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Resumen

En este trabajo de tesis se aborda la caracterización de las curvas que deno-
minamos clotoidales en el espacio euclidiano tres dimensional por medio del
método de Lie-Darboux. En este método cualquier curva espacial se puede
obtener a partir de una ecuación de Riccati, que es una ecuación no lineal de
primer orden cuyos coeficientes κ y τ son los parámetros intrínsecos de curva-
tura y torsión, respectivamente, de la curva espacial. Si la ecuación de Riccati
tiene una solución general analítica, las ecuaciones paramétricas de la curva
se pueden obtener siguiendo los pasos del método. En el caso de las hélices
clotoidales esto es posible ya que la curvatura y la torsión son proporcionales
a la longitud de arco.

También se considera el problema de la ambigüedad en el signo de la torsión
para curvas en tres dimensiones. El signo de la torsión no puede definirse a
partir de las ecuaciones paramétricas de una curva, se define solo al encon-
trarse la ecuación diferencial de Riccati asociada a estas curvas.
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Abstract

This thesis addresses the characterization of curves called clothoid type in
three-dimensional Euclidean space using the Lie-Darboux method. In this
method, any spatial curve can be obtained from a Riccati equation, which is
a first-order nonlinear equation with the coefficients κ and τ that represent
the intrinsic parameters, curvature and torsion, respectively, of the spatial
curve. If the Riccati equation has a general analytical solution in rational
form, the parametric equations of the curve can be obtained by following the
steps of the method. In the case of clothoidal helices this is posible because
both curvature and torsion are proportional to the arc length.

Moreover, we consider the problem of ambiguity in the sign of torsion of three-
dimensional curves. The sign of torsion cannot be defined from the parame-
tric equations of a curve; it is defined only by finding the associated Riccati
equation of the curves.
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CAPÍTULO 1

Introducción

En este capítulo presentamos una breve historia del método de Lie-Darboux,
posteriormente se menciona el estado del arte de este tema y las oportunidades
que se tienen en el área.

1.1. Ecuaciones naturales de las curvas

Se entiende por ecuación natural a aquella ecuación que permite que la representa-
ción de una curva sea independiente de cualquier elección del sistema de coordenadas o
parametrización. Dicha ecuación está en función del elemento lineal o longitud de arco
s. Se puede probar analíticamente que esta función determina la forma de una única
curva y que, conversamente, cada función de este tipo da una curva (dado que la función
satisface ciertas condiciones de continuidad). Por esta razón, la longitud de arco s y la
curvatura κ son llamadas coordenadas “naturales” o “intrínsecas” de la curva [1].

Ha de resaltarse que en geometría se usa el término geometría intrínseca para deno-
tar aquellas propiedades de una superficie que son invariantes cuando la superficie se
dobla sin estirarse, es decir, dependen sólo de la medición de las longitudes de las curvas
a lo largo de la superficie misma. Por el contrario, las propiedades extrínsecas dependen
de la incrustación de la superficie en el espacio [2].

Podemos encontrar otra forma de describir el problema con el que comienza el estudio
de las ecuaciones naturales: dadas dos funciones de un parámetro, encuentre la curva
espacial para la cual las ecuaciones son la curvatura y la torsión [3].

La representación de una curva en términos de κ y s fue establecida por Euler para
curvas planas. Se puede ver que la relación entre la curvatura y la longitud de arco
proporciona una ecuación para una curva plana [4]. Es decir, dada una ecuación κ = κ(s),
entonces usando las relaciones

R−1 = κ = dφ/ds , cos(φ) = dx/ds , sin(φ) = dφ/ds (1.1)

x y y se encuentran en términos de dos integrales

x =
∫ φ

φ0
Rcos(φ) dφ , y =

∫ φ

φ0
R sin(φ) dφ , φ =

∫ s

s0
κds . (1.2)
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1.2. Desarrollo histórico del método de Lie-Darboux

En geometría diferencial clásica en virtud de la representación de la solución de
las ecuaciones naturales que describen a las curvas en un espacio euclidiano surgió el
método que llamamos de Lie-Darboux el cual consiste en obtener una ecuación de Riccati
y resolverla para obtener coordenadas paramétricas en función de la longitud de arco.
Esta reducción a una ecuación de Riccati se remonta a S. Lie en Werke III (1882) y G.
Darboux en Leçons I (1887). Las ecuaciones

α1 = (f2
1 −f2

3 )− (f2
2 −f2

4 )
2(f1f4 −f2f3) ,

α2 = i
(f2

1 −f2
3 )+(f2

2 −f2
4 )

2(f1f4 −f2f3) , (1.3)

α3 = f3f4 −f1f2
(f1f4 −f2f3) .

donde las αi, i = 1,2,3 representan los cosenos directores de la línea tangente a un punto
que está sobre la curva y las fj , j = 1,2,3,4 son las cuatro funciones componentes para
la solución general, requerida en forma racional, de la ecuación de Riccati de las curvas,
las cuales se abordan en el Capítulo 2. Las ecuaciones (1.3) se atribuyen a G. Scheffers
en su libro Anwendung I, p. 298. (1901) [5].

El reconocido geómetra G. Darboux realizó una recopilación sistemática de los cono-
cimientos que se tenían hasta el momento de su carrera educativa en la Escuela Normal
Superior de París. La obra de Darboux consiste en nueve libros, incluye desde las inves-
tigaciones de Monge hasta los estudios de Klein, Lie y otros geómetras y matemáticos
notables. Tales investigaciones y colaboraciones son las bases de un método denomina-
do de Lie-Darboux en la geometría diferencial de las curvas que es el tema principal de
esta tesis. La idea principal de Darboux fue considerar dos sistemas de ejes de coorde-
nadas para representar el movimiento de un objeto alrededor de un punto o de un eje
instantáneo de rotación en función del tiempo [6].

Además de la importancia de las ecuaciones de Frenet-Serret en el estudio de las
curvas, Darboux ya había mencionado que Serret introdujo el concepto de indicatríz
esférica. Eisenhart retoma esta idea y la presenta con el propósito de encontrar una ex-
presión para el radio de primera curvatura ρ en términos de las cantidades que definen
a la curva. Tomaremos la esfera de radio unitario con centro en el origen y dibujamos
radios paralelos a las direcciones positivas de las tangentes a la curva, o una porción de
ella tal que no haya dos tangentes paralelas. El lugar geométrico de los extremos es una
curva sobre la esfera, la cual está en correspondencia uno a uno con la curva dada. En
este sentido, tenemos una representación esférica o indicatriz esférica de la curva [7].
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Figura 1.1: Representación de la indicatriz esférica de una curva en el espacio.

Entonces el concepto de indicatriz esférica ser refiere a un mapeo uno a uno entre
una curva espacial y una curva correspondiente que yace en la superficie de la esfera
unitaria centrada en el origen, lo cual reduce el estudio de curvas espaciales en E3 al
estudio de curvas en S2, ver Figura 1.1. Por otro lado, en la Figura 1.2 se representa
la indicatríz esférica de una curva en el espacio cuando uno se desplaza en uno y otro
sentido o dirección sobre la curva misma. El interés en esta representación radica en
la consideración de ambos signos en la curvatura y la torsión de la curva espacial y las
curvas creadas sobre la superficie de la esfera unitaria.

Figura 1.2: Representación de la indicatriz esférica de una curva en el espacio recorrida
en un sentido y en otro.
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En su libro, Scheffers [5] presenta las fórmulas (1.3) para la integración de las ecua-
ciones naturales de la curvas y la obtención de las coordenadas como solución y el ejem-
plo de curvas planas. En dicho libro llama invariantes diferenciales al radio de curva-
tura y al radio de torsión. Menciona que estos invariantes diferenciales están a lo largo
de la curva como funciones de la longitud de arco. Para representar dichos invariantes
diferenciales de la curva espacial, se considera el concepto de cosenos directores y se
calculan los determinantes formados con las derivadas de las ecuaciones de las curvas,
no de las coordenadas mismas.

También afirma que entonces no hay invariante diferencial de primer orden y ρ (ra-
dio de curvatura) es el único invariante diferencial esencial de segundo orden y que el
invariante diferencial, a continuación, vuelve a ser un invariante diferencial [5].

En su libro Struik [4] retoma estas ideas y las sintetiza presentando la relación de
las ecuaciones naturales, de las ecuaciones de Frenet-Serret y del método de reducción
a la ecuación diferencial conocida como ecuación de Riccati.

En la literatura en este tema se han realizado avances principalmente referente a
las hélices en más de tres dimensiones. Sin embargo un estudio más completo en esta
dirección requiere herramientas de álgebra abstracta y topología algebraica. En la lite-
ratura encontramos específicamente del método un análisis computacional en mecánica
con valores aleatorios de curvaturas y torsiones [8].

Existen generalizaciones del sistema de Frenet-Serret como los que se presentan en
el trabajo de Hanson y Hui Ma [9] y Guven [10]. Así como también hemos hallado otros
métodos para abordar la cinemática de las hélices en Goriely [11].

Este método de Lie-Darboux aparece en textos clásicos de geometría diferencial, lo
cual nos hace pensar que se ha dejado a un lado y se ha dedicado el pensamiento a otras
herramientas como por ejemplo las soluciones de las ecuaciones diferenciales con las
herramientas de cómputo.

Aparentemente es un tema explotado en su totalidad pero cabe destacar que aún si
así lo fuese es una herramienta que nos lleva a comprender cómo se extiende en más
casos. Por ejemplo en Sternberg [12] se realiza un análisis a un listón en un espacio
euclidiano usando el sistema de Frenet-Serret se puede ver los patrones que ayudan en
otras áreas así como en geometrías más abstractas.

Se conoce la ecuación de las curvas que es una ecuación diferencial de cuarto orden
homogénea, como es sabido, corresponde al área de ecuaciones diferenciales y conlleva
resolver el problema de valores de la frontera, obtener el conjunto primordial de solu-
ciones para la ecuación diferencial. En este método, se retoman estos conceptos para
obtener la solución de una ecuación de Riccati de las curvas, la cual es más sencilla de
resolver en nivel de dificultad comparada con la ecuación de cuarto orden.

En este trabajo el método de Lie-Darboux es extendido en la medida de que se obtie-
nen dos ecuaciones de Riccati de las curvas que difieren en los signos de la torsión. Es
sabido que existe una ambigüedad en el signo de la torsión por lo que en este trabajo se
obtiene una ecuación de Riccati adicional que podría ayudar en la desambiguación de
este signo. De manera que el método aplicado a la otra ecuación de Riccati nos expone
que se obtiene la misma solución para ambas ecuaciones.

En este trabajo se presenta el estudio de las curvas en R3 cuya curvatura y torsión
cumplen la razón κ/τ = cte. ambas constantes y el caso en el que ambas, curvatura y
torsión, son directamente proporcionales a la longitud de arco s utilizando el método de
Lie-Darboux al utilizar la ecuación de Riccati asociada para conocer las componentes αi,
i = 1,2,3, del vector tangente a la curva.
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1.3. Organización de la tesis

El propósito de esta tesis es retomar, actualizar y presentar en una perspectiva mo-
derna el método de Lie-Darboux que se puede considerar abandonado desde hace dece-
nas de años ya que el último libro donde se presenta con más detalle es el libro de Struik
de 1961 [4] mientras que a nivel de artículos el método fue mencionado solamente en
2020 por Gusella [8] además del artículo publicado en este proyecto doctoral en 2023.

En el siguiente capítulo se introducen los conceptos básicos en esta área de la geo-
metría diferencial, incluyendo el sistema ortogonal de Frenet-Serret de una curva fina-
lizando con una descripción del método de Lie-Darboux donde se emplea el sistema de
Frenet-Serret para la obtención de la ecuación de Riccati de las curvas espaciales.

Los Capítulos 3 y 4 contienen los resultados originales de este trabajo doctoral. En
el Capítulo 3 se presenta un abordaje algebraico semejante al de Lie y Darboux con una
extensión que permite introducir una ecuación de Riccati adicional a la estándar y se
aplica a varios casos conocidos de hélices como son las cilíndricas y clotoidales.

En el Capítulo 4 se introducen las hélices clotoidales empleando la ecuación de Ric-
cati de la curvas espaciales proporcionada por el método de Lie- Darboux. Estas hélices
tienen la curvatura de las espirales de Cornu y la torsión proporcional a la curvatura de
la espiral de Cornu.

En el Capítulo 5 se presentan las conclusiones de nuestro trabajo doctoral. Final-
mente el documento se complementa con los apéndices.
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CAPÍTULO 2

Bases de la geometría diferencial de las curvas espaciales
en En

En este capítulo se presentan definiciones y conceptos matemáticos básicos
para la teoría de la geometría diferencial de las curvas.

2.1. Cosenos directores

En una amplia variedad de tratados y libros de geometría analítica se menciona que
la dirección de una recta en el plano se determina por medio de su pendiente. En el
espacio euclideano de n componentes En, la dirección de una recta cualquiera se deter-
mina por los ángulos que forma con los ejes de coordenadas. Véase Figura 2.1 donde los
ángulos α1, α2 y α3 formados por las partes positivas de los ejes X,Y y Z y la recta dada
(o vector) se llaman ángulos directores de la recta dirigida l. Por conveniencia, de for-
ma usual se consideran los cosenos directores de tales ángulos en lugar de los ángulos
mismos, los cuales reciben el nombre de cosenos directores o cosenos de dirección de la
recta dirigida l. Cualquier recta en el espacio no dirigida tiene dos sistemas de cosenos
directores iguales en valor absoluto pero opuestos en signo.

Figura 2.1: Cosenos directores de una recta en el espacio.

En un sentido más extenso, en el espacio se define el ángulo dihedral entre dos
planos que se intersecan. Este es el ángulo entre las líneas determinadas sobre los dos
planos por un tercer plano ortogonal a ambos [13]. En la literatura se determinan los
cosenos directores de una recta en el espacio cuya posición está dada por dos de sus
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puntos P1 y P2, como cosenos directores en el sentido P1 a P2 tenemos

cos(α1) = x2 −x1
d

, cos(α2) = y2 −y1
d

, cos(α3) = z2 −z1
d

, (2.1)

donde d es un número positivo. Por otro lado, en el sentido P2 a P1 los cosenos directores
son

cos(α1) = x1 −x2
d

, cos(α2) = y1 −y2
d

, cos(α3) = z1 −z2
d

, (2.2)

si se suman los cuadrados de los términos del lado derecho de las ecuaciones (2.1) y (2.2)
esta forma de determinación da origen al siguiente resultado

Teorema 1. La suma de los cuadrados de los cosenos directores de cualquier radio vector
es igual a la unidad [14]

cos2(α1)+cos2(α2)+cos2(α3) = 1 . (2.3)

Figura 2.2: Los cosenos directores αi de un radio vector en el espacio euclideo de tres
dimensiones.

Obsérvese en la Figura 2.2 el radio vector r hacia el punto (x1,y1,z1). Utilizando
r para la magnitud del vector r las coordenadas del punto final y la magnitud están
relacionadas por la siguientes ecuaciones

x1 = r cos(α1) , y1 = r cos(α2) , z1 = r cos(α3) .

Las cantidades x1, y1 y z1 son llamados componentes cartesianos o proyecciones de r
[15].

2.2. Curvas y parámetros intrínsecos en dos dimensiones

2.2.1. Curvas en dos dimensiones

En la literatura se puede encontrar distintas formas de representar una curva, se
puede considerar a una curva como un conjunto de puntos en el plano o en el espacio,
por ejemplo

C = {(x,y) ∈ R2|f(x,y) = c} , (2.4)

donde c es una constante. También como la representación de un punto moviéndose en
un plano de coordenadas cartesianas ortogonales de manera que si consideramos λ(t) el
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vector de posición del punto en el tiempo t la curva está descrita por la función λ y el
parámetro escalar t tiene valores de un vector en R2 o R3 [16]. Por esto es común llamar
curva plana a la gráfica de una ecuación y = f(x) donde f es función continua [17]. En
el caso de las curvas planas se puede listar la siguiente definición:

Definición 1. [17] Una curva plana es un conjunto C de pares ordenados de la forma
(f(t),g(t)) donde las funciones f y g son continuas en un intervalo I.

En algunos casos es conveniente imaginar que el punto denotado P (t) = (f(t),g(t)) de
la Definición 1 traza la curva C conforme t varía en el intervalo I. El siguiente concepto
a retomar considera una variable independiente llamada variable auxiliar o parámetro,
término que históricamente habría sido introducido por Euler y Cramer [5].

Definición 2. Sea C la curva que consiste en todos los pares ordenados (f(t),g(t)), donde
f y g son continuas en el intervalo I. Las ecuaciones

x = f(t) y = g(t) , t ∈ I ,

son llamadas ecuaciones paramétricas de C y t es llamado parámetro.

Si se nos da la representación paramétrica a veces es posible eliminar el parámetro
y obtener una ecuación para C que involucra las variables x y y de la forma

F (x,y) = 0 . (2.5)

La continuidad de f y g implica que un cambio pequeño en el valor de t produce un
cambio pequeño en la posición del punto (f(t),g(t)) en la curva C. Se le dice curva suave
si tiene representación paramétrica x = f(t), y = g(t) en un intervalo I tal que las deri-
vadas de f ′ y g′ sean continuas en el intervalo, y que no sean cero de forma simultánea,
excepto en posibles puntos finales de I [17].

2.2.2. Longitud de arco

Un concepto fundamental para esta tesis es la longitud de arco, este concepto en
cálculo integral se expresa mediante una integral definida. El significado de la longitud
de arco entre dos puntos A y B en la gráfica de una función suave se puede abordar como
sigue.

Longitud de arco entre dos puntos

Dada una función f suave en un intervalo cerrado [a,b], los puntos A(a,f(a)) y B(b,f(b))
son los puntos finales de la gráfica de f . Dada la partición P del intervalo [a,b] determi-
nada por a = x0,x1,x2, ...,xn = b, n ∈ N. El punto con coordenadas (xi,f(xi)), i = 1,2, ...,n
es el punto Qi. Si conectamos los n + 1 puntos Q0,Q1, ...Qn en la gráfica de f como se
observa en la Figura 2.4 por medio de un segmento de línea

d(Qi−1,Qi) =
√

(xi −xi−1)2 +[f(xi)−f(xi−1)]2 , (2.6)

entonces se puede conocer la longitud de la línea quebrada

Lp =
n∑

i=1
d(Qi−1,Qi) (2.7)

9



Figura 2.3: Gráfica de subintervalos para calcular la longitud de arco de una función
suave.

al considerar el Teorema del valor medio

f(xi)−f(xi−1) = f ′(xi−1,xi)(x1,xi−1)
= f ′(mi)(xi −xi−1) , (2.8)

donde mi es el intervalo abierto (xi−1,xi) y sustituyendo (2.8) en la fórmula de la distan-
cia (2.6)

d(Qi−1,Qi) =
√

(xi −xi−1)2 +[f ′(mi)(xi −xi−1)]2 . (2.9)

Como ∆xi = xi −xi−1, la ecuación (2.9) resulta

d(Qi−1,Qi) =
√

(∆xi)2 +[f ′(mi)∆xi]2

=
√

∆xi(1+f ′(mi)2)

=
√

1+f ′(mi)2∆xi . (2.10)

En consecuencia,

Lp =
n∑

i=1
d(Qi−1,Qi) =

n∑
i=1

√
1+f ′(mi)2∆xi . (2.11)

La ecuación (2.11) indica que la suma de las longitudes de los lados de los polígonos
inscritos en la curva (formados de la línea quebrada) tiene un límite para el caso de
un número infinito de vértices Q y es llamada longitud de arco. Es decir, si la norma
||P || → 0, entonces la longitud de la línea quebrada debe aproximarse a la longitud de la
gráfica de f de A a B [5], [17]. Por lo que tenemos la siguiente definición

Definición 3. Sea la función f suave en un intervalo [a,b]. La longitud de arco de la
gráfica de f de A(a,f(a)) a B(b,f(b)) está dada por

Lb
a =

∫ b

a

√
1+ [f ′(x)]2 dx . (2.12)
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Si una gráfica puede descomponerse en un número finito de partes, cada una de las
cuales sea la gráfica de una función suave, entonces la longitud de arco de la gráfica está
definida como la suma de las longitudes de arco de las gráficas individuales. Una función
de este tipo se dice ser suave por partes en su dominio. A continuación denotaremos con
t la variable de integración para evitar abuso de notación. De la Definición 3, si f es
suave en el intervalo [a,b], entonces f es suave en [a,x] para cada x en [a,b] y la longitud
de la gráfica del punto A(a,f(a)) al punto Q(x,f(x)) está dado por

Lx
a =

∫ x

a

√
1+ [f ′(t)]2 dt . (2.13)

Al realizar un cambio de notación y usar el símbolo s(x) en lugar de Lb
a, entonces s debe

considerarse como una función con dominio [a,b] debido a que cada x en [a,b] corresponde
un número único s(x). Llamaremos s la función de longitud de arco para la gráfica de f
como en la siguiente definición.

Definición 4. Sea la función f suave en el intervalo [a,b] la función de longitud de arco
de la gráfica de f en [a,b] está dado por

s(x) =
∫ x

a

√
1+ [f ′(t)]2 dt , (2.14)

donde a ≤ x ≤ b.

Como se muestra en la Figura 2.4 los valores s(x) de s pueden representarse geo-
métricamente como longitudes de arco de la gráfica de f de A(a,f(a)) a Q(x,f(x)). Para
los problemas que involucran a la función longitud de arco hallamos en la literatura el
siguiente teorema.

Figura 2.4: Longitud de arco entre A y B.

Teorema 2. Sea f suave en [a,b] y sea s la función de longitud de arco para la gráfica
de y = f(x) en [a,b]. Si dx y dy son diferenciales de x y y, entonces

i) ds =
√

1+ [f ′(x)]2 dx

ii) (ds)2 = (dx)2 +(dy)2

11



Demostración. Por la Definición 4 y el teorema fundamental del cálculo

Dx[s(x)] = Dx

[∫ x

a

√
1+ [f ′(t)]2 dt

]
= Dx [F (x)−F (a)] , (2.15)

donde F (x) =
√

1+ [f ′(x)]2 y F (a)
√

1+ [f ′(a)]2, entonces:

Dx[s(x)] = DxF (x)−DxF (a)

= Dx

[√
1+ [f ′(x)]2

]
−Dx

[√
1+ [f ′(a)]2

]
=
√

1+ [f ′(x)]2 −0 =
√

1+ [f ′(x)]2 . (2.16)

Luego, por definición, al ser f diferenciable y ∆x un incremento de x, el diferencial dx
de la variable independiente x es dx = ∆x y el diferencial dy de la variable dependiente
y es

dy = f ′(x)∆x = f ′(x)dx (2.17)

tenemos que

Dx[s(x)]dx = ds = s′(x)dx =
√

1+ [f ′(x)]2 dx , (2.18)

esto prueba i). Luego, elevando al cuadrado ambos miembros de i)

ds2 =
{

1+ [f ′(x)]2
}

(dx)2

= (dx)2 +[f ′(x)dx]2 .

Considerando la definición del diferencial (2.17) de dy = f ′(x)dx esto da ii).

Longitud de una curva

A partir de la Definición 3 se puede obtener una fórmula de longitud de arco para un
tipo de curvas dadas por ecuaciones paramétricas, en este sentido supongamos que C es
una curva que no se interseca a sí misma, dada de forma paramétrica por

x = f(t), y = g(t) ,

donde a ≥ t ≥ b. Al decir que no se interseca a sí misma se refiere a que distintos valores
de t determinan puntos diferentes en C. Consideremos la partición P de [a,b] dada por
a = t0 < t1 < t2 < ... < tn = b, n ∈ N. Sea ∆ti = ti − ti−1,i = 1,2, ...,n y Pi = (f(t),g(t)) el
punto en la curva C determinado por ti. Si d(Pi−1,Pi) es la longitud del segmento de
línea Pi−1Pi, entonces la longitud L de la línea quebrada mostrada en la Figura 2.5 es

Lp =
n∑

i=1
d(Pi−1,Pi) . (2.19)

Entonces

L = ĺım
||P ||→0

Lp , (2.20)
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Figura 2.5: Longitud de segmento de línea.

donde llamaremos L la longitud de C de P0 a Pn si para cada ϵ > 0 existe una δ > 0 tal
que |Lp − L| < ϵ para todas las particiones P con ||P || < δ. Por la fórmula de la distancia
tenemos

d(Pi−1,Pi) =
√

[f(ti)−f(ti−1)]2 +[g(ti)−g(ti−1)]2 . (2.21)

Con un procedimiento similar al de la ecuación (2.8) utilizando el teorema del valor
medio y la ecuación (2.21) se obtiene

L = ĺım
||P ||→0

Lp = ĺım
||P ||→0

n∑
i=1

√
[f ′(wi)]2 +[g′(zi)]2∆ti , (2.22)

dado que el límite existe, donde wi y zi son valores en el intervalo abierto (ti−1, ti). Si
wi = zi para toda i, entonces la suma es una suma de Riemann para la función m definida
como

m(t) =
√

[f ′(t)]2 +[g′(t)]2 . (2.23)

El límite de esta suma es

L =
∫ b

a

√
[f ′(t)]2 +[g′(t)2]dt . (2.24)

Esta discusión se halla en la literatura en términos del siguiente teorema [17]

Teorema 3. Si una curva suave C está dada paramétricamente por x = f(t), y = g(t),
donde a ≤ t ≤ b y si C no se interseca a sí misma excepto posiblemente en los puntos finales
de [a,b], entonces la longitud L de C es

L =
∫ a

b

√
[f ′(t)]2 +[g′(t)2]dt =

∫ b

a

√(
dx

dt

)2
+
(

dy

dt

)2
dt . (2.25)

2.2.3. Curvatura

Consideremos ahora una función vectorial r en dos dimensiones tal que r = f(t)i +
g(t)j y sea C la curva determinada por el punto final del vector posición correspondiente
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a r(t), r′(t) es el vector tangente a C que apunta en dirección de los valores crecientes de
t. Si r(t) ̸= 0 entonces el vector unitario tangente T(t) a C está dado por la fórmula

T(t) = 1
|r(t)|r

′(t) . (2.26)

Debido a que |T(t)| = 1, se tiene que T′(t) es ortogonal a r(t) para cada t. Sea N(t) =
(1/|T′(t)|)T′(t) un vector unitario ortogonal a T(t). Nos referimos a |N(t)| como un vector
normal unitario a C. Establecemos esto como

N(t) = 1
|T′(t)|T

′(t) . (2.27)

Figura 2.6: Vector tangente y normal en el plano.

Ejemplo 1. Sea C la curva determinada por

r(t) = t2i+ tj

usando (2.26) con r′(t) = 2ti+ j

T(t) = 1√
(2t)2 +(1)2 (2ti+ j) = 1√

4t2 +1
(2ti+ j)

= 2t√
4t2 +1

i+ 1√
4t2 +1

j .

Al diferenciar los componentes de T(t) tenemos

T′(t) =
2(4t2 +1)1/2 −2t(1

2(4t2 +1)−1/2))8t

4t2 +1 i+ −(1/2(4t2 +1)−1/2)8t

4t2 +1 j

= 2(4t2 +1)1/2 −4t2(4t2 +1)−1/2

(4t2 +1) i− 4t(4t2)
(4t2 +1) j .

Utilizando la longitud de arco s medida desde cualquier punto fijo A como parámetro
en las ecuaciones de una curva C dada por x = f(s) y y = g(s) en el plano xy, donde f ′ y
g′ son continuas en un intervalo I, véase Figura 2.7.

Figura 2.7: Longitud de arco s.
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Para cada s en en el intervalo I corresponde un único punto P (s) = (f(s),g(s)) el cual
está a s unidades de A (medido a lo largo de C) y la dirección positiva a lo largo de la
curva C se determinada por los valores crecientes de s.

A continuación se analiza la variación del vector unitario tangente T(s) conforme
P (s) se mueve a lo largo de C. Para cada s sea θ el ángulo entre T(s) e i (el vector
unitario en la dirección del eje x) como se observa en la Figura 2.8.

Figura 2.8: Vector tangente a la curva y su variación conforme el punto P se mueve a lo
largo de la curva, donde θ es el ángulo entre T(s) y el vector unitario en la dirección del
eje x.

Observación: θ es función de s debido a que para cada s corresponde un punto P (s)
en la curva C que determina un valor de θ. La razón de cambio dθ/ds de θ con respecto
a s es la clave de la siguiente definición [17].

Definición 5. Sea una curva C dada por x = f(s), y = g(s), donde s es el parámetro de
longitud de arco. La curvatura κ de C en el punto P (s) = P (x,y) es

κ =
∣∣∣∣dθ

ds

∣∣∣∣ .

Entonces la curvatura puede entenderse como el valor absoluto de la razón a la cual
el ángulo θ cambia con respecto a la longitud de arco s. En este sentido, la curvatura es
pequeña para puntos tales como R y S en la Figura 2.8 debido a que θ cambia lentamente
conforme P (s) se mueve a lo largo de C. Por otro lado la curvatura es grande para el
punto Q debido a que en ese punto θ cambia muy rápido. Por lo que, a grosso modo, se
dice que la curvatura κ proporciona información sobre el filo (sharpeness) de una curva
en varios puntos. Algunos ejemplos que hallamos en la literatura para profundizar un
poco en este tema se presentan a continuación

Ejemplo 2. Pruebe que la curvatura en una línea es 0 en cada punto de la línea.
Si C es una línea entonces el ángulo θ es el mismo para cada punto P (s) sobre la

línea, es decir, θ es constante. Por lo que

κ =
∣∣∣∣dθ

ds

∣∣∣∣= |θ| = 0 .

Ejemplo 3. Pruebe que la curvatura en cualquier punto en un círculo de radio a es 1
a .

Se asume que en la Figura 2.9 el círculo tiene centro en O y el punto P está en el primer
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Figura 2.9: Curvatura del círculo.

cuadrante. Establecemos el punto A(a,0) fijo y sea s la longitud del arco AP entonces por
definición que s = aα o α = 1

a , donde α es ∠POA. De acuerdo a la Figura 2.9 vemos que

θ = α + π

2 = s

a
+ π

2

y por lo tanto

dθ

ds
= 1

a
, κ = 1

a
.

Ahora consideremos que una curva C es la gráfica de una ecuación rectangular y =
h(x) donde h′ es continua en algún intervalo. Como y′ es la pendiente de la línea tangente
en P , vemos en la Figura 2.8 que

tan(θ) = y′ o θ = tan−1(y′) . (2.28)

De la Definición 4 la función de longitud de arco s puede definirse como

s(x) =
∫ x

a

√
1+(y′)2 dx , (2.29)

donde a es la coordenada x del punto fijo A en C. Si y′′ existe entonces por la regla de la
cadena

dθ

dx
= dθ

ds

ds

dx
. (2.30)

Entonces la curvatura se escribe

κ =
∣∣∣∣dθ

ds

∣∣∣∣= ∣∣∣∣dθ

ds

ds

dx

∣∣∣∣ . (2.31)

Considerando (2.28) y (2.29) se tiene

dθ

dx
= y′′

1+(y′)2 y ds

dx
=
√

1+(y′)2 . (2.32)
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Al sustituir ambas ecuaciones en (2.31) se llega al siguiente resultado

κ =
y′′

1+(y′)2√
1+(y′)2 = |y′′|

[1+(y′)2]3/2 . (2.33)

Esta es una fórmula hallada en la literatura [17] para calcular la curvatura de la curva
C de una gráfica y = f(x) en el punto P (x,y).

Consideremos ahora una curva C descrita en términos de cualquier parámetro t dada
por las ecuaciones paramétricas

x = f(t) , y = g(t) , (2.34)

y además f ′′ y g′′ existen para toda t; se puede encontrar en la literatura la siguiente
fórmula para la curvatura κ en el punto P (x,y) [17]

κ = f ′(t)g′′(t)−g′(t)f ′′(t)
{[f ′(t)]2 +[g′(t)]2}3/2 . (2.35)

Si la curvatura en un punto P en una curva C es distinta de cero, entonces el círculo
de radio ρ = 1

κ cuyo radio yace en el lado cóncavo de C y el cual posee la misma línea
tangente en P que C es llamado círculo de curvatura para P . Su radio ρ y centro son
llamados radio de curvatura y centro de curvatura para P respectivamente. Los ejem-
plos donde se estudió el radio del círculo, dicen que la curvatura del círculo de curvatura
es 1

ρ o κ y por lo tanto es lo mismo que la curvatura de C. Por esta razón el círculo de
curvatura puede pensarse como el círculo que mejor coincide con C en P . Para finali-
zar esta sección, a continuación revisaremos el cálculo de la curvatura de una elipse
analíticamente a partir de sus ecuaciones paramétricas.

Ejemplo 4. Curvatura de una elipse [18]

f(t) = acos(t)
g(t) = bsin(t) .

Al derivar las ecuaciones paramétricas

f ′(t) = −asin(t) g′(t) = bcos(t)
f ′′(t) = −acos(t) g′′(t) = −bsin(t) .

Entonces la curvatura al sustituir en la ecuación (2.35)

κ = f ′(t)g′′(t)−g′(t)f ′′(t)
{[f ′(t)]2 +[g′(t)]2}3/2 .

resulta

κ = |[−asin(t)][−bsin(t)]− [bcos(t)][−acos(t)]|
{[−asin(t)]2 +[bcos(t)]2}3/2

= |[absin2(t)+abcos2(t)]|[
a2 sin2(t)+ b2 cos2(t)

]3/2 = |ab(sin2(t)+cos2(t))|[
a2 sin2(t)+ b2 cos2(t)

]3/2

= |ab|[
a2 sin2(t)+ b2 cos2(t)

]3/2
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2.2.4. Sistema de Frenet-Serret en dos dimensiones

En esta sección presentaremos la formulación del sistema de Frenet-Serret para las
curvas en un plano.

Figura 2.10: Vector tangente y normal en el plano.

Consideremos un punto sobre la curva como se presenta en la Figura 2.10. La deri-
vada del producto punto del vector tangente en ese punto consigo mismo [4]

T ·T = 1 (2.36)

se reduce a

TdT
ds

+TdT
ds

= 2TdT
ds

= 0 . (2.37)

Sea κ la magnitud de dT
ds , considerando N como el vector unitario normal a la tangente,

es decir, introducimos un factor de proporcionalidad η tal que

dT
ds

= ηN . (2.38)

El término dT
ds expresa la razón de cambio de la tangente cuando avanzamos sobre la

curva, es llamado el vector de curvatura, su dirección está bien definida por la curva,
independiente de la orientación de ésta ya que cuando s cambia de signo, T también
cambia de signo [4].

Por ser N perpendicular a T, se tiene que

T ·N = 0 . (2.39)

Derivando esta última expresión tenemos

dT
ds

·N+T · dN
ds

= 0 . (2.40)

De (2.38) y como N ·N = 1, al realizar el producto punto con N se obtiene

dT
ds

·N = ηN ·N = η . (2.41)

Entonces, al sustituir esto en la ecuación (2.40) resulta

η + dN
ds

·T = 0

dN
ds

·T = −η . (2.42)
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De manera similar, al derivar el producto N ·N = 1 se obtiene

dN
ds

·N = 0 , (2.43)

lo que significa que dN
ds y N son perpendiculares.

Ahora, cualquier vector x en el plano T,N se puede expresar como

x = dN
ds

= (v ·T)T+(v ·N)N . (2.44)

Consideremos v = dN
ds

dN
ds

=
(

dN
ds

·T
)

T+
(

dN
ds

·N
)

N = −ηT (2.45)

donde dN
ds ·T = −η y dN

ds ·N = 0.
Por lo que la formulación de Frenet-Serret en dos dimensiones resulta

dT
ds

= ηN , (2.46)

dN
ds

= −ηT . (2.47)

2.3. Curvas espaciales

2.3.1. Curvas en tres dimensiones

Una curva espacial o una curva en tres dimensiones, se define como un conjunto C
de tripletas ordenadas

C = (f(t), g(t), h(t)) (2.48)

donde las funciones f , g y h son continuas en un intervalo I [17].

2.3.2. Longitud de arco

La fórmula de longitud de arco para el espacio euclídeo tridimensional en un sistema
coordenado rectangular (x1,x2,x3) es

L =
∫ b

a

√√√√(dx1

dt

)2
+
(

dx2

dt

)2
+
(

dx3

dt

)2
dt =

∫ b

a

√
δij

dxi

dt

dxj

dt
dt ,

véase (C.2) en Apéndice C, donde δij es la delta de Kronecker [19].
Si una curva C está dada paramétricamente por x = f(t), y = g(t), z = h(t), donde

a ≤ t ≤ b, y si C no se interseca a sí misma, excepto posiblemente en los puntos finales
de [a,b], entonces la longitud L de C está dada por

L =
∫ b

a

√
[f ′(t)]2 +[g′(t)]2 +[h′(t)]2 dt

=
∫ b

a

√(
dx

dt

)2
+
(

dy

dt

)2
+
(

dz

dt

)2
.
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2.3.3. Curvatura y torsión

La curvatura mide la razón de cambio de la tangente a lo largo de la curva mientras
que la torsión es una cantidad que mide la razón de cambio del plano osculador. Por
otro lado el plano osculador es el plano formado por los vectores tangente y normal de la
curva. Para alcanzar este objetivo de medición se considera un vector normal en el punto
P a dicho plano osculador que se denomina binormal [4]. Como se observa en la sección
siguiente sobre la formulación del triedro de Frenet-Serret, se introduce este factor de
proporcionalidad τ , que puede ser positivo o negativo, como la curvatura, pero donde la
ecuación de la curva define solo κ2 (se hace la convención de que siempre es positiva y
por lo tanto se fija el sentido de desplazamiento en la indicatriz esférica [7]) esto solo
define τ .

La definición de curvatura κ =
∣∣∣dθ

ds

∣∣∣ introducida en la Definición 5 no posee un aná-
logo inmediato en tres dimensiones, porque el vector unitario tangente T(s) no puede
especificarse en términos de un sólo ángulo θ. Por lo que es necesario usar un abordaje
diferente para curvas espaciales. Entonces debemos mostrar que si nos enfocamos en
vectores en el plano, la nueva definición debe coincidir con la Definición 5.

Para hallar una definición apropiada debemos primero observar que en dos dimen-
siones

T(s) = cos(θ)i+sin(θ)j ,

donde θ es el ángulo considerado en la Definición 5.
Considerando θ como una función de s, al diferenciar la ecuación anterior nos da

T′(s) =
(

−sin(θ)d(θ)
ds

)
i+
(

cos(θ)d(θ)
ds

)
j = d(θ)

ds
(−sin(θ)i+cos(θ)j) .

Por lo que

|T′(s)| =
∣∣∣∣d(θ)

ds

∣∣∣∣ |− sin(θ)i+cos(θ)j| =
∣∣∣∣d(θ)

ds

∣∣∣∣= κ .

Para introducir el concepto de curvatura en tres dimensiones debemos usar esta
última ecuación. De hecho, queremos describir el vector T(s) sin referirnos al ángulo θ
para después definir κ como |T(s)|.

Supongamos que una curva C está dada por

x = f(s) , y = g(s) , z = h(s) ,

donde s es la longitud de arco medido a lo largo de C desde un punto fijo A al punto
P (s) = (f(s),g(s),h(s)) y donde f ′′(s), g′′(s) y h′′(s) existen. Como ya se ha mencionado,
si r(s) = f(s)i + g(s)j + h(s)k es el vector posición de P (s), entonces r′(s) es un vector
unitario tangente a C en P (s) que denotaremos por T(s). Como |T|(s) es una constante,
se tiene que T′(s) es ortogonal a T(s). Si T′(s) ̸= 0, sea

N(s) = 1
|T′(s)|T

′(s) .

El vector N(s) es un vector unitario ortogonal a T(s) y se le llama vector normal unitario
principal a C en el punto P (s) como se muestran en la Figura 2.11. Habiendo descrito
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al vector tangente unitario T(s) continuamos con la definición de la curvatura en tres
dimensiones como sigue, donde se asume que T′(s) existe.

Figura 2.11: Vector unitario tangente T(s) y vector unitario normal principal N(s).

Definición 6. Sea la curva C dada por

x = f(s) , y = g(s) , z = h(s)

donde s es el parámetro longitud de arco. Sea r(s) = f(s)i+g(s)j+h(s)k y sea T(s) = r′(s).
La curvatura κ de C en el punto P (x,y,z) es

κ = |T′(s)| .

Esta definición se reduce al resultado en Definición 5 si la curva C es plana. Nótese
que

N(s) = 1
κ

T′(s) o T′(s)κN(s).

Intentemos ahora calcular la fórmula de la curvatura de una curva espacial. Supon-
gamos que en un tiempo t la partícula está en el punto P (x,y,z) sobre una curva C dada
de forma paramétrica por x = f(t), y = g(t), z = h(t) donde existen f ′′, g′′ y h′′. Represen-
temos el vector de posición

−−→
OP y s denota la longitud de arco medida a lo largo de C.

Asumamos que s incrementa conforme t incrementa. El vector unitario tangente puede
expresarse como

T(s) = 1
|r′(t)|r

′(t)

y por lo que

r′(t) = |r′(t)|T(s) = ds

dt
T(s) .

Al diferenciar con respecto a t y considerando las reglas de diferenciación siguientes

Dt[f(t)u(t)] = f(t)u′(t)+f ′(t)u(t)

y

Dtu(f(t)) = f ′(t)u′(f(t)) ,
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donde u(t) es un vector, tenemos

r′′(t) = d2s

dt2 T(s)+ ds

dt

d

dt
T(s)

= d2s

dt2 T(s)+ ds

dt

ds

dt
T′(s) .

De la nota de la Definición 6 escribimos T′(s)κN(s) donde κ es la curvatura de C. En
consecuencia,

r′′(t) = d2s

dt2 T(s)+
(

ds

dt

)2
κN(s) .

Si denotamos la velocidad ds/dt por v y escribimos κ = 1/ρ, donde ρ es el radio de cur-
vatura de C, la fórmula reescrita puede expresar la aceleración r′′(t) en términos del
componente tangencial y el componente normal que depende solo de la velocidad y la
curvatura de la curva entonces el componente normal de la aceleración es grande. Tene-
mos el siguiente teorema

Teorema 4. Sea P la posición de un punto en una curva C dado por

r(t) = f(t)i+g(t)j+h(t)k

donde t representa el tiempo. Si la velocidad de P es v = ds/dt, entonces la aceleración de
P es

r′′(t) = dv

dt
T(s)+ v2

ρ
N(s) .

donde ρ es el radio de curvatura de C.

Este resultado, en teoría, prueba el bien conocido hecho de que un automovilista
debería frenar cuando va a tomar una curva.

Busquemos ahora fórmulas para los componentes normal y tangencial de la acelera-
ción que dependan solo de r′(t). Primero recordemos de la discusión que

r′(t) = vT(s) .

Tomando el producto punto con r′′(t) como se ve en el Teorema 4 se obtiene el componen-
te tangencial de la aceleración. Y con el producto cruz se obtiene el componente normal
de aceleración expresada como

v2

ρ
= |r′(t)×r′′(t)|

|r′(t)| . (2.49)

Podemos utilizar esta ecuación para obtener una fórmula para la curvatura de una curva
espacial C. Específicamente, si C está dada paramétricamente por

x = f(t) , y = g(t) , z = h(t)

sea

r(t) = f(t)i+g(t)j+h(t)k .
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Podemos considerar a C como la curva trazada por el punto final de r(t) conforme t
cambia. Como v = |r′(t)| y κ = 1/ρ tenemos del componente normal de aceleración (2.49)

|r′(t)2|
(1/κ) = |r′(t)×r′′(t)|

|r′(t)| .

Al resolver para κ tenemos el siguiente

Teorema 5. Sea una curva C dada por x = f(t), y = g(t), z = h(t), donde f ′′, g′′ y h′′

existen. La curvatura κ en el punto P (x,y,z) sobre C es

κ = |r′(t)×r′′(t)|
|r′(t)|3 .

A continuación revisaremos la formulación del sistema de Frenet-Serret y su relación
con las ecuaciones de las curvas en tres dimensiones.

2.3.4. Sistema de Frenet-Serret en tres dimensiones

Figura 2.12: Vector tangente, normal y binormal de un punto sobre una curva en el
espacio.

Para la formulación del sistema de Frenet-Serret en tres dimensiones, definimos un
vector unitario B perpendicular a T y N, véase la Figura 2.12. Derivando el producto
punto con T y N

dN
ds

−
(

dN
ds

·T
)

T−
(

dN
ds

·N
)

N = τB , (2.50)

donde dN
ds ·T = −κ y dN

ds ·N = 0 y τ es otro factor de proporcionalidad. Por lo que

dN
ds

+κT−0 = τB

dN
ds

= −κT+ τB . (2.51)

Sea dB
ds un vector expresado en términos del vector tangente T, del vector normal N y

del vector binormal B.
dB
ds

= aT+ bN+ cB , (2.52)
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donde a,b y c son constantes. Además, considerando que B ·B = 1 que resulta en 2dB
ds = 0,

y que T ·N = 0, B ·N = 0, B ·T = 0, al diferenciar

B ·N = 0
dB
ds

N+ dN
ds

B = 0 (2.53)

y considerando la ecuación (2.51) se tiene que
dB
ds

N+ dN
ds

B = 0

dB
ds

N+
(
−κT+ τB

)
B = 0 , (2.54)

al sustituir (2.52) en (2.54) se tiene

(aT+ bN+ cB)N+(−κT+ τB)B = 0
aT ·N+ bN ·N+ cB ·N−κT ·B+ τB ·B = 0 . (2.55)

Además, como B ·B = 1, T ·N = 0 y B ·N = 0 entonces a = 0, c = 0, por lo que la ecuación
(2.55) se reduce a

b = −τ . (2.56)

Esto quiere decir que el vector dB
ds supuesto de forma (2.52) tiene realmente la forma

dB
ds

= −τN . (2.57)

Al diferenciar B ·T = 0 se tiene

B ·T = 0
dB
ds

T+ dT
ds

B = 0 . (2.58)

Al sustituir la ecuación (2.52) en (2.58) y considerando que dT
ds = N, se tiene

(aT+ bN+ cB)T+κN ·B = 0
aT ·T+ bN ·T+ cB ·T+κN ·B = 0 . (2.59)

Esto último se reduce a a = 0, por lo que no tiene término con T. Entonces el sistema de
Frenet- Serret queda establecido con las ecuaciones (2.46), (2.51) y (2.57)

dT
ds

= κN

dN
ds

= −κT+ τB

dB
ds

= −τN

En nuestro caso de estudio consideramos el sistema de Frenet-Serret como sigue

α′ = κβ ,

β′ = −κα + τγ , (2.60)
γ′ = −τβ ,

donde α, β y γ son considerados los cosenos directores del radio vector que define a la
curva y α′,β′ y γ′ son las derivadas de estos en función de s.
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2.3.5. Sistema de Frenet-Serret en cuatro dimensiones

Es posible obtener una formulación en cuatro dimensiones con un procedimiento muy
similar al que se presentó en la sección previa. Si D es ortogonal a T, N y B entonces
D · T = 0, D · N = 0, D · B = 0, D · D = 1. Derivando T · B = 0 y al considerar la ecuación
(2.46) se obtiene

dT
ds

B+ dB
ds

T = κN ·B+ dB
ds

·T = 0

que resulta en

dB
ds

·T = −κN ·B . (2.61)

Derivando N ·B = 0 al considerar (2.51)

dN
ds

B+ dB
ds

N = 0

(−κT+ τB) ·B+ dB
ds

·N = 0

−κT ·B+ τB ·B+ dB
ds

·N = 0

dB
ds

·N = −τ . (2.62)

Al considerar (2.61 ), (2.62) y recordando que

B ·B = 1

2dB
ds

= 0 ,

el vector B sería definido como σB

dB
ds

−
(

T · dB
ds

)
T−

(
N · dB

ds

)
N−

(
B · dB

ds

)
B = σD

dB
ds

+κN ·B+ τN−0 = σD

Por lo que

dB
ds

= −τN+σD (2.63)

Ahora, como queremos que D sea un vector ortogonal con la siguiente forma

dD
ds

= aT+ bN+ cB+dD . (2.64)

Veamos cómo es respecto a los otros vectores ortogonales.(
dD
ds

)
·T = (aT+ bN+ cB+dD) ·T(

dD
ds

)
·T = aT ·T = a .
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Donde a,b,c,d son constantes arbitrarias. Y análogamente para los N, B y D.
Consideremos el producto punto de los últimos dos vectores B y D (B · D = 0) y al

diferenciarlo obtenemos

dB
ds

·D+B · dD
ds

= 0

y sustituyendo las ecuaciones (2.63) y (2.64), la ecuación anterior resulta

(−τN+σD) ·D+B · (aT+ bN+ cB+dD) = 0
(−τN) ·B+(σD) ·D+aT ·B+ bN ·B+ cB ·B+dD ·B = 0

que al considerar que T ·D = 0, N ·D = 0, B ·D = 0 y D ·D = 1 se obtiene

c = −σ .

Por lo que el vector dD
ds está dado por

dD
ds

= −σB . (2.65)

Entonces, el sistema en cuatro dimensiones está formado por las ecuaciones (2.46),
(2.51), (2.63) y (2.65)

dT
ds

= κN

dN
ds

= −κT+ τB

dB
ds

= −τN+σD

dD
ds

= −σB .

Marco de Frenet-Serret para E4

De acuerdo a la sección anterior la formulación se generaliza a cuatro dimensiones
de la siguiente forma

T′ = κN
N′ = −κT+ τ1B1

B1
′ = −τ1N+ τ2B2

B2
′ = −τ2B1

O en forma matricial
T′

N′

B1
′

B2
′

=


0 κ 0 0

−κ 0 τ1 0
0 −τ1 0 τ2
0 0 −τ2 0




T
N
B1
B2

 ,

donde T′, N′, B1
′ y B2

′ son diferenciales de los vectores tangente, normal, primera
binormal y segunda binormal, respectivamente y κ, τ1 y τ2 son la curvatura y la primera
y segunda torsión respectivamente.
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Y a cinco dimensiones

T′ = κN
N′ = −κT+ τ1B1

B1
′ = −τ1N+ τ2B2

B2
′ = −τ2B1 + τ3B3

B3
′ = −τ3B2


T′

N′

B1
′

B2
′

B3
′

=


0 κ 0 0 0

−κ 0 τ1 0 0
0 −τ1 0 τ2 0
0 0 −τ2 0 τ3
0 0 0 −τ3 0




T
N
B1
B2
B3

 ,

donde, de igual forma, B3 es también la tercera binormal y τ3 un tercera torsión.

2.4. Ecuación diferencial de las curvas espaciales

En la geometría diferencial de las curvas espaciales, que también es equivalente a la
cinemática de trayectorias en la mecánica clásica, un resultado básico fue obtenido por
J. F. Frenet y J. A. Serret alrededor de 1850, cuando introdujeron el Sistema de Frenet-
Serret de ecuaciones diferenciales de primer orden para el marco móvil ortogonal de
vectores tangente, normal y binormal (2.60) donde las primas representan las derivadas
con respecto a la longitud del arco s de la curva, y los coeficientes κ y τ son la curva-
tura y la torsión de la curva, respectivamente. Este sistema lineal de tres ecuaciones
de evolución acopladas en la longitud de la curva es, por supuesto, equivalente a una
ecuación diferencial de tercer orden en la forma de la siguiente ecuación diferencial de
cuarto orden en el vector tangente

x(iv) −
(2κ′

κ
+ τ ′

τ

)
x′′′ +

(
κ2 + τ2 − κκ′′ −2(κ′)2

κ2 + κ′τ ′

κτ

)
x′′ +κ2

(
κ′

κ
− τ ′

τ

)
x′ = 0 , (2.66)

donde κ,τ ̸= 0 y κ′, κ′′ son diferenciales de la curvatura y τ ′ la diferencial de la torsión.
En ecuaciones diferenciales ordinarias se estudia la reducción de una ecuación dife-

rencial ordinaria no lineal conocida como ecuación de Riccati de la forma [20]

p(s)x+ q(s) = f(s) (2.67)

a una ecuación de Bernoulli o a una ecuación lineal de primer orden por medio de un
cambio de variable o sustitución de variable una vez obtenida la función u(x) la sus-
tituimos en y(t) para obtener la solución deseada. Ese es un algoritmo conocido y que
incluiremos en el Apéndice A sobre ecuaciones de Riccati.

La ecuación de Riccati para las curvas que encontramos en la literatura [4] y [21] es
una ecuación diferencial de cuarto orden homogénea y la obtención de su solución puede
darse por sí misma al reducir el orden o al transformarla en un sistema de ecuaciones.
La solución de dicha ecuación pertenece al estudio de las ecuaciones diferenciales de
orden superior.
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Si en lugar de utilizar el método de la ecuación de Riccati nos disponemos a obtener
la x(s) directamente como la solución de las ecuaciones de Frenet para una κ ̸= 0 y τ ̸= 0
se obtiene la ecuación (2.66).

Por otro lado, dada una curva x = x(s) de clase ≥ 4 cumple la ecuación diferencial
(2.66). al calcular x′ = t, x′′ = t′ = κn, x′′′ = κ′n + κn′ = κ′n − κ2t + κτb y x(iv) = ... como
combinaciones lineales de t, n, b, es decir, tangente, normal y binormal, respectivamen-
te, y haciendo las sustituciones del caso.

Recordemos que el triedro de Frenet está definido como

dt
ds

= κn

dn
ds

= −κt+ τb (2.68)

db
ds

= −τn .

Entonces comenzamos con obtener x(iv):

x(iv) = κ′′n +κ′n′ − (2κt+κ2t′)+κ′τb+κ(τ ′b+ τb′) (2.69)

y al sustituir t′,n′,b′ en (2.69)

x(iv) = κ̈n + κ̇(−κt+ τb)−2κt−κ3n + κ̇τb+κτ̇b+κτ(−τn)
= κ̈n − κ̇κt+ τ κ̇b−2κt−κ3n + κ̇τb+κτ̇b−κτ2n)
= (κ̈−κ3 −κτ2)n +(−κκ̇−2κ)t+(2τ κ̇+κτ̇)b . (2.70)

Sustituimos ẋ, ẍ,
...x ,x(iv) en la ecuación diferencial (2.66)

x(iv) −
(2κ̇

κ
+ τ̇

τ

)(
κ̇n −κ2t+κτb

)
+
(

κ2 + τ2 − κκ̈−2(κ̇)2

κ2 + κ̇τ̇

κτ

)
(κn) (2.71)

+κ2
(

κ̇

κ
− τ̇

τ

)
t = 0

x(iv) −
(

2κ̇2

κ
+ τ̇ κ̇

τ

)
n +

(
2κκ̇+ τ̇

τ
κ2
)

t− (2κ̇τ + τ̇κ)b+
(

κ3 +κτ2 + κ̇τ̇

τ
+ 2κ̇2 −κκ̇

κ

)
n

(2.72)

+
(

κκ̇− κ2τ̇

τ

)
t = 0

x(iv) +
(

κ3 + τ2κ− κκ̈

κ

)
n +(3κκ̇)t− (2κ̇τ + τ̇κ)b = 0 . (2.73)

Observamos que se reducen todos los términos de esta última ecuación y (2.70) así

(κ̈−κ3 −κτ2)n +(−κκ̇−2κ)t+(2τ κ̇+κτ̇)b+
(

κ3 + τ2κ− κκ̈

κ

)
n +(3κκ̇)t− (2κ̇τ + τ̇κ)b = 0 .

(2.74)

Como vimos, estamos interesados en soluciones linealmente dependientes de una
ecuación diferencial lineal de orden superior de la forma

an(x)dny

dxn
+an−1(x) dn−1

dxn−1 + · · ·+a1(x)dy

dx
= g(x) . (2.75)
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Esta ecuación es de un tipo en la que la variable y no aparece explícitamente. El
método de reducción de orden considera el cambio de variable

z = dy

dx
,

dz

dx
= d2y

dx2 ,
d2z

dx2 = d3y

dx3 ,
d3z

dy3 = d4y

dx4 . (2.76)

Considerando los coeficientes de la ecuación (2.66) de acuerdo a la ecuación (2.75), defi-
nimos las siguientes funciones

P (x) = a1(x)
a4(x) = κ2

(
κ′

κ
− τ ′

τ

)
, Q(x) = a2(x)

a4(x) = κ2 + τ2 − κκ′′ −2(κ′)2

κ2 + κ′τ ′

κτ

R(x) = a3(x)
a4(x) = κ2

(
κ′

κ
− τ ′

τ

)
, S(x) = g(x)

a4(x) = 0 . (2.77)

Si sustituimos estas funciones y el cambio de variable en la ecuación de cuarto orden
lograremos reducir a una ecuación de la siguiente forma

d3z

dy
−R(x)d2z

dy
+Q(x)dx

dy
+P (x)z = S(x) = 0 . (2.78)

2.5. El método de Lie-Darboux y las fórmulas de Scheffers

En la sección anterior se presentó un enfoque de las ecuaciones diferenciales para
expresar curvas solución de dichas ecuaciones. Un resultado menos conocido, pero no
menos importante, fue obtenido a finales del siglo XIX por S. Lie. y G. Darboux, quienes
idearon un método con el cual las curvas espaciales podrían describirse mediante una
ecuación de Riccati de primer orden no lineal con coeficientes expresados en términos de
curvatura y torsión. El método de Lie-Darboux se menciona en algunos libros de texto
clásicos de geometría diferencial, como el tratado de Eisenhart [7] y las conferencias de
Struik [4].

En la literatura [7] y [5] encontramos el resultado que habla sobre la congruencia de
dos curvas dadas C1,C2 cuando los valores intrínsecos de ambas (la primera y segunda
curvatura, es decir, la curvatura y la torsión respectivamente) coinciden en cada uno de
los puntos de las curvas.

De dicho resultado se tiene que una curva está determinada a pesar de su posición
en el espacio, por las expresiones para el radio de curvatura ρ y radio de torsión p en
términos de la longitud de arco. Por lo que las ecuaciones de una curva que pueden
escribirse de la forma

κ = f1(s) , τ = f2(s) (2.79)

donde κ = 1
ρ es la curvatura y τ = 1

p es la torsión, son llamadas ecuaciones intrínsecas de
la curva.

El objetivo ahora es sobre el caso converso, es decir, cuando dos ecuaciones (2.79) son
ecuaciones intrínsecas de una curva para la cual s es la longitud de arco, en las cuales
f1 y f2 son funciones cualesquiera del parámetro s ¿qué se obtiene?. Para responder esta
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pregunta, en primer lugar, las ecuaciones (2.60) reescritas como están en [5]

dα

ds
= β

ρ
, (2.80)

dβ

ds
= −

(
α

ρ
+ γ

p

)
, (2.81)

dγ

ds
= β

p
(2.82)

o como las encontramos en [4]

dα

ds
= κβ , (2.83)

dβ

ds
= −κα + τγ , (2.84)

dγ

ds
= −τβ (2.85)

admiten tres conjuntos de soluciones de cosenos directores, es decir:

α = α1 , β = β1 , γ = γ1 ; (2.86)
α = α2 , β = β2 , γ = γ2 ; (2.87)
α = α3 , β = β3 , γ = γ3 ; (2.88)

tales que para cada valor de s las cantidades αi, βi y γi son los cosenos directores de tres
líneas o vectores perpendiculares entre sí. Con un argumento similar al que utilizan en
la teoría de curvas congruentes prueban que para todos los valores de s las soluciones
(2.86) satisfacen las condiciones siguientes

α1α2 +β1β2 +γ1γ2 = 0 , α2α3 +β2β3 +γ2γ3 = 0 , α3α1 +β3α3 +γ3γ1 = 0 . (2.89)

es decir, se cumplen las condiciones de ortogonalidad y además las condiciones de los
cosenos directores al inicio de este capítulo, ecuación (2.3), sobre que la suma de los
cuadrados de una recta siempre debe ser igual a uno

α2
1 +β2

1 +γ2
1 = 1 , α2

2 +β2
2 +γ2

2 = 1 , α2
3 +β2

3 +γ2
3 = 1 . (2.90)

Para más información respecto a estos conjuntos de soluciones consulte [4, 5, 7].
Para ser más precisos supongamos que tenemos un conjunto de soluciones, es decir,

α1,α2 y α3 son los cosenos directores de la tangente a la curva. Para la curva dada por
las siguientes ecuaciones

x =
∫

α1 ds , y =
∫

α2 ds , z =
∫

α3 ds , (2.91)

se puede decir, que si ρ es positivo para todos los valores de s, es el radio de curvatura de
la curva (2.91) y α2,β2,γ2 son los cosenos directores de la normal principal en el sentido
positivo y las funciones α3,β3,γ3 son los cosenos directores de la binormal [5, 7]. Por lo
que de las ecuaciones de Frenet- Serret (2.60) y la tercera ecuación de (2.80) se tiene que
p es el radio de torsión de la curva. Por lo que tenemos el siguiente teorema fundamental
de las curvas [5]:
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Teorema 6. Dadas dos funciones holomórficas f1(s), f2(s) de los cuales la forma es posi-
tiva para todos los valores de s en un cierto dominio, en un dominio dado para valores de
la longitud de arco s existe una curva para la cual ρ = f1(s), τ = f2(s). La determinación
de la curva se reduce a hallar los tres conjuntos de soluciones de las ecuaciones (2.80)
satisfaciendo las condiciones (2.89), (2.90) e integrar.

O siguiendo el procedimiento de Struik [4], procederemos a efectuar la integración
de las ecuaciones (2.83).

Dado que aún desconocemos estos cosenos directores como funciones de s, queremos
hallar aquellas funciones α,β,γ de s que, además de las ecuaciones (2.83), también co-
rresponden a la ecuación siguiente

α2 +β2 +γ2 = 1 . (2.92)

es este punto donde recordamos la reducción del estudio de las curvas espaciales en E3

al estudio de las curvas en S2 mencionada al inicio de esta tesis: para una curva indi-
catriz esférica arbitraria, sus vectores unitarios tangente, normal y binormal satisfacen
el sistema lineal de Frenet-Serret (2.60) y también la ecuación algebraica de la esfera
unitaria S2 (2.92). La idea del método de Lie-Darboux es convertir esta definición aditiva
de S2 en la forma factorizada

(α + iβ)(α − iβ) = (1+γ)(1−γ) (2.93)

e introducir las funciones imaginarias conjugadas w y −z−1

w = α + iβ

1−γ
= 1+γ

α − iβ
, (2.94)

−1
z

= α − iβ

1−γ
= 1+γ

α + iβ
, (2.95)

de donde se puede obtener la tangente, normal y binormal en formas racionales en
términos de las funciones w y z

α = 1−wz

w −z
, β = i

1+wz

w −z
, γ = w +z

w −z
. (2.96)

Así mismo en el caso del sistema de Frenet-Serret, uno puede estar interesado en la
evolución en la variable longitud de arco de las funciones w y −1/z. Para la diferencial
de w, tenemos

w′ = α′ + iβ′

1−γ
+ α + iβ

(1−γ)2 γ′ = −iκw + iγ −βw

1−γ
, (2.97)

donde en el último paso se han utilizado las derivadas del sistema de Frenet-Serret
(2.83). El truco ahora es obtener α de la primera definición de w en (2.94) y sustituirla
en la segunda definición de w. La ecuación resultante, se resuelve para β y al sustituir
en la última ecuación de (2.96). El resultado es que γ se elimina de la ecuación (2.97), la
cual se convierte en

w′ = −iκw + i

2τw2 − i

2τ , (2.98)

que es una ecuación de Riccati en la cual la torsión proporciona tanto el término libre
como el acoplamiento a la no linealidad. Esta ecuación diferencial (2.98) pertenece a una
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clase de ecuaciones diferenciales interesante ya que define el cociente diferencial de la
función desconocida w como una función cuadrática de w, cuyos coeficientes, κ y τ sin
embargo todavía contienen la variable independiente s.

Un cálculo algebraico similar muestra que la función z satisface la misma ecuación
de Riccati que w, lo que implica que los resultados para w se apliquen también a z. La
segunda parte del método de Lie-Darboux consiste en obtener las ecuaciones paramétri-
cas de la curva a partir de la ecuación de Riccati (2.98). La forma más sencilla de hacerlo
es integrando los tres componentes del vector unitario tangente α en (2.96).

Se puede observar que para cada uno de los componentes se necesitan dos soluciones
particulares de (2.98), w y z. La expresión más conveniente para estas soluciones de
Riccati es la forma racional

w = cf1 +f2
cf3 +f4

, z = df1 +f2
df3 +f4

, (2.99)

donde c y d son constantes elegidas apropiadamente que deben cumplir las relaciones
de ortogonalidad de los vectores Frenet-Serret escrito en términos de w y z, y las fi son
funciones de la longitud del arco s también soluciones particulares de la ecuación (2.98).

No hay un método general para resolver la ecuación de Riccati (2.98), y ya sabemos
resolverlos sólo en casos particulares pero la solución general w, por cierto, se puede dar
tan pronto como tengan o conozcan las soluciones particulares [5].

Entonces para las soluciones de las ecuaciones de Riccati tenemos para αi presenta-
das en [4]:

α1 = 1−w1z1
w1 −z1

, β1 = 1+w1z1
w1 −z1

, γ1 = w1 +z1
w1 −z1

, (2.100)

α2 = 1−w2z2
w2 −z2

, β2 = 1+w2z2
w2 −z2

, γ2 = w2 +z2
w2 −z2

, (2.101)

α3 = 1−w3z3
w3 −z3

, β3 = 1+w3z3
w3 −z3

, γ3 = w3 +z3
w3 −z3

, (2.102)

Las fórmulas importantes de los componentes para la tangente unitaria fueron ob-
tenidas por primera vez por G. Scheffers [5]:

α1 = (f2
1 −f2

3 )− (f2
2 −f2

4 )
2(f1f4 −f2f3) ,

α2 = i
(f2

1 −f2
3 )+(f2

2 −f2
4 )

2(f1f4 −f2f3) , (2.103)

α3 = f3f4 −f1f2
(f1f4 −f2f3) .

Las ecuaciones paramétricas de la curva son obtenidas al integrar αi a lo largo de la
curva:

x(s) =
∫ s

α1(σ)dσ , y(s) =
∫ s

α2(σ)dσ , z(s) =
∫ s

α3(σ)dσ . (2.104)

Entonces cabe recalcar que el principal objetivo del método de Lie-Darboux es obtener
cuatro funciones fi(s), es decir poner las soluciones de la ecuación de Riccati en la forma
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dada en (2.99) . Consideremos algunos ejemplos utilizando clases especiales de curvas
para determinarlas de esta manera [5, 7].

Nota 1. Se presenta a continuación el caso cuando las curvas tienen torsión cero:

τ = 1
p

= 0 .

la solución general de la ecuación de Riccati degenerada

σ = ce−i
∫

ds
r

por lo que el conjunto de soluciones puede considerarse

f1 = e−i
∫

ds
r , f2 = 0 , f3 = 0 , f4 = 1

de modo que la fórmula para α3 en las ecuaciones (2.103) sea α3 = cte. Por tanto, la curva
mencionada resultante es plana.

Nota 2. Veamos ahora las curvas cuya curvatura es cero, es decir cuando

κ = 1
ρ

= 0 .

La solución de la ecuación resultante al considerar κ = 0

σ = ce
i
∫

ds
ρ −1

ce
i
∫

ds
ρ +1

.

Esto proporciona el conjunto de soluciones

p = e
i
∫

ds
ρ , q = −1 , π = e

i
∫

ds
φ , κ = 1 .

Y la curva resultante es una recta.
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CAPÍTULO 3

Resultados y aplicaciones

En este capítulo se presenta un enfoque más general del método de Lie-Darboux
que genera dos ecuaciones de Riccati que difieren por el signo de la torsión.

3.1. Dos ecuaciones de Riccati para el método de Lie-Darboux

Consideremos la siguiente generalización de la ecuación algebraica (2.92) presentada
en el capítulo anterior,

k2
1α2 +k2

2β2 +k2
3γ2 = 1 , (3.1)

donde k1, k2 y k3 son constantes reales arbitrarias. Para k1 = k2 = k3 = k esta ecuación
(3.1) de la esfera de radio k−1 en el espacio euclidiano tridimensional E3 y si k = 1 es
la esfera unitaria. También se considera que las funciones α, β y γ son funciones de la
longitud de arco s. Procedemos a factorizar (3.1) de la siguiente manera

k2
1α2 +k2

2β2 = 1−k2
3γ2

(k1α + ik2β)(k1α − ik2β) = (1+k3γ)(1−k3γ) .

A continuación se define la función w de dos maneras

w = k1α + ik2β

1−k3γ
= 1+k3γ

k1α − ik2β
, (3.2)

derivando con respecto a s la primera definición en (3.2) obtenemos

w′ = (k1α + ik2β)′(1−k3γ)
(1−k3)2 − (k1α + ik2β)(1−k3γ)′

(1−k3γ)2

= k1α′ + ik2β′

1−k3γ
+ (k1α + ik2β)k3γ′

(1−k3γ)2 . (3.3)

Al sustituir las derivadas de α, β y γ que hallamos en el sistema de Frenet-Serret
(2.60) y usando la primera definición de la función w en (3.2), la ecuación (3.3) se trans-
forma en

w′ = k1κβ − ik2κα + ik2τγ

1−k3γ
+w

k3(−τβ)
1−k3γ

= −iκ
k2α + ik1β

1−k3γ
+ τ

ik2γ −k3βw

1−k3y
. (3.4)
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Se puede ver que al tomar en esta última ecuación k1 = k2 = k se obtiene

w′ = −iκw + τ
ikγ −k3βw

1−k3γ
. (3.5)

Por otro lado, también podemos obtener α de la primera definición de w en la ecuación
(3.2)

w(1−k3γ)− ikβ = kα , (3.6)

que resulta entonces

α = w(1−k3γ)− ikβ

k
= (1−k3γ)

k
w − iβ . (3.7)

Sustituyendo la expresión de α (3.7) en la segunda definición de w (3.2), obtenemos

w = 1+k3γ

k
[

(1−k3γ)
k w − iβ

]
− ikβ

= 1+k3γ

(1−k3γ)w −2ikβ
. (3.8)

De este modo, al reacomodar los términos de (3.8) tenemos

(1−k3γ)w2 −2ikβw = 1+k3γ . (3.9)

de donde obtenemos β como sigue

β = 1+k3γ − (1−k3γ)w2

−2ikw
= i

2
(1+k3γ)

kw
− i

2
1−k3γ

k
w , (3.10)

que tras sustituir (3.10) en la ecuación (3.5), y después de los pasos de cálculo siguientes
llegamos a

w′ = −iκw + τ
ikγ

1−k3γ
−k3τw

[
i
2
(1+k3γ

kw

)
− i

2
(1−k3γ

k

)
w

1−k3γ

]

= −iκw + τ
ikγ

1−k3γ
− i

2τ

[
k3
k

(1+k3γ

1−k3γ

)
− k3

k

(1−k3γ

1−k3γ

)
w2
]

= −iκw + τ
i

2
k3
k

w2 + iτ

2

[ 2kγ

1−k3γ
− k3

k

1+k3γ

1−k3γ

]
= −iκw + τ

i

2
k3
k

w2 + iτ

2 Q (3.11)

donde

Q = 2k2γ −k3(1+k3γ)
k(1−k3γ) . (3.12)

La ecuación (3.11) aún contiene el término γ, se toman algunas consideraciones para
obtener una ecuación en términos de los parámetros intrínsecos y la función w.

Al considerar k3 = k en (3.11), obtenemos que el término denotado por Q resulta
Q = −1, lo cual lleva a la ecuación de Riccati siguiente, la cual es la ecuación obtenida
en el método de Lie-Darboux original, es decir, el hallado en la literatura,

w′ = −iκw + i

2τw2 − iτ

2 . (3.13)
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Por otro lado, si tomamos k3 = −k entonces Q = 1, que lleva a la ecuación de Riccati
siguiente

w̃′ = −iκw̃ − i

2τw̃2 + iτ

2 . (3.14)

Esta ecuación difiere de la primera ecuación de Riccati en el signo de la torsión. Retoma-
remos lo que implica este cambio de signo más adelante en este trabajo. A continuación
se revisa el caso de las hélices cilindricas del punto de vista de las dos ecuaciones de
Riccati con torsiones opuestas.

3.2. Aplicación a las hélices cilíndricas

Las hélices cilíndricas son conocidas como el caso más sencillo de curvas de pendiente
constate, es decir, curvas que poseen la razón entre curvatura y torsión constante, κ/τ =
h, donde h es una constante real arbitraria [7]. Para tales curvas, las ecuaciones de
Riccati en el método estándar se resuelven por separación de variables y por lo tanto se
pueden utilizar como el ejemplo ilustrativo preferido para el método de Lie-Darboux.

Caso k3 = k. Consideremos la ecuación de Riccati (3.13) correspondiente a este caso
la cual tiene la siguiente forma

dw

ds
= iτ

2 (w2 −2ξw −1) , (3.15)

donde ξ = κ/τ = a/b es una constante que tomamos como número racional. Utilizando el
método de separación de variables obtenemos∫

dw

w2 −2ξw −1 =
∫

iτ

2 ds . (3.16)

Al reescribir el término del lado izquierdo de la ecuación (3.16) se tiene∫
dw

w2 −2ξw −1 = 1
(w1 −w2)

∫ 1
(w −w1) − 1

(w −w2) dw . (3.17)

Entonces, la ecuación (3.16) se reescribe como

1
(w1 −w2)

∫ 1
(w −w1) − 1

(w −w2) dw =
∫

i

2τ dσ . (3.18)

Al resolver la ecuación (3.18) se obtiene

1
w1 −w2

[ln(w −w1)− ln(w −w2)] = i

2

∫
τ dσ +C

1
w1 −w2

[
ln
(

w −w1
w −w2

)]
= i

2

∫
τ dσ +C .

ln
(

w −w1
w −w2

)
= i

2 ·2
√

ξ2 +1
∫

τ dσ +C

ln
(

w −w1
w −w2

)
= i

c

b

∫ s

τ(σ)dσ +lnK . (3.19)
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donde w1 = ξ +
√

ξ2 +1 y w2 = ξ −
√

ξ2 +1 son las raíces del polinomio w2 − 2ξw − 1 = 0,
c =

√
a2 + b2 y la constante de integración arbitraria C se escribe por conveniencia como

lnK. Al resolver para w, se obtiene lo siguiente
w −w1
w −w2

= Kei c
b

ϕ(s)

w −w1 = Kei c
b

ϕ(s)(w −w2)
Kei c

b
ϕ(s)w −w = Kei c

b
ϕ(s)w2 −w1

w(Kei c
b

ϕ(s) −1) = Kei c
b

ϕ(s)w2 −w1

w = Kw2ei c
b

ϕ(s) −w1

Kei c
b

ϕ(s) −1
, (3.20)

donde

ϕ(s) =
∫ s

τ(σ)dσ = b

a

∫ s

κ(σ)dσ . (3.21)

De la solución general en la ecuación (3.20) consideramos K = 1 y el conjunto de funcio-
nes fj , j = 1,2,3,4 como a continuación

f1 = w2ei c
b

ϕ(s) , f2 = −w1 , f3 = ei c
b

ϕ(s) , f4 = −1 . (3.22)

Este conjunto lleva a las siguientes expresiones para los tres componentes αi como en el
método estándar en (2.103). Para α1 de este caso tenemos la siguiente expresión

α1 =

(
w2ei c

b
ϕ(s) −ei c

b
ϕ(s)

)
−
(
w2

1 −1
)

2
(
−w2ei c

b
ϕ(s) +w1ei c

b
ϕ(s)

)
=
[

ei c
b

ϕ(s)(w2
2 −1)− (w2

1 −1)
2(w1 −w2)ei c

b
ϕ(s)

]
e−i c

b
ϕ(s)

e−i c
b

ϕ(s)

= e−i c
b

ϕ(s) ·ei c
b

ϕ(s)(w2
2 −1)−e−i c

b
ϕ(s)(w2

1 −1)
2(w1 −w2)ei c

b
ϕ(s) ·e−i c

b
ϕ(s)

= ei c
b

ϕ(s)(w2
2 −1)−e−i c

b
ϕ(s)(w2

1 −1)
2(w1 −w2)

= w2
2 −1

w1 −w2

ei c
b

ϕ(s) −
(

w2
1−1

w2
2−1

)
e−i c

b
ϕ(s)

2 . (3.23)

Luego, α2 se obtiene como sigue

α2 = (w2ei c
b

ϕ(s) −ei c
b

ϕ(s))+(w2
1 −1)

2(−w2ei c
b

ϕ(s) +w1ei c
b

ϕ(s))

=
[

ei c
b

ϕ(s)(w2
2 −1)+(w2

1 −1)
2(w1 −w2)ei c

b
ϕ(s)

]
e−i c

b
ϕ(s)

e−i c
b

ϕ(s)

= e−i c
b

ϕ(s) ·ei c
b

ϕ(s)(w2
2 −1)+e−i c

b
ϕ(s)(w2

1 −1)
2(w1 −w2)ei c

b
ϕ(s) ·e−i c

b
ϕ(s)

= ei c
b

ϕ(s)(w2
2 −1)+e−i c

b
ϕ(s)(w2

1 −1)
2(w1 −w2)

= w2
2 −1

w1 −w2

ei c
b

ϕ(s) +
(

w2
1−1

w2
2−1

)
e−i c

b
ϕ(s)

2 . (3.24)
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Al final, α3 se obtiene de

α3 = −ei c
b

ϕ(s) −w2ei c
b

ϕ(s) · (−w1)
−w2ei c

b
ϕ(s) − (−w1ei c

b
ϕ(s))

= w1w2 −1
w1 −w2

= − 1√
ξ2 +1

. (3.25)

Reescribiremos las ecuaciones (3.23), (3.24) y (3.25) como a continuación

α1(s) = w2
2 −1

w1 −w2

ei c
b

ϕ(s) −
(

w2
1−1

w2
2−1

)
e−i c

b
ϕ(s)

2 = i
a

bc
(a− c) sin1

(c

b
ϕ(s)

)
,

α2(s) = i
w2

2 −1
w1 −w2

ei c
b

ϕ(s) +
(

w2
1−1

w2
2−1

)
e−i c

b
ϕ(s)

2 = i
a

bc
(a− c) cos1

(c

b
ϕ(s)

)
, (3.26)

α3(s) = − 1√
ξ2 +1

= −b

c
,

donde consideramos sin1

(
c
bϕ(s)

)
= e

i c
b

ϕ(s)−K1e
i c

b
ϕ(s)

2i , cos1

(
c
bϕ(s)

)
= e

i c
b

ϕ(s)+K1e
−i c

b
ϕ(s)

2 y K1 =
w2

1−1
w2

2−1 = a+c
a−c , este último lo llamaremos el coeficiente de deformación de la hélice. Utiliza-

mos el subíndice 1 de sin1, de cos1 y de K1 para indicar el caso en el que k3 = k.
Resolviendo las ecuaciones αi, i = 1,2,3, en (3.26) para x,y,z de acuerdo a las ecua-

ciones (2.83) del método estándar, hallamos que

x(s) = i
a

bc
(a− c)

∫ s

sin1

(c

b
ϕ(s′)

)
ds′

y(s) = i
a

bc
(a− c)

∫ s

cos1

(c

b
ϕ(s′)

)
ds′ (3.27)

z(s) = −
∫ s 1√

ξ2 +1
ds′ = − s√

ξ2 +1
= −b(s/c) ,

donde las constantes de integración han sido tomadas como cero por simplicidad. Para
profundizar un poco más respecto a lo que implican las ecuaciones de Riccati revise-
mos ahora el siguiente ejemplo sobre las hélices cilíndricas más sencillas que podemos
considerar.

Ejemplo 5. Los cálculos más sencillos para hélices ocurren cuando la torsión es una
constante, es decir, sea τ(s) = τ = cte., en dicho caso se considera ϕ = τs y podemos escribir
las ecuaciones en (3.27) como

x(s) = i
a

bc
(a− c)

∫ s

sin1

(c

b
τs′
)
ds′ = −i

a

b
(a− c)cos1(s/c) ,

y(s) = i
a

bc
(a− c)

∫ s

cos1

(c

b
τs′
)
ds′ = −i

a

b
(a− c)sin1(s/c) , (3.28)

z(s) = − s√
ξ2 +1

= −b(s/c) ,

en el último paso en (3.28) la torsión constante ha sido elegida como τ = b/c .
Veamos a continuación los pasos que nos llevan a una verificación de la hélice cilín-

drica.
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x2 + y2 =
[
−icS1

ei σ
c +K1e−i σ

c

2

]2

+
[
icS1

ei σ
c −K1e−i σ

c

2i

]2

= (icS1)2


[

−ei σ
c −K1e−i σ

c

2

]2

+
[

ei σ
c −K1e−i σ

c

2i

]2


= (icS1)2
[

e2i σ
c +2K1 +K2

1e−2i σ
c

4 + e2i σ
c −2K1 +K2

1e−2i σ
c

4(−1)

]

= 1
4 (icS1)2

[
e2i σ

c +2K1 +K2
1e−2i σ

c −e2i σ
c +2K1 −K2

1e−2i σ
c

]
= 1

4 (icS1)2 [4K1] = (icS1)2K1 (3.29)

Recordemos que w1,2 = c̄±
√

c̄2 +1. Consideramos el término (icS1)2 donde cS1 resulta

cS1 = c
(w2

2 −1)
(w1 −w2) = c

2c̄2 −2c̄
√

c̄2 +1
2
√

c̄+1
= c

 a2

b2 − a
b

√
a2

b2 +1√
a2

b1 +1

= c

 (a
b )2√

a2

b2 +1
− a

b


por lo que elevando al cuadrado

c2 (w2
2 −1)2

(w1 −w2)2 = c

 (a
b )2√

a2

b2 +1
− a

b

2

= c2

 (a
b )4

a2

b2 +1
+ a2

b2 −2a

b

(a
b )2√

a2

b2 +1


= c2

 a4

b2(a2 + b2) + a2

b2 −2 a3

b3
√

a2

b2 +1

 , c = b

√
a2

b2 +1 , c2 = a2 + b2 ,

= a4

b2 + c2 a2

b2 −2c
a3

b2 = a2

b2 (a2 + c2 −2ac) = a2

b2 (a− c)2

Consideremos ahora el término K1

K1 = w2
1 −1

w2
2 −1

= (2c̄2 +2c̄
√

c̄2 +1)
(2c̄2 −2c̄

√
c̄2 +1)

= c̄+
√

c̄2 +1
c̄−

√
c̄2 +1

=
a
b +

√
(a

b )2 +1
a
b −

√
a
b

2 +1
=

a+ b
√

(a
b )2 +1

a− b
√

a
b

2 +1
= a+ c

a− c
.

Entonces el término resultante en la ecuación (3.29) es

(icS1)2K1 = −a2

b2 (a− c)2 a+ c

a− c
= −a2

b2 (a− c)(a+ c) = −a2

b2 (a2 − c2) , c = a2 + b2 ,

= −a2

b2 (a2 −a2 − b2) = a2

Al calcular sin2(s/c)+cos2(s/c) = K1, uno encuentra que

x2 + y2 = a2 (3.30)

la cual junto con la expresión para z(s) anterior en (3.28) muestra que la hélice es cilín-
drica.
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Caso k3 = −k. En este caso, la ecuación de Riccati (3.14) toma la forma siguiente

dw̃

ds
= − iτ

2 (w̃2 +2ξw̃ −1) . (3.31)

De manera similar que el caso anterior, al integrar por separación de variables se obtie-
ne la solución general w̃ en la forma siguiente

w̃ = K̃w̃2e−i c
b

ϕ(s) − w̃1

K̃e−i c
b

ϕ(s) −1
, ϕ(s) =

∫
τ(s′)ds′ , (3.32)

donde las raíces cuadráticas son w̃1,2 = −ξ ±
√

ξ2 +1.
Cabe resaltar que las raíces son w̃1,2 = −w2,1. Por lo que se puede observar la siguien-

te relación con las fj , j = 1,2,3,4 del Caso k3 = k

f1 = −w1e−i c
b

ϕ(s) , f2 = w2 , f3 = e−i c
b

ϕ(s) , f4 = −1 . (3.33)

Consideramos para los siguientes cálculos K̃ = 1, por lo que las expresiones que usare-
mos en el conjunto de funciones fj , j = 1, ...,4 de la ecuación (3.32) son las siguientes

f1 = w̃2e−i c
b

ϕ(s) , f2 = w̃1 , f3 = e−i c
b

ϕ(s) , f4 = −1 . (3.34)

Entonces, con respecto a las α̃i, i = 1,2,3, las ecuaciones (2.103) se presentan a continua-
ción. Para α̃1 obtenemos lo siguiente

α̃1 =
(
w̃2

2e−2i c
b

ϕ(s) −e−2i c
b

ϕ(s))− (w̃2
1 −1)

2
(
− w̃2e−i c

b
ϕ(s) + w̃1e−i c

b
ϕ(s)) =

[
e−2i c

b
ϕ(s)(w̃2

2 −1)− (w̃2
1 −1)

2(w̃1 − w̃2)e−i c
b

ϕ(s)

]
ei c

b
ϕ(s)

ei c
b

ϕ(s)

= ei c
b

ϕ(s) ·e−2i c
b

ϕ(s)(w̃2
2 −1)−ei c

b
ϕ(s)(w̃2

1 −1)
2(w̃1 − w̃2)ei c

b
ϕ(s) ·e−i c

b
ϕ(s)

= e−i c
b

ϕ(s)(w̃2
2 −1)−ei c

b
ϕ(s)(w̃2

1 −1)
2(w̃1 − w̃2)

= −
(

w̃2
1 −1

w̃1 − w̃2

)ei c
b

ϕ(s) −
(

w̃2
2−1

w̃2
1−1

)
e−i c

b
ϕ(s)

2
(3.35)

Para α̃2 la expresión se obtiene como sigue

α̃2 = i

[(
w̃2

2e−2i c
b

ϕ(s) −e−2i c
b

ϕ(s))+(w̃2
1 −1)

2
(
− w̃2e−i c

b
ϕ(s) + w̃1e−i c

b
ϕ(s))

]
= i

[
e−2i c

b
ϕ(s)(w̃2

2 −1)− (w̃2
1 −1)

2(w̃1 − w̃2)e−i c
b

ϕ(s)

]
ei c

b
ϕ(s)

ei c
b

ϕ(s)

= i

[
ei c

b
ϕ(s) ·e−2i c

b
ϕ(s)(w̃2

2 −1)+ei c
b

ϕ(s)(w̃2
1 −1)

2(w̃1 − w̃2)ei c
b

ϕ(s) ·e−i c
b

ϕ(s)

]

= i

[
e−i c

b
ϕ(s)(w̃2

2 −1)+ei c
b

ϕ(s)(w̃2
1 −1)

2(w̃1 − w̃2)

]

= i

(
w̃2

1 −1
w̃1 − w̃2

)ei c
b

ϕ(s) +
(

w̃2
2−1

w̃2
1−1

)
e−i c

b
ϕ(s)

2
(3.36)
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Finalmente para α̃3 la expresión resulta de la siguiente manera

α̃3 = −e−i c
b

ϕ(s) − w̃2e−i c
b

ϕ(s) · (−w̃1)
−w̃2e−i c

b
ϕ(s) −

(
− w̃1e−i c

b
ϕ(s)) = w̃1w̃2e−i c

b
ϕ(s) −e−i c

b
ϕ(s)

w̃1e−i c
b

ϕ(s) − w̃2e−i c
b

ϕ(s)

= −e−i c
b

ϕ(s) −e−i c
b

ϕ(s)

2
√

ξ2 +1e−i c
b

ϕ(s)

= − 1√
ξ2 +1

. (3.37)

Reescribimos las ecuaciones (3.35), (3.36) y (3.37) como a continuación

α̃1 = −iS−1 sin−1

(s

c

)
, (3.38)

α̃2 = iS−1 cos−1

(s

c

)
, (3.39)

α̃3 = − 1√
ξ2 +1

. (3.40)

Donde sin−1

(
s
c

)
= ei s

c −K−1 e−i s
c

2i , cos−1

(
s
c

)
= ei s

c −K−1 e−i s
c

2 , y los coeficientes son

S−1 = w̃2
1 −1

w̃1 − w̃2
, K−1 = w̃2

2 −1
w̃2

1 −1
, (3.41)

donde w̃1,2 = −c̄ ±
√

c̄2 +1 y K−1 es el coeficiente de deformación de la hélice y al igual
que en el caso anterior el subíndice indica que es del caso k3 = −k.

Resolviendo para x̃, ỹ, z̃:

x̃ =
∫

α̃1(s)ds = −S−1

(1
2

∫
ei σ

c dσ −
K−1

2

∫
e−i σ

c dσ

)
consideremos que ν = iσ/c, dν = idσ/c, entonces

∫
α̃1(s)ds = −S−1

[
c

2i

∫
ei σ

c dσ −
K−1

2

∫
−c

i
e−i σ

c dσ

]
+C1

= −S−1

[
c

2i
ei σ

c +
cK−1

2i
e−i σ

c

]∣∣∣∣s +C1

= −c

i
S−1

[
ei σ

c +K−1e−i σ
c

2

]∣∣∣∣∣
s

+C1

= icS−1 cos−1(σ/c)
∣∣s +C1 (3.42)

ỹ =
∫

α̃2(s)ds = iS−1

(1
2

∫
ei σ

c dσ +
K−1

2

∫ s

e−i σ
c dσ

)
= iS−1

[
c

2i

∫
ei σ

c dσ +
cK−1

−2i

∫
e−i σ

c dσ

]

= icS−1

[
ei σ

c −K−1e−i σ
c

2i

]∣∣∣∣∣
s

+C2

= icS−1

[
sin−1

(
σ

c

)]∣∣∣∣s +C2 . (3.43)
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z̃ =
∫ s

α̃3(s)ds = − 1√
ξ2 +1

∫
dσ

= − 1√
ξ2 +1

σ|s +C3

= − 1√
ξ2 +1

s+C3 (3.44)

Con un análisis análogo al del Caso k3 = k y considerando las constantes de integración
C1 = C2 = C3 = 0 resolvemos lo siguiente:

A = cS−1 = c
w2

1 −1
w1 −w2

= c
(−c̄+

√
c̄2 +1)2 −1

−c̄+
√

c̄2 +1+ c̄+
√

c̄2 +1
= c

(a
b )2√

(a
b )2 +1

− c
a

b
= c

a

b

[
a

b
√

c̄2 +1
−1
]

= c
a

b

[
a

c
−1
]

= a

b

[
a− c

]
(3.45)

x2 +y2 =
[
icS−1

(ei σ
c +K−1e−i σ

c )
2

]2

+
[
icS−1

(ei σ
c −K−1e−i σ

c )
2i

]2

= −A2
[

cos2
−1

(
σ

c

)
+sin2

−1

(
σ

c

)]
= A2

[
(ei σ

c +K−1e−i σ
c )2

4 −
(ei σ

c −K−1e−i σ
c )2

4

]

= A2

4
[
e2i σ

c +2K−1 +K2
−1e−2i σ

c −e2i σ
c +2K−1 −K2

−1e−2i σ
c

]
= A2

4 (4K−1) = A2K−1 (3.46)

Resulta en que el radio tiene la siguiente forma

R−1 = A
√

K−1

Donde llamaremos a K−1 el coeficiente de deformación de la hélice el cual es

K−1 = w2
2 −1

w2
1 −1

= 2c̄2 +2c̄
√

c̄2 +1
2c̄2 −2c̄

√
c̄2 +1

= c̄+
√

c̄2 +1
c̄−

√
c̄2 +1

=
a
b +

√
(a

b )2 +1
a
b −

√
(a

b )2 +1
=

a+ b
√

(a
b )2 +1

a− b
√

(a
b )2 +1

= a+ c

a− c
,

(3.47)

donde c = b
√

a2

b2 +1 , c2 = a2 + b2.
El término cS−1 resulta en

cS−k = c
w2

1 −1
w1 −w2

= c
2c̄2 −2c̄

√
c̄2 +1

2
√

c̄2 +1
= c

(
c̄2

√
c̄2 +1

− c̄

)
= c

 (a
b )2√

(a
b )2 +1

−
(

a

b

)2
 (3.48)
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Por lo que

(cS−1)2 =
(

c
w2

1 −1
w1 −w2

)2

= c2

 (a
b )4

(a
b )2 +1 +

(
a

b

)2
−2a

b

(a
b )2√

(a
b )2 +1


= c2

 (a
b )4

b2(a2 + b2) +
(

a

b

)2
−2 a3

b3
√

(a
b )2 +1


= a4

b2 + c2 a2

b2 −2c
a3

b2 = a2

2 (a2 + c2 −2ac) = a2

b2 (a− c)2 (3.49)

Por lo que la ecuación (3.46) resulta

(icS−1)2K−1 = −a2

b2 (a− c)2
(

a+ c

a− c

)
= −a2

b2 (a− c)(a+ c) = −a2

b2 (a2 − c2) = a2 . (3.50)

De nuestros dos ejemplos, podemos visualizar que el coeficiente dentro de sin1 y del
sin−1 es inverso (el numerador y el denominador están invertidos en la razón). Además
que el coeficiente está cambiado únicamente por el numerador, que en este caso es el
w2

1 −1 o el w2
2 −1 dependiendo del caso k3 = k o k3 = −k.

Nota 3. Para el caso en el que k2
1α2 + k2

2β2 − k2
3γ3 = 1 para k3 = ik notamos que la

ecuación de Riccati obtenida es la misma que el caso en el que k2
1α2 + k2

2β2 + k2
3γ = 1 con

k3 = −k. Por lo que se procede como en el caso k3 = −k.
Nota 4. Para el caso en el que k2

1α2 + k2
2β2 − k2

3γ3 = 1 son k3 = −ik la ecuación de
Riccati obtenida es la misma que la que se obtiene para k2

1α2 +k2
2β2 +k2

3γ = 1 con k3 = k.
Por lo que se procede como en el caso k3 = k.

Cuando estas funciones son usadas para calcular los componentes αi para este caso,
que proporcionan los mismos resultados que en (3.28). Por lo que las coordenadas para-
métricas obtenidas en ambos casos k3 = ±k coinciden. Este hecho confirma la sentencia
de Struik sobre que el signo de la torsión no puede determinarse a partir de las ecua-
ciones paramétricas de la curva y uno debería usar las ecuaciones diferenciales para
establecer el signo ambiguo de la torsión. El hecho de que nuestro abordaje generali-
zado proporciona dos ecuaciones de Riccati que difieren por el signo de la torsión es la
solución del problema de signo.

3.3. Caso α2 +β2 −γ2 = 1

Con el propósito de explorar un poco más este método de Lie-Darboux, considerare-
mos una ecuación para los cosenos directores de la siguiente manera

α2 +β2 −γ2 = 1 . (3.51)

A continuación se introducen las implicaciones del signo negativo en el lado derecho
de la ecuación. Una esfera en el espacio euclidiano con radio r posee una curvatura
constante 1/r2. La ecuación de este caso puede representarnos, por analogía, con una
métrica cómo la métrica indefinida

ds2 = −dx2
0 +dx2

1 + ...+dx2
n . (3.52)
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Con esta métrica, Rn+1, usualmente se refiere al espacio de Lorentz denotado por En,1.
Con un interpretación en relatividad general, la dirección vertical x0 representa el tiem-
po y las direcciones horizontales representan el espacio. Un vector x es space-like, time-
like o light-like dependiendo si la forma cuadrática Q−(x) definida negativa es positiva,
negativa o cero [22]. Por analogía con el caso euclideano, la longitud de un vector x es√

Q−(x), por lo que los vectores light-like poseen longitud cero, y los vectores time-like
poseen longitud imaginaria (que tomamos como un múltiplo positivo de i). A saber, la
esfera de radio i cerca del origen en En,1 es el hiperboloide. Cuando nos restringimos
a este hiperboloide, la métrica indefinida ds2 de la ecuación (3.52) se convierte en una
métrica Riemmaniana positiva definida.

En En,1 se tiene aún una noción de ortogonalidad, dada por el producto interno
−x0y0 +x1y1 + ...+xnyn. También se tiene la noción de transformación ortogonal, es decir,
transformaciones lineales de Rn+1 que preserva Q−[13].

3.3.1. Ecuaciones de Riccati para el caso en M3

Se propuso obtener la ecuación de Riccati correspondiente a un espacio de Minkowski
M3

1,2, los índices 1 y 2 representan los signos positivos y negativos de los términos de la
ecuación algebraica siguiente

α2 +β2 −γ2 = 1 . (3.53)

Se define la ecuación para este caso

wM = α + iβ

1− iγ
= 1+ iγ

α − iβ
,

Al derivar se llega a

(wM )′ = α′ + iβ′

1− iγ
+ α + iβ

(1− iγ)2 iγ′ = (α′ + iβ′)(1+ iγ)
(1+γ2) + (1− iγ)wM

1− iγ
γ′ .

Despejando α de wM = α′+iβ′

1−iγ

α = wM (1− iγ)− iβ ,

sustituyendo α, se obtiene

β = i
1+ iγ −w2

M
+ iγw2

M

2wM

.

En (wM )′ se llega a

(wM )′ =
{

− iκ

wM

(1+ iγ)2 +
[
iτγ − i

τ

2 (1+ iγ −w2
M

+ iγw2
M

)
]} 1+ iγ

1+γ2 .

Esto nos permitirá saber si con la eliminación de γ resulta la ecuación de Riccati para
este caso.
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Desarrollando lo anterior como sigue

(wM )′ = α′ + iβ′

1− iγ
+ α + iβ

(1− iγ)2 iγ′ = α′ + iβ′

1− iγ
+ (iγ′)

1− iγ
wM (3.54)

= κβ + i(−κα + τγ)
1− iγ

− i
τβ

1− iγ
wM = [−iκ(α − iβ)+ iτγ][1+ iγ]

(1− iγ)(1+ iγ) − τβ

1− iγ

(1+ iγ

1+ iγ

)
wM

= − iκ

wM

(1+ iγ)2

1+γ2 − iτ(βwM −γ)
( 1+ iγ

1+γ2

)
(3.55)

Nos percatamos que no pueden reducirse γ y β, se propone otra ruta de trabajo:
Considerando la hiperboloide de una sola hoja H1 cuyo lugar geométrico se define

x2 +y2 −z2 = 1 (3.56)

Una parametrización de la hiperboloide es

α = 1−uv

u+v
, β = 1+uv

u+v
, γ = u−v

u+v
,

ya que a

(u−v)2 +(1+uv)2 − (uv −1)2 = (u−v)2 +1+2uv +u2v2 −u2v2 −2uv −1
= u2 +v2 −2uv +4(uv) = (u+v2) .

Por definición, consideramos nuevamente la ecuación algebraica en términos de α, β y γ

−α2 +β2 +γ2 = 1 (3.57)

de donde

β2 −α2 = 1−γ2 (3.58)

Considerando que β = x, α = y cumple lo siguiente

(x+y)(x−y) = x2 −xy +xy −y2 = x2 −y2 .

Se tiene que (3.58) puede expresarse como

(β −α)(β +α) = (1−γ)(1+γ) (3.59)

De donde podemos observar que

wH1
= α +β

1−γ
= 1+γ

β −α
(3.60)

y que también

− 1
zH1

= β −α

1−γ
= 1+γ

β +α
;

y considerando que se puede definir en dos variables de la siguiente manera

α1wH1
=

1−w1H1
z1H1

w1H1
+z1H1

, β1wH1
=

1+w1H1
z1H1

w1H1
+z1H1

, γ1wH1
=

w1H1
−z1H1

w1H1
+z1H1

, (3.61)
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De la ecuación (3.60) tenemos que

w′
H1

= (β′ +α′)(1−γ)+(β +α)γ′

(1−γ)2 = β′ +α′

1−γ
+ (β −α)

1−γ
γ′

= κα + τγ −κβ

1−γ
+ wγ′

1−γ
= κα + τγ −κβ

1−γ
+

−wH1
τβ

1−γ

= −iκwH1
+

τ(γ −βwH1
)

1−γ
. (3.62)

Despejando a α de wH1
= α+β

1−γ

α = −β +(1−γ)wH1
(3.63)

y despejando también a β de wH1
= 1+γ

β−α y sustituyendo a α se tiene

βwH1
= 1+γ −αwH1

= 1+γ −βwH1
+(1−γ)w2

H1

2βwH1
= 1+γ +(1−γ)w2

H1

β =
1+γ +(1−γ)w2

H1

2wH1

.

Sustituyendo a β en la ecuación (3.62) se tiene que

w′
H1

= −iκwH1
+

τ

(
γ − 1+γ+(1−γ)w2

2wH1
wH1

)
1−γ

= −iκwH1
+

τ

(
γ −

1+γ+(1−γ)w2
H1

2

)
1−γ

= −iκwH1
+

τ

(
2γ −1−γ −w2

H1
−γw2

H1

)
2(1−γ)

= −iκwH1
− τ

2 − τ

2w2
H1

.

Hacemos una comparación sobre las ecuaciones de Riccati para la superficie S2 y
para H1:

w′
H1

= −τ

2w2
H1

− iκwH1
− τ

2 w′
S2

= i
τ

2w2
S2

− iκwS2
− i

τ

2
En este caso no se llega a conclusiones adicionales debido a que se consideraron para-
metrizaciones de la hiperboloide en lugar de la esfera, lo que hace que definitivamente
sea un caso muy distinto al del método estándar de Lie-Darboux. Por lo que se procede
a analizar la forma de las constantes de las soluciones de la ecuación de Riccati.

3.3.2. Observación de las constantes de las soluciones

Según un resultado básico de las ecuaciones de Riccati, la solución general se puede
escribir de la siguiente forma racional

wi = cif1 +f2
cif3 −f4

, zi = dif1 +f2
dif3 −f4
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donde f1,f2,f3,f4 son funciones de s. Para poder calcular las αi,βi,γi, i = 1,2,3, necesi-
tamos tres integrales para wi y tres para zi, las cuales estarán caracterizadas por las
constantes c1, c2, c3 para las wi y por d1,d2,d3 para las zi de la ecuación (3.61) como sigue:

α1 = 1−w1z1
w1 +z1

, β1 = 1+w1z1
w1 +z1

, γ1 = w1 −z1
w1 +z1

, (3.64)

α2 = 1−w2z2
w2 +z2

, β2 = 1+w2z2
w2 +z2

, γ2 = w2 −z2
w2 +z2

, (3.65)

α3 = 1−w3z3
w3 +z3

, β3 = 1+w3z3
w3 +z3

, γ3 = w3 −z3
w3 +z3

, (3.66)

A continuar con el procedimiento de Lie y Darboux definiremos unas constantes que
permitan que α1,βi,γi cumplan las condiciones de ortogonalidad

−αiαj +βiβj +γiγj = δij , i, j = 1,2,3.

La primera condición se cumple en virtud de la ecuación de la esfera por lo que debemos
encontrar las ci,di de forma que se cumplan las tres últimas condiciones

−α1α2 +β1β2 +γ1γ2 = 0, (3.67)
−α2α3 +β2β3 +γ2γ3 = 0, (3.68)
−α3α1 +β3β1 +γ3γ1 = 0. (3.69)

Se puede demostrar que −α1α2 +β1β2 +γ1γ2 = 0 se puede escribir como

−
(1−w1z1

w1 +z1

)(1−w2z2
w2 +z2

)
+
(1+w1z1

w1 +z1

)(1+w2z2
w2 +z2

)
+
(

w1 −z1
w1 +z1

)(
w2 −z2
w2 +z2

)
= 0

desarrollando se tiene que

−(1−w2z2 −w1z1 +w1w2z1z2)
w1w2 +w1z2 +w2z1 +z1z2

+ 1+w2z2 +w1z1 +w1w2z1z2
w1w2 +w1z2 +w2z1 +z1z2

+ w1w2 −w1z2 −w2z1 +z1z2
w1w2 +w1z2 +w2z1 +z1z2

= 0

2(w1z1 +w2z2) = w1z2 +w2z1 −w1w2 −z1z2 .

Obtenemos la misma relación para las constantes

2(c1d1 + c2d2) = c1d2 + c2d1 − c1c2 −d1d2 .

Para el caso en estudio, las tres ecuaciones correspondientes son

2(c1d1 + c2d2) = c1d2 + c2d1 − c1c2 −d1d2 , (3.70)
2(c2d2 + c3d3) = c2d3 + c3d2 − c2c3 −d2d3 , (3.71)
2(c3d3 + c1d1) = c3d1 + c1d3 − c3c1 −d3d1 . (3.72)
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Se reescribe la ecuación (3.70) de la siguiente manera

2(c1d1 + c2d2) = c1(d2 − c2)+d1(c2 −d2)
= (d2 − c2)(c1 −d1)

observamos que c1 = d1 el segundo miembro de la ecuación se reduce a

c2
1 + c2d2

c2
1 = −c2d2

consideramos que

c1
c2

= −d2
d1

.

Tomemos c2 = d2 = 1, tendríamos que c1 = ±
√

( − 1) = ±i. Formando así los siguientes
conjuntos de constantes: 

c1 = i
c2 = 1
d1 = i
d2 = 1 ,


c1 = −i
c2 = 1
d1 = −i
d2 = 1 .

Para el primero, la ecuación (3.70) resulta

2(−1+1) = i+ i− i− i .

Otros conjuntos de constantes se obtienen al considerar que c2 = d2 y c1 = d1 = 1
De esto se obtiene que las constantes que tomaríamos para este caso son

c1 = i, c2 = 1, c3 = ∞, d1 = i, d2 = 1, d3 = 0

Similares a las que se encuentran en el método estándar de Darboux y Lie en [4].

3.4. Caso α2 +β2 +γ2 + δ2 = 1

3.4.1. Ecuaciones de Riccati para α2 +β2 +γ2 + δ2 = 1

De la ecuación algebraica siguiente

α2 +β2 +γ2 + δ2 = 1 , (3.73)

consideramos que

α2 +β2 +γ2 = 1− δ2 (3.74)

y definimos una función como

wm = α + iβ + jγ

1− δ
= 1+ δ

α − iβ − jγ
. (3.75)
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Continuando con los pasos del método Lie-Darboux estándar, difernciando la función
wm de la ecuación (3.75)se tiene

dwm

ds
= (α + iβ + jγ)′(1− δ)− (α + iβ + jγ)(1− δ)′

(1− δ)2

= (α + iβ + jγ)′

1− δ
+ (α + iβ + jγ)

(1− δ)2 δ′

= α′ + iβ′ + jγ′

1− δ
+ wm

(1− δ)δ′ . (3.76)

Considerando que el triedro de Frenet-Serret para cuatro dimensiones tiene la forma

α′ = κβ

β′ = −κα + τ1γ

γ′ = −τ1β + τ2δ (3.77)
δ′ = −τ2γ ,

al sustituir estas ecuaciones en la ecuación (3.76) se tiene que reducir dicha ecuación
a una forma de Riccati

w′
m = κβ + i(−κα + τ1γ)+ j(−τ1β + τ2δ)

1− δ
− wm

1− δ
τ2γ

= −iκwm + ikκ
γ

1− δ
+ τ1

1− δ

(
iγ − jβ

)
+ τ2

1− δ

(
jδ −γwm

)
. (3.78)

Solo que, como se puede observar, el término lineal de la ecuación característica de
Riccati no es sencillo obtenerlo con sustituciones simples. A tal situación se le propone
el uso de propiedades de los cuaterniones, tema que queda fuera de esta tesis.
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CAPÍTULO 4

Las helices clotoidales

4.1. Hélices clotoidales por el método de Lie-Darboux

En la literatura hallamos la curva plana conocida como espiral de Cornu también
llamada clotoide. A saber, esta espiral tiene curvatura proporcional a la longitud de arco
κ(s) = ks/c2 y torsión cero [18].

En este capítulo nos interesa presentar las hélices que tienen κ(s) y τ(s) directamen-
te proporcionales a la longitud de arco. Dichas curvas representan una generalización en
tres dimensiones de las espirales clotoides, un nombre propuesto por Césaro al rededor
de 1890 para las espirales de Cornu [23].

A continuación se describe la idea central del trabajo (aún en desarrollo para su
publicación) basado en este método de Lie-Darboux para la obtención de las soluciones
y sus gráficas que consiste en identificar las funciones fi en todas las combinaciones
posibles de acuerdo a la solución en forma de cociente.

Como ya se ha mencionado, se consideran aquellas curvas que poseen curvatura
κ(s) = hs/c2 y torsión τ(s) = s/c2, es decir, el caso de las hélices clotoidales con el cocien-
te κ/τ = h. A continuación enlistamos las formas posibles de seleccionar y ordenar el
conjunto de fi a partir de la solución general de la ecuación de Riccati:

1. f1 = w1ei

√
h2+1

2
s2
c2 , f2 = w2 , f3 = ei

√
h2+1

2
s2
c2 , f4 = 1 , (4.1)

2. f1 = w2 , f2 = w1ei

√
h2+1

2
s2
c2 , f3 = 1 , f4 = ei

√
h2+1

2
s2
c2 , (4.2)

3. f1 = w1ei

√
h2+1

2
s2
c2 , f2 = w2 , f3 = 1 , f4 = ei

√
h2+1

2
s2
c2 , (4.3)

4. f1 = w2 , f2 = w1ei

√
h2+1

2
s2
c2 , f3 = ei

√
h2+1

2
s2
c2 , f4 = 1 . (4.4)

Los dos últimos conjuntos no proporcionan resultados analíticos y no se tratarán más
aquí.

51



Caso 1

Considerando el conjunto de funciones (4.1) los componentes obtenidos son

α1(s) = h

[
cos

(√
h2 +1

2
s2

c2

)
+ i

h√
h2 +1

sin
(√

h2 +1
2

s2

c2

)]
,

α2(s) = h

[
− sin

(√
h2 +1

2
s2

c2

)
+ i

h√
h2 +1

cos
(√

h2 +1
2

s2

c2

)]
, (4.5)

α3(s) = 1√
h2 +1

,

que satisfacen la condición α2
1 +α2

2 +α2
3 = 1. Las coordenadas en la hélice C1 están dadas

por

x1(s) =
∫ s

α1(σ)dσ =
√

πch

(h2 +1)
1
4

[
C

(
(h2 +1)

1
4

√
πc

s

)
+ i

h

(h2 +1)
1
2

S

(
(h2 +1)

1
4

√
πc

s

)]
,

y1(s) =
∫ s

α2(σ)dσ =
√

πch

(h2 +1)
1
4

[
−S

(
(h2 +1)

1
4

√
πc

s

)
+ i

h

(h2 +1)
1
2

C

(
(h2 +1)

1
4

√
πc

s

)]
, (4.6)

z1(s) =
∫ s

α3(σ)dσ = s√
h2 +1

,

Observemos que las coordenadas x1 y y1 son cantidades complejas mientras que la coor-
denada z1 es real, las coordenadas x1(s) y y1(s) están dadas en términos de las integrales
de Fresnel C y S. Por lo que solo la parte real corresponde a la hélice clotoidal. La gráfica
correspondiente de la hélice se presenta en la Figura (4.1) para c = 1, h = ±1 y h = ±2.
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Figura 4.1: La hélice clotoidal C1 de (4.6) con c = 1 y h = ±1 (a) y h = ±2 (b).

Caso 2

Para el conjunto de funciones (4.2) denotaremos los componentes tangenciales por α̃i

se puede observar de las ecuaciones (α’s) que

α̃1 = α1(s) , α̃2 = −α2(s) , α̃3 = −α3(s) . (4.7)
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Por lo que las coordenadas de la hélice C2 están dadas por

x2(s) =
∫ s

α1(σ)dσ =
√

πch

(h2 +1)
1
4

[
C

(
(h2 +1)

1
4

√
πc

s

)
+ i

h

(h2 +1)
1
2

S

(
(h2 +1)

1
4

√
πc

s

)]
,

y2(s) =
∫ s

α2(σ)dσ =
√

πch

(h2 +1)
1
4

[
S

(
(h2 +1)

1
4

√
πc

s

)
− i

h

(h2 +1)
1
2

C

(
(h2 +1)

1
4

√
πc

s

)]
, (4.8)

z2(s) =
∫ s

α3(σ)dσ = − s√
h2 +1

.

En la Figura 4.2 se observan las gráficas similares a las presentadas en la Figura 4.1.
Esta hélice clotoidal tiene sus focos en la primera bisectriz y también está girada res-
pecto a la primera clotoide.
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Figura 4.2: La hélice clotoidal C2 de (4.8) con c = 1 y h = ±1 (a) y h = ±2 (b).

4.2. Las hélices clotoidales δ- desplazadas

Un primer caso aún más general que aquellos presentados en la sección anterior
surge cuando consideramos κ(s) = τ(s) = s

c2 + δ donde δ es un parámetro constante de
desplazamiento. Las coordenadas de las δ- helices clotoidales resultan

C1,δ =

 x1,δ

y1,δ

z1,δ

=


√

πc
21/4 F1

−
√

πc
21/4 F2

s√
2

+ i


√

πc
21/4 F2√

πc
21/4 F1

0

 , (4.9)

donde consideramos a una longitud de arco como s̃ = s+ δ y

F1 = C

(
4√2s̃√
πc

)
cos

(
δ2

√
2c2

)
+S

(
4√2s̃√
πc

)
sin
(

δ2
√

2c2

)
(4.10)

F2 = S

(
4√2s̃√
πc

)
cos

(
δ2

√
2c2

)
−C

(
4√2s̃√
πc

)
sin
(

δ2
√

2c2

)
(4.11)
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y cuyas gráficas presentamos en la Figura 4.3 para algunos valores de δ.
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Figura 4.3: Hélices clotoidales δ-desplazadas C1,δ para tres δ distintas.

En el segundo caso se observa que

α̃1,δ = α1,δ(s) , α̃2,δ = −α2,δ(s) , α̃3,δ = −α1,δ(s) , (4.12)

y que la curva resultante es

C2,δ =

 x1,δ

−y1,δ

−z1,δ

=


√

πc
21/4 F1√

πc
21/4 F2
− s√

2

+ i


√

πc
23/4 F2

−
√

πc
23/4 F1

0

 . (4.13)

Tal curva se observa gráficamente en la Figura 4.4.
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Figura 4.4: Hélices clotoidales δ-desplazadas C2,δ para tres δ distintas.

Con las coordenadas de los δ-focos dados por

x2,δ(s → ±∞) = ±c
√

π

25/4

[
cos

(
δ2

√
2c2

)
+sin

(
δ2

√
2c2

)]
, (4.14)
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y2,δ(s → ±∞) = ∓c
√

π

25/4

[
cos

(
δ2

√
2c2

)
− sin

(
δ2

√
2c2

)]
, (4.15)

Las siguientes imagenes muestran algunas de las hélices clotoidales de tipo δ−desplazadas
C1,δ y C2,δ para las cuales ambos focos mantienen sus posiciones, Figura 4.5 y Figura 4.6.
Para a determinar los valores del parámetro δ para los cuales ambos focos mantienen
sus posiciones utilicemos las coordenadas de los focos como sigue

cos
(

δ2
√

2c2

)
+sin

(
δ2

√
2c2

)
= sin

(
δ2

√
2c2

)
− cos

(
δ2

√
2c2

)
(4.16)

Al calcular se obtiene que para para los valores siguientes de δ

δ = ±21/4c

√
(2n+1)π

2 , n ∈ N (4.17)

los focos mantienen las mismas posiciones.
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Figura 4.5: δ-hélices clotoidales C1,δ para h = 1, c = 1 y valores pares e impares de n de
acuerdo a la ecuación (4.17).
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Figura 4.6: δ-hélices clotoidales C2,δ para h = 1, c = 1 y valores pares e impares de n de
acuerdo a la ecuación (4.17).
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CAPÍTULO 5

Conclusiones

En esta tesis doctoral se estudió el antiguo método de Lie-Darboux por el cual se
obtiene la ecuación de Riccati de las curvas en el espacio euclídeo de tres dimensiones.
Esto ofreció la posibilidad de una extensión del método al demostrar que este puede
llevar a dos ecuaciones de Riccati, la segunda complementando a la ecuación de Riccati
encontrada por Lie y Darboux.

Resolvimos las ecuaciones de Riccati estándar y complementaria para las hélices
cilíndricas que tienen como propiedad que la curvatura y la torsión son constantes y
para las hélices clotoidales que tienen como propiedad que estas cantidades intrínsecas
son proporcionales a la longitud de arco.

Se obtuvieron hélices generalizadas en el sentido del factor de deformidad del seno
y del coseno, con ciertas restricciones se obtienen las hélices cilíndricas más conocidas.
Por otro lado, se logró obtener y graficar las curvas clotoidales utilizando el método de
Lie-Darboux adicionalmente, se obtuvieron gráficas para un análisis adicional con las
combinaciones de las funciones de la solución de las curvas clotoidales.

La experiencia acumulada en el trabajo con este método podríamos aplicarla a casos
más complicados donde κ/τ ya no es constante, sabiendo que se pueden obtener solucio-
nes gráficas solo en el caso en el cual se obtiene la solución general en formato racional
de la ecuación de Riccati.

Para trabajo a futuro se buscarán ecuaciones de Riccati con los coeficientes intrínse-
cos no proporcionales que arrojen soluciones racionales y de tal manera permitan aplicar
el método de Lie- Darboux y las fórmulas de Scheffers.

También se buscará la posibilidad de generalizar el método de Lie- Darboux a curvas
espaciales en más dimensiones tanto euclidianas como no euclidianas.
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APÉNDICE A

Ecuaciones de Riccati y sus soluciones

Riccati consideró ecuaciones diferenciales de la forma especial:

dσ

ds
= aσ2 + bsm (A.1)

donde (a,b = cte). Pero en realidad tienen el nombre de ecuaciones diferenciales de Ricca-
ti todas esas ecuaciones diferenciales ordinarias de primer orden extendidas, en donde
el cociente diferencial de la variable dependiente es un cuadrado de la función de la
variable independiente

Podemos remontarnos a tratados antiguos de matemáticas y hallar algo al respecto,
por ejemplo en el libro digitalizado [24] encontramos que se menciona a ‘una clase de
ecuaciones cuya solución general se puede determinar cuando se conoce una solución
particular’.

Estudiemos la ecuación diferencial ordinaria no lineal de primer orden de la forma

dy

dx
= q0(x)+ q1(x)y + q2(x)y2 , (A.2)

dicha ecuación recibe el nombre de ecuación de Riccati, desarrollada en el siglo XVIII
por el matemático italiano Jacopo Francesco Riccati. Resolver la ecuación de Riccati
requiere del conocimiento previo de una solución particular ŷ(x).

Si hacemos la sustitución

y(x) = ŷ(x)+u(x) (A.3)

la ecuación de Riccati adquiere la forma de una ecuación de Bernoulli.
Sea ŷ(x) una solución particular de la ecuación de Riccati y consideremos la sustitu-

ción

y(x) = ŷ(x)+ 1
u(x) . (A.4)

Derivando esta ecuación,

dy

dx
= dŷ

dx
− 1

u2
du

dx
, (A.5)
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como ŷ es una solución de la ecuación de Riccati entonces satisface la ecuación diferen-
cial

dŷ

dx
= q0(x)+ q1(x)ŷ + q2(x)ŷ2 . (A.6)

Sustituyendo (A.6) en (A.5)

dy

dx
= q0(x)+ q1(x)ŷ + q2(x)ŷ2 − 1

u2
du

dx
, (A.7)

igualamos (A.7) con (A.2)

q0(x)+ q1(x)y + q2(x)y2 = q0(x)+ q1(x)ŷ + q2(x)ŷ2 − 1
u2

du

dx

q1(x)y + q2(x)y2 = q1(x)ŷ + q2(x)ŷ2 − 1
u2

du

dx
1
u2

du

dx
= q1(x)ŷ − q1(x)+ q2(x)ŷ2 − q2(x)y2

1
u2

du

dx
= q1(x)(ŷ −y)+ q2(x)(ŷ2 −y2) .

Sustituyendo (A.4)

1
u2

du

dx
= q1(x)

[
ŷ −

(
ŷ + 1

u(x)

)]
+ q2(x)

[
ŷ2 −

(
ŷ + 1

u(x)

)2
]

= q1(x)(− 1
u(x))+ q2(x)

[
ŷ2 − ŷ2 −2 ŷ

u(x) + 1
u2(x)

]
= q1(x)(− 1

u(x))+ q2(x)
(

−2 ŷ

u(x) − 1
u(x)2

)
= − q1

u(x) −2q2
ŷ

u(x) − q2
u(x)2 .

Multiplicando por u2

1
u2 ·u2 du

dx
= − q1

u(x) ·u2 −2q2
ŷ

u(x) ·u2 − q2
u(x)2 ·u2

du

dx
= −q1u−2q2ŷu− q2

= (−q1 −2q2ŷ)u− q2 .

Vemos

du

dx
+(q1 +2q2ŷ)u = −q2(x) . (A.8)

Definimos las funciones

R(x) = q1(x)+2q2ŷ S(x) = −q2(x) .

La función (A.8) queda de la forma lineal no homogénea

dx

du
+R(x)u = S(x) .
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Esto mismo lo encontramos en el libro de Serret de integrales y hallamos como ejem-
plo

Por ejemplo, la ecuación

dy

dx
+Xy2 +X1y − (Xx2 +X1x+1) = 0 ,

está satisfecha cuando se pone y = x; donde la sustitución

y = x+z

llevará esta ecuación a la siguiente:

dz

dx
+(X1 +2Xx)z +Xz2 = 0 .

La ecuación de Riccati pertenece a la clase de las ecuaciones mencionadas en el nú-
mero anterior; dicha ecuación es la siguiente

dy

dx
+ay2 = bxm, (A.9)

a y b son coeficientes constantes Cuando el número m tiene esta forma, siendo un entero
positivo, la ecuación de Riccati es integrable por medio de las funciones algebraicas y
logarítmicas; pero existe, como se verá, otro caso de integrabilidad.

A.1. Constantes de las soluciones

En en el método estándar de Lie Darboux, las constantes de las soluciones para la
ecuación de Riccati se toman como

c1 = 1, c2 = i, c3 = ∞, d1 = −1, d2 = −i, d3 = 0

debido a que si se considera en un caso que

c3d3 = 1

y en otro que

c3d3 = −1

solo ocurre en el caso que se cumplan de forma simultánea lo siguiente

(1)
{

c3 = n
d3 = 1

n ,
(2)
{

c3 = n
d3 = − 1

n .

y

(3)
{

c3 ∼ 1
n

d3 ∼ n ,
(4)
{

c3 = − 1
n

d3 = n .

donde n es real. Observemos que cuando

n → ∞ (1)
{

c3 = ∞
d3 = 0 ,

(2)
{

c3 = ∞
d3 = 0 .

(1) = (2)
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n → −∞ (1)
{

c3 = −∞
d3 = 0 ,

(2)
{

c3 = −∞
d3 = 0 .

n → ∞ (3)
{

c3 = 0
d3 = ∞ ,

(4)
{

c3 = 0
d3 = ∞ .

n → −∞ (3)
{

c3 = 0
d3 = −∞ ,

(4)
{

c3 = 0
d3 = −∞ .

Con las cuales, las ecuaciones correspondientes al caso

2(c1d1 + c2d2) = c1d2 + c2d1 + c1c2 +d1d2 .

proporcionan las constantes armónicas de los resultados de las propiedades de la so-
lución general de la ecuación de Riccati [25, 26]. Podemos verificar esto al evaluar las
constantes c1 = 1, c2 = i, d1 = −1, d2 = −i

2(c1d1 + c2d2) = c1d2 + c2d1 + c1c2 +d1d2

2(−1+1) = −i− i+ i+ i = 0

tenemos que

α1 = 1−w1z1
w1 −z1

= (f2
1 −f2

3 )− (f2
2 −f2

4 )
2(f1f4 −f2f3) ,

α2 = 1−w2z2
w2 −z2

=
[(f2

1 −f2
3 )+(f2

2 −f2
4 )

2f1f4 −f2f3

]
i ,

α3 = 1−w3z3
w3 −z3

= f3f4 −f1f2
f1f4 −f2f3

.
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APÉNDICE B

Transformación de coordenadas

Un artificio que nos permite simplificar las ecuaciones de muchas curvas consiste
en la transformación de coordenadas. Una transformación es el proceso que consiste en
cambiar una relación, expresión o figura en otra.

Definición 7. Una transformación es una operación por la cual una relación, expresión
o figura se cambia en otra siguiendo una ley dada.

Analíticamente, la ley se expresa por una o más ecuaciones llamadas ecuaciones de
transformación. Un conjunto de ecuaciones lineales define una transformación lineal de
cada punto (x,y) a su correspondiente imagen (x̄, ȳ). En forma matricial, una transfor-
mación lineal puede escribirse x̄ = Ax, si como en el conjunto de ecuaciones es uno a
uno, entonces |A| ̸= 0.

La operación de mover los ejes coordenados en el plano coordenado a una posición
diferente, de manera que los nuevos ejes sean, respectivamente, paralelos a los ejes
primitivos, y dirigidos en el mismo sentido se llama traslación de los ejes coordenados.
Para simplificar ecuaciones mediante la traslación de los ejes coordenados se tiene el
siguiente

Teorema 7. Si se trasladan los ejes coordenados a un nuevo origen O′(h,k), y si las
coordenadas de cualquier punto P antes y después de la traslación son (x,y) y (x′,y′),
respectivamente, las ecuaciones de transformación del sistema primitivo al nuevo sistema
de coordenadas son [14]

x = x′ +h ,

y = y′ +k .

Rotación de coordenadas o rotación de los ejes coordenados

Los vectores han sido definidos especificando la magnitud y la dirección y también
especificando los componentes de los mismos. Una tercera representación está dada en
términos del comportamiento bajo la rotación del sistema de coordenadas.

Para simplificar las ecuaciones por rotación de los ejes de coordenadas tenemos el
siguiente

Teorema 8. Si los ejes coordenados giran un ángulo ϕ entorno de su origen como centro
de rotación, y las coordenadas de un punto cualquiera P antes y después de la rotación
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son (x,y) y (x′,y′), respectivamente, las ecuaciones de transformación del sistema original
al nuevo sistema de coordenadas están dadas por

x = x′ cosθ −y′ sinθ ,

y = x′ sinθ +y′ cosθ .
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APÉNDICE C

Curvas

En esta sección, dejaremos de considerar los términos α, β y γ como cosenos directo-
res.

Definición 8. [16] Una curva parametrizada en Rn es un mapeo γ : (α,β) → Rn para
α,β con −∞ ≤ α < β ≤ ∞ donde (α,β) = {t ∈ R|α < t < β}.

Definición 9. [27] Sea J un intervalo abierto no vacío en R. Entonces una curva en
U ⊂ Rn es una función (de clase Cr con 1 ≤ r ≤ ∞):

γ : J → U .

Sea J un intervalo abierto no vacío en R. Entonces una curva en U ⊂ Rn es una
función (de clase Cr con 1 ≤ r ≤ ∞) [27]:

γ : J → U .

Nótese que la curva es una función y no el rango de dicha función. Utilizando las
coordenadas estándar, tenemos para todo t ∈ J que

γ(t) = γ1(t), ...,γn(t) .

En cálculo elemental, la derivada de γ es

γ′(t) = (γ′(t), ...,γ′
n(t)) , (C.1)

y decimos que y′(t) ∈ Rn es un vector. Pero ¿es un vector tangente?. Esto es, ¿sigue la
regla de transformación para un vector tangente bajo un cambio de coordenadas? En
brevedad, en el confuso léxico estándar ¿el vector γ′(t) ∈ Rn es un vector?

Con el cambio de coordenadas ϕ : U → V ⊂ Rn (con V abierto), la curva γ : J → U se
transforma en la curva γ̃ := ϕ◦γ : J → V , o en otras palabras, γ̃ := ϕ(γ(t)) para cada t ∈ J .
Utilizando las coordenadas en V , tenemos que

γ̃(t) = (γ̃1(t), ..., γ̃n(t))

y

ϕ(γ(t)) = (ϕ1(γ(t)), ...,ϕn(γ(t))) ,
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de lo que sigue que

γ̃j(t) = ϕj(γ(t)) = ϕj(γ1(t), ...,γn(t))

para j = 1, ...,n. Entonces, utilizando las coordenadas estándar x1, ...,xn en U , tomamos
la derivada utilizando la regla de la cadena y obtenemos

γ̃′
j(t) =

n∑
k=1

∂ϕj

∂xk
(γ(t))γ′

k(t) =
n∑

k=1
(Dϕ(γ(t)))jkγ′

k(t) ,

o equivalentemente en forma matricial

γ̃′(t) = Dϕ(γ(t))γ′(t) ,

donde γ′(t) y γ̃′(t) están escritas como vectores columna (es decir, matrices n × 1) y Dϕ
es la matriz jacobiana n×n. La última fórmula dice que la derivada de una curva es un
vector tangente, es decir, que transforma utilizando la derivada de ϕ. (Compare con lo
resaltado en la relación de equivalencia ≡ ). En resumen, la derivada de una curva es
un vector.

C.1. Longitud de arco

A continuación se presenta un método conciso para obtener la fórmula de longitud
de arco en todo sistema admisible de coordenadas.

Consideremos que las expresiones típicas de la longitud de arco conducen a una
fórmula general del tipo

L =
∫ b

a

√∣∣∣∣gij
dxi

dt

dxj

dt

∣∣∣∣dt (C.2)

donde gij = gij(x1,x2, ...,xn) = gji son funciones de las coordenadas y L da la longitud del
arco a ≤ t ≤ b de la curva xi = xi(t)(1 ≤ i ≤ n) [19].

La fórmula del 2.3.2 admite la expresión diferencial

ds2 = (dx1)2 +(dx2)2 +(dx3)2 = δijdxidxj .

Más en general C.2 es equivalente a

±ds2 = gijdxidxj . (C.3)

Formulación con diferenciales

Definición 10. [17]
Sea y = f(x) donde f es diferenciable y sea ∆x un incremento de x

(i) el diferencial dx de la variable independiente x es dx = ∆x.

(ii) el diferencial dy de la variable dependiente y es

dy = f ′(x)∆x = f ′(x)dx.
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(a) Forma (i). (b) Forma (ii).

Figura C.1: Formulación de la longitud de arco.

Figura C.2: (ds)2 = (dx)2 +(dy)2

Existe una interpretación geométrica de la forma (ii) del teorema anterior. Considé-
rese y = f(x) y dado x un incremento ∆x. Sea ∆y el cambio en y y ∆s el cambio en la
longitud de arco correspondiente a ∆x. Estos incrementos están ilustrados en la Figura
C.2 donde dy es la cantidad que la línea tangente sube o baja si la variable independiente
cambia de x a x+∆, vea también Figura C.1.
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APÉNDICE D

Actividades del periodo doctoral

A continuación se listan las actividades en las que se participó durante este periodo
doctoral.

I. Participación a nivel nacional en el concurso de póster del Congreso de la Sociedad
Mexicana de Física con la exposición del tema “Generalización pseudoeuclídea del mé-
todo de Lie-Darboux para las curvas tres dimensionales”. Realizado en la ciudad de
Zacatecas, Zac. en Octubre del 2022.

II. Publicación del artículo titulado “Riccati equations of opposite torsions from the Lie-
Darboux method for spatial curves and possible applications” en 2023.

https://doi.org/10.1088/1402-4896/acf896

III. Participación en el artículo “Clothoid helices obtained via the Lie-Darboux method”,
por ser enviado.
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