preceding expression is the result of applied the condition∣∣DfD2(x
∗
2,1, γ, β2)

∣∣ < 1.

By simplifying and substituting β0 into β2, it is obtained

DfD2(x
∗
2,1, γ, β0) =

∣∣∣1−√
Θ
∣∣∣,

where
Θ = γ2(ζ2 − ζ1)

2β2
0 − 2γ(ζ1 + ζ2)β0 + 1,

and β0 is defined in (3.31). By substituting β0 in Θ and simplifying we have

Θ =
(ζ2 − ζ1)

2 + 4ζ1ζ2 + 4ε− (ζ1 + ζ2)
2

(ζ2 − ζ1)2
=

4ε

(ζ2 − ζ1)2
.

Thus, the expression DfD2(x
∗
2,1, γ, β0) =

∣∣∣1−√
Θ
∣∣∣ results

DfD2(x
∗
2,1, γ, β0) =

∣∣∣∣∣1−
√

4ε

(ζ2 − ζ1)2

∣∣∣∣∣.
Finally, it results

DfD2(x
∗
2,1, γ, β0) =

∣∣∣∣1− 2
√
ε

(ζ2 − ζ1)

∣∣∣∣ < 1,

from the last expression, we can see that for each ε taken from the interval
0 < ε < (ζ1 − ζ2)

2 it holds that
∣∣DfD2(x

∗
2,1, γ, β2)

∣∣ < 1 and how the preced-
ing interval was found using the upper and lower bounds of the parameter
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β2 expressed in (3.26), this shows that for each value of the parameter β2

contained in

(
√
ζ1 +

√
ζ2)

2

γ(ζ2 − ζ1)2
< β2 <

ζ1 + ζ2 + 2
√

(ζ1 + ζ2)2 − 3ζ1ζ2
γ(ζ2 − ζ1)2

. (3.36)

The fixed point x∗
1,2 is always attractive. Now, to demonstrate the interval

for the parameter β2 where the fixed point x∗
2,1, which is included in the

interval ζ1 ≤ x ≤ ζ2, is always repulsive, we use the following condition:∣∣DfD2(x
∗
2,1, γ, β2)

∣∣ > 1. (3.37)

Thus, by substituting the fixed point denoted by (3.14) into the derivative
of fD2 as expressed by (3.17) and applying the condition (3.37), it results∣∣∣∣1−√[γβ2(ζ1 + ζ2)− 1]2 − 4γ2β2

2ζ1ζ2

∣∣∣∣ > 1. (3.38)

The preceding inequality is fulfilled if√
[γβ2(ζ1 + ζ2)− 1]2 − 4γ2β2

2ζ1ζ2 > 2. (3.39)

By squaring both sides of the previous inequality, is obtained

[γβ2(ζ1 + ζ2)− 1]2 − 4γ2β2
2ζ1ζ2 > 4.

By expanding, results

γ2(ζ2 − ζ1)
2β2

2 − 2γ(ζ1 + ζ2)β2 + 1 > 4. (3.40)

By subtracting four from both sides, it results in

γ2(ζ2 − ζ1)
2β2

2 − 2γ(ζ1 + ζ2)β2 − 3 > 0. (3.41)

By solving the previous inequality using the general, produces

β2 =
γ(ζ1 + ζ2)±

√
γ2(ζ1 + ζ2)2 − (−3)(γ2(ζ2 − ζ1)2)

γ2(ζ2 − ζ1)2
. (3.42)

By simplifying the previous expression

β2 =
(ζ1 + ζ2)±

√
(ζ1 + ζ2)2 + 3(ζ2 − ζ1)2

γ(ζ2 − ζ1)2
.
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Analogously, we have

β2 =
(ζ1 + ζ2)± 2

√
ζ21 − ζ1ζ2 + ζ22

γ(ζ2 − ζ1)2
,

when factoring the term inside the square root, it results in

β2 =
(ζ1 + ζ2)± 2

√
(ζ1 + ζ2)2 − 3ζ1ζ2

γ(ζ2 − ζ1)2
.

Thus, the solution set are given by

β2 >
(ζ1 + ζ2) + 2

√
(ζ1 + ζ2)2 − 3ζ1ζ2

γ(ζ2 − ζ1)2
, (3.43)

β2 <
(ζ1 + ζ2)− 2

√
(ζ1 + ζ2)2 − 3ζ1ζ2

γ(ζ2 − ζ1)2
. (3.44)

However, the solution set that satisfies our conditions is

β2 >
(ζ1 + ζ2) + 2

√
(ζ1 + ζ2)2 − 3ζ1ζ2

γ(ζ2 − ζ1)2
, (3.45)

that which is the lower bound of the interval shown in (3.27). Now, to
demonstrate the upper bound it is enough notice the inequality (3.41) and
we defined by G the left term, thus

G(β2) = γ2(ζ2 − ζ1)
2β2

2 − 2γ(ζ1 + ζ2)β2 − 3.

Notice that G(β2) is a continuous function, therefore, it was previously shown
that when β2 takes the lower bound, it makes that G(β2) > 1 and how the
upper bound of the parameter β2 shown in the interval defined by (3.27)
satisfies that

β2 =
4

γ(ζ2 − ζ1)2
. (3.46)

Therefore, due to continuity of G(β2) > 1, when β2 reaches the upper bound,
it ensures that G(β2) > 1, and it can be concluded that the fixed point x∗

2,1

included in ζ1 ≤ x ≤ ζ2 is always repulsive if β2 takes values within the
following interval

ζ1 + ζ2 + 2
√
(ζ1 + ζ2)2 − 3ζ1ζ2

γ(ζ2 − ζ1)2
< β2 ≤

4

γ(ζ2 − ζ1)2
(3.47)

■
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Proposition 4 Consider the bimodal map (3.1). A saddle-node bifurcation
occurs in the subdomain ζ1 ≤ x ≤ ζ2 when

β0 =
1

γ

(√
ζ1 +

√
ζ2

ζ2 − ζ1

)2

. (3.48)

Proof. To demonstrate this Proposition, we need to show that every point
stated in Definition 36 holds true. Regarding the first point of the aforemen-
tioned definition, it is necessary to demonstrate that prior to β0, the bimodal
map fD, specifically the unimodal map fD2 , does not possess fixed points.
To prove this, let’s observe that the discriminant ∆ of the fixed points x∗

2,1

and x∗
2,2, defined by (3.14) and (3.15) respectively, where:

∆ = [γβ2(ζ1 + ζ2)− 1]2 − 4γ2β2
2ζ1ζ2.

Notice, from Proposition 1, that discriminant satisfies ∆ > 0 for any

1

γ

(√
ζ1 +

√
ζ2

ζ2 − ζ1

)2

< β2 ≤
4

γ(ζ2 − ζ1)2
.

Moreover, notice that ∆ = 0 when β2 = β0. Therefore, for any β2 = β0 − ε
with ε > 0, it satisfies that ∆ < 0, therefore, fD1 has not fixed points, fulfill-
ing issue 1 of Definition 36.

For demonstrates the issue 2 of Definition 36, it is enough to notice that
when β2 = β0 the discriminant ∆ = 0, which implies that the fixed points
x∗
2,1 and x∗

2,2 satisfy x∗
2,2 = x∗

2,1. Therefore, fD2 has only one fixed point,
fulfilling issue 2 of Definition 36.

Finally, to demonstrate issue 3 of the Definition 36, it is sufficient to
consider Propositions 2 and 3,to state when β2 satisfies the condition

1

γ

(√
ζ1 +

√
ζ2

ζ2 − ζ1

)2

< β2 <
ζ1 + ζ2 + 2

√
(ζ1 + ζ2)2 − 3ζ1ζ2

γ(ζ2 − ζ1)2
,

there exist two fixed points x∗
2,1 and x∗

2,2, where the x∗
2,2 is a repulsive fixed

point and x∗
2,1 is an invariant point. ■
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Proposition 5 Consider the bimodal map (3.1). A period-doubling bifurca-
tion occurs in the interval ζ1 ≤ x ≤ ζ2 when:

β0 =
(ζ1 + ζ2) + 2

√
(ζ1 + ζ2)2 − 3ζ1ζ2

γ(ζ1 − ζ2)2
. (3.49)

Proof. In the proof of proposition 3, we demonstrated issues 1 and 2 of
Definition 37. When it was concluded that for some β2 < β0, the fixed point
x∗
2,1 in the interval ζ1 ≤ x ≤ ζ2, defined in (3.14), was attractive, and for

some β2 > β0, this fixed point was repulsive. Now, we must demonstrate
issues 3 and 4. For point 3, we need to show the existence of a 2-cycle. To
demonstrate this, we use

fD2(fD2(x, γ, β2)) = f 2
D2
(x, γ, β2) = x. (3.50)

We know that

fD2(x, γ, β2) = −γβ2[x
2 − (ζ1 + ζ2)x+ ζ1ζ2], (3.51)

of the previous equation, we define

γβ2 = r, ζ1 + ζ2 = a and ζ1ζ2 = b.

By substituting the previous defined parameters into (3.51)

fD2(x, r, a, b) = −rx2 + rax− rb. (3.52)

Thus, if we applied fD2(fD2(x, r, a, b)) = f 2
D2
(x, r, a, b) = x it results

f 2
D2
(x, r, a, b) = −r(−rx2+rax−rb)2+ra(−rx2+rax−rb)−rb = x. (3.53)

By expanding and simplifying

f 2
D2
(x, r, a, b)− x =

−r3x4+2r3ax3−r2[r(2b+a2)+a)]x2+(2r3ab+r2a2−1)x−rb(1+ra+r2b).

From the previous equation, we know that the fixed points denoted by (3.14)
and (3.15) are solution of f 2

D2
(x, r, a, b)− x=0, and we also know that these

fixed points are determined by fD2(x, r, a, b)− x, so, if we make

f 2
D2
(x, r, a, b)− x

fD2(x, r, a, b)− x
= −

f 2
D2
(x, r, a, b)− x

rx2 + (1− ra)x+ rb
, (3.54)

38



by dividing, it results

−
f 2
D2
(x, r, a, b)− x

rx2 + (1− ra)x+ rb
= rx2 − r(ra+ 1)x+ (r2b+ ra+ 1). (3.55)

By setting to zero and returning to the previous parameters, we have

γβ2x
2 − γβ2[γβ2(ζ1 + ζ2) + 1]x+ [γ2β2

2ζ1ζ2 + γβ2(ζ1 + ζ2) + 1] = 0. (3.56)

Thus, the solutions of the preceding equation are the periodic points with
period 2 of fD2(x, γ, β2). By solving using the general formula, we have

x1 =
γβ2(ζ1 + ζ2) + 1 +

√
γ2β2

2(ζ2 − ζ1)2 − 2γβ2(ζ1 + ζ2)− 3

2γβ2

, (3.57)

x2 =
γβ2(ζ1 + ζ2) + 1−

√
γ2β2

2(ζ2 − ζ1)2 − 2γβ2(ζ1 + ζ2)− 3

2γβ2

. (3.58)

We can notice that the expressions (3.57) and (3.58) depend on β2; therefore,
if the discriminant ∆ satisfies that ∆ > 0, then x1 and x2 belong to R, where

∆ = γ2β2
2(ζ2 − ζ1)

2 − 2γβ2(ζ1 + ζ2)− 3. (3.59)

Thus, we have

γ2(ζ2 − ζ1)
2β2

2 − 2γ(ζ1 + ζ2)β2 − 3 > 0. (3.60)

By solving the preceding inequality using the general formula, we have

β2 =
γ(ζ1 + ζ2)±

√
γ2(ζ1 + ζ2)2 + 3γ2(ζ2 − ζ1)2

γ2(ζ2 − ζ1)2
.

By simplifying, we have

β2 =
ζ1 + ζ2 ±

√
(ζ1 + ζ2)2 + 3(ζ2 − ζ1)2

γ(ζ2 − ζ1)2
,

β2 =
ζ1 + ζ2 ± 2

√
ζ21 − ζ1ζ2 + ζ22

γ(ζ2 − ζ1)2
.

Finally, it results

β2 =
ζ1 + ζ2 ± 2

√
(ζ1 + ζ2)2 − 3ζ1ζ2

γ(ζ2 − ζ1)2
.
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Therefore, the solution sets are

β2 >
ζ1 + ζ2 + 2

√
(ζ1 + ζ2)2 − 3ζ1ζ2

γ(ζ2 − ζ1)2
, β2 <

ζ1 + ζ2 − 2
√
(ζ1 + ζ2)2 − 3ζ1ζ2

γ(ζ2 − ζ1)2
.

However, the solution set that satisfies the conditions of β2 is

β2 >
ζ1 + ζ2 + 2

√
(ζ1 + ζ2)2 − 3ζ1ζ2

γ(ζ2 − ζ1)2
. (3.61)

Consequently, if β2 satisfies the preceding condition then there is a 2-cycle
and by the proof of the proposition 3, the fixed point x∗

2,1 is a repulsive fixed
point when

β2 >
ζ1 + ζ2 + 2

√
(ζ1 + ζ2)2 − 3ζ1ζ2

γ(ζ2 − ζ1)2
. (3.62)

Now, we must demonstrate that

|DfD2(x1)DfD2(x2)| < 1.

By substituting (3.57) and (3.58) into (3.17), and by simplifying we have∣∣∣(1 +√
∆)(1−

√
∆)
∣∣∣, (3.63)

where
∆ = γ2β2

2(ζ2 − ζ1)
2 − 2γβ2(ζ1 + ζ2)− 3.

Now, by expanding (3.63)
|1−∆|.

We notice that ∆ > 0 when β2 satisfies (3.47), which includes the condition
(3.62), then, we concluded that

|1−∆| < 1.

However, by absolute value properties, we have

−1 < 1−∆ < 1,

analogously
0 < ∆ < 2,
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from ∆ > 0 it results

β2 >
ζ1 + ζ2 + 2

√
(ζ1 + ζ2)2 − 3ζ1ζ2

γ(ζ2 − ζ1)2
. (3.64)

And from ∆ < 2 we have

0 < β2 <
ζ1 + ζ2 +

√
6(ζ1 + ζ2)2 − 20ζ1ζ2

γ(ζ2 − ζ1)2
. (3.65)

Consequently, from (3.64) and (3.65) results

ζ1 + ζ2 + 2
√

(ζ1 + ζ2)2 − 3ζ1ζ2
γ(ζ2 − ζ1)2

< β2 <
ζ1 + ζ2 +

√
6(ζ1 + ζ2)2 − 20ζ1ζ2

γ(ζ2 − ζ1)2
. (3.66)

Since ζ1 < ζ2 and ζ2 ≤ 1, we know that ζ1 + ζ2 < 2 and ζ1ζ2 < 1 then, from
the preceding we have

β2 <
ζ1 + ζ2 +

√
6(ζ1 + ζ2)2 − 20ζ1ζ2

γ(ζ2 − ζ1)2
<

4

γ(ζ2 − ζ1)2
.

Therefore, we can notice that the following condition |DfD2(x1)DfD2(x2)| <
1 is satisfied if the parameter β2 takes values within of

ζ1 + ζ2 + 2
√

(ζ1 + ζ2)2 − 3ζ1ζ2
γ(ζ2 − ζ1)2

< β2 <
4

γ(ζ2 − ζ1)2
. (3.67)

Finally, issue 3 of Definition 37 has been demonstrated. Now, to demonstrate
issue 4 of 37, it is enough to show that

lim
β2→β0

xi = x∗
2,1, (3.68)

that is

lim
β2→β0

γβ2(ζ1 + ζ2) + 1±
√
γ2β2

2(ζ2 − ζ1)2 − γβ2(ζ1 + ζ2)− 3

2γβ2
= x∗

2,1,β0
, (3.69)

where x∗
2,1,β0

is the fixed point of the interval ζ1 ≤ x ≤ ζ2, as shown in (3.14).
By substituting β0 into β2

x∗
2,1,β0

=
γβ0(ζ1 + ζ2)− 1 +

√
(γβ0(ζ1 + ζ2)− 1)2 − 4γ2β2

0ζ1ζ2
2γβ0

, (3.70)
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where β0 is defined in (3.49), we can notice that

lim
β2→β0

√
γ2β2

2(ζ2 − ζ1)2 − γβ2(ζ1 + ζ2)− 3 → 0.

Thus, by simplifying (3.69) we have

lim
β2→β0

γβ2(ζ1 + ζ2) + 1

2γβ2

= x∗
2,1,β0

. (3.71)

From (3.70) we have

x∗
2,1,β0

=

γ

(
ζ1 + ζ2 + 2

√
α

γ(ζ2 − ζ1)2

)
(ζ1 + ζ2)− 1 +

√
Π

2γ

(
ζ1 + ζ2 + 2

√
α

γ(ζ2 − ζ1)2

) , (3.72)

where
α = (ζ1 + ζ2)

2 − 3ζ1ζ2, (3.73)

and

Π = γ2(ζ2 − ζ1)
2

(
ζ1 + ζ2 + 2

√
α

γ(ζ2 − ζ1)2

)2

− 2γ(ζ1 + ζ2)

(
ζ1 + ζ2 + 2

√
α

γ(ζ2 − ζ1)2

)
+ 1. (3.74)

By expanding the previous equation

Π =
(ζ1 + ζ2)

2 + 4(ζ1 + ζ2)
√
α + 4α− 2(ζ1 + ζ1)

2 − 4(ζ1 + ζ2)
√
α + (ζ2 − ζ1)

2

(ζ2 − ζ1)2
.

Finally, by simplifying

Π =
−(ζ1 + ζ2)

2 + 4α + (ζ2 − ζ1)
2

(ζ2 − ζ1)2
=

3(ζ1 + ζ2)
2 + (ζ2 − ζ1)

2 − 12ζ1ζ2
(ζ2 − ζ1)2

= 4.

By substituting Π into (3.72)

x∗
2,1,β0

=

γ

(
ζ1 + ζ2 + 2

√
α

γ(ζ2 − ζ1)2

)
(ζ1 + ζ2)− 1 +

√
4

2γ

(
ζ1 + ζ2 + 2

√
α

γ(ζ2 − ζ1)2

) . (3.75)
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Finally after simplification, we obtain the following solution

x∗
2,1,β0

=

γ

(
ζ1 + ζ2 + 2

√
α

γ(ζ2 − ζ1)2

)
(ζ1 + ζ2) + 1

2γ

(
ζ1 + ζ2 + 2

√
α

γ(ζ2 − ζ1)2

) =
γβ0(ζ1 + ζ2) + 1

2γβ0

. (3.76)

Now, from the expression (3.71) we have

lim
β2→β0

γβ2(ζ1 + ζ2) + 1

2γβ2

=
γβ0(ζ1 + ζ2) + 1

2γβ0

= x∗
2,1,β0

. (3.77)

Therefore, it is demonstrated that when β2 → β0 then xi → x∗
2,1,β0

for i = 1, 2,
and based on the above, we conclude the proof of the four issues of Definition
37, and we can assert the existence of a period-doubling bifurcation. ■

Proposition 6 The difference map shown in (3.1) exhibits a trapping region
or an invariant set A2 ⊂ (ζ1, ζ2] ⊂ (0, 1] if

1

γ

(√
ζ1 +

√
ζ2

ζ2 − ζ1

)2

≤ β2 ≤
(ζ1 + ζ2) +

√
9(ζ1 + ζ2)2 − 32ζ1ζ2

γ(ζ2 − ζ1)2
, (3.78)

where

A2 =

[
x∗
2,2,

γβ2(ζ1 + ζ2) + 1 +
√

(γβ2ζ1 + ζ2)− 1)2 − 4γ2β2
2ζ1ζ2

γβ2

]
, (3.79)

and x∗
2,2 denotes the fixed point of the interval ζ1 ≤ x ≤ ζ2 as defined by

(3.15).

Proof. To demonstrate this proposition, it is enough to find the upper
value of the parameter β2 such that the second iteration of fD2 with xm2 as
the initial condition x0 is higher than the fixed point x∗

2,2, where xm2 denotes
the midpoint of the interval ζ1 ≤ x ≤ ζ2 and is defined by

xm2 =
ζ1 + ζ2

2
. (3.80)
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The previous explanation can be resumed by finding a certain value for β2

such that
f 2
D2
(xm2 , γ, β2) ≥ x∗

2,2. (3.81)

This proposition will be demonstrated; thus, we have

fD2(x, γ, β2) = −γβ2[x
2 − (ζ1 + ζ2)x+ ζ1ζ2]. (3.82)

We use
γβ2 = r, ζ1 + ζ2 = a and ζ1ζ2 = b. (3.83)

By expanding (3.81) and by substituting the terms defined in (3.83), it results

fD2(x, r, a, b) = −rx2 + rax− rb. (3.84)

By substituting xm2 into (3.84) and by simplifying, we have

fD2(xm2 , r, a, b) = r
(a2 − 4b)

4
. (3.85)

When performing the second iteration f 2
D2
(xm2 , r, a, b) we have

f 2
D2
(xm2 , r, a, b) = −r

(
r
(a2 − 4b)

4

)2

+ ra

(
r
(a2 − 4b)

4

)
− rb. (3.86)

If we defined
c = a2 − 4b, (3.87)

then, by expanding (3.86) and by substituting (3.87), it results

f 2
D2
(xm2 , r, a, b) =

−r3c2 + 4r2ac− 16rb

16
. (3.88)

Now, we know that the fixed point x∗
2,2 as defined in (3.15) is

x∗
2,2 =

γβ2(ζ1 + ζ2)− 1−
√

(γβ2(ζ1 + ζ2)− 1)2 − 4γ2β2
2ζ1ζ2

2γβ2

.

The previous expression by substituting the parameters defined in (3.83)
becomes

x∗
2,2 =

ra− 1−
√

(ra− 1)2 − 4r2b

2r
. (3.89)
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Applying the condition shown in (3.81), it results

−r3c2 + 4r2ac− 16rb

16
≥

ra− 1−
√
(ra− 1)2 − 4r2b

2r
. (3.90)

By simplifying

−r4c2 + 4r3ac− 16r2b ≥ 8(ra− 1−
√

(ra− 1)2 − 4r2b).

Finally, we have

r4c2 − 4r3ac+ 16r2b+ 8ra− 8 ≤ 8
√

(ra− 1)2 − 4r2b.

By squaring both sides, it results

(r4c2 − 4r3ac+ 16r2b+ 8ra− 8)2 ≤ (8
√
(ra− 1)2 − 4r2b)2.

By expanding and simplifying both sides, we have

c4r8 − 8ac3r7 + 16c2(2b+ a2)r6 + 16ac(c− 8b)r5−
16(c2 + 4ac2 − 16b2)r4 + 64a(c+ 4b)r3 ≤ 0.

By dividing the previous expression by r3, becomes

c4r5 − 8ac3r4 + 16c2(2b+ a2)r3 + 16ac(c− 8b)r2−
16(c2 + 4ac2 − 16b2)r + 64a(c+ 4b) ≤ 0, (3.91)

when factoring the previous expression, it results in

(cr2 − 2ar − 8)(c3r3 − 6ac2r2 + 4c[8b+ a2 + 2c]r − 8a[2c+ 8b− a2]) ≤ 0. (3.92)

In the previous expression, we take r as the variable, which is the term
containing β2. The third-degree factor, when solved in terms of r, yields
two complex roots and one real root; however, none of them satisfy the
requirements for this study. Now, for the second-degree factor, we obtain the
inequality

(cr2 − 2ar − 8) ≤ 0. (3.93)

By solving using the general formula

r =
a±

√
a2 + 8c

c
. (3.94)
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By substituting c = (a2 − 4b) we have

r =
a±

√
a2 + 8(a2 − 4b)

a2 − 4b
.

By simplifying

r =
a±

√
9a2 − 32b

a2 − 4b
.

We know that a = ζ1 + ζ2, b = ζ1ζ2 and r = γβ2, thus, the preceding
expression becomes

γβ2 =
(ζ1 + ζ2)±

√
9(ζ1 + ζ2)2 − 32ζ1ζ2

(ζ1 + ζ2)2 − 4ζ1ζ2
.

Solving for β2 and simplifying

β2 =
(ζ1 + ζ2)±

√
9(ζ1 + ζ2)2 − 32ζ1ζ2

γ(ζ1 − ζ2)2
.

Thus, we obtained the interval for β2 that satisfies f 2
D2
(xm2 , γ, β2) ≥ x∗

2,2; this
interval is

(ζ1 + ζ2)−
√

9(ζ1 + ζ2)2 − 32ζ1ζ2
γ(ζ1 − ζ2)2

≤ β2 ≤
(ζ1 + ζ2) +

√
9(ζ1 + ζ2)2 − 32ζ1ζ2

γ(ζ1 − ζ2)2
. (3.95)

However, we can notice from (3.94) that the lower bound of the interval
(3.95)

(ζ1 + ζ2)−
√
9(ζ1 + ζ2)2 − 32ζ1ζ2

γ(ζ1 − ζ2)2
< 0.

Furthermore, from Proposition 1, we know the minimum bound of the pa-
rameter β2 for which fixed points exist in the interval ζ1 ≤ x ≤ ζ2, and this
minimum bound satisfies

(ζ1 + ζ2)−
√
9(ζ1 + ζ2)2 − 32ζ1ζ2

γ(ζ1 − ζ2)2
<

(
√
ζ1 +

√
ζ2)

2

γ(ζ2 − ζ1)2
.

Thus, by the continuity of fD2 , it is shown that the interval for β2 will be
defined by

(
√
ζ1 +

√
ζ2)

2

γ(ζ2 − ζ1)2
≤ β2 ≤

(ζ1 + ζ2) +
√
9(ζ1 + ζ2)2 − 32ζ1ζ2

γ(ζ2 − ζ1)2
. (3.96)
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So, the interval of β2 defined in (3.96) makes the set A2 ⊂ (ζ1, ζ2] ⊂ (0, 1]
previously defined as

A2 =

[
x∗
2,2,

γβ2(ζ1 + ζ2) + 1 +
√

(γβ2ζ1 + ζ2)− 1)2 − 4γ2β2
2ζ1ζ2

γβ2

]
, (3.97)

let be a trapping region or an invariant set. ■

Proposition 7 The difference map shown in (3.1) exhibits a trapping region
or an invariant set A1 = [ζ0, ζ1) = [0, 1/2) if

1

γζ1
≤ β1 ≤

4

γζ1
. (3.98)

Proof. To demonstrate this proposition, it is enough to find the upper
value of the parameter β1 such that the second iteration of fD1 with xm1 as
the initial condition x0 is higher than the lower bound of A1. That is ζ0 = 0,
where xm1 denotes the midpoint of the interval ζ0 ≤ x < ζ1 and is defined by

xm1 =
ζ0 + ζ1

2
=

ζ1
2
. (3.99)

The previous explanation can be resumed by finding a certain value for β1

such that
f 2
D1
(xm1 , γ, β1) ≥ 0, (3.100)

and this proposition will be demonstrated; thus, we have

fD1(x, γ, β1) = −γβ1(x
2 − ζ1x). (3.101)

By expanding (3.101) it results

fD1(x, γ, β1) = −γβ1x
2 + γβ1ζ1x. (3.102)

By substituting xm1 into (3.103) and by simplifying, we have

fD1(xm1 , γ, β1) =
γβ1ζ

2
1

4
. (3.103)
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When performing the second iteration f 2
D2
(xm2 , γ, β1) we have

f 2
D1
(xm1 , γ, β1) = −γβ1

(
γβ1ζ

2
1

4

)2

+ γβ1ζ1

(
γβ1ζ

2
1

4

)
. (3.104)

Then, by expanding (3.104), it results

f 2
D2
(xm2 , γ, β1) =

−γ3β3
1ζ

4
1 + 4γ2β2

1ζ
3
1

16
. (3.105)

By dividing by γ2β2
1ζ

3
1 we obtain

f 2
D2
(xm2 , γ, β1) =

−γζ1β1 + 4

16
.

Applying the condition shown in (3.100), it result

−γζ1β1 + 4

16
≥ ζ0.

Analogously
−γζ1β1 + 4

16
≥ 0.

By simplifying
−γζ1β1 + 4 ≥ 0.

Finally, by solving for β1 we have

β1 ≤
4

γζ1
. (3.106)

That is the upper bound of the interval of β1 expressed in (3.98). To demon-
strate the lower bound, we proceed to find the fixed points of fD1(x, γ, β1),
this is

fD1(x, γ, β1) = −γβ1x
2 + γβ1ζ1x = x. (3.107)

By simplifying we have

fD1(x, γβ1) = −γβ1x
2 + (γβ1ζ1 − 1)x = 0. (3.108)

By solving using the general formula, we have

x∗
1,1 =

γβ1ζ1 − 1 +
√

(γβ1ζ1 − 1)2

2γβ1

, x∗
1,2 =

γβ1ζ1 − 1−
√

(γβ1ζ1 − 1)2

2γβ1

.
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Finally, we have the fixed points

x∗
1,1 =

γβ1ζ1 − 1

γβ1

, (3.109)

x∗
1,2 = 0. (3.110)

However, the fixed point must satisfy x∗
1,1 ≥ 0, thus

γβ1ζ1 − 1

γβ1

≥ 0. (3.111)

When solving for β1, the results is

β1 ≥
1

γζ1
. (3.112)

The preceding result is the lower bound of the interval for β1 defined in (3.98).
Therefore, it is shown that A1 is a trapping region or an invariant set when
β2 takes values within the interval

1

γζ1
≤ β1 ≤

4

γζ1
. (3.113)

■

Proposition 8 The bimodal map fD given by (3.1) exhibits monostability
in the interval ζ1 ≤ x ≤ ζ2 if

4x∗
2,2

γ(ζ1 − ζ0)2
< β1 ≤

4

γ(ζ1 − ζ0)2
, (3.114)

and

1

γ

(√
ζ1 +

√
ζ2

ζ2 − ζ1

)2

≤ β2 ≤
(ζ1 + ζ2) +

√
9(ζ1 + ζ2)2 − 32ζ1ζ2

γ(ζ2 − ζ1)2
. (3.115)

Proof. For this proof, it suffices to find the condition for β1 such that for
any initial condition x0 ∈ Ac

2 after a certain number of iterations, the orbit
goes into the interval A2. Where Ac

2 = I\A2 denotes the complement of
A2. To conduct the proof, we take the midpoint of the interval ζ0 ≤ x < ζ1
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as denoted in (3.99) and substitute it into (3.2), where the goal is for this
operation to be greater than the fixed point x∗

2,2 denoted in (3.15), ensuring
the existence of monostability. The above can be expressed as:

fD1(xm1 , γ, β1) > x∗
2,2.

Performing the substitution, we have

−γβ1

[
(ζ0 + ζ1)

2

4
− (ζ0 + ζ1)

2

2
+ ζ1ζ0

]
> x∗

2,2.

By simplifying the previous inequality

γβ1

[
(ζ1 − ζ0)

2

4

]
> x∗

2,2.

Finally, by solving for β1 in the previous expression, we find that

β1 >
4x∗

2,2

γ(ζ1 − ζ0)2
, (3.116)

which is the lower bound of the interval (3.114). To prove the upper bound,
let us note that the maximum point of the unimodal map fD1 is located at
(x, f(x)) = (xm1 , 1). Thus, by substituting this maximum point into fD1 , we
have that

fD1(xm1 , γ, β1) ≤ 1.

By simplifying, we have

γβ1

[
(ζ1 − ζ0)

2

4

]
≤ 1.

Where, upon solving for β1, we obtain

β1 ≤
4

γ(ζ1 − ζ0)2
, (3.117)

which is the upper bound of the interval (3.114). Finally, by combining the
expressions (3.116) and (3.117), we obtain the interval

4x∗
2,2

γ(ζ1 − ζ0)2
< β1 ≤

4

γ(ζ1 − ζ0)2
. (3.118)
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Notice that the interval for β2 arises from Proposition 6, where if β2 satisfies
(3.115), then there exists a trapping region or an invariant set A2 contained
within [ζ1, ζ2], denoted by (3.79). ■

The following proposition is a result of the combination of Propositions
1, 6, and 7. It can be observed that the interval (3.119) is the complement
of the intervals stated in Propositions 1 and 5. This is done to prevent, after
an arbitrarily finite number of iterations, the dynamics from remaining in
the second mode. The interval (3.120) corresponds to the one presented in
Proposition 7, aiming to maintain the dynamics in the first mode. This is
achieved by characterizing an invariant set, as demonstrated in Proposition
7.

Proposition 9 The bimodal map fD given by (3.1) exhibits monostability
in the interval ζ0 ≤ x < ζ1 if

β2 ∈
[
0,

(
√
ζ1 +

√
ζ2)

2

γ(ζ2 − ζ1)2

)⋃(
(ζ1 + ζ2) +

√
9(ζ1 + ζ2)2 − 32ζ1ζ2

γ(ζ2 − ζ1)2
,

4

γ(ζ2 − ζ1)2

]
(3.119)

and
1

γζ1
≤ β1 ≤

4

γζ1
. (3.120)

Proof. This proposition arises from Propositions 1,6 and 7. From Propo-
sition 7 states that if

1

γζ1
≤ β1 ≤

4

γζ1
,

then there exists a trapping region or invariant set denoted as A1. From
Proposition 1 we know that there exists fixed points in the subdomain ζ1 ≤
x ≤ ζ2 when

1

γ

(√
ζ1 +

√
ζ2

ζ2 − ζ1

)2

< β2 ≤
4

γ(ζ2 − ζ1)2
.

By the previous, notice that if

0 < β2 <
1

γ

(√
ζ1 +

√
ζ2

ζ2 − ζ1

)2

,
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then, there not exists fixed points in the subdomain ζ1 ≤ x ≤ ζ2. Therefore,
any initial condition x0 ∈ [0, 1], the orbit converges to invariant set or trap-
ping region A1 denoted in the Proposition 7. By the Proposition 6, we know
that there exists a trapping region or an invariant set when

1

γ

(√
ζ1 +

√
ζ2

ζ2 − ζ1

)2

≤ β2 ≤
(ζ1 + ζ2) +

√
9(ζ1 + ζ2)2 − 32ζ1ζ2

γ(ζ2 − ζ1)2
.

By the previous, if β2 takes values within

(ζ1 + ζ2) +
√

9(ζ1 + ζ2)2 − 32ζ1ζ2
γ(ζ2 − ζ1)2

< β2 ≤
4

γ(ζ2 − ζ1)2
,

then, there not exists an invariant set or a trapping region in ζ1 ≤ x ≤ ζ2,
this means that any initial condition x0 ∈ [0, 1] converges to unique invariant
set or trapping region A1 in the interval I = [0, 1]. ■

In the next chapter, numerical results based on the findings from this
chapter are presented. The numerical results cover three cases. In the first
case, the parameters γ and β1 are kept fixed, while β2 ∈ (0, 4] varies. In the
second case, the parameters γ and β2 remain fixed, while β1 ∈ (0, 4] varies.
Finally, β1 and β2 are kept fixed and equal, while γ ∈ (0, 4] varies. In each
case, monostability and bistability are studied as the specified parameters
change. The results presented include cobweb diagrams, as well as bifurcation
diagrams for each case study.
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Chapter 4

Families of bimodal maps

In this Chapter 4, we study three parametric families of bimodal maps by
applying the propositions given in the previous Chapter 3. The parametric
families of bimodal maps present the transition from monostability to bista-
bility and vice versa. Additionally, in each case study, the corresponding
bifurcation diagram is presented for the studied family.

4.1 The monoparametric family of maps for the
parameter β2

Below are the assumptions that must be taken into account to generate a
monoparametric family of bimodal maps based on the system (3.1) for this
case study:

• A regular partition of the interval I = [0, 1] ⊂ R given by the set of

points
{
ζ0 = 0, ζ1 =

1

2
, ζ2 = 1

}
.

• The parameters γ = 4 and β1 = 2.

• The parameter β2 ∈ (0, 4] ∈ R.

Under the previous assumptions, a monoparametric family of bimodal
maps (3.1) is defined as

53



fD(x, β2) = 4


2x

(
1

2
− x

)
for 0 ≤ x <

1

2
,

β2

(
x− 1

2

)
(1− x) for

1

2
≤ x ≤ 1.

(4.1)

According to equation (3.98) of the Proposition 7, the system (4.1) presents

an invariant set A1 when β1 =
4

γζ1
= 2. Based on the previous result, the

following proposition emerges.

Figure 4.1: Bimodal maps of the monoparametric family fD (4.1) for different
values of β2. The black line corresponds to β2 = 2, the red line β2 = 3, and
finally, the blue one β2 = 4.

Proposition 10 The set A1 =

[
0,

1

2

)
⊂ I ⊂ R is the invariant set for

fD(x, β2) given by (4.1) when β1 = 2.

Proof. For this proof is enough to demonstrate that when the parameter
β1 = 2 satisfies the invariant set definition, showed in Definition 34. We
notice that fD1 has the following form

fD1(x, γ = 4, β1 = 2) = 8x

(
1

2
− x

)
.
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By deriving the previous expression, we have

DfD1(x) = 4(1− 4x)

If we set DfD1(x) = 0, we obtain the critical value. Then, following the previ-

ous procedure, we find that the critical value xc1 is located at xc1 =
1

4
. Notice

that xc1 = xm1 . Also, notice that the function fD1 is monotonically increasing

for 0 ≤ x < xc1 and monotonically decreasing for xc1 < x <
1

2
. Therefore,

there exists a maximum critical point at fD1(xc1) = fD1

(
1

4

)
=

1

2
. Also,

we have that fD1

(
1

2

)
= fD1(0) = 0, indicating that fD1(0) < fD1

(
1

4

)
and

fD1

(
1

2

)
< fD1

(
1

4

)
. Therefore, by continuity of the function fD1(x) and

also, by the result that when fD1(xc1) = fD1

(
1

4

)
=

1

2
, which is the upper

bound of A1, satisfying fD1(A1) = A1, we can conclude that A1 =

[
0,

1

2

)
is

an invariant set when β1 = 2. ■

According to equation (3.5) of the Proposition 1, we know that the bi-
modal maps of the monoparametric family given by (4.1) have fixed points

in the interval
1

2
≤ x ≤ 1, if the parameter β2 ∈

(
3

2
+
√
2, 4

]
⊂ R. Then

the maps of the monoparametric family (4.1) have not fixed points in the

interval
1

2
≤ x ≤ 1, if the parameter β2 ∈

(
0,

3

2
+
√
2

)
⊂ R.

Proposition 11 The monoparametric family of maps given by (4.1) presents

monostability when β2 ∈
(
0,

3

2
+
√
2

)
.

Proof. Graphically, notice that the graph of fD2 is below the identity func-

tion when β2 ∈
(
0,

3

2
+
√
2

)
, analytically, if β2 ∈

(
0,

3

2
+
√
2

)
then the

discriminant ∆ of the expression for the fixed points showed in (3.8) satis-
fies ∆ < 0 and therefore, have not fixed points in the real numbers field.
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According to previous aforementioned comments, for every initial condi-

tion x0 ∈
[
1

2
, 1

]
, the orbit O(x0, fD) = {x0, x1, x2, . . .} enters the inter-

val 0 ≤ x <
1

2
for a few iterations. Since there is only one invariant set

A1 =

[
0,

1

2

)
then the only possibility for orbits with initial condition x0 ∈ I

is to converge or remain in A1. ■

For β2 =
3

2
+
√
2, the bimodal map has only one fixed point in the interval

1

2
≤ x ≤ 1 at x∗

2 =

√
2

2
, given that when β2 =

3

2
+

√
2, the discriminant ∆

of the expression for the fixed points for fD2 expressed in (3.8) is ∆ = 0.

Figure 4.1 shows maps of the monoparametric family (4.1) for different

values of β2 ∈
(
3

2
+
√
2, 4

]
. These maps have fixed points at the intersection

between the unimodal map fD2 and the identity function f(x) = x. In
this case, the Propositions 6 let us compute a second trapping region or an

invariant set A2 ⊂
[
1

2
, 1

]
of the monoparametric family (4.1), the result is:

A2(β2) =

[
6β2 − 1−

√
(6β2 − 1)2 − 32β2

2

8β2
,
6β2 + 1 +

√
(6β2 − 1)2 − 32β2

2

8β2

]
. (4.2)

A trapping region or an invariant set A2(β2) exists if
3

2
+
√
2 < β2 ≤

3 +
√
17

2
.

Note that A2 depends on the parameter β2; thus, we begin conducting the
relevant simulations to observe how the bistability occurs.

Proposition 12 The trapping region A2(3) =

[
2

3
,
5

6

]
contains an invariant

point at x∗
2,1 =

3

4
of the bimodal map of monoparametric family (4.1) for

β2 = 3.

Proof. For this proof is enough to demonstrate that within the trapping
region A2(3), there exist two fixed point x∗

2,1 and x∗
2,2 denoted by (3.14) and

(3.15) respectively, where the fixed point x∗
2,1 is an attractive fixed point and
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therefore, any initial condition x0 ∈ A2(3) converges to the attractive fixed
point x∗

2,1. From Proposition 1, we know that the bimodal map (4.1) has two

fixed points located at x∗
2,2 =

2

3
and x∗

2,1 =
3

4
for β2 = 3, given that this value

of β2 belongs to the interval showed in (3.5). The equation for the unimodal

map in the interval
1

2
≤ x ≤ 1 is

fD2(x, γ = 4, β2 = 3) = 12

(
x− 1

2

)
(1− x),

therefore, by deriving the previous expression

DfD2(x) = −6(4x− 3), (4.3)

applying the Definition 24 for the fixed point x∗
2,2 substituting into (4.3) we

have that ∣∣DfD2(x
∗
2,2)
∣∣ = ∣∣∣∣−6

(
4

(
2

3

)
− 3

)∣∣∣∣ = |2| > 1,

therefore, the fixed point x∗
2,2 is a repulsive fixed point. We doing the same

procedure for the fixed point x∗
2,1 and it results

∣∣DfD2(x
∗
2,1)
∣∣ = ∣∣∣∣−6

(
4

(
3

4

)
− 3

)∣∣∣∣ = 0 < 1.

Therefore, the fixed point x∗
2,1 is an attractive fixed point. By the previous

results, we can state that the former is a repulsive fixed point and the second

is an attracting fixed point x∗
2,1 =

3

4
that fulfills the conditions of Propo-

sition 3. We know that the map (4.1) is a unimodal map in the interval

x ∈
[
2

3
,
5

6

]
and has a critical value at xc2 =

3

4
(notice that xc2 = xm2)

given that if we set DfD2(x) = 0 we find that the solution that satisfies

the DfD2(x) = 0 is xc2 =
3

4
. Also, the map is monotonically increasing at

2

3
≤ x < xc2 and monotonically decreasing at xc2 < x ≤ 5

6
and there exists

a maximum critical point at fD2(xc) = fD2

(
3

4

)
=

3

4
. Analogously, by the

previous, we have that fD
(
3

4

)
=

3

4
, and fD

(
2

3

)
= fD

(
5

6

)
=

2

3
, such that
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fD

(
2

3

)
< fD

(
3

4

)
and fD

(
5

6

)
< fD

(
3

4

)
, then for continuity the function

fD(xi) :

[
2

3
,
5

6

]
→
[
2

3
,
5

6

]
. As x∗

2,1 =
3

4
is an attracting point then any

initial condition x0 ∈
(
2

3
,
5

6

)
converges to x∗

2,1 =
3

4
. ■

Figures 4.2 and 4.3 show the orbit for x0 = 0.68 and we can see how
the orbit converges to the fixed point x∗

2,1 = 0.75, while x∗
2,2 is a repulsive

fixed point according to Proposition 2. Figure 4.4 shows the orbit of an
initial condition x0 /∈ A2(3), after a certain number of iterations, the dy-
namics enters to the invariant set A1. Now, we consider a new value of

β2 = 3.3 ∈

[
3

2
+
√
2,

3 +
√
17

2

]
⊂ R and its corresponding trapping region

is A2(3.3) =

[
47−

√
31

66
,
52 +

√
31

66

]
⊂ R. Figures 4.5 and 4.6 shows the

dynamics of fD in which we notice that the orbit remains within A2(3.3)
indicating bistability. Furthermore, the period-two orbit is exhibited.

Figure 4.2: Cobweb diagram for the bimodal map fD with β2 = 3 using the
initial condition x0 = 0.68 ∈ A2(3).
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Figure 4.3: Orbit of the bimodal map fD with β2 = 3 using the initial
condition x0 = 0.68 ∈ A2(3), where it’s possible to observe the convergence

of the trajectory towards the attractor fixed point x∗
2,1 =

3

4
.

Figure 4.4: Cobweb diagram for the bimodal map fD with β2 = 3 with initial
condition x0 = 0.85 such that x0 /∈ A2(3).
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Figure 4.5: Cobweb diagram for the bimodal map fD with β2 = 3.3 using
different initial conditions x0 ∈ A2(3.3); x0 = 0.87.

Figure 4.6: Orbit of the bimodal map fD with β2 = 3.3 using the initial
condition x0 ∈ A2(3.3); x0 = 0.87, where it’s possible to observe a period-
two orbit.
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Proposition 13 The trapping region A2(3.3) =

[
47−

√
31

66
,
52 +

√
31

66

]
⊂

R contains attracting periodic orbit x1 =
52 +

√
6

66
and x2 =

52−
√
6

66
of the

bimodal map of monoparametric family (4.1) for β2 = 3.3.

Proof. For this proof, we utilize the result obtained from Proposition 5.
We know that the period-doubling bifurcation occurs when β2 satisfies (3.49),

specifically when β2 =
3

2
+
√
3. Furthermore, the period-two points defined in

(3.57) and (3.58) satisfy x1 > x2 when β2 >
3

2
+
√
3. For the trapping region

A2(3.3) defined above, the value of the parameter β2 is set to β2 = 3.3, which

satisfies 3.3 >
3

2
+
√
3. Therefore, based on Proposition 5, we conclude that

the period-two points are x1 =
52 +

√
6

66
and x2 =

52−
√
6

66
. To demonstrate

whether this periodic orbit is attracting, it is sufficient to show that the
following condition is fulfilled:

|DfD2(x1)||DfD2(x2)| < 1.

Here
fD2(x, γ = 4, β2 = 3.3) = 13.2

(
x− 1

2

)
(1− x),

and therefore, their derivative

DfD2(x) = −26.4x+ 19.8.

Applying the previous condition, we have:

|DfD2(x1)||DfD2(x2)| =
∣∣∣∣ 125
∣∣∣∣ < 1.

Hence, the periodic orbit is attracting. ■

Taking a new value of β2 =
3 +

√
17

2
, its respective invariant set is

A2

(
3 +

√
17

2

)
=

[
9−

√
17

8
,
3 +

√
17

8

]
⊂ R. In Figure 4.7, we can observe
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the dynamics of fD for initial conditions x0 = 0.61 ∈ A2

(
3 +

√
17

2

)
, where

we notice that the orbit remains within the invariant set A2

(
3 +

√
17

2

)
,

giving rise to bistability.

Figure 4.7: Cobweb diagram for the bimodal map fD with β2 =
3 +

√
17

2

using the initial condition x0 = 0.61 ∈ A2

(
3 +

√
17

2

)
.

Proposition 14 A2

(
3 +

√
17

2

)
=

[
9−

√
17

8
,
3 +

√
17

8

]
⊂ R is an invari-

ant set of the bimodal map of monoparametric family (4.1) for β2 =
3 +

√
17

2
.

Proposition 15 There exist two invariant sets A1 =

[
0,

1

2

)
and A2

(
3 +

√
17

2

)
=[

9−
√
17

8
,
3 +

√
17

8

]
of the bimodal map of monoparametric family (4.1) for

β2 =
3 +

√
17

2
then the system presents bistability.
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Finally, the last case is when β2 = 3.57 ∈

(
3 +

√
17

2
, 4

]
, for this realiza-

tion its corresponding set A2(3.57) =

[
1021−

√
22849

1428
,
1121 +

√
22849

1428

]
⊂

R is not an invariant set neither a trapping region, then bistability disap-
pears. Every orbit x0 ∈ A2(3.57) converges to the invariant set A1. In Figure
4.8, we can observe the dynamics of the bimodal map fD with x0 ∈ A2(3.57).

Figure 4.8: Cobweb diagram for the bimodal map fD with β2 = 3.57 using
the initial condition x0 = 0.61 ∈ A2(3.57).

With the previous results, it can be verified that indeed, the conditions
provided in the propositions presented in Chapter 3 work to generate bista-
bility in the bimodal map fD2 as presented in equation (3.1). Particularly, we
have studied bistability in the monoparametric family of bimodal maps (4.1)

when β2 ∈

[
3

2
+
√
2,

3 +
√
17

2

]
, and other case, the system (4.1) presents

monostability. The bifurcation diagram for the parameter β2 ∈ [0, 4] is shown
in Figure 4.9. Below we briefly describe the different behaviors observe in
the monoparametric family of multimodal maps given by (4.1).
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Figure 4.9: Bifurcation diagram of the bimodal map fD given by (4.1) with
respect to the parameters β1 and β2, where β1 = 2 and β2 ∈ (0, 4] ⊂ R.

• For β2 ∈
[
0,

3

2
+
√
2

)
, the maps presents two fixed points in the in-

terval 0 ≤ x <
1

2
and none in the interval

1

2
≤ x ≤ 1. Every orbit

x0 ∈ [0, 1] finally oscillates in the invariant set A1 =

[
0,

1

2

)
, then the

family of maps exhibits a monostable behavior.

• For β2 =
3

2
+

√
2, the family presents a tangent bifurcation and the

system presents two fixed points in the interval 0 ≤ x <
1

2
and one in

the interval
1

2
≤ x ≤ 1. The map exhibits a monostable behavior and

every orbit x0 ∈ [0, 1] converges to the invariant set A1 =

[
0,

1

2

)
.

• For β2 ∈
(
3

2
+
√
2,

3

2
+
√
3

)
, the family of maps presents two fixed

points in the interval 0 ≤ x <
1

2
and two in the interval

1

2
≤ x ≤ 1. The

map exhibits a bistable behavior and every orbit x0 ∈ [0, 1] converges
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to the invariant set A1 =

[
0,

1

2

)
or belongs to the trapping region

A2(β2) that contains a attracting fixed point.

• For β2 =
3

2
+
√
3, the family presents a period-doubling bifurcation.

• For β2 ∈

(
3

2
+
√
3,

3 +
√
17

2

]
, the family presents four repelling fixed

points and at the beginning the bistability is generated by the trapping
region A2(β2) and the invariant set A1. Finally, the bistability is gen-

erated by two invariant sets A1 and A2(β2) when β2 =
3 +

√
17

2
.

• For β2 ∈

(
3 +

√
17

2
, 4

]
, the family presents monostability again in the

interval 0 ≤ x <
1

2
.

From the previous numerical results of this study cases, we can observe
that any initial condition x0 ∈ [ζ1, ζ2]\A2(β2) converges to the invariant
set A1 within the interval ζ0 ≤ x < ζ1. Therefore, there exists a basin
of attraction in x ∈ [ζ1, ζ2]\A2(β2) ⊂ [0, 1] and an attractor in A1 for any
β2 ∈ (0, 4] ⊂ R.

4.2 The monoparametric family of maps for the
parameter β1

The assumptions taken into account to generate a monoparametric family of
bimodal maps based on the system (3.1) are as follows:

• A regular partition of the interval I = [0, 1] given by the set of points

{ζ0 = 0, ζ1 =
1

2
, ζ2 = 1}.

• The parameters γ = 4 and β2 = 3.56 is chosen to ensure the existence
of the trapping region A2(β2) in the subdomain ζ1 ≤ x ≤ ζ2, thus
ensuring monostability and bistability..
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• The parameter β1 ∈ (0, 4] ⊂ R.

Under the previous assumptions, a monoparametric family of bimodal
maps (3.1) is defined as

fD(x, β1) = 4


β1x

(
1

2
− x

)
for 0 ≤ x <

1

2
,

3.56

(
x− 1

2

)
(1− x) for

1

2
≤ x ≤ 1.

(4.4)

Figure 4.15 displays the graph of system (4.4) for different values of β1: The
red line represents β1 = 1, the black line β1 = 2, and finally, the pink one
β1 = 4. Considering the map (4.4), we proceed to study bistability and
monostability.

Figure 4.10: Bimodal map fD (4.4) with γ = 4, β2 = 3.56 and different values
of β1. The black line represents β1 = 2, the red line β1 = 3, and finally, the
blue one β1 = 4.

Proposition 16 The system (4.4) has a trapping region A1 =

[
0,

1

2

)
⊂ R

where all trajectories x0 ∈ A1 converges to x∗
1,1 =

2β1 − 1

4β1

or x∗
1,2 = 0 if
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β1 ∈
(
0,

3

2

)
.

Proof. For this proof, it’s necessary to show that when β1 ∈
(
0,

3

2

)
there

exists a trapping region A1 =

[
0,

1

2

)
⊂ R and additionally, we need proof

that the fixed points x∗
1,1 and x∗

1,2 are attractive when β1 takes the values
previously mentioned. We proceed to calculate the critical point xc1 ∈ A1

for the first modal. For this, we calculate the derivative of fD1 , getting

DfD1(x) = 2β1(1− 4x).

By setting DfD1 = 0 we have

2β1(1− 4x) = 0.

Since β1 > 0, we have
1− 4x = 0,

by solving the previous equation, we obtain that the critical point of the first

modal located at xc1 =
1

4
∈ A1. Now, we defined the interval I0 = [0, xc],

I1 =

[
xc,

1

2

)
, such that A1 = I0 ∪ I1. Therefore, notice that

fD1(I0, β1) = fD1(I1, β1) =

[
0,

3

8

)
∀β1 ∈

(
0,

3

2

)
.

By the previous, notice that we can conclude that

fD1(I0 ∪ I1, β1) = fD1(A1, β1) =

[
0,

3

8

)
⊂ A1 ∀β1 ∈

(
0,

3

2

)
.

Therefore, the orbit of each initial condition x0 ∈ A1 remains in A1, i.e.,
f(A1) ⊂ A1 that is the definition of trapping region. Now, we proceed to

show that one of the fixed points x∗
1,1 or x∗

1,2 is attractive when 0 < β1 <
3

2
.

We know that the equation for the first modal is fD1(x, β1) = 4β1x

(
1

2
− x

)
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and their respective derivative is DfD1(x, β1) = 2β1(1 − 4x). Now, we find
the condition on β1 such that∣∣DfD1(x

∗
1,n)
∣∣ < 1 for n = {1, 2}.

For the fixed point x∗
1,1, we have∣∣DfD1(x

∗
1,1)
∣∣ = |2(β1 − 1)| < 1,

analogously we have
−1 < 2(β1 − 1) < 1.

By solving the previous inequality for β1, we conclude that when
1

2
< β1 <

3

2
,

the fixed point x∗
1,1 is attractive. Performing the same procedure for the fixed

point x∗
1,2, we have ∣∣DfD1(x

∗
1,2)
∣∣ = |2β1| < 1.

Again, by solving the previous expression for β1, we conclude that when

0 < β1 <
1

2
, the fixed point x∗

1,2 is attractive. Combining the two intervals

for β1 found previously, we conclude that if 0 < β1 <
3

2
, then all trajectories

x0 ∈ A1 converge to x∗
1,1 or x∗

1,2. ■

Proposition 17 The system (4.4) has an invariant set A1 =

[
0,

1

2

)
⊂ R if

β1 = 2.

Proof. This proof is similar to the previous one. For this proof it’s neces-

sary to show that when β1 = 2 there exists an invariant set A1 =

[
0,

1

2

)
⊂ R.

We know from the proof of the Proposition 16 that the point xc1 ∈ A1 is the
critical point for the first modal. We proceed to state the following intervals

which were mentioned previously: I0 = [0, xc], I1 =
[
xc,

1

2

)
, and we remem-

ber that these intervals satisfy A1 = I0 ∪ I1. Therefore, notice that

fD1(I0, β1 = 2) = fD1(I1, β1 = 2) =

[
0,

1

2

)
.
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Based on the above, we can conclude that

fD1(I0 ∪ I1, β1 = 2) = fD1(A1, β1 = 2) =

[
0,

1

2

)
= A1.

Notice that the previous result satisfies the definition of invariant set. There-
fore, for any orbit x0 ∈ A1 it remains in A1 and moreover, completely covers
A1. ■

Notice that when β1 = 2, the system (4.4) has an invariant set A1 in
the subdomain ζ0 ≤ x < ζ1 and a trapping region A2(β2 = 3.56) within
ζ1 ≤ x ≤ ζ2. Only the invariant set A1 has a basin of attraction given
by I\A1(β = 2) ∪ A2(β1 = 3.56). Figures 4.11 and 4.12 show the cobweb
diagram and their respective trajectories diagram for the bimodal map fD
with β1 = 2 and β2 = 3.56 using initial conditions, where one of them belongs
to the invariant set A1 and the other belongs to trapping region A2(3.56).

(a) (b)

Figure 4.11: (a) Cobweb diagram and (b) orbit of the bimodal map fD with
β1 = 2, β2 = 3.56 and x0 = 0.0357 ∈ A1.

If we consider Proposition 8, we know that when
3

2
+
√
3 ≤ β2 ≤

3 +
√
17

2
and 4x∗

2,2 < β1 ≤ 4, monostability exists in the interval ζ1 ≤ x ≤ ζ2. Thus,
taking β1 = 2.5, we note that regardless of the initial condition, after a
finite and small number of iterations, the orbit will eventually converge to
the invariant set A2(3.56). For this case, the invariant set A2 has a basin of
attraction given by I\A2(3.56). Figure 4.13 shows the cobweb diagram for
the bimodal map fD with β1 = 2.5 using an initial condition in the basin of
attraction x0 = 0.9502 /∈ A2(3.56).
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(a) (b)

Figure 4.12: (a) Cobweb diagram and (b) orbit of the bimodal map fD with
β1 = 2, β2 = 3.56 and x0 = 0.6557 ∈ A2(3.56).

(a) (b)

Figure 4.13: (a) Cobweb diagram and (b) orbit of the the bimodal map
fD with β1 = 2.5 and β2 = 3.56 using the initial condition x0 = 0.9502 /∈
A2(3.56).

The bifurcation diagram based on the behavior presented in this case
study was constructed and is shown in Figure 4.14, in which we can observe
that the behaviors in the previously presented cobweb diagram are related to
this bifurcation diagram. Below we briefly describe the different behaviors
observe in the monoparametric family of multimodals maps given by (4.4).

• For β1 ∈
(
0,

1

2

)
and β1 ∈

(
1

2
, 4

]
the fixed point x∗

1,2 = 0 is attractive

and repulsive, respectively.

• For β1 ∈
(
1

2
,
3

2

)
and β1 ∈

(
3

2
, 4

]
the fixed point x∗

1,1 =
2β1 − 1

4β1

is

attractive and repulsive, respectively.
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• For β1 =
3

2
, the family presents a period-doubling bifurcation.

• For β1 ∈ (0, 2) the family of bimodal maps (4.4) presents two trapping

regions A1 =

[
0,

1

2

)
and A2(3.56) ⊂

[
1

2
, 1

]
, therefore the maps exhibit

a bistable behavior and every orbit x0 /∈ A2(3.56) converges or belongs

to the trapping region A1 =

[
0,

1

2

]
.

• For β1 = 2, the map (4.4) exhibits a bistable behavior via an invariant
set A1 = [0, 0.5) and a trapping region A2(3.56).

• The family of bimodal maps (4.4) presents monostability in ζ1 ≤ x ≤ ζ2
when

4x∗
2,2 < β1 ≤ 4,

and
3

2
+
√
3 ≤ β2 ≤

3 +
√
17

2
,

where x∗
2,2 is the fixed point of the subdomain [ζ1, ζ2], denoted by (3.15).

Figure 4.14: Bifurcation diagram of the bimodal map fD given by (4.4) with
respect to the parameters β1 and β2, where β2 = 3.56 and β1 ∈ (0, 4].
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4.3 The monoparametric family of maps for the
parameter γ

The assumptions taken into account to generate a monoparametric family of
bimodal maps based on the system (3.1) are as follows:

• A regular partition of the interval [0, 1] given by the set of points {ζ0 =
0, ζ1 =

1

2
, ζ2 = 1}.

• The parameters β1 = β2 = 4.

• The parameter γ ∈ (0, 4] ⊂ R .

Under the previous assumptions, a monoparametric family of bimodal
maps (3.1) is defined as

Figure 4.15: Bimodal map fD (4.5) with γ = 4, β1 = β2 = 4 and different
values of γ ∈ (0, 4]. The black line represents γ = 2, the red line γ = 3, and
finally, the blue one γ = 4.

72



fD(x, γ) = γ


4x

(
1

2
− x

)
for 0 ≤ x <

1

2
,

4

(
x− 1

2

)
(1− x) for

1

2
≤ x ≤ 1.

(4.5)

We can state briefly the behavior for the fixed points when the parameter
γ adopts specifically certain values.

• when γ ∈
(
0,

1

2

)
the fixed point x∗

1,2 denoted by (3.110), is an invariant

point, moreover, this fixed points is unique within I.

• When γ ∈
(
1

2
,
3

2

)
the fixed point x∗

1,2 is repulsive, and a new invariant

appears, this invariant is the fixed point x∗
1,1 defined by (3.109).

• When γ =
3

2
a period-doubling bifurcations occurs.

Proposition 18 The bimodal map (4.5) exhibits monostability and an in-

variant set A =
[
0,

γ

4

]
⊂ I when

1

2
≤ γ

4
<

3 + 2
√
2

8
.

Proof. For this proof, it’s necessary to show that within of the inter-
val I = [0, 1] ⊂ R there exists an invariant set when the parameter γ ∈[
2,

3 + 2
√
2

2

)
, also, we need proof that fD exhibits monostability. For the

first part of this proof, we show that exist an invariant set, for this, let

us consider the following three intervals I0 = [0, xc1 ], I1 =

[
xc1 ,

1

2

]
and

I2 =

[
1

2
,
γ

4

]
, where xc1 is the critical point belongs to subdomain 0 ≤ x <

1

2
,

where xc1 =
1

4
. Notice that the set A = I0 ∪ I1 ∪ I2.
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If we take any x ∈
[
0,

1

2

)
then the expression for the respective modal is

fD1(x) = 4γx

(
1

2
− x

)
. By evaluating I0 and I1 in fD1 we have the following

results: fD1(I0) =
[
0,

γ

4

]
, fD1(I1) =

[
0,

γ

4

]
. Now, if we take any x ∈

[
1

2
, 1

]
then their respective modal is given by fD2(x) = 4γ

(
x− 1

2

)
(1−x). Notice

that interval I2 belongs to the subdomain defined by
1

2
≤ x ≤ 1 therefore,

by evaluating I2 in fD2 we have fD2(I2) =
[
0,

γ

4
(γ − 2)(4− γ)

]
. We take the

upper bound of the parameter γ in this case γ =
3 + 2

√
2

2
. We proceed to

substituting in fD2(I2), where we obtain

γ

4
(γ − 2)(4− γ) =

(
3
√
2− 13

4

)(γ
4

)
<

γ

4
.

And as the upper bound of the set A is not reached by the second modal when

γ =
3 + 2

√
2

2
, then, we conclude that f(A) = A. Therefore, A is an invariant

set. To show monostability, notice that fD2 has not fixed point. Therefore,
for any initial condition x0 ∈ I\A the orbit converges to A. Therefore, the
bimodal map (4.5) presents monostability in the subdomain 0 ≤ x ≤ γ

4
when

2 ≤ γ <
3 + 2

√
2

2
. ■

(a) (b)

Figure 4.16: Cobweb diagram for the bimodal map fD for: a) γ = 2 using
the initial condition x0 = 0.9157, and b) γ = 2.5 using the initial condition
x0 = 0.7922.
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Figures 4.16 shows the Cobweb diagram for the bimodal map fD for: a)
γ = 2 using the initial conditions x0 = 0.9157, and b) γ = 2.5 using the
initial conditions x0 = 0.7922. It is possible to see that the bimodal map
(4.5) exhibits monostability in the invariant set A =

[
0,

γ

4

]
for all x0 ∈ I.

• If
3 + 2

√
2

2
≤ γ <

3 + 2
√
3

2
, there exists an invariant point denoted x∗

2,1

defined by (3.14), and at γ =
3 + 2

√
3

2
a period-doubling bifurcations

occurs.

Proposition 19 If γ ∈

(
3 + 2

√
2

2
,
3 +

√
17

2

)
then the system (4.5) has a

trapping region A(γ) ⊂
[
1

2
, 1

]
⊂ R defined as

A(γ) =

[
6γ − 1−

√
(6γ − 1)2 − 32γ2

8γ
,
6γ + 1 +

√
(6γ − 1)2 − 32γ2

8γ

]
.

Proof. To demonstrate this proposition, we will find the value for the pa-

rameter γ such that f 2
D2
(xc2 , γ) > x∗

2,2, with xc2 =
ζ1 + ζ2

2
∈ [ζ1, ζ2] as the

critical point of the subdomain
1

2
≤ x ≤ 1. The previous condition arises

from the definition of the invariant set. Now, we defined the following r, a, b,
and c such that r = γβ2, a = ζ1 + ζ2, b = ζ1ζ2 and c = a4 − 4b. Therefore,
by the previous definitions, notice that xc1 and x∗

2,2 results

xc1 =
a

2
, x∗

2,2 =
ra− 1−

√
(ra− 1)2 − 4r2b

2r

Now, we proceed to solving

f 2
D2
(xc2 , γ) > x∗

2,2.

We know that

fD2(x, γ, β2) = −γβ2[x
2 − (ζ1 + ζ2)x+ ζ1ζ2] = −rx2 + rax− rb,
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by substituting xc2 into the last expression and by simplifying, we obtain

fD2(xc2 , r, a, b) = r
(a2 − 4b)

4
,

when performing fD2(fD2(xc2 , r, a, b)) = f 2
D2
(xc2 , r, a, b), we have

f 2
D2
(xm2 , r, a, b) = −r

(
r
(a2 − 4b)

4

)2

+ ra

(
r
(a2 − 4b)

4

)
− rb,

since c = a4 − 4b then it results

f 2
D2
(xc2 , r, a, b) =

−r3c2 + 4r2ac− 16rb

16
.

Therefore, if we make f 2
D2
(xc2 , r, a, b) > x∗

2,2 we obtain the following result

−r3c2 + 4r2ac− 16rb

16
<

ra− 1−
√

(ra− 1)2 − 4r2b

2r
.

By simplifying and factoring the previous inequality, the result is:

(cr2 − 2ar − 8)(c3r3 − 6ac2r2 + 4c(8b+ a2 + 2c)r − 8a(2c+ 8b− a2)) < 0.

We take the quadratic factor (cr2 − 2ar− 8) < 0 and solving for r, where we
obtain the following:

r =
2a±

√
4a2 + 32c

2c
=

a±
√
a2 + 8c

c
.

By substituting a = (ζ1 + ζ2), b = ζ1ζ2, c = a4 − 4b and r = γβ2 and by
simplifying, we have

γβ2 =
(ζ1 + ζ2) +

√
9(ζ1 + ζ2)2 − 32ζ1ζ2

(ζ2 − ζ1)2
.

Analogously

γ =
(ζ1 + ζ2)±

√
9(ζ1 + ζ2)2 − 32ζ1ζ2

β2(ζ2 − ζ1)2
.

Then, the solution for the inequality (cr2 − 2ar − 8) < 0 is

(ζ1 + ζ2)−
√

9(ζ1 + ζ2)2 − 32ζ1ζ2
β2(ζ2 − ζ1)2

< γ <
(ζ1 + ζ2) +

√
9(ζ1 + ζ2)2 − 32ζ1ζ2

β2(ζ2 − ζ1)2
.
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However, notice that the lower bound satisfies that

γ =
(ζ1 + ζ2)−

√
9(ζ1 + ζ2)2 − 32ζ1ζ2

β2(ζ2 − ζ1)2
< 0,

also, from Proposition 1 we know that there exists fixed points in fD2 , where

γ >
1

β2

(√
ζ1 +

√
ζ2

ζ2 − ζ1

)2

.

Then, notice that

γ =
(ζ1 + ζ2)−

√
9(ζ1 + ζ2)2 − 32ζ1ζ2

β2(ζ2 − ζ1)2
< 0 <

1

β2

(√
ζ1 +

√
ζ2

ζ2 − ζ1

)2

.

Therefore, the solution set for the inequality cr2 − 2ar − 8 < 0 is

1

β2

(√
ζ1 +

√
ζ2

ζ2 − ζ1

)2

< γ <
(ζ1 + ζ2) +

√
9(ζ1 + ζ2)2 − 32ζ1ζ2

β2(ζ2 − ζ1)2
,

and by substituting β2 = 4, ζ1 =
1

2
and ζ2 = 1, we obtain the following

interval
3 + 2

√
2

2
< γ <

3 +
√
17

2
,

that which is the solution set that the parameter γ must take for A(γ) to be
an invariant set. ■

Proposition 20 If γ =
3 +

√
17

2
then the system (4.5) has an invariant set

A(γ) ⊂
[
1

2
, 1

]
⊂ R defined as

A(γ) =

[
6γ − 1−

√
(6γ − 1)2 − 32γ2

8γ
,
6γ + 1 +

√
(6γ − 1)2 − 32γ2

8γ

]
.
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Proof. This proof is similar to the previous one. To demonstrate this
proposition, we will find the value for the parameter γ such that f 2

D2
(xc2 , γ) =

x∗
2,2, with xc2 =

ζ1 + ζ2
2

∈ [ζ1, ζ2] as the critical point of the subdomain
1

2
≤ x ≤ 1. The previous condition arises from the definition of the invariant

set. Now, we defined the following parameters: r = γβ2, a = ζ1+ζ2, b = ζ1ζ2
and c = a4 − 4b. Therefore, by the previous definitions, notice that xc1 and
x∗
2,2 results

xc1 =
a

2
and x∗

2,2 =
ra− 1−

√
(ra− 1)2 − 4r2b

2r
.

Now, we proceed to solving

f 2
D2
(xc2 , γ) = x∗

2,2.

We know that

fD2(x, γ, β2) = −γβ2[x
2 − (ζ1 + ζ2)x+ ζ1ζ2] = −rx2 + rax− rb.

By substituting xc2 into the last expression and by simplifying, we have

fD2(xc2 , r, a, b) = r
(a2 − 4b)

4
.

When performing fD2(fD2(xc2 , r, a, b)) = f 2
D2
(xc2 , r, a, b). We have

f 2
D2
(xm2 , r, a, b) = −r

(
r
(a2 − 4b)

4

)2

+ ra

(
r
(a2 − 4b)

4

)
− rb.

Since c = a4 − 4b then it results

f 2
D2
(xc2 , r, a, b) =

−r3c2 + 4r2ac− 16rb

16
.

Therefore, if we make f 2
D2
(xc2 , r, a, b) = x∗

2,2 we obtain the following result

−r3c2 + 4r2ac− 16rb

16
=

ra− 1−
√

(ra− 1)2 − 4r2b

2r
.

By simplifying and factoring the previous inequality, the result is:

(cr2 − 2ar − 8)(c3r3 − 6ac2r2 + 4c(8b+ a2 + 2c)r − 8a(2c+ 8b− a2)) = 0.
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We take the quadratic factor (cr2−2ar−8) = 0 and solving for r, we obtain:

r =
2a±

√
4a2 + 32c

2c
=

a±
√
a2 + 8c

c
.

By substituting a = ζ1 + ζ2, b = ζ1ζ2, c = a4 − 4b and r = γβ2 and by
simplifying, we have

γβ2 =
(ζ1 + ζ2) +

√
9(ζ1 + ζ2)2 − 32ζ1ζ2

(ζ2 − ζ1)2
.

Analogously

γ =
(ζ1 + ζ2)±

√
9(ζ1 + ζ2)2 − 32ζ1ζ2

β2(ζ2 − ζ1)2
.

Notice that the solution

γ =
(ζ1 + ζ2)−

√
9(ζ1 + ζ2)2 − 32ζ1ζ2

β2(ζ2 − ζ1)2
< 0.

Therefore, do not satisfies that γ ∈ (0, 4] ∈ R. Therefore, we take

γ =
(ζ1 + ζ2) +

√
9(ζ1 + ζ2)2 − 32ζ1ζ2

β2(ζ2 − ζ1)2
,

and by substituting β2 = 4, ζ1 =
1

2
and ζ2 = 1, we obtain γ =

3 +
√
17

2
,

which is the value that γ must take for A(γ) to be an invariant set. ■

Proposition 21 . The bimodal map (4.5) exhibits monostabilty in the sub-

domain ζ1 ≤ x ≤ ζ2 when γ ∈

(
3

2
+
√
2,

3 +
√
17

2

]
.

Proof. For this proof, we will proceed to take results from the previous
Propositions. From Proposition 18 we know that the bimodal map do not

have monostability in 0 ≤ x ≤ γ

4
when γ ≥ 3 + 2

√
2

2
. Moreover, we know

from the Proposition 19 that there exists a trapping region A(γ) belongs to
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ζ1 ≤ x ≤ ζ2 when
3 + 2

√
2

2
< γ <

3 +
√
17

2
and finally, from Proposition 20

we know that when γ =
3 +

√
17

2
the bimodal map has an invariant set A(γ).

Therefore, since γ ∈

(
3

2
+
√
2,

3 +
√
17

2

]
then, there exists a trapping region

or an invariant set A(γ) allowing to the bimodal map has monostability in
ζ1 ≤ x ≤ ζ2. ■

Since the map fD1 no longer satisfies Proposition 18 but does satisfy
Proposition 21, for any initial condition x0 ∈ [0, 1], the orbit either converges
to or belongs to the trapping region A(γ), as defined by (4.2), within the
subdomain ζ1 ≤ x ≤ ζ2, resulting in monostability. From Figure 4.17, we

can see that when γ =
3 +

√
17

2
, there exists monostability in I = [0, 1]

satisfying Proposition 20 and, consequently, Proposition 21.

Figure 4.17: Cobweb diagram for the bimodal map fD with γ =
3 +

√
17

2
using the initial condition x0 = 0.0357 ∈ [0, 1].

Proposition 22 If γ ∈ (0, 4) ∈ R then the system (4.5) has a trapping
region A = I = [0, 1] ⊂ R.
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Proof. To demonstrate this proposition, we need to show that there exists
a trapping region if γ ∈ (0, 4) ∈ R. For reach this goal, we consider the

following four intervals I0 = [0, xc1 ], I1 =

[
xc1 ,

1

2

]
, I2 =

[
1

2
, xc2

]
and I3 =

[xc2 , 1], such that A =
⋃3

i=0 Ii, where xc1 =
1

4
and xc2 =

3

4
are the critical

points of the subdomains 0 ≤ x <
1

2
and

1

2
≤ x ≤ 1, respectively. For any

x ∈
[
0,

1

2

)
the equation of this modal is

fD1(x, γ) = 4γx

(
1

2
− x

)
.

Therefore, if we evaluate each interval Ii for i = {0, 1} in fD1 we obtain

that fD1([0, xc1 ], γ) =
[
0,

γ

4

]
and fD1

([
xc1 ,

1

2

]
, γ

)
=
[
0,

γ

4

]
. Now, for any

x ∈
[
1

2
, 1

]
the equation for this modal is

fD2(x, γ) = 4γ

(
x− 1

2

)
(1− x),

if we evaluate we obtain the following results fD2

([
1

2
, xc2 , γ

])
=
[
0,

γ

4

]
and

fD2 ([xc2 , 1] , γ) =
[
0,

γ

4

]
and since γ ∈ (0, 4) specifically γ < 4, then,

fD1(I0, γ) = fD1(I1, γ) = fD2(I2, γ) = fD2(I3, γ) = [0, 1) for γ ∈ (0, 4).

Analogously

fD1(I0 ∪ I1, γ) = fD2(I2 ∪ I3, γ) = fD

(
3⋃

i=0

Ii, γ

)
= fD(A, γ) = [0, 1),

and since [0, 1) ⊂ [0, 1]. Therefore, we have that fD(A, γ) ⊂ A. ■

81



Figure 4.18: Cobweb diagram for the bimodal map fD with γ = 3.6 using
the initial condition x0 = 0.8491 ∈ [0, 1].

Figure 4.18 depicts the cobweb diagram for the parameter value γ = 3.6,
according to Proposition 22. The bimodal map (4.5) exhibits monostability
within I = [0, 1] ⊂ R.

Proposition 23 The bimodal map (4.5) has an invariant set A = I =
[0, 1] ⊂ R when γ = 4.

Proof. This proof is similar to the previous one, again, we need to show
that there exists an invariant set if γ = 4. For this, we consider the following

four intervals I0 = [0, xc1 ], I1 =
[
xc1 ,

1

2

]
, I2 =

[
1

2
, xc2

]
and I3 = [xc2 , 1], such

that A =
⋃3

i=0 Ii, where xc1 =
1

4
and xc2 =

3

4
are the critical points of the

subdomains 0 ≤ x <
1

2
and

1

2
≤ x ≤ 1, respectively. For any x ∈

[
0,

1

2

)
the

equation of this modal is

fD1(x, γ = 4) = 16x

(
1

2
− x

)
.

Therefore, if we evaluate each interval Ii for i = {0, 1} in fD1 we obtain that

fD1([0, xc1 ], γ = 4) = [0, 1] and fD1

([
xc1 ,

1

2

]
, γ = 4

)
= [0, 1]. Now, for any
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x ∈
[
1

2
, 1

]
the equation for this modal is

fD2(x, γ = 4) = 16

(
x− 1

2

)
(1− x),

if we evaluate we obtain the following results fD2

([
1

2
, xc2

]
, γ = 4

)
= [0, 1]

and fD2 ([xc2 , 1] , γ = 4) = [0, 1] and since γ ∈ (0, 4). By the previous results,
we obtain

fD1(I0, γ = 4) = fD1(I1, γ = 4) = fD2(I2, γ = 4) = fD2(I3, γ = 4) = [0, 1].

Analogously

fD1(I0 ∪ I1, γ = 4) = fD2(I2 ∪ I3, γ = 4)

= fD

(
3⋃

i=0

Ii, γ = 4

)
= fD(A, γ = 4) = [0, 1].

Therefore, we have that fD(A, γ = 4) = A. ■

Figure 4.19: Cobweb diagram for the bimodal map fD with γ = 4 using the
initial condition x0 = 0.9340 ∈ [0, 1].

Figure 4.19 depicts the cobweb diagram for the parameter value γ = 4,
according to the Proposition 23. The bimodal map (4.5) exhibits monosta-
bility within I = [0, 1] ⊂ R.
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Proposition 24 The bimodal map (4.5) shows monostability in I = [0, 1] if
γ ∈ (0, 4] ⊂ R.

Proof. Notice that when 0 < γ <
1

2
, then there exists an invariant point

x∗
1,2 inside of I, more precisely, in the subdomain 0 ≤ x <

1

2
. When

1

2
< γ <

3

2
, now the invariant point is x∗

1,1 and belongs to 0 ≤ x <
1

2
. By the Proposi-

tion 18, if γ ∈

[
2,

3 + 2
√
2

2

)
, there is only one invariant set A ∈

[
0,

γ

4

]
⊂ I.

From the Propositions 19 and 20, if
3 + 2

√
2

2
< γ ≤ 3 +

√
17

2
now the only

trapping region or invariant set is in
1

2
≤ x ≤ 1. Finally, notice that when

γ ∈

(
3 +

√
17

2
, 4

]
, for any x0 ∈ I the orbit remains in I, given rise to a

trapping region or invariant set. Therefore, observe that if 0 < γ ≤ 4 the
bimodal map (4.5) always shows monostability in I. ■

Figure 4.20: Bifurcation diagram of the bimodal map fD given by (4.5) with
respect to the parameter γ ∈ (0, 4] ∈ R.
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Figure 4.20 shows the corresponding bifurcation diagram for this case study,
highlighting a clear relationship between the behaviors found in the cobweb
diagram for each case. Below we briefly describe the different behaviors
observe in the monoparametric family of multimodals maps given by (4.5).

• For γ ∈
(
0,

1

2

)
the bimodal map (4.5) exhibits an invariant point at

x∗
1,2 = 0.

• For γ ∈
[
2,

3

2
+
√
2

)
the bimodal map (4.5) has an invariant set A ⊂ I,

where A =
[
0,

γ

4

]
and

1

2
≤ γ

4
<

3 + 2
√
2

8
. Moreover, the bimodal

map (4.5) exhibits monostability in the interval 0 ≤ x ≤ γ

4
when

γ ∈
[
2,

3

2
+
√
2

)
.

• When γ ∈

(
3

2
+
√
2,

3 +
√
17

2

)
the bimodal map (4.5) has a trapping

region A(γ) in the interval
1

2
≤ x ≤ 1, and it exhibits monostability.

• When γ =
3 +

√
17

2
the bimodal map (4.5) has an invariant set A(γ)

in the interval
1

2
≤ x ≤ 1.

• For γ ∈ (0, 4) the bimodal map (4.5) has a trapping region A = [0, 1] ⊂
R.

• For γ = 4 the bimodal map (4.5) has a invariant set A = [0, 1] ⊂ R.

• For γ ∈ (0, 4] ⊂ R the bimodal map (4.5) always shows monostability
in I = [0, 1] ∈ R.
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Chapter 5

Conclusion

In the present work, the necessary conditions for ensuring the existence of
monostability and bistability in a bimodal map were provided through propo-
sitions. These propositions were analytically demonstrated using tools com-
monly employed in the study of discrete dynamical systems. Subsequently,
numerical simulations were conducted to observe the existence of monosta-
bility and bistability.

Some results presented were introduced for regular and irregular parti-
tions, therefore this fact allows us to present the statements in terms of the
set of points {ζ0, ζ1, ζ2}. We found that the location and stability of the fixed
points of the bimodal map (3.1) in the interval [ζ0, ζ1) are controlled by the
parameter β1 when it takes values in an interval determined by ζ0 and ζ1.
In a similar way, it is possible to determine the location and stability of the
fixed points of the bimodal map (3.1) in the interval [ζ1, ζ2] by β2 when it
takes values in an interval determined by ζ1 and ζ2.

A trapping region or an invariant set in the first modal appears if the
modal value fD1(xc1) is less than the value of the fixed point x∗

2,2 of the
second modal. And in the second modal a trapping region or an invariant
set appears if the second iteration of the critical point of the second modal
f 2
D2
(xc2) is equal to or greater than the value of the fixed point x∗

2,2. There-
fore, the fixed point x∗

2,2 is crucial to exhibits monostability or bistability in
the bimodal map fD given by (3.1).
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We introduced three parametric families of the bimodal maps by con-
sidering the parameters β1, β2 and γ as fD(x, β1), fD(x, β2) and fD(x, γ),
respectively. In the first two families fD(x, β1) and fD(x, β2), the value of
first modal and the value of the second modal change, respectively, while
the value of the other modal remains fixed, then by controlling the values of
the first and second modal allow these families to exhibit monostability or
bistability in the interval I. In the last family fD(x, γ), the parameter γ does
not allow different values for the first and second modal and this restricts
the system to only exhibits monostability in the interval I. Within the de-
velopment, the respective Cobweb diagrams were shown for each case, the
bifurcation diagrams were also developed, with the objective of observing the
behavior of the different families of the difference map when their parameters
take different values.
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