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Resumen

En este trabajo de tesis se aborda la caracterizacién de las curvas que deno-
minamos clotoidales en el espacio euclidiano tres dimensional por medio del
método de Lie-Darboux. En este método cualquier curva espacial se puede
obtener a partir de una ecuacion de Riccati, que es una ecuacién no lineal de
primer orden cuyos coeficientes x y 7 son los parametros intrinsecos de curva-
tura y torsion, respectivamente, de la curva espacial. Si la ecuacién de Riccati
tiene una solucion general analitica, las ecuaciones paramétricas de la curva
se pueden obtener siguiendo los pasos del método. En el caso de las hélices
clotoidales esto es posible ya que la curvatura y la torsion son proporcionales
a la longitud de arco.

También se considera el problema de la ambigiiedad en el signo de la torsién
para curvas en tres dimensiones. El signo de la torsion no puede definirse a
partir de las ecuaciones paramétricas de una curva, se define solo al encon-
trarse la ecuacion diferencial de Riccati asociada a estas curvas.
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Abstract

This thesis addresses the characterization of curves called clothoid type in
three-dimensional Euclidean space using the Lie-Darboux method. In this
method, any spatial curve can be obtained from a Riccati equation, which is
a first-order nonlinear equation with the coefficients x and = that represent
the intrinsic parameters, curvature and torsion, respectively, of the spatial
curve. If the Riccati equation has a general analytical solution in rational
form, the parametric equations of the curve can be obtained by following the
steps of the method. In the case of clothoidal helices this is posible because
both curvature and torsion are proportional to the arc length.

Moreover, we consider the problem of ambiguity in the sign of torsion of three-
dimensional curves. The sign of torsion cannot be defined from the parame-
tric equations of a curve; it is defined only by finding the associated Riccati
equation of the curves.
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CAPITULO 1

Introduccion

En este capitulo presentamos una breve historia del método de Lie-Darboux,
posteriormente se menciona el estado del arte de este tema y las oportunidades
que se tienen en el drea.

1.1. Ecuaciones naturales de las curvas

Se entiende por ecuacion natural a aquella ecuacién que permite que la representa-
cion de una curva sea independiente de cualquier eleccion del sistema de coordenadas o
parametrizacion. Dicha ecuacion esta en funcion del elemento lineal o longitud de arco
s. Se puede probar analiticamente que esta funcién determina la forma de una tunica
curva y que, conversamente, cada funcion de este tipo da una curva (dado que la funcién
satisface ciertas condiciones de continuidad). Por esta razon, la longitud de arco s y la
curvatura « son llamadas coordenadas “naturales” o “intrinsecas” de la curva [1].

Ha de resaltarse que en geometria se usa el término geometria intrinseca para deno-
tar aquellas propiedades de una superficie que son invariantes cuando la superficie se
dobla sin estirarse, es decir, dependen sélo de la medicion de las longitudes de las curvas
a lo largo de la superficie misma. Por el contrario, las propiedades extrinsecas dependen
de la incrustacién de la superficie en el espacio [2].

Podemos encontrar otra forma de describir el problema con el que comienza el estudio
de las ecuaciones naturales: dadas dos funciones de un parametro, encuentre la curva
espacial para la cual las ecuaciones son la curvatura y la torsién [3].

La representacion de una curva en términos de x y s fue establecida por Euler para
curvas planas. Se puede ver que la relacién entre la curvatura y la longitud de arco
proporciona una ecuacion para una curva plana [4]. Es decir, dada una ecuacién « = k(s),
entonces usando las relaciones

Rl'=k=dgp/ds, cos(p)=dz/ds, sin(p)=dyp/ds (1.1)

2y y se encuentran en términos de dos integrales

¢ @ s
x= | Rcos(p)dp, y= [ Rsin(e)de, ¢ :/ kds . (1.2)
¥o ¥o 50
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1.2. Desarrollo historico del método de Lie-Darboux

En geometria diferencial clasica en virtud de la representacién de la solucién de
las ecuaciones naturales que describen a las curvas en un espacio euclidiano surgié el
método que llamamos de Lie-Darboux el cual consiste en obtener una ecuacion de Riccati
y resolverla para obtener coordenadas paramétricas en funcién de la longitud de arco.
Esta reduccién a una ecuacién de Riccati se remonta a S. Lie en Werke I1I (1882) y G.
Darboux en Lecons I (1887). Las ecuaciones

(ff =) - (f5 = 1D)

TR - fofs)

BB

2 2(fifa—fafs) (1.3)
_ fafa—fife

(fifa—faf3)

donde las «;, i = 1,2,3 representan los cosenos directores de la linea tangente a un punto
que estd sobre la curva y las f;, j =1,2,3,4 son las cuatro funciones componentes para
la solucién general, requerida en forma racional, de la ecuacién de Riccati de las curvas,
las cuales se abordan en el Capitulo [2| Las ecuaciones se atribuyen a G. Scheffers
en su libro Anwendung I, p. 298. (1901) [5].

El reconocido geémetra G. Darboux realizé una recopilacion sistemaética de los cono-
cimientos que se tenian hasta el momento de su carrera educativa en la Escuela Normal
Superior de Paris. La obra de Darboux consiste en nueve libros, incluye desde las inves-
tigaciones de Monge hasta los estudios de Klein, Lie y otros gedmetras y matematicos
notables. Tales investigaciones y colaboraciones son las bases de un método denomina-
do de Lie-Darboux en la geometria diferencial de las curvas que es el tema principal de
esta tesis. La idea principal de Darboux fue considerar dos sistemas de ejes de coorde-
nadas para representar el movimiento de un objeto alrededor de un punto o de un eje
instantaneo de rotacién en funcién del tiempo [6].

Ademas de la importancia de las ecuaciones de Frenet-Serret en el estudio de las
curvas, Darboux ya habia mencionado que Serret introdujo el concepto de indicatriz
esférica. Eisenhart retoma esta idea y la presenta con el propésito de encontrar una ex-
presion para el radio de primera curvatura [p|en términos de las cantidades que definen
a la curva. Tomaremos la esfera de radio unitario con centro en el origen y dibujamos
radios paralelos a las direcciones positivas de las tangentes a la curva, o una porcién de
ella tal que no haya dos tangentes paralelas. El lugar geométrico de los extremos es una
curva sobre la esfera, la cual esta en correspondencia uno a uno con la curva dada. En
este sentido, tenemos una representacion esférica o indicatriz esférica de la curva [7].

2
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Figura 1.1: Representacion de la indicatriz esférica de una curva en el espacio.

Entonces el concepto de indicatriz esférica ser refiere a un mapeo uno a uno entre
una curva espacial y una curva correspondiente que yace en la superficie de la esfera
unitaria centrada en el origen, lo cual reduce el estudio de curvas espaciales en [E°| al
estudio de curvas en S?, ver Figura Por otro lado, en la Figura se representa
la indicatriz esférica de una curva en el espacio cuando uno se desplaza en uno y otro
sentido o direccion sobre la curva misma. El interés en esta representacion radica en
la consideracion de ambos signos en la curvatura y la torsién de la curva espacial y las
curvas creadas sobre la superficie de la esfera unitaria.

X

Figura 1.2: Representacion de la indicatriz esférica de una curva en el espacio recorrida
en un sentido y en otro.



En su libro, Scheffers [5] presenta las formulas para la integracion de las ecua-
ciones naturales de la curvas y la obtencion de las coordenadas como solucién y el ejem-
plo de curvas planas. En dicho libro llama invariantes diferenciales al radio de curva-
tura y al radio de torsion. Menciona que estos invariantes diferenciales estan a lo largo
de la curva como funciones de la longitud de arco. Para representar dichos invariantes
diferenciales de la curva espacial, se considera el concepto de cosenos directores y se
calculan los determinantes formados con las derivadas de las ecuaciones de las curvas,
no de las coordenadas mismas.

También afirma que entonces no hay invariante diferencial de primer orden y p (ra-
dio de curvatura) es el unico invariante diferencial esencial de segundo orden y que el
invariante diferencial, a continuacién, vuelve a ser un invariante diferencial [5]].

En su libro Struik [4] retoma estas ideas y las sintetiza presentando la relacién de
las ecuaciones naturales, de las ecuaciones de Frenet-Serret y del método de reduccion
a la ecuacion diferencial conocida como ecuacion de Riccati.

En la literatura en este tema se han realizado avances principalmente referente a
las hélices en mas de tres dimensiones. Sin embargo un estudio mas completo en esta
direccién requiere herramientas de algebra abstracta y topologia algebraica. En la lite-
ratura encontramos especificamente del método un analisis computacional en mecanica
con valores aleatorios de curvaturas y torsiones [8].

Existen generalizaciones del sistema de Frenet-Serret como los que se presentan en
el trabajo de Hanson y Hui Ma [9] y Guven [10]. Asi como también hemos hallado otros
métodos para abordar la cinematica de las hélices en Goriely [11].

Este método de Lie-Darboux aparece en textos clasicos de geometria diferencial, lo
cual nos hace pensar que se ha dejado a un lado y se ha dedicado el pensamiento a otras
herramientas como por ejemplo las soluciones de las ecuaciones diferenciales con las
herramientas de computo.

Aparentemente es un tema explotado en su totalidad pero cabe destacar que aun si
asi lo fuese es una herramienta que nos lleva a comprender como se extiende en maés
casos. Por ejemplo en Sternberg [12] se realiza un analisis a un listén en un espacio
euclidiano usando el sistema de Frenet-Serret se puede ver los patrones que ayudan en
otras areas asi como en geometrias mas abstractas.

Se conoce la ecuacién de las curvas que es una ecuacion diferencial de cuarto orden
homogénea, como es sabido, corresponde al area de ecuaciones diferenciales y conlleva
resolver el problema de valores de la frontera, obtener el conjunto primordial de solu-
ciones para la ecuaciéon diferencial. En este método, se retoman estos conceptos para
obtener la solucién de una ecuacién de Riccati de las curvas, la cual es mas sencilla de
resolver en nivel de dificultad comparada con la ecuacién de cuarto orden.

En este trabajo el método de Lie-Darboux es extendido en la medida de que se obtie-
nen dos ecuaciones de Riccati de las curvas que difieren en los signos de la torsion. Es
sabido que existe una ambigiiedad en el signo de la torsion por lo que en este trabajo se
obtiene una ecuacién de Riccati adicional que podria ayudar en la desambiguacién de
este signo. De manera que el método aplicado a la otra ecuacién de Riccati nos expone
que se obtiene la misma solucién para ambas ecuaciones.

En este trabajo se presenta el estudio de las curvas en R? cuya curvatura y torsién
cumplen la razén x/7 = cte. ambas constantes y el caso en el que ambas, curvatura y
torsion, son directamente proporcionales a la longitud de arco s utilizando el método de
Lie-Darboux al utilizar la ecuacion de Riccati asociada para conocer las componentes «;,
1=1,2,3, del vector tangente a la curva.



1.3. Organizacion de la tesis

El propésito de esta tesis es retomar, actualizar y presentar en una perspectiva mo-
derna el método de Lie-Darboux que se puede considerar abandonado desde hace dece-
nas de afios ya que el ultimo libro donde se presenta con mas detalle es el libro de Struik
de 1961 [4] mientras que a nivel de articulos el método fue mencionado solamente en
2020 por Gusella [8] ademas del articulo publicado en este proyecto doctoral en 2023.

En el siguiente capitulo se introducen los conceptos basicos en esta area de la geo-
metria diferencial, incluyendo el sistema ortogonal de Frenet-Serret de una curva fina-
lizando con una descripcién del método de Lie-Darboux donde se emplea el sistema de
Frenet-Serret para la obtencién de la ecuacién de Riccati de las curvas espaciales.

Los Capitulos 3 y 4 contienen los resultados originales de este trabajo doctoral. En
el Capitulo 3 se presenta un abordaje algebraico semejante al de Lie y Darboux con una
extension que permite introducir una ecuacion de Riccati adicional a la estandar y se
aplica a varios casos conocidos de hélices como son las cilindricas y clotoidales.

En el Capitulo 4 se introducen las hélices clotoidales empleando la ecuacién de Ric-
cati de la curvas espaciales proporcionada por el método de Lie- Darboux. Estas hélices
tienen la curvatura de las espirales de Cornu y la torsién proporcional a la curvatura de
la espiral de Cornu.

En el Capitulo 5 se presentan las conclusiones de nuestro trabajo doctoral. Final-
mente el documento se complementa con los apéndices.






CAPITULO 2

Bases de la geometria diferencial de las curvas espaciales
en [,

En este capitulo se presentan definiciones y conceptos matemdticos bdsicos
para la teoria de la geometria diferencial de las curvas.

2.1. Cosenos directores

En una amplia variedad de tratados y libros de geometria analitica se menciona que
la direcciéon de una recta en el plano se determina por medio de su pendiente. En el
espacio euclideano de n componentes E,,, la direccién de una recta cualquiera se deter-
mina por los angulos que forma con los ejes de coordenadas. Véase Figura[2.1]donde los
angulos a1, as y a3 formados por las partes positivas de los ejes X,Y y Z y la recta dada
(o vector) se llaman angulos directores de la recta dirigida . Por conveniencia, de for-
ma usual se consideran los cosenos directores de tales angulos en lugar de los angulos
mismos, los cuales reciben el nombre de cosenos directores o cosenos de direccion de la
recta dirigida /. Cualquier recta en el espacio no dirigida tiene dos sistemas de cosenos
directores iguales en valor absoluto pero opuestos en signo.

Z

as

aq

X

Figura 2.1: Cosenos directores de una recta en el espacio.

En un sentido mas extenso, en el espacio se define el dngulo dihedral entre dos
planos que se intersecan. Este es el angulo entre las lineas determinadas sobre los dos
planos por un tercer plano ortogonal a ambos [13]. En la literatura se determinan los
cosenos directores de una recta en el espacio cuya posicién esta dada por dos de sus



puntos P; y P», como cosenos directores en el sentido P; a P, tenemos

Ty — T Y2y 29— 21

d ’ - d d ’
donde d es un nimero positivo. Por otro lado, en el sentido P, a P; los cosenos directores
son

(2.1)

cos(ay) = cos(ag) cos(ag) =

i cos(ag) = N2 cos(ag) = S

d ) 2 d ; 3 d ;
si se suman los cuadrados de los términos del lado derecho de las ecuaciones (2.1) y (2.2)
esta forma de determinacion da origen al siguiente resultado

(2.2)

cos(ay) =

Teorema 1. La suma de los cuadrados de los cosenos directores de cualquier radio vector
es igual a la unidad [14]

cos®(ay) 4 cos®(ag) +cos?(az) =1 . (2.3)
Z
as
0 2.
aj
X

Figura 2.2: Los cosenos directores «; de un radio vector en el espacio euclideo de tres
dimensiones.

Obsérvese en la Figura el radio vector r hacia el punto (z1,y1,21). Utilizando
r para la magnitud del vector r las coordenadas del punto final y la magnitud estan
relacionadas por la siguientes ecuaciones

x1=rcos(aq), yi=rcos(ag), =z1=rcos(as).

Las cantidades z1, y1 y 21 son llamados componentes cartesianos o proyecciones de r
[15.

2.2. Curvas y parametros intrinsecos en dos dimensiones

2.2.1. Curvas en dos dimensiones

En la literatura se puede encontrar distintas formas de representar una curva, se
puede considerar a una curva como un conjunto de puntos en el plano o en el espacio,
por ejemplo

C ={(z,y) eR?|f(x,y) =c}, (2.4)

donde c es una constante. También como la representaciéon de un punto moviéndose en
un plano de coordenadas cartesianas ortogonales de manera que si consideramos A(¢) el

8



vector de posicién del punto en el tiempo ¢ la curva esta descrita por la funcién \ y el
parametro escalar ¢ tiene valores de un vector en R? o R? [16]. Por esto es comtun llamar
curva plana a la grafica de una ecuacién y = f(z) donde f es funcién continua [17]. En
el caso de las curvas planas se puede listar la siguiente definicion:

Definicion 1. [I7] Una curva plana es un conjunto C de pares ordenados de la forma
(f(t),g(t)) donde las funciones f y g son continuas en un intervalo I.

En algunos casos es conveniente imaginar que el punto denotado P(t) = (f(t),g(t)) de
la Definicién [I]traza la curva C conforme ¢ varia en el intervalo I. El siguiente concepto
a retomar considera una variable independiente llamada variable auxiliar o parametro,
término que histéricamente habria sido introducido por Euler y Cramer [5].

Definicion 2. Sea C la curva que consiste en todos los pares ordenados (f(t),g(t)), donde
f y g son continuas en el intervalo I. Las ecuaciones

z=f(t) y=g(t), tel,
son llamadas ecuaciones paramétricas de C'y t es llamado pardmetro.

Si se nos da la representacion paramétrica a veces es posible eliminar el parametro
y obtener una ecuacion para C que involucra las variables = y y de la forma

Flz,y)=0. (2.5)

La continuidad de f y ¢ implica que un cambio pequeiio en el valor de ¢ produce un
cambio pequefio en la posicién del punto (f(¢),g(¢)) en la curva C. Se le dice curva suave
si tiene representacion paramétrica x = f(¢), y = g(¢) en un intervalo I tal que las deri-
vadas de [’ y ¢’ sean continuas en el intervalo, y que no sean cero de forma simultanea,
excepto en posibles puntos finales de I [17].

2.2.2. Longitud de arco

Un concepto fundamental para esta tesis es la longitud de arco, este concepto en
calculo integral se expresa mediante una integral definida. El significado de la longitud
de arco entre dos puntos Ay B en la grafica de una funcién suave se puede abordar como
sigue.

Longitud de arco entre dos puntos

Dada una funcién f suave en un intervalo cerrado [a,b], los puntos A(a, f(a))y B(b, f(D))
son los puntos finales de la grafica de f. Dada la particion P del intervalo [a,b] determi-
nada por a = xg,z1,%2,...,2, = b, n € N. El punto con coordenadas (z;, f(z;)), i = 1,2,...,n
es el punto Q;. Si conectamos los n+ 1 puntos Qy,@1,...Q, en la grafica de f como se
observa en la Figura por medio de un segmento de linea

d(Qi-1,Q:) = \/(xz‘ — 1)+ [f(@i) — f(wi1)]? (2.6)

entonces se puede conocer la longitud de la linea quebrada

n

Ly=) d(Qi-1,Q:) (2.7

i=1



Y

Figura 2.3: Grafica de subintervalos para calcular la longitud de arco de una funcién
suave.

al considerar el Teorema del valor medio

f(z) = f(zic1) = fl(@iz1, @) (z1,2021)
= f'(m;)(z; — xi1) , (2.8)

donde m; es el intervalo abierto (x;_1, ;) y sustituyendo (2.8) en la férmula de la distan-

cia (2.6)

d(Qi1,Q:) = /(@i — 1)+ [f/(mi) (@i — 2412 . (2.9)

Como Ax; = x; — x;_1, la ecuacion (2.9) resulta

d(Qi-1,Q:) = /(A2 + [f/(mi) A2
= /Azi(1+ f/(my)?)

=4/ 1+ f’(ml)2AxZ . (210)

En consecuencia,

Lp =Y d(Qi-1,Qi) =Y _\/1+ f(m)?Ax; . (2.11)
i=1 i=1
La ecuacién (2.11) indica que la suma de las longitudes de los lados de los poligonos
inscritos en la curva (formados de la linea quebrada) tiene un limite para el caso de
un numero infinito de vértices ) y es llamada longitud de arco. Es decir, si la norma
||P|| — 0, entonces la longitud de la linea quebrada debe aproximarse a la longitud de la
grafica de f de A a B [5], [17]. Por lo que tenemos la siguiente definicion

Definicion 3. Sea la funcion f suave en un intervalo [a,b]. La longitud de arco de la
grdfica de f de A(a, f(a)) a B(b, f(b)) estd dada por

Lg:/b,/1+[f/(a;)]2dx. (2.12)
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Si una grafica puede descomponerse en un nimero finito de partes, cada una de las
cuales sea la grafica de una funcién suave, entonces la longitud de arco de la grafica esta
definida como la suma de las longitudes de arco de las graficas individuales. Una funcién
de este tipo se dice ser suave por partes en su dominio. A continuacién denotaremos con
t la variable de integracién para evitar abuso de notacién. De la Definiciéon (3| si f es
suave en el intervalo [a,b], entonces f es suave en [a,z] para cada z en [a,b] y l1a longitud
de la grafica del punto A(a, f(a)) al punto Q(z, f(z)) esta dado por

I :/m\/l—l—[f’(t)]?dt. 2.13)

Al realizar un cambio de notacién y usar el simbolo s(z) en lugar de L?, entonces s debe
considerarse como una funcién con dominio [a,b] debido a que cada x en [a,b] corresponde
un nimero dnico s(z). Llamaremos s la funcién de longitud de arco para la grafica de f
como en la siguiente definicién.

Definicion 4. Sea la funcion f suave en el intervalo [a,b] la funcién de longitud de arco
de la grdfica de f en [a,b] estd dado por

s(z) = /x NETTORE 3 (2.14)

donde a < x <b.

Como se muestra en la Figura los valores s(x) de s pueden representarse geo-
métricamente como longitudes de arco de la grafica de f de A(a, f(a)) a Q(x, f(z)). Para
los problemas que involucran a la funcién longitud de arco hallamos en la literatura el
siguiente teorema.

B

.
1
1
1
1
|
|
|
|
|
|
1
1
1
1
1

U

b

Figura 2.4: Longitud de arco entre A y B.

Teorema 2. Sea f suave en [a,b] y sea s la funcion de longitud de arco para la grifica
de y= f(x) en [a,b]. Si dz y dy son diferenciales de x y y, entonces

D) ds=/1+|[f(x)]?dx

ii) (ds)? = (do)? + (dy)?

11



Demostracion. Por la Definicion 4]y el teorema fundamental del calculo

Da[s(x)] = Ds U Jit [f’(t)Pdt] — D, [F(z)— F(a)] , 2.15)

donde F(z) =+/1+[f(z)]? y F(a)\/1+[f"(a)]?, entonces:

= 1+ [f/@)]2=0=\/1+[f(2)]? . (2.16)

Luego, por definicion, al ser f diferenciable y Az un incremento de x, el diferencial dz
de la variable independiente x es dx = Az y el diferencial dy de la variable dependiente
y es

dy = f'(x)Az = f'(z)dx (2.17)

tenemos que

D, [s(z)]dx =ds = §'(x)dx = \/1+ [ (2)]?dx , (2.18)

esto prueba i). Luego, elevando al cuadrado ambos miembros de 1)

ds? = {1+[f'(2)]*} (do)?
= (dx)® +[f'(x)dz]” .

Considerando la definicién del diferencial (2.17) de dy = f’(z)dx esto da ii). O

Longitud de una curva

A partir de la Definiciéon (3| se puede obtener una formula de longitud de arco para un
tipo de curvas dadas por ecuaciones paramétricas, en este sentido supongamos que C es
una curva que no se interseca a si misma, dada de forma paramétrica por

z=[f(t), y=9@1),

donde a > ¢ > b. Al decir que no se interseca a si misma se refiere a que distintos valores
de ¢ determinan puntos diferentes en C. Consideremos la particién P de [a,b] dada por
a=th<ti<ta<..<tp,=b,neN. Sea At; =t; —ti12=1,2,..ny P, = (f(t),g(t)) el
punto en la curva C determinado por ¢;. Si d(P;_1,P;) es la longitud del segmento de
linea P,_1 P;, entonces la longitud L de la linea quebrada mostrada en la Figura[2.5]es

Ly=> d(Pi_1,P) . (2.19)
i=1
Entonces
L= lim L,, (2.20)
[|P||—0



Figura 2.5: Longitud de segmento de linea.

donde llamaremos L la longitud de C' de P a P, si para cada ¢ > 0 existe una 6 > 0 tal
que |L, — L| < e para todas las particiones P con ||P|| < . Por la férmula de la distancia
tenemos

d(Pi-1,P;) = \/[f(tz') — f(ti-)? +[g(t:) —g(ti-1)]? . (2.21)

Con un procedimiento similar al de la ecuacién (2.8) utilizando el teorema del valor
medio y la ecuacion (2.21) se obtiene

— 1% — 1 / \12 /(~.\12 .
L_uleioL”_zlvuﬂo;\/[f (W)l +1g'(z)PAt: (2.22)

dado que el limite existe, donde w; y z; son valores en el intervalo abierto (¢;,_1,¢;). Si
w; = z; para toda ¢, entonces la suma es una suma de Riemann para la funcién m definida
como

mt) = /1F (O +1g/ ()2 . (2.23)

El limite de esta suma es

o= [ I OR g 0Pl (224

Esta discusion se halla en la literatura en términos del siguiente teorema [17]]

Teorema 3. Si una curva suave C estd dada paramétricamente por x = f(t), y = g(t),
donde a <t <by si C no se interseca a st misma excepto posiblemente en los puntos finales
de [a,b], entonces la longitud L de C es

L— /b JPOR 907 dt:Lb\/(CZ>2+ (fi)th. (2.25)

2.2.3. Curvatura

Consideremos ahora una funcién vectorial r en dos dimensiones tal que r = f(¢)i+
g(t)j y sea C la curva determinada por el punto final del vector posicion correspondiente

13



ar(t), r'(t) es el vector tangente a C' que apunta en direccion de los valores crecientes de
t. Sir(t) # 0 entonces el vector unitario tangente T(¢) a C estd dado por la férmula

1
T =5
Debido a que |T(t)| = 1, se tiene que T’(t) es ortogonal a r(¢) para cada t. Sea N(t) =
(1/|T'(t)|)T'(t) un vector unitario ortogonal a T(t). Nos referimos a |[N(¢)| como un vector
normal unitario a C. Establecemos esto como

N(t) = |T,1(t)|T’(t) . 2.27)

v(t) . (2.26)

Figura 2.6: Vector tangente y normal en el plano.

Ejemplo 1. Sea C la curva determinada por
r(t) =t*i+tj
usando con r'(t) = 2ti+j

1
T(t) = ————=(2ti+]) =
)= i)
2t n 1 .
g 1 .
VA1 VARl
Al diferenciar los componentes de T(t) tenemos

2(4t2 + 1)1/2 —2t(1 (482 + 1)‘1/2))8ti+ —(1/2(4t> +1)"1/2)8t

(2ti+])

1
VatZ +1

T'(t) =
®) 4241 4t2 41
2(4t2+1)1/2—4t2(4t2—|—1)*1/2, 4t(4t%)
= 1— .
(42 + 1) 42+ 1)

Utilizando la longitud de arco s medida desde cualquier punto fijo A como parametro
en las ecuaciones de una curva C dada por = = f(s) y y = g(s) en el plano zy, donde f’y
¢’ son continuas en un intervalo I, véase Figura|[2.7

e

> T

Figura 2.7: Longitud de arco s.
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Para cada s en en el intervalo I corresponde un tinico punto P(s) = (f(s),g(s)) el cual
esta a s unidades de A (medido a lo largo de C) y la direccion positiva a lo largo de la
curva C se determinada por los valores crecientes de s.

A continuacién se analiza la variacién del vector unitario tangente T(s) conforme
P(s) se mueve a lo largo de C. Para cada s sea 6 el angulo entre T(s) e i (el vector
unitario en la direccién del eje z) como se observa en la Figura[2.8

2 Y

> T

Figura 2.8: Vector tangente a la curva y su variacion conforme el punto P se mueve a lo
largo de la curva, donde 6 es el angulo entre T(s) y el vector unitario en la direccién del
eje x.

Observacion: 0 es funcién de s debido a que para cada s corresponde un punto P(s)
en la curva C que determina un valor de 6. La razén de cambio df/ds de 6 con respecto
a s es la clave de la siguiente definicién [17]].

Definicion 5. Sea una curva C dada por x = f(s), y = g(s), donde s es el pardmetro de
longitud de arco. La curvatura x de C en el punto P(s) = P(x,y) es

i@
ds

Entonces la curvatura puede entenderse como el valor absoluto de la razén a la cual
el angulo # cambia con respecto a la longitud de arco s. En este sentido, la curvatura es
pequefia para puntos tales como Ry S en la Figura[2.8/debido a que § cambia lentamente
conforme P(s) se mueve a lo largo de C. Por otro lado la curvatura es grande para el
punto ) debido a que en ese punto § cambia muy rapido. Por lo que, a grosso modo, se
dice que la curvatura « proporciona informacién sobre el filo (sharpeness) de una curva
en varios puntos. Algunos ejemplos que hallamos en la literatura para profundizar un
poco en este tema se presentan a continuacion

Ejemplo 2. Pruebe que la curvatura en una linea es 0 en cada punto de la linea.
Si C es una linea entonces el dngulo 0 es el mismo para cada punto P(s) sobre la
linea, es decir, 0 es constante. Por lo que

df
K ‘ds 0| =0

Ejemplo 3. Pruebe que la curvatura en cualquier punto en un circulo de radio a es %

Se asume que en la Figura [2.9]el circulo tiene centro en O y el punto P estd en el primer
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Figura 2.9: Curvatura del circulo.

cuadrante. Establecemos el punto A(a,0) fijo y sea s la longitud del arco AP entonces por
definicién que s = acq 0 o = é, donde aes Z/POA. De acuerdo a la Figura vemos que

P LT s+7r
= _——= - —_
2 a 2
y por lo tanto
dg 1
— = K=—.
ds a a

Ahora consideremos que una curva C' es la grafica de una ecuacién rectangular y =
h(z) donde A’ es continua en algtn intervalo. Como 3/ es la pendiente de la linea tangente
en P, vemos en la Figura|2.8 que

tan(@) =y o O=tan"(y). (2.28)

De la Definicién [4|la funcién de longitud de arco s puede definirse como

s(x) = /x V1+()2de, (2.29)

donde a es la coordenada x del punto fijo A en C. Si y” existe entonces por la regla de la
cadena

d9 dbds
T deds (2.30)
Entonces la curvatura se escribe
do do ds
B Dl I il B 2.31
ds ds dx (2.31)
Considerando (2.28) y (2.29) se tiene
do " d
__ Y G 1+ )2 (2.32)

dr  1+@)? 7 dx



Al sustituir ambas ecuaciones en (2.31) se llega al siguiente resultado
yll
R AL [
L+ [+@)P2

Esta es una féormula hallada en la literatura [17] para calcular la curvatura de la curva
C' de una grafica y = f(x) en el punto P(z,y).

Consideremos ahora una curva C descrita en términos de cualquier parametro ¢t dada
por las ecuaciones paramétricas

//|

(2.33)

L= f(t) ) Y= g(t) ) (2.34)

y ademads [’ y ¢” existen para toda t; se puede encontrar en la literatura la siguiente
formula para la curvatura « en el punto P(x,y) [17]

_ ") —g' O f") (2.35)
(@2 + g ()2

Si la curvatura en un punto P en una curva C es distinta de cero, entonces el circulo
de radio p = % cuyo radio yace en el lado céncavo de C' y el cual posee la misma linea
tangente en P que C es llamado circulo de curvatura para P. Su radio p y centro son
llamados radio de curvatura y centro de curvatura para P respectivamente. Los ejem-
plos donde se estudi6 el radio del circulo, dicen que la curvatura del circulo de curvatura
es % 0 k y por lo tanto es lo mismo que la curvatura de C. Por esta razoén el circulo de
curvatura puede pensarse como el circulo que mejor coincide con C' en P. Para finali-
zar esta seccién, a continuacion revisaremos el calculo de la curvatura de una elipse

analiticamente a partir de sus ecuaciones paramétricas.

Ejemplo 4. Curvatura de una elipse [18]
f(t) =acos(t)
g(t) =bsin(t) .
Al derivar las ecuaciones paramétricas
f'(t) = —asin(t) g'(t) = bcos(t)
f"(t) = —acos(t) g"(t) = —bsin(t) .
Entonces la curvatura al sustituir en la ecuacion

_ S0 g 01
{[F/ 12+ g (1)]2}?

resulta

|[—asin(t)][—bsin(t)] — [beos(t)][—acos(t)]|
[—asin(t)]? + [beos(t)]? }3/2
_ |[absin? (t)—l—abcosQ(t)H _ lab(sin? () + cos?(t))|
[a?sin? () + b2 cos? (t)} [a?sin?(t) + b? cos?(t)] 3/2
|abd|

B [a?sin?(t) + b2 cos?(t)] 3/2

K =

17



2.2.4. Sistema de Frenet-Serret en dos dimensiones

En esta seccion presentaremos la formulacion del sistema de Frenet-Serret para las
curvas en un plano.

T(s)

-

Figura 2.10: Vector tangente y normal en el plano.

Consideremos un punto sobre la curva como se presenta en la Figura La deri-
vada del producto punto del vector tangente en ese punto consigo mismo [4]

T T=1 (2.36)
se reduce a
dT dT dT
T—+T—=2T—=0. 2.
ds + ds ds 0 (2.37)

Sea « la magnitud de %, considerando N como el vector unitario normal a la tangente,
es decir, introducimos un factor de proporcionalidad n tal que

dT
— =yN. (2.38)
ds

El término % expresa la razén de cambio de la tangente cuando avanzamos sobre la

curva, es llamado el vector de curvatura, su direccién esta bien definida por la curva,
independiente de la orientacién de ésta ya que cuando s cambia de signo, T también
cambia de signo [4].

Por ser N perpendicular a T, se tiene que

T-N=0. (2.39)

Derivando esta dltima expresion tenemos

T N7 N _y (2.40)
ds ds

De (2.38) y como N - N = 1, al realizar el producto punto con N se obtiene

T
‘fT.N:nN.N:n. 2.41)
S

Entonces, al sustituir esto en la ecuacion (2.40) resulta

T =
7+ Is 0
N
C;—S-T: —n. (2.42)
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De manera similar, al derivar el producto N-N = 1 se obtiene

@ N=0, (2.43)
ds

lo que significa que y N son perpendiculares.
Ahora, cualquier Vector x en el plano T, N se puede expresar como

dN

x= =(v-T)T+(v-N)N. (2.44)
S
Consideremos v = 9
AN _ (dN T)T+ (dN N)N )T (2.45)
ds ds ds

donde%-T —ny— ‘N =0.
Por lo que la formulacién de Frenet-Serret en dos dimensiones resulta

T

CﬁTs — N (2.46)
N

CiTs _ T, (2.47)

2.3. Curvas espaciales

2.3.1. Curvas en tres dimensiones

Una curva espacial o una curva en tres dimensiones, se define como un conjunto C
de tripletas ordenadas

C=(f(t), g(t), h(t)) (2.48)

donde las funciones f, g y h son continuas en un intervalo I [17]].

2.3.2. Longitud de arco

La férmula de longitud de arco para el espacio euclideo tridimensional en un sistema

coordenado rectangular (z!, 22, 23) es

bl rdet\?  fda?\?  [fdad\? b dx® dzJ
L= - > & — o &
AJ(dt>+(dt>+(dt)dt /a 5”dt dtdt’
véase (C.2) en Apéndice[C| donde §;; es la delta de Kronecker [19].
Si una curva C estd dada paramétricamente por x = f(t), y = g(t), z = h(t), donde

a<t<b,ysiC no se interseca a si misma, excepto posiblemente en los puntos finales
de [a,b], entonces la longitud L de C esta dada por

p= [ IFOR + @R+ R
LG () 2+(‘Z)2
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2.3.3. Curvatura y torsion

La curvatura mide la razén de cambio de la tangente a lo largo de la curva mientras
que la torsion es una cantidad que mide la razén de cambio del plano osculador. Por
otro lado el plano osculador es el plano formado por los vectores tangente y normal de la
curva. Para alcanzar este objetivo de medicion se considera un vector normal en el punto
P a dicho plano osculador que se denomina binormal [4]. Como se observa en la seccion
siguiente sobre la formulacién del triedro de Frenet-Serret, se introduce este factor de
proporcionalidad 7, que puede ser positivo o negativo, como la curvatura, pero donde la
ecuacién de la curva define solo 2 (se hace la convencién de que siempre es positiva y
por lo tanto se fija el sentido de desplazamiento en la indicatriz esférica [7]]) esto solo
define 7.

La definicién de curvatura « = ‘% introducida en la Definicion |5/ no posee un ana-
logo inmediato en tres dimensiones, porque el vector unitario tangente T(s) no puede
especificarse en términos de un sélo angulo 6. Por lo que es necesario usar un abordaje
diferente para curvas espaciales. Entonces debemos mostrar que si nos enfocamos en
vectores en el plano, la nueva definicién debe coincidir con la Definicién

Para hallar una definicién apropiada debemos primero observar que en dos dimen-
siones

T(s) = cos(#)i+sin()j ,

donde 6 es el angulo considerado en la Definicién 5]
Considerando 6 como una funcién de s, al diferenciar la ecuacién anterior nos da

T/(s) = (sm(e)dff)) it (cos(@)dc(li))j - dc(li)(sin(e)iJrcos(Q)j) .

S

Por lo que

IT'(s)] = ’dg)‘ | —sin(0)i+ cos(8)j| = ‘

Para introducir el concepto de curvatura en tres dimensiones debemos usar esta
dltima ecuacién. De hecho, queremos describir el vector T(s) sin referirnos al angulo 6
para después definir x como | T(s)|.

Supongamos que una curva C esta dada por

r=f(s), y=g(s), z=h(s),

donde s es la longitud de arco medido a lo largo de C' desde un punto fijo A al punto
P(s) = (f(s),9(s),h(s)) y donde f"(s), ¢"(s) y h”(s) existen. Como ya se ha mencionado,
sir(s) = f(s)i+g(s)j+ h(s)k es el vector posicién de P(s), entonces r'(s) es un vector
unitario tangente a C' en P(s) que denotaremos por T(s). Como |T|(s) es una constante,
se tiene que T'(s) es ortogonal a T(s). Si T'(s) # 0, sea

N(s) = |T,1(S)| T/(s) .

El vector N(s) es un vector unitario ortogonal a T(s) y se le llama vector normal unitario
principal a C en el punto P(s) como se muestran en la Figura Habiendo descrito

20



al vector tangente unitario T(s) continuamos con la definicién de la curvatura en tres
dimensiones como sigue, donde se asume que T'(s) existe.

\Z

X

Figura 2.11: Vector unitario tangente T(s) y vector unitario normal principal N(s).

Definicion 6. Sea la curva C dada por

J'Zf(S), y:g(s)7 Z:h(S)

donde s es el pardmetro longitud de arco. Sea r(s) = f(s)i+g(s)j+h(s)k y sea T(s) =r'(s).
La curvatura  de C en el punto P(x,y,z) es

k=|T'(s)| .

Esta definicién se reduce al resultado en Definicién |5[si la curva C es plana. Nétese
que

N(s):%T’(s) o T'(s)kN(s).

Intentemos ahora calcular la férmula de la curvatura de una curva espacial. Supon-
gamos que en un tiempo ¢ la particula esta en el punto P(x,y,z) sobre una curva C' dada
de forma paramétrica por = = f(t), y = g(t), 2 = h(t) donde existen f”, ¢” y h”. Represen-
temos el vector de posicion OP y s denota la longitud de arco medida a lo largo de C.
Asumamos que s incrementa conforme ¢ incrementa. El vector unitario tangente puede
expresarse como

y por lo que

(1) = (1) |T(s) = o0

Al diferenciar con respecto a ¢ y considerando las reglas de diferenciacion siguientes

Dy[f(tu(t)] = f(O)u'(t) + f'(H)u(t)

Deu(f(t)) = f'(t)'(f(2))

21



donde u(¢) es un vector, tenemos

d*s ds d
7 _ 7 o
r'(t) = dt2T(S)+dt dtT(S)
_ d’s ds dsT,

gz L)+ g T )

De la nota de la Definicién [6] escribimos T'(s)xN(s) donde « es la curvatura de C. En
consecuencia,

ZijT(s) + (;l;)2 kIN(s) .

Si denotamos la velocidad ds/dt por v y escribimos x = 1/p, donde p es el radio de cur-
vatura de C, la férmula reescrita puede expresar la aceleracién r”(¢) en términos del
componente tangencial y el componente normal que depende solo de la velocidad y la
curvatura de la curva entonces el componente normal de la aceleracion es grande. Tene-
mos el siguiente teorema

I‘//(t) —

Teorema 4. Sea P la posicién de un punto en una curva C dado por

r(t) = f(O)i+g(t)j+h(Hk

donde t representa el tiempo. Si la velocidad de P es v = ds/dt, entonces la aceleracién de
Pes
(0 = 2 () + NG
o dt p )

donde p es el radio de curvatura de C.

Este resultado, en teoria, prueba el bien conocido hecho de que un automovilista
deberia frenar cuando va a tomar una curva.

Busquemos ahora férmulas para los componentes normal y tangencial de la acelera-
ci6n que dependan solo de r'(¢). Primero recordemos de la discusién que

r'(t) =vT(s) .

Tomando el producto punto con r”(¢) como se ve en el Teorema 4]se obtiene el componen-
te tangencial de la aceleracién. Y con el producto cruz se obtiene el componente normal
de aceleracién expresada como

02 (8 x (1)
— = (2.49)
PG

Podemos utilizar esta ecuacién para obtener una férmula para la curvatura de una curva
espacial C. Especificamente, si C' esta dada paramétricamente por

z=f(t), y=g(t), z=nh(t)

sea

r(t)=f(t)i+g(t)j+h(t)k .
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Podemos considerar a C' como la curva trazada por el punto final de r(¢) conforme ¢
cambia. Como v = |r/(¢)| y k = 1/p tenemos del componente normal de aceleracion (2.49)

r'(0)?] _ [r'(t) xx"(1)]
(1/x) 140l

Al resolver para x tenemos el siguiente

Teorema 5. Sea una curva C dada por x = f(t), y = g(t), z = h(t), donde ", g’ y h"
existen. La curvatura r en el punto P(z,y,z) sobre C es

() < (0)
SOk

A continuacién revisaremos la formulacién del sistema de Frenet-Serret y su relacion
con las ecuaciones de las curvas en tres dimensiones.

2.3.4. Sistema de Frenet-Serret en tres dimensiones

L\ Z

B(s)

S

X

Figura 2.12: Vector tangente, normal y binormal de un punto sobre una curva en el
espacio.

Para la formulaciéon del sistema de Frenet-Serret en tres dimensiones, definimos un
vector unitario B perpendicular a T y N, véase la Figura Derivando el producto
puntocon Ty N

dN dN dN
(o) (G NN=rB, (250

donde % ‘T=—-ky % N =0y 7 es otro factor de proporcionalidad. Por lo que

dN

—+kT—-0=7B

ds

ﬁ =—xT+7B. (2.51)
ds

Sea % un vector expresado en términos del vector tangente T, del vector normal N y

del vector binormal B.
dB

s =aT+bN+cB , (2.52)
s
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donde a,by c son constantes. Ademas, considerando que B-B =1 que resulta en 2% =0,

yque T-N=0,B-N =0, B-T =0, al diferenciar

B-N=0
dB dN
—N+—B=0 (2.53)
ds ds
y considerando la ecuacién (2.51) se tiene que
aB dN
ZN+-—B=0
ds + ds
dB
S

al sustituir (2.52) en (2.54) se tiene

(@T+bN+cB)N+(-xT+7B)B=0
aT N+bIN-N+cB-N—xT-B+7B-B=0. (2.55)

Ademas,como B-B=1,T-N=0y B-N =0 entonces a =0, ¢ =0, por lo que la ecuacion
(2.55) se reduce a

b= —7 . (2.56)

Esto quiere decir que el vector % supuesto de forma (2.52) tiene realmente la forma

dB

— =—7N. (2.57)
ds
Al diferenciar B- T =0 se tiene
B-T=0
B T
B, Ty g, 2.58)
ds ds

Al sustituir la ecuacion |i en 1D y considerando que % =N, se tiene
(aT+bN+cB)T+xN-B=0
al - T+bWN-T+cB-T+xkN-B=0. (2.59)

Esto ultimo se reduce a a = 0, por lo que no tiene término con T. Entonces el sistema de
Frenet- Serret queda establecido con las ecuaciones (2.46)), (2.51) y (2.57)

dT

— =kN

ds "

dN

— =—xT+7B

ds

dB

2 N

ds g

En nuestro caso de estudio consideramos el sistema de Frenet-Serret como sigue

o =kf,

B =—ra+T1y, (2.60)
/

v = _TBJ

donde «, 8y v son considerados los cosenos directores del radio vector que define a la
curvay o/,3 y ' son las derivadas de estos en funcién de s.
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2.3.5. Sistema de Frenet-Serret en cuatro dimensiones

Es posible obtener una formulacién en cuatro dimensiones con un procedimiento muy
similar al que se present6 en la seccién previa. Si D es ortogonal a T, N y B entonces
D - T=0,D-N=0,D-B=0,D-D =1. Derivando T -B = 0 y al considerar la ecuacién
(2.46) se obtiene

dT dB dB

que resulta en
dB
— - T=-kN-B. (2.61)
ds

Derivando N - B = 0 al considerar (2.51)

dN aB

—B+—N=

ds + ds 0
dB

_T B.B 7-N:
(=T +7B) +ds 0

B
—KT~B+TB'B+%'N:O
S

B -N=-7. (2.62)
ds
Al considerar (2.61]), (2.62) y recordando que
B-B=1
dB
222 =0
ds ’

el vector B seria definido como ¢B

dB dB dB dB
ds‘(T'dS)T‘(N'ds)N‘<B'ds)B—"D

Z—B—FFLN-B—FTN—OZJD
S

Por lo que

dB

— =—7N+0D (2.63)
ds

Ahora, como queremos que D sea un vector ortogonal con la siguiente forma

dD

Veamos como es respecto a los otros vectores ortogonales.

ds
(dD>-T:aT‘T:a.

dD
( )-T:(aT—I—bN—i—CB—i—dD)-T
ds
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Donde a,b,c,d son constantes arbitrarias. Y analogamente para los N, B y D.
Consideremos el producto punto de los tultimos dos vectores By D (B-D =0) y al
diferenciarlo obtenemos

y sustituyendo las ecuaciones (2.63) y (2.64), la ecuaciéon anterior resulta

(—=TN+0D)-D+B-(aT+bN+cB+dD)=0
(—=7N)-B+(¢D)-D+aT-B+bN-B+cB-B+dD-B=0

que al considerar que T-D=0,N-D=0,B-D=0y D-D =1 se obtiene

C= —0 .
Por lo que el vector % esta dado por
dD

Entonces, el sistema en cuatro dimensiones estd formado por las ecuaciones (2.46),

@.51), 2.63) y (2.65)

dT

2= _ kN

ds "

N
d—:—ﬁT—I—TB
ds

B
d—:—TN—FUD
ds

dD
— =-0B.

ds o

Marco de Frenet-Serret para E*

De acuerdo a la seccién anterior la formulacién se generaliza a cuatro dimensiones
de la siguiente forma

T = kN
N/ = —HT+7'1B1
Bll: —T1N+TQB2

By = —7B;
O en forma matricial
T/ 0 K 0 0 T
N, . —K 0 1 0 N
B1/ o 0 —T1 0 T2 B1 ’
By’ 0 0 —-m O B>

donde T', N’, By’ y By’ son diferenciales de los vectores tangente, normal, primera
binormal y segunda binormal, respectivamente y «, 71 y 72 son la curvatura y la primera
y segunda torsién respectivamente.
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Y a cinco dimensiones

T = kN

N = —kT+m1B1
B1/: -7 N+ 1Bg
By’ = —»B; +73B3

B3’ = —73B;
T 0 K 0 0 O T
N’ -k 0 T 0 O N
Bll == 0 —T1 0 T2 0 B1 5
By’ 0 0 —7m» 0 713 B-
B3/ 0 0 0 —T3 0 B3

donde, de igual forma, B3 es también la tercera binormal y 75 un tercera torsion.

2.4. Ecuacion diferencial de las curvas espaciales

En la geometria diferencial de las curvas espaciales, que también es equivalente a la
cinematica de trayectorias en la mecanica clasica, un resultado basico fue obtenido por
J. F. Frenet y J. A. Serret alrededor de 1850, cuando introdujeron el Sistema de Frenet-
Serret de ecuaciones diferenciales de primer orden para el marco mévil ortogonal de
vectores tangente, normal y binormal donde las primas representan las derivadas
con respecto a la longitud del arco s de la curva, y los coeficientes « y 7 son la curva-
tura y la torsién de la curva, respectivamente. Este sistema lineal de tres ecuaciones
de evolucién acopladas en la longitud de la curva es, por supuesto, equivalente a una
ecuacion diferencial de tercer orden en la forma de la siguiente ecuacion diferencial de
cuarto orden en el vector tangente

/ / 7 "2 1t / '
X(w)—(%—I—T)X”/—I—</€2—|—7‘2—m€ —S(FJ) +l-€7' )X,/+/€2 (H_T)X/:()’ (2.66)
T

Y T K K K T

donde x,7 # 0y ’, ” son diferenciales de la curvatura y 7’ la diferencial de la torsion.
En ecuaciones diferenciales ordinarias se estudia la reduccién de una ecuacion dife-
rencial ordinaria no lineal conocida como ecuacion de Riccati de la forma [20]

p(s)r+q(s) = f(s) (2.67)

a una ecuacién de Bernoulli o a una ecuacién lineal de primer orden por medio de un
cambio de variable o sustitucién de variable una vez obtenida la funcién u(z) la sus-
tituimos en y(¢) para obtener la solucién deseada. Ese es un algoritmo conocido y que
incluiremos en el Apéndice [A] sobre ecuaciones de Riccati.

La ecuacion de Riccati para las curvas que encontramos en la literatura [4] y [21] es
una ecuacion diferencial de cuarto orden homogénea y la obtencién de su solucién puede
darse por si misma al reducir el orden o al transformarla en un sistema de ecuaciones.
La solucion de dicha ecuacion pertenece al estudio de las ecuaciones diferenciales de
orden superior.

27



Si en lugar de utilizar el método de la ecuacion de Riccati nos disponemos a obtener
la x(s) directamente como la solucién de las ecuaciones de Frenet parauna k #0y 7 # 0
se obtiene la ecuacion (2.66).

Por otro lado, dada una curva x = x(s) de clase > 4 cumple la ecuacién diferencial
(2.66). al calcular x’' =t, x” =t = kn, X" = K'n+kn’ = k'n — K2t + kb y xV) = ... como
combinaciones lineales de t, n, b, es decir, tangente, normal y binormal, respectivamen-
te, y haciendo las sustituciones del caso.

Recordemos que el triedro de Frenet esta definido como

dt N
=k
ds
dn
— =—krt+7b (2.68)
ds
d_ n
ds '

Entonces comenzamos con obtener z():

) = K"n+ k0’ — (26t + K2*t') + K'7b 4+ Kk(7'b + 7b') (2.69)

y al sustituir t’,n’,b’ en (2.69)
2™ = in+ f(—kt+7b) — 25t — KN + iTb 4+ Kb + KT(—7n)

= in — fkt +7hb — 2kt — K2+ ATb 4 kb — K7T%n)
= (k— K> — kT2 )+ (—kk — 26)t + (274 + KT)b . (2.70)
Sustituimos %, %, X,x) en la ecuacién diferencial (2.66)
x () — (R + T) (/%n — K2t + m'b) + (mQ +72— M + m) (kn) (2.71)
kK T K KT
+ K (“ — T) t=0
K T
) 2 . 2 .. . .. 2 . 2 o .
x() — <H + 5 ) n+ (2/{/%—!— Tn2> t—(2k7+7K)b+ (/{3 N AU HK) n
K T T T K
(2.72)
2 .
+ (m%— M) =0
x() 4 (/f?’ + 72k — m) n+ (3kk)t— (2k7+7k)b=0. (2.73)
K

Observamos que se reducen todos los términos de esta dltima ecuacion y (2.70) asi

(ki — K3 — kT + (—rf — 26)t + (27 + KT)b + (Fa3 + 72K — M) n+ (3kk)t — (267 +7k)b=0.
K
(2.74)
Como vimos, estamos interesados en soluciones linealmente dependientes de una
ecuacion diferencial lineal de orden superior de la forma
mn dn—l dy

an(x)Ty+an_1(x)w+--~+a1(az)% = g(z) . (2.75)
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Esta ecuacion es de un tipo en la que la variable y no aparece explicitamente. El
método de reduccion de orden considera el cambio de variable

_dy dz d%y d?z B d3y d3z B dy

_ _dy e dy &z dy 2.76
*TUr dr da?’ a2 drd dy?  dax? ( )

Considerando los coeficientes de la ecuacién (2.66) de acuerdo a la ecuacién (2.75)), defi-
nimos las siguientes funciones

aq(z) kK T aq(z) K2 KT
-8 (£-7) - 200

Si sustituimos estas funciones y el cambio de variable en la ecuacién de cuarto orden
lograremos reducir a una ecuacién de la siguiente forma

d3z d*z dx
d—y—R(m)d—y+Q($)dfy+P(x)z:S(m) =0. (2.78)

2.5. El método de Lie-Darboux y las formulas de Scheffers

En la seccién anterior se presenté un enfoque de las ecuaciones diferenciales para
expresar curvas solucion de dichas ecuaciones. Un resultado menos conocido, pero no
menos importante, fue obtenido a finales del siglo XIX por S. Lie. y G. Darboux, quienes
idearon un método con el cual las curvas espaciales podrian describirse mediante una
ecuacion de Riccati de primer orden no lineal con coeficientes expresados en términos de
curvatura y torsién. E]l método de Lie-Darboux se menciona en algunos libros de texto
clasicos de geometria diferencial, como el tratado de Eisenhart [7] y las conferencias de
Struik [4].

En la literatura [7] y [5] encontramos el resultado que habla sobre la congruencia de
dos curvas dadas C7,C5 cuando los valores intrinsecos de ambas (la primera y segunda
curvatura, es decir, la curvatura y la torsion respectivamente) coinciden en cada uno de
los puntos de las curvas.

De dicho resultado se tiene que una curva esta determinada a pesar de su posiciéon
en el espacio, por las expresiones para el radio de curvatura p y radio de torsién p en
términos de la longitud de arco. Por lo que las ecuaciones de una curva que pueden
escribirse de la forma

k= fi(s), 7= fa(s) (2.79)

donde x = % es la curvaturay 7 = ]l) es la torsion, son llamadas ecuaciones intrinsecas de
la curva.

El objetivo ahora es sobre el caso converso, es decir, cuando dos ecuaciones son
ecuaciones intrinsecas de una curva para la cual s es la longitud de arco, en las cuales
f1y fo son funciones cualesquiera del parametro s jqué se obtiene?. Para responder esta
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pregunta, en primer lugar, las ecuaciones (2.60) reescritas como estan en [5]

da 3

o P 2.
i p’ (2.80)
9%__ (O‘ + 7) , 2.81)
ds p p
&y _PB (2.82)
ds p
o como las encontramos en [4]
do =rp, (2.83)
ds
% =—Kka+T7, (2.84)
ds
dy =—-703 (2.85)
ds
admiten tres conjuntos de soluciones de cosenos directores, es decir:
a=a, B=0, v=m; (2.86)
a=a2, 52627 T=725 (287)
a=az, =0, 7=73; (2.88)

tales que para cada valor de s las cantidades «;, 3; ¥ v; son los cosenos directores de tres
lineas o vectores perpendiculares entre si. Con un argumento similar al que utilizan en
la teoria de curvas congruentes prueban que para todos los valores de s las soluciones
(2.86) satisfacen las condiciones siguientes

arae+P1B2+7172 =0, azaz+ B3 +7y3 =0, azar+B3a3+y371=0. (2.89)

es decir, se cumplen las condiciones de ortogonalidad y ademas las condiciones de los
cosenos directores al inicio de este capitulo, ecuacién (2.3), sobre que la suma de los
cuadrados de una recta siempre debe ser igual a uno

af+Bi+i=1, a3+P5+v=1, a3+B5+1=1. (2.90)

Para mas informacién respecto a estos conjuntos de soluciones consulte [4, 5] [7].

Para ser mas precisos supongamos que tenemos un conjunto de soluciones, es decir,
a1,a9 ¥ ag son los cosenos directores de la tangente a la curva. Para la curva dada por
las siguientes ecuaciones

x:/alds, y:/agds, z:/agds, (2.91)

se puede decir, que si p es positivo para todos los valores de s, es el radio de curvatura de
la curva y a2, B2,72 son los cosenos directores de la normal principal en el sentido
positivo y las funciones a3, 33,73 son los cosenos directores de la binormal [5] [7]. Por lo
que de las ecuaciones de Frenet- Serret y la tercera ecuacién de se tiene que
p es el radio de torsién de la curva. Por lo que tenemos el siguiente teorema fundamental
de las curvas [5]:
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Teorema 6. Dadas dos funciones holomdrficas f1(s), f2(s) de los cuales la forma es posi-
tiva para todos los valores de s en un cierto dominio, en un dominio dado para valores de
la longitud de arco s existe una curva para la cual p = f1(s),7 = fa(s). La determinacion
de la curva se reduce a hallar los tres conjuntos de soluciones de las ecuaciones

satisfaciendo las condiciones (2.89), e integrar.

O siguiendo el procedimiento de Struik [4]], procederemos a efectuar la integracién
de las ecuaciones (2.83).

Dado que ain desconocemos estos cosenos directores como funciones de s, queremos
hallar aquellas funciones «, 3,7 de s que, ademas de las ecuaciones (2.83), también co-
rresponden a la ecuacion siguiente

a2+52+72 =1. (2.92)

es este punto donde recordamos la reduccién del estudio de las curvas espaciales en E3
al estudio de las curvas en S? mencionada al inicio de esta tesis: para una curva indi-
catriz esférica arbitraria, sus vectores unitarios tangente, normal y binormal satisfacen
el sistema lineal de Frenet-Serret y también la ecuacién algebraica de la esfera
unitaria S? (2.92). La idea del método de Lie-Darboux es convertir esta definicién aditiva
de S? en la forma factorizada

(a+if)(a—if) = (1+7)(1—7) (2.93)

e introducir las funciones imaginarias conjugadas wy —z~!

w_a—i—zﬂ_ 1+~
C1l-y  a—if’
I a—if  1+y

_ - — - 2.
z 1—v a+iB’ (2.95)

(2.94)

de donde se puede obtener la tangente, normal y binormal en formas racionales en
términos de las funciones w y =
1-— 1
q=1TWE o goitwE o Wiz (2.96)

v
w—2z w—2z w—2z

Asi mismo en el caso del sistema de Frenet-Serret, uno puede estar interesado en la
evolucién en la variable longitud de arco de las funciones w y —1/z. Para la diferencial
de w, tenemos

/ el . .
, o +ip a+if . iy — Bw
w = + v = —tkw+
l—y  (1-9)? 11—~

donde en el ultimo paso se han utilizado las derivadas del sistema de Frenet-Serret
(2.83). El truco ahora es obtener o de la primera definiciéon de w en y sustituirla
en la segunda definicién de w. La ecuacion resultante, se resuelve para § y al sustituir
en la ultima ecuacion de (2.96). El resultado es que v se elimina de la ecuacion (2.97), la
cual se convierte en

: (2.97)

w = —ikw+ %Tw2 - %T , (2.98)

que es una ecuacién de Riccati en la cual la torsiéon proporciona tanto el término libre
como el acoplamiento a la no linealidad. Esta ecuacion diferencial (2.98) pertenece a una
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clase de ecuaciones diferenciales interesante ya que define el cociente diferencial de la
funcién desconocida w como una funcién cuadratica de w, cuyos coeficientes, k y 7 sin
embargo todavia contienen la variable independiente s.

Un céalculo algebraico similar muestra que la funcién z satisface la misma ecuacién
de Riccati que w, lo que implica que los resultados para w se apliquen también a 2. La
segunda parte del método de Lie-Darboux consiste en obtener las ecuaciones paramétri-
cas de la curva a partir de la ecuacién de Riccati (2.98). La forma més sencilla de hacerlo
es integrando los tres componentes del vector unitario tangente « en (2.96).

Se puede observar que para cada uno de los componentes se necesitan dos soluciones
particulares de (2.98), w y 2. La expresion mds conveniente para estas soluciones de
Riccati es la forma racional

w:Cf1+f2 Z:df1+f2
cfs+fa’ dfs+ f1’

donde cy d son constantes elegidas apropiadamente que deben cumplir las relaciones
de ortogonalidad de los vectores Frenet-Serret escrito en términos de w y z, y las f; son
funciones de la longitud del arco s también soluciones particulares de la ecuacién (2.98).

No hay un método general para resolver la ecuacién de Riccati (2.98), y ya sabemos
resolverlos s6lo en casos particulares pero la solucién general w, por cierto, se puede dar
tan pronto como tengan o conozcan las soluciones particulares [5]].

Entonces para las soluciones de las ecuaciones de Riccati tenemos para «; presenta-
das en [4]:

(2.99)

1—wiz 14+wiz w1+ 21

ag=——, f=———, M= ; (2.100)
w1 — 21 w1 — =21 w1 — 21
1 —woz 1+ wyz wo + 2

qg =22 g ltuem o watE (2.101)
W9 — 29 Wy — 29 w2 — 22
1-— 1

s = w3z3 , 5 — —|—’U)32’3 : 5= w3 +23 7 (2102)
W3 — 23 w3 — 23 w3 — 23

Las férmulas importantes de los componentes para la tangente unitaria fueron ob-
tenidas por primera vez por G. Scheffers [5]:

(ff =) - (f3 = 1D)

Tt fofs)
(=B

g =1 3h fr— fafs) , (2.103)
_ fafa—fife

(fifa—fafs)

Las ecuaciones paramétricas de la curva son obtenidas al integrar «; a lo largo de la
curva:

x(s):/sal(a)dg, y(s):/sag(a)da, z(s):/sag(a)da. (2.104)

Entonces cabe recalcar que el principal objetivo del método de Lie-Darboux es obtener
cuatro funciones f;(s), es decir poner las soluciones de la ecuacién de Riccati en la forma
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dada en (2.99) . Consideremos algunos ejemplos utilizando clases especiales de curvas
para determinarlas de esta manera [5, [7].
Nota 1. Se presenta a continuacion el caso cuando las curvas tienen torsion cero:

T=-=0.
p

la solucién general de la ecuacién de Riccati degenerada
i [ds
o=ce S5
por lo que el conjunto de soluciones puede considerarse

. ds
flzeiszv f2:07 f3:07 f4:1

de modo que la formula para a3 en las ecuaciones (2.103) sea a3 = cte. Por tanto, la curva
mencionada resultante es plana.
Nota 2. Veamos ahora las curvas cuya curvatura es cero, es decir cuando

k=—-—=0.
0

La solucién de la ecuacién resultante al considerar k =0

i [ 4s
ceJ r—1
o= —F17—

i[ds ’
cet r+1
Esto proporciona el conjunto de soluciones
. ds - [ ds
p:ez‘f?’ q:—l’ 7'(‘:82‘[?

Y la curva resultante es una recta.
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CAPITULO 3

Resultados y aplicaciones

En este capitulo se presenta un enfoque mds general del método de Lie-Darboux
que genera dos ecuaciones de Riccati que difieren por el signo de la torsion.

3.1. Dos ecuaciones de Riccati para el método de Lie-Darboux

Consideremos la siguiente generalizacion de la ecuacion algebraica (2.92) presentada
en el capitulo anterior,
k2o + k382 + k32 =1, (3.1)

donde ki, ko y k3 son constantes reales arbitrarias. Para ki = ko = k3 = k esta ecuacién
(3.1) de la esfera de radio k~! en el espacio euclidiano tridimensional E3 y si k =1 es
la esfera unitaria. También se considera que las funciones «, 3 y v son funciones de la
longitud de arco s. Procedemos a factorizar (3.1) de la siguiente manera
ko® +k36% =1—k3y”
(kra+ikeB) (k1o —ikaB) = (1+ k3y) (1 — k3y) .
A continuacion se define la funcién w de dos maneras
. kia+ikof . 1+ k‘g’}/

= 2
1—]{3’7 k?loé—ik'gﬁ ’ (3 )
derivando con respecto a s la primera definicion en (3.2) obtenemos
(ko +ikeB) (1 —kgy)  (kia+ikeB)(1—ksy)'
w 2 - 2
(1—k3) (1—ksv)
kloé,—i-ikgﬁ/ (k?la—i-ikgﬁ)k‘g’y,
_ + (3.3)
1—ksy (1—k37)?

Al sustituir las derivadas de «, S y v que hallamos en el sistema de Frenet-Serret
(2.60) y usando la primera definicién de la funcién w en (3.2), la ecuacion (3.3) se trans-
forma en

w,: klﬂﬁ—ikQHOé-i-ikgT’y k‘g(—T,B)

1— kgy YTk
. k2a+ik}15 ikz’y—kgﬁw
— . 3.4
" 1—ksy T 1—ksy @4
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Se puede ver que al tomar en esta ultima ecuacion k; = ko = k se obtiene

iy —k
w' = —mw—l—rw . (3.5)
1—kgy

Por otro lado, también podemos obtener « de la primera definicion de w en la ecuacion

(3.2)
w(l—ksy) —ikp =ka, (3.6)
que resulta entonces

w(l—kgy)—ikB  (1—k3y)

Sustituyendo la expresion de « (3.7) en la segunda definicién de w (3.2), obtenemos
1+k 1+k
W + k3y + K3y . (3.8)

k[m 25} —ikB (1—k37)w—2ik‘ﬁ

De este modo, al reacomodar los términos de (3.8) tenemos
(1 —ksy)w? — 2ikfw =1+ k3 . (3.9
de donde obtenemos 5 como sigue

1+kyy—(L=ksy)w® i (I+kzy) il—ksy

1
“2ikw ~92 hw 2 k0 (3.10)

8=

que tras sustituir (3.10) en la ecuacién (3.5)), y después de los pasos de célculo siguientes
llegamos a

ik i (14+ksyy _ i (1=ksy
w' = —ikw+ T — kyrw 3 (Cr) — 3 ()
1—ksy 1—ksy
= —iKwW+T tky _ir[k?’<1+k37>_k3<1_k37>w2]
N 1—ksy 2 Lk \1—ksy E\1—Fksy
_ i ks w2 it [ 2ky ks 1—|—l<:3fy]
= ity gtet+ [1—1@,7 k1—ksy
= kw7 iy 2+£Q (3.11)
2 k
donde
2k2y — k3(1
o= 3( +k37). (3.12)

k(1—k3y)

La ecuacion (3.11) atin contiene el término v, se toman algunas consideraciones para
obtener una ecuacion en términos de los parametros intrinsecos y la funcién w.

Al considerar k3 = k en (3.11), obtenemos que el término denotado por @ resulta
@ = —1, lo cual lleva a la ecuacion de Riccati siguiente, la cual es la ecuaciéon obtenida
en el método de Lie-Darboux original, es decir, el hallado en la literatura,

w' = —mw+%7'w2—% . (3.13)
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Por otro lado, si tomamos k3 = —k entonces Q = 1, que lleva a la ecuaciéon de Riccati
siguiente

- R A 1T

W = —ikl — — T + — . (3.14)

2 2

Esta ecuacion difiere de la primera ecuacion de Riccati en el signo de la torsion. Retoma-
remos lo que implica este cambio de signo més adelante en este trabajo. A continuacion
se revisa el caso de las hélices cilindricas del punto de vista de las dos ecuaciones de
Riccati con torsiones opuestas.

3.2. Aplicacion a las hélices cilindricas

Las hélices cilindricas son conocidas como el caso mas sencillo de curvas de pendiente
constate, es decir, curvas que poseen la razén entre curvatura y torsiéon constante, /7 =
h, donde h es una constante real arbitraria [7]. Para tales curvas, las ecuaciones de
Riccati en el método estandar se resuelven por separacién de variables y por lo tanto se
pueden utilizar como el ejemplo ilustrativo preferido para el método de Lie-Darboux.

Caso k3 = k. Consideremos la ecuacion de Riccati (3.13) correspondiente a este caso
la cual tiene la siguiente forma
dw T, o
—=—(w*—2w—1 3.15
ds 2 ( fw=1), ( )
donde ¢ = k/7 = a/b es una constante que tomamos como nimero racional. Utilizando el
método de separacion de variables obtenemos

dw T
Al reescribir el término del lado izquierdo de la ecuacion (3.16) se tiene
dw 1 1 1
= — dw . 3.17
/w2—2§w—1 (wl—wg)/(w—wl) (w —ws) v (3.17)
Entonces, la ecuacion (3.16) se reescribe como
! / ! dw:/%da. (3.18)
(w1 —we) ) (Ww—wy) (w—ws) 2
Al resolver la ecuacion (3.18) se obtiene
1 .
pa— [In(w—wi) —In(w —wq)] = %/Tda—i—c

L {ln(w_wlﬂzl/Tda—i-C.
W1 — Wo w — Wy 2
w — Wy _E. 2
ln<w—w2> =3 24/& +1/Tda+C

1n<“’_“’1> :ig/ST(a)da+an. (3.19)

w — w9
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donde w1 =& +/E2+1y wy =& — /€2 +1 son las raices del polinomio w? — 26w —1 =0,
¢ =+a?+1? y la constante de integracion arbitraria C se escribe por conveniencia como
In K. Al resolver para w, se obtiene lo siguiente

w—wr _ Keitd(s)

w — wa
w—w; = Ke'5%) (w —wy)
Ke'62) oy —w = Ke's?) g —wy
w(Ke'5?®) —1) = Ke'59®wy —wy

Kwae's?) —
Kb -1 7

(3.20)

w =
donde
o(s) = /ST(U) do = Z/S k(o)do . (3.21)

De la solucion general en la ecuacion (3.20) consideramos K = 1 y el conjunto de funcio-
nes fj,j =1,2,3,4 como a continuacion

fi=wee't?®) =y, fa=e€5%0) | f=—1. (3.22)

Este conjunto lleva a las siguientes expresiones para los tres componentes «; como en el
método estandar en (2.103). Para «; de este caso tenemos la siguiente expresion
(wz ige(s) _ ei%aﬁ(s)) — (w?—1)
( w2e b¢ _{_wleli(ﬁ(s))
¢

¢ g ~1) - (w%—n] =500

- l 2wy — ws)et 190 0
e 158(s) . pigo(s) (wi—1)—e" igo(s )(w —1)
2(wy —wo)e'590) . ¢7150(5)
€90 (wd —1) — e 8% (1w —1)

2(w1—w2)
o0 4 el59s) _ (WIZL) migels)
_ wy—l (wg‘l) . (3.23)
w1 — w2 2

Luego, as se obtiene como sigue
(wae?5?(5) — ei50(s)) 4
2(—w26i§¢( ) +wpe's
_[ewwg—n ] e
2(wy — ws)e 59 e

Q9 =

c-h’ >
A,_.M
\/

2(w1 —w2)€ i58(s) | o5 9(s)
B 59 (w3 — 1) +e 5 (wi — 1)
2(w1 —wg)
o0 4 el59) 4 (ZL) gmigels)
- vl ) . (3.24)
w1 — w2 2
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Al final, a3 se obtiene de

—e'5%(5) — et 590) . (—ay) wiwsy — 1
a3 = — ~ = —
_w2613¢(3) _ <_w1€15¢(5)) w1 — Wy
1
= - ) (3.25)
NGRS
Reescribiremos las ecuaciones (3.23), (3.24) y (3.25) como a continuacién
i< w2—1 _4&
R o i =) A TR (Co(s)
a1(Ss = = 1—\a—C) Sin - S
! wy — Wo 2 be '\p ’
e 2 e
(5) . w% 1 et59(s) 1 (Z%—i)e*zﬂ)(S) a ( : (C¢( )) (3.26)
a9g( S = 1 = 72— \a—C) Ccos - S .
2 wy — Wo 2 be "\p ’
1 b
(0% S = — = -,
(%) 241 c
donde consideramos sin, (%gf)(s)) = M, cos, (%qﬁ(s)) = eigd’(s)ﬂgle”w(s) y K =
Z;j = Z—fg, este ultimo lo llamaremos el coeficiente de deformacion de la hélice. Utiliza-
2

mos el subindice 1 de sinj, de cos; y de K7 para indicar el caso en el que k3 = k.
Resolviendo las ecuaciones «;, i = 1,2,3, en (3.26) para z,y, 2z de acuerdo a las ecua-
ciones (2.83) del método estandar, hallamos que

x(s) = i%(a—c) /Ssin1 (gqb(sl)) ds'

y(s) = i%(a—c) /S cos, (gd)(s’)) ds' (3.27)

s 1 S
zZ(s = - ———ds’ = ———— = —b(s/c),
) | Ve VB /e)
donde las constantes de integraciéon han sido tomadas como cero por simplicidad. Para
profundizar un poco mas respecto a lo que implican las ecuaciones de Riccati revise-
mos ahora el siguiente ejemplo sobre las hélices cilindricas més sencillas que podemos
considerar.

Ejemplo 5. Los cdlculos mds sencillos para hélices ocurren cuando la torsion es una
constante, es decir, sea 7(s) =T = cte., en dicho caso se considera ¢ = 7sy podemos escribir

las ecuaciones en como

x(s) = i%(a—c) /Ssin1 (gTS/)dS/ = —i%(a—c) cos, (s/c) ,
y(s) = i%(a—c) /Scos1 (gTS/)dS/ = —i%(a—c) sin, (s/c) , (3.28)
As) = —ome= = /o),

VET

en el ultimo paso en la torsion constante ha sido elegida como T =b/c.
Veamos a continuacién los pasos que nos llevan a una verificacién de la hélice cilin-
drica.
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.o o2 s -2
e Kle—zcl . l 6 _Kle—u]

2 21
2}

;O ;O 2 -0 Ned

. —e'c — Kqje e etc —Kje e

= S1)? _ | + | —
(ZC 2 {[ 2 ] [ 21

L [—icSl

205 20-20% 22 2 —2i<
. c+2K1+ K ¢ c 9K+ K -
= (icS))? € LT Kie L€ L+ K2e
4 4(-1)
1 - Y aa .
1
= Z(z'c:§1)2[4K1] = (ic$1 )2 K, (3.29)

Recordemos que w, , = ¢+ /@ + 1. Consideramos el término (icS))? donde ¢S, resulta

2
(wg—1) 202—20\/c2+1:c(22—z\/‘;§+1):C( ()2 a)

=c - —
(wl—UJQ) 2v/c+1 /%4_1

cS1=c

por lo que elevando al cuadrado

() @ Ja (

)2
R SN o

e

2 (w3 —1)? —c (3)° _2) 2
(w1 —w2)? \/% b

bQ
4 2 3 2
9 a a a _ a 2 2,12
m+bﬁ_2m y C—b b72+]., cC =a +b 5
b2
4 2 3 2 2
a a a a
_b72+c2b72*20b72_b72(a2+02 2CLC)Zb72(CL*C)2

Consideremos ahora el término K,

o wi—-1 (2 +2eV/+1)
T 2 —2av/@ 1)

(icSl)QKl——b—Q(a— )tai— bﬁ(a—c)(a—i—c):—%(aQ—cQ), c=a’+b,
2
G2 2 42 2
=——(a*—a"—-b")=a
bz(a a

Al calcular sin?(s/c) +cos?(s/c) = K1, uno encuentra que
%+ y2 = a? (3.30)

la cual junto con la expresion para z(s) anterior en muestra que la hélice es cilin-
drica.
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Caso k3 = —k. En este caso, la ecuacion de Riccati (3.14) toma la forma siguiente

ZL: — _%T(a;? + 26w —1) . (3.31)

De manera similar que el caso anterior, al integrar por separacion de variables se obtie-
ne la solucién general @ en la forma siguiente

o Kw267i%¢(s) — - , ,
= oo o = [rha, (3.32)

donde las raices cuadraticas son w; o = —{ £+/&2 + 1.
Cabe resaltar que las raices son w; 3 = —ws 1. Por lo que se puede observar la siguien-
te relacién con las f;, j =1,2,3,4 del Caso k3 =k

fi= —weT B o= wy, fy = e f = -1 (3.33)

Consideramos para los siguientes calculos K = 1, por lo que las expresiones que usare-
mos en el conjunto de funciones f;, j =1,...,4 de la ecuacién (3.32) son las siguientes

fi = wee 5 [ fy =y, fz = e f = 1. (3.34)

Entonces, con respecto a las a;, i = 1,2, 3, las ecuaciones (2.103) se presentan a continua-
cion. Para d; obtenemos lo siguiente

(e — 50 (1) 2800 (@3 — 1) — (@ - )] €54
« = — ¢ == -C ; C
1 2(_@26—139“3) +ZD1€_15¢(S)) 2(1[]1 —w2)6_23¢(s) elgff’(s)
_ e'590) e 2500) (2 — 1) — '590) (52 — 1)
2(1:[}1 — w2)eZ% (5) . 6_7;%(;5(5)
_ @@ 1) - 80O (- 1)
2(w1 —w3)
i & D3 — —i$o(s
B _( r[b%_l >€’Lb¢(3)_(w§_i)e b¢>( )
B Wy — W 2
(3.35)
Para o> la expresion se obtiene como sigue
[ — ek 4 (a2 - 1) [e 0 @3 —1) — (@3 - 1) ] i)
dy = 1 = i =
2(— pe15908) ¢ wleﬂgdﬁ(S)) I ei59(s)

25 (@3 — 1) + ) (@} — 1)

I 2101 — 1) 59(3) . ¢—159(5)
e 2 (g —1) + '8¢ (wF — 1)
- 2
2(w1 —w2)

e =2 e
- Z( @21 )ew(s) + (%)e—zms)
N Wy — o 2

(3.36)
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Finalmente para a3 la expresion resulta de la siguiente manera

B _6*i§¢>(3)_@26*2‘%#8).(_@1) B Wyge 15P() — g i59(s)
BT g 00 _ (“dye 00) e 1590 _ e 1590)

L eigd(s) _ oige(s)

2V/E2 F1e 1590)
1

= - . (3.37)
VE+1
Reescribimos las ecuaciones (3.35), (3.36) y (3.37) como a continuacién
@ = —iS_ sin_, (Z) , (3.38)
G = S cos_, @ , (3.39)
1
V3 = — ) 3.40
as | (3.40)
. ei%—K e_i% e’%—K e_i% .
Donde sin_, (£) = ——+——, cos_, (£) = ——*+——, y los coeficientes son
=9 =9
s,=mitl g, oMl (3.41)
W1 — Wa wy—1

donde W, , = —¢+Vc>+1y K_; es el coeficiente de deformacion de la hélice y al igual
que en el caso anterior el subindice indica que es del caso k3 = —k.
Resolviendo para 7,7, z:

5 K o
z = /dl(s)ds = —Sl(;/ ‘e do— 21/e’cda)

consideremos que v =io/c, dv =ido /c, entonces

= icS_ cos_ (a/c)]’+€ (3.42)

. ei?—Kfle_i% *
= chl{ 5 } + %5
. o\1[°
= icS_, {sm_1 (c)} + % . (3.43)




~ s 1
z = / Ctg(S)dS = —m/dU
1
\/@U‘S—i—%g
1

= - ©- 3.44
52+1$—|— 3 ( )

Con un analisis analogo al del Caso k3 = k y considerando las constantes de integracién
%1 = 6> = 63 = 0 resolvemos lo siguiente:

w?—1 (—c+Ve2+1)? -1 (%) a al a
A=cS_ =c =c——— — =c ——=c— | ———1
wi—wy  —e+VER+1+c+VE+1 \/(%)2+1 b bl +1
ala a
=cr|- -1 =+la— 4
o1 =5lee (8.45)
(e'c +K_je7"'c) ele —K_ e %) 2
e L [73051 2’1 + |ieS_, 21_*1 ]

= — A [cos21 (U) +sin%1 <
c

(ei% —I—.K_ltfi%)2 (ei% — K_lei(cr)j

_ 2
=4 4 4

AZ el ;O el el
= [622? +2K %—I(Ele_QZZ — e 12K | —KEle_QZ?}
.A2
= TUK,) = AK, (3.46)

Resulta en que el radio tiene la siguiente forma

Rle Kl

Donde llamaremos a K _, el coeficiente de deformacién de la hélice el cual es

- Cwi-1 2242V@F1 e+VE+L s P at b (521 e
- w%—l 2¢2 -2Vt +1 c—ver+1 %_ /(%)2+1 a—b (%)2_’_1 a—c’

donde c:b\/%ﬁ—kl 2 =a’+ b2
El término ¢S_; resulta en

2 1 2—2_2— /22 11 =2 a\2 2
cS_p=c w1 — = _C cr c ¢ —c|=c L — (a) (3.48)
w1 — we 2ve+1 (




Por lo que

a a a a
= b72+02672—26?_7(@24‘02—2@0):?(&—0)2 (3 49)
Por lo que la ecuacion (3.46) resulta
2 2 2
) 9 a s fa+c a a“, 9 9 9
(ieS_1) K_lz—b—Q(a—c) (a—c) :—b—Q(a—c)(a+c):—b—2(a —c)=a*. (3.50)

De nuestros dos ejemplos, podemos visualizar que el coeficiente dentro de sin; y del
sin_; es inverso (el numerador y el denominador estan invertidos en la razén). Ademas
que el coeficiente esta cambiado tinicamente por el numerador, que en este caso es el
w? —1 o0 el w? —1 dependiendo del caso k3 =k 0 k3 = —k.

Nota 3. Para el caso en el que k?a? + k33 — k243 = 1 para k3 = ik notamos que la
ecuacion de Riccati obtenida es la misma que el caso en el que k¥a?+ k3% +k3y =1 con
ks = —k. Por lo que se procede como en el caso k3 = —k.

Nota 4. Para el caso en el que k3a? + k352 — k373 = 1 son k3 = —ik la ecuacién de
Riccati obtenida es la misma que la que se obtiene para k?a? +k3/3? + k3y =1 con k3 = k.
Por lo que se procede como en el caso k3 = k.

Cuando estas funciones son usadas para calcular los componentes «; para este caso,
que proporcionan los mismos resultados que en (3.28). Por lo que las coordenadas para-
métricas obtenidas en ambos casos k3 = £k coinciden. Este hecho confirma la sentencia
de Struik sobre que el signo de la torsién no puede determinarse a partir de las ecua-
ciones paramétricas de la curva y uno deberia usar las ecuaciones diferenciales para
establecer el signo ambiguo de la torsion. El hecho de que nuestro abordaje generali-
zado proporciona dos ecuaciones de Riccati que difieren por el signo de la torsion es la
solucion del problema de signo.

38.3. Casoa’+p3°—~*=1

Con el propésito de explorar un poco méas este método de Lie-Darboux, considerare-
mos una ecuacion para los cosenos directores de la siguiente manera

a4+ p52—42=1. (8.51)

A continuacion se introducen las implicaciones del signo negativo en el lado derecho
de la ecuaciéon. Una esfera en el espacio euclidiano con radio r posee una curvatura
constante 1/r2. La ecuacién de este caso puede representarnos, por analogia, con una
métrica como la métrica indefinida

ds® = —dzd +da? + ...+ da? . (3.52)
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Con esta métrica, R"*!, usualmente se refiere al espacio de Lorentz denotado por E™!.
Con un interpretacion en relatividad general, la direccion vertical z( representa el tiem-
po y las direcciones horizontales representan el espacio. Un vector x es space-like, time-
like o light-like dependiendo si la forma cuadratica Q~(z) definida negativa es positiva,
negativa o cero [22]. Por analogia con el caso euclideano, la longitud de un vector z es
V@~ (x), por lo que los vectores light-like poseen longitud cero, y los vectores time-like
poseen longitud imaginaria (que tomamos como un multiplo positivo de 7). A saber, la
esfera de radio i cerca del origen en E™! es el hiperboloide. Cuando nos restringimos
a este hiperboloide, la métrica indefinida ds* de la ecuacién se convierte en una
métrica Riemmaniana positiva definida.

En E™! se tiene atin una nocién de ortogonalidad, dada por el producto interno
—xoYo+2x1y1+ ...+ Tny,. También se tiene la nocién de transformacién ortogonal, es decir,
transformaciones lineales de R"*! que preserva Q~[13.

3.3.1. Ecuaciones de Riccati para el caso en V3

Se propuso obtener la ecuacion de Riccati correspondiente a un espacio de Minkowski
Mf’z, los indices 1 y 2 representan los signos positivos y negativos de los términos de la
ecuacion algebraica siguiente

2 +p2—~2=1. (3.53)
Se define la ecuacion para este caso

_a+if 1+iy

hel l—iy  a—if’
Al derivar se llega a
(w,y = B atif (i) +in) | (-inwy,
l—iy  (1—iv)? (14++2) 1—iy
Despejando o de w,, = O‘ll%fl

a=w, (1-iy)—if,
sustituyendo «, se obtiene

A+iy—w?, +iyw?
2 .

8=

2w,,

En (w,,)" sellega a

K 14y

L+42 7

. . .T . .
(i) + iy =i (1 iy, + i )]

() ={

M

Esto nos permitira saber si con la eliminacién de v resulta la ecuacién de Riccati para
este caso.
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Desarrollando lo anterior como sigue

/ o/—}—i,@/ a+if O/—i—iﬂ, (i’)/)
(wM) = : oY = — + —W,,
1—iy  (1—iv) 1—iy  1—iy
KB +i(—ka+TY) —i 73 v — [—ik(a—iB) tiTy][l+iy] 78 <1+i7
N 1—iy 1—iy M (1 —iy)(1+iv) 1—iy\ 141y
ik (14iy)? (1+i7>

(3.54)

>wM

(3.55)

Nos percatamos que no pueden reducirse v y /3, se propone otra ruta de trabajo:
Considerando la hiperboloide de una sola hoja H; cuyo lugar geométrico se define

R R S
Una parametrizacion de la hiperboloide es

1—uv 1+uv uU—2
, B= y Y=
u—+v uU—+v

ya que a

(u—0)2+ (1 +uw)? = (uww—1)% = (u—v)? + 1+ 2uv + v*v? —u?v? — 2uv — 1

=u? + 0% —2uv+4(w) = (u+0?) .

(3.56)

Por definicién, consideramos nuevamente la ecuacién algebraica en términos de «, Sy ¥

4 B =1
de donde
B_a?=1—~2
Considerando que 8 = x, o = y cumple lo siguiente
(+y)(e—y) =2 —zy+ay—y’ =2"—y*.
Se tiene que puede expresarse como
(B=a)(B+a)=(1-7)1+7)

De donde podemos observar que

_a+fB 14y
B 1—~ - B-a

Hy

y que también

1 B—a 1+7v

- )

2, 11—y B+a

y considerando que se puede definir en dos variables de la siguiente manera

1— Wig, %1, 1+ Wig, 21w, w

o 11, — Aim;
1w, — ) lw, —
H H

! le1 + Zlﬂ'ﬂl !

) ’Ylel —

)

wl}ﬂl + ZlHl wl]}'ﬂl + Zlﬂ'ﬂl
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De la ecuacion (3.60) tenemos que
o BFa)A=2)+B+a)y _B+a | (B-a)

B (1—7)2 C1-n 1—v 7
ka+1y—kKB  wy  ka+Ty—rKB —wy TP
l—v I—v l—v l—v
7_(7 - 5wH )

= KWy + 1~ — . (3.62)
; _ atp
Despejando a o de w,, = T—

o= —ﬁ—i—(l—’y)le (3.63)

y despejando también a 3 de W, = é’% y sustituyendo a « se tiene
Pwy =1+v—awy =1+v—Pwy + (1 —*y)w]g11
28wy, =1+ + (1 —7)w]
L+ (1 =y)wl

2w]HI1

Sustituyendo a /3 en la ecuacién (3.62) se tiene que

I+y+(1—y)w?

Hy

1—v
Iy (1=y)w?
—

L=7
T<2fy—1—fy—w;1 —’yw]il)
E 2(1-9)

. T T 2
= TIRWy, — 5 T Wy, -
Hacemos una comparacion sobre las ecuaciones de Riccati para la superficie S y
para Hj:

/ T 2 . T / LT 2 . LT
w = —=w_, —1RWy, — < w =1-Ww, —1RKWs — 1<
Hy 9 THy Hy 2 So 9 53 Sa 2

En este caso no se llega a conclusiones adicionales debido a que se consideraron para-
metrizaciones de la hiperboloide en lugar de la esfera, lo que hace que definitivamente
sea un caso muy distinto al del método estandar de Lie-Darboux. Por lo que se procede
a analizar la forma de las constantes de las soluciones de la ecuacién de Riccati.

3.3.2. Observacion de las constantes de las soluciones

Segin un resultado basico de las ecuaciones de Riccati, la solucién general se puede
escribir de la siguiente forma racional

. = Gl1H 2 L difitf
Ceifs—fi Cdifs—fa
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donde f1, fo, f3, f4 son funciones de s. Para poder calcular las «;, 5;,7vi, i = 1,2,3, necesi-
tamos tres integrales para w; y tres para z;, las cuales estaran caracterizadas por las
constantes c1,co,c3 para las w; y por di,do,ds para las z; de la ecuacién (3.61) como sigue:

1— 1 —
= w121 B = + w121 - w1 — 21 ’ (3.64)
w1+ 21 w1+ 21 w1 + 21
1—wozo 14+ wozo W — 29
o — , — = = , (3.65)
2 wa + 22 2 wa + 22 7 wa + 22
1— 1 —
s = w3z3 7 - + ws3z3 g w3 — 23 7 (3.66)
w3 + 23 ws + 23 ws + 23

A continuar con el procedimiento de Lie y Darboux definiremos unas constantes que
permitan que aq, 3;,7; cumplan las condiciones de ortogonalidad

—aiaj+ Bifj + 75 = 04, =123

La primera condicién se cumple en virtud de la ecuacién de la esfera por lo que debemos
encontrar las ¢;,d; de forma que se cumplan las tres dltimas condiciones

—aian+ B2+ 7172 =0, (3.67)
—opag + B283 4+ Y273 = 0, (3.68)
—agaq + 33681 +v3711 = 0. (3.69)

Se puede demostrar que —ajas + 5152 +7172 = 0 se puede escribir como

(1—w1z1>(1—w2z2> _|_<1+w121>(1+w222>+<w1—21><w2—22> —0
w1+ 21 wa + 22 w1+ 21 wa + 22 w1+ 21 wa + 22

desarrollando se tiene que

(1 —wazp — wi 21 +wiwa2122) n 1+ waze +wiz1 +wiwazi 22 n WiWa — W12 — W21 + 2122 0
wiwz + w22 +waz1 + 2122 wiwg + w122 w21 +2122 wWiwW2 w122 + w221 + 2122

2(wy2z1 +waze) = w12y + Waz] — WiWe — 2122
Obtenemos la misma relacién para las constantes
2(Cld1 + CQdQ) = c1do +cody — c1c9 — dids .

Para el caso en estudio, las tres ecuaciones correspondientes son

2(Cld1 + C2d2> = c1dgy + cad; —ci1co —dyds (3.70)
2(62d2 + C3d3) = cod3 + c3dg — cocg — dods (3.71)
2(63d3 + Cldl) = c3dy +c1ds — c3cq —dsdy . (3.72)
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Se reescribe la ecuacion (3.70) de la siguiente manera

2(c1d1 + cad) = c1(da — c2) +di(c2 — do)
= (dg —c2)(c1 —d)

observamos que c; = d; el segundo miembro de la ecuacién se reduce a

2
1 tc2 ds
C% = —ngg
consideramos que
c1 do
c2 dy

Tomemos ¢, = ds = 1, tendriamos que ¢; = ++/(— 1) = 4i. Formando asi los siguientes
conjuntos de constantes:

Clz’i Clz—i
62:1 02:1
di =1 di=—i
dy=1, | do=1.

Para el primero, la ecuaciéon (3.70) resulta
2A—1+1)=i+i—i—i.

Otros conjuntos de constantes se obtienen al considerar que co =ds yc1 =d; =1
De esto se obtiene que las constantes que tomariamos para este caso son

clzi,02:1,03:oo, dlzi,d2=1,d3:0

Similares a las que se encuentran en el método estdndar de Darboux y Lie en [4].

34. Casoa’+p2++24+4%2=1
3.4.1. Ecuaciones de Riccati para o2+ 52 +~2+4%2=1
De la ecuacion algebraica siguiente
2+ 462 =1, (3.73)
consideramos que
2+ +42=1-62 (8.74)
y definimos una funcién como

Catiftjy 148
Wy, = 5 ~ o ii i (3.75)
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Continuando con los pasos del método Lie-Darboux estandar, difernciando la funcién
w,, de la ecuacién (3.75)se tiene

dwy,  (a+iB+47)'(1-6) = (a+if+jv)(1—9)

ds (1—-0)2

_(a+iB+jy)  (a+ib+iy)
1-0 1-0)2
o o +if' 45 Wm
=—1 +(1_5)5 : (3.76)

Considerando que el triedro de Frenet-Serret para cuatro dimensiones tiene la forma

o =kp

B = —ka+T117

v = -1+ 120 (3.77)
5/ = —-T27,

al sustituir estas ecuaciones en la ecuacion (3.76)) se tiene que reducir dicha ecuacién
a una forma de Riccati

W — KB+i(—ka+71y)+i(-T1B+726)  wn
me 1-46 1-6

T (17— )+ s (76— ) (3.78)

T27Y

1-6 1.5

= —iKWy, +1kK
Solo que, como se puede observar, el término lineal de la ecuacién caracteristica de

Riccati no es sencillo obtenerlo con sustituciones simples. A tal situacion se le propone
el uso de propiedades de los cuaterniones, tema que queda fuera de esta tesis.
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CAPITULO 4

Las helices clotoidales

4.1. Hélices clotoidales por el método de Lie-Darboux

En la literatura hallamos la curva plana conocida como espiral de Cornu también
llamada clotoide. A saber, esta espiral tiene curvatura proporcional a la longitud de arco
k(s) = ks/c? y torsién cero [18].

En este capitulo nos interesa presentar las hélices que tienen «(s) y 7(s) directamen-
te proporcionales a la longitud de arco. Dichas curvas representan una generalizacién en
tres dimensiones de las espirales clotoides, un nombre propuesto por Césaro al rededor
de 1890 para las espirales de Cornu [23].

A continuacién se describe la idea central del trabajo (atin en desarrollo para su
publicacién) basado en este método de Lie-Darboux para la obtencién de las soluciones
y sus graficas que consiste en identificar las funciones f; en todas las combinaciones
posibles de acuerdo a la solucién en forma de cociente.

Como ya se ha mencionado, se consideran aquellas curvas que poseen curvatura
k(s) = hs/c? y torsién 7(s) = s/c?, es decir, el caso de las hélices clotoidales con el cocien-
te k/7 = h. A continuacién enlistamos las formas posibles de seleccionar y ordenar el
conjunto de f; a partir de la solucién general de la ecuacion de Riccati:

Z»'\/ h2+1 ﬁ Z-\/ h2+1 i
1. f1:w1€ 2 2 fgzwg, f3:€ 2 2 f4:1, 4.1)
2 AT 2
2. fl =wsy , fg =wse 2 2 f3 =1 , f4:€ 2 2 4.2)
i h2+41 2 i\/h2+1ﬁ
3. flzwle 2 2 fgzwg, f3:1, f4:€ 2 2 (4.3)
z\/h27+1ﬁ jY/h241 2
4. fi=wy, fo=wie 2 &, fy=e 2 2, fi=1. 4.4)

Los dos tultimos conjuntos no proporcionan resultados analiticos y no se trataran mas
aqui.



Caso 1

Considerando el conjunto de funciones (4.1) los componentes obtenidos son

a1(8)=h[cos<\/h27+152> o m(mszﬂ

s &) e 2 2
[ Vh2+1s2 h VhZ+1 s2
ag(s):h[—sm<262 —i—z\/mcos 5 2 , (4.5)
1

az(s) = \/ﬁ )

que satisfacen la condicién o + a3 + a3 = 1. Las coordenadas en la hélice C; estan dadas

por
(R2+1)7 \ . h (R +1)i
C( e s)+2(h2+1)55< N s)],

- (h2+1)%8 . h (h2+1)%8
() e ()] e

/mch
(h?+1)7
mch
(h2+1)7
(5)= [ as(o)do = ——
z21(8) = | as(o)do = ,
1 ) / 3( ) \/m
Observemos que las coordenadas x; y y; son cantidades complejas mientras que la coor-
denada z; es real, las coordenadas x1(s) y y1(s) estan dadas en términos de las integrales

de Fresnel C'y S. Por lo que solo la parte real corresponde a la hélice clotoidal. La grafica
correspondiente de la hélice se presenta en la Figura (4.1) parac=1, h=+1y h = +2.

&
=
o
|
\m
R
S
QL
R
\

AT AT~

20| — - zg [ — -2
\ —_+] : —_—2

& ) .y

0~/

2
X

Autor: Josué Domingo de la Cruz Diaz

(@) Re(x1,y1,21); s € (—v/50,++/50) (b) Re(z1,y1,21); s € (—v125,4++/125)

Figura 4.1: La hélice clotoidal C; de (4.6) conc=1y h=+1(a) y h = £2 (b).

Caso 2

Para el conjunto de funciones (4.2) denotaremos los componentes tangenciales por ¢;
se puede observar de las ecuaciones (a’s) que

5[1 = Oq(S) s 6&2 = —042(8) s dg = —013(8) . (47)
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Por lo que las coordenadas de la hélice C, estan dadas por

e v — _N/TCh (415 ), . h (R +1)7
o) = [ antoddo = Gl C( Ve >+<h2+1>55< Ve )1
s \/mch (h2—|—1)i ] h (h2+1)i
yg(s):/ ag(a)alaz(h2+1)i S( e S>_Z(h2+1)éc< e s)], (4.8)
zz(s):/ ag(a)dazf\/m.

En la Figura [4.2] se observan las graficas similares a las presentadas en la Figura 4.1
Esta hélice clotoidal tiene sus focos en la primera bisectriz y también esta girada res-
pecto a la primera clotoide.

N
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A

N

£

S}

S

k= ©
=]

—_ 2 g
g

— ) g
[«

a8

O

g

=3

kS

R

S

=1

&

(@) Re(z2,y2,22); s € (—v50,+v50) (b) Re(xz,y2,22); s € (—v125,+V125)

Figura 4.2: La hélice clotoidal C; de conc=1yh==1(a)y h=+2(b).

4.2. Las hélices clotoidales /- desplazadas

Un primer caso aun mas general que aquellos presentados en la seccién anterior
surge cuando consideramos (s) = 7(s) = -z +0 donde § es un pardmetro constante de
desplazamiento. Las coordenadas de las J- helices clotoidales resultan

Z15 ;/jf}—l %]‘E
Cio=| e | =| ¥R | +i| ¥F | (4.9)
21,6 % 0

donde consideramos a una longitud de arco como §=s+4y

Fl:c(ﬁi) COS(\;‘;C2> +S<\\4/[;i> sin(\;;;g) (4.10)
V25 52 V25 | 52
Fo=2S (ﬁc) cos (\/§C2> -C (ﬁc) sin <ﬂ02> (4.11)
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y cuyas graficas presentamos en la Figura [4.3|para algunos valores de d.

‘/ |
v i |
1.5 . . : . ‘\
1.0} 1 ; J
| | g=
0.5F ] - [~
— 1.0 ool | =15
0.0 X 1.5 | ?

—0.5F . — 2.0
-1.0¢ ]

e "
-1.5 -1.0 -0.5 0.0 05 10 15 x
(a) Re(z,y),c=1 (b) Re(z,y,2),c=1

|
Autor: Josué Domingo de la Cruz Diaz

Figura 4.3: Hélices clotoidales J-desplazadas C; ;5 para tres ¢ distintas.

En el segundo caso se observa que
dis=a1s(s), Gos=—aas(s), dass=—a15(s), (4.12)

y que la curva resultante es

1,5 ﬁffl ;é;/l—ZIZ
Cos=| —s |= %Fg +1 —%@f]—} : (4.13)
— S
21,8 V] 0

Tal curva se observa graficamente en la Figura 4.4

y
1.5 prer ERREE
L0} 1
_ =
0.5¢ 1 - =
—1.0 —15
00 ¥ 1 5 — 2.0

~0.5F 1 —20
-1.0} ]

CUF S
-1.5 -1.0 -0.5 0.0 05 10 1.5
(a) Re(z,y), c=1 (b) Re(z,y,2), c=1

Autor: Josué Domingo de la Cruz Diaz

Figura 4.4: Hélices clotoidales J-desplazadas C; 5 para tres ¢ distintas.

Con las coordenadas de los 6-focos dados por

2 2
x,5(s — to0) = i02\5//747 [cos (\;;c2> +sin <\j§c2>] ) (4.14)
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52 52
Y2.5(s = £00) = $02\5//§ [cos (ﬁ@) —sin (W)] , (4.15)

Las siguientes imagenes muestran algunas de las hélices clotoidales de tipo —desplazadas
C1,5y C2 5 para las cuales ambos focos mantienen sus posiciones, Figuray Figura
Para a determinar los valores del parametro § para los cuales ambos focos mantienen
sus posiciones utilicemos las coordenadas de los focos como sigue

52 . 52 . 52 52
coS <\/§c2> + sin <ﬁ02> = sin (W) —cos <ﬁ02> (4.16)

Al calcular se obtiene que para para los valores siguientes de §

2n+ 1)
§ =214 g, neN (4.17)
los focos mantienen las mismas posiciones.
N
&
A
N
-5 =]
0 e e 5
e ) L) —0 — =
( —2 ]
..... —_ -5 g
' PTT I én
i —— gt ¥ 1 —6 I 1 -7 é‘
0 8 0 9 o
-1 . -1 v A
. . 5
=]
wn
(=]
S
B
S
=
<

(a) n par (b) n impar

Figura 4.5: 6-hélices clotoidales C; s para h = 1,c = 1 y valores pares e impares de n de
acuerdo a la ecuacién (4.17).
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|
Autor: Josué Domingo de la Cruz Diaz

(a) n par (b) n impar

Figura 4.6: J-hélices clotoidales Cy 5 para h = 1,c =1 y valores pares e impares de n de
acuerdo a la ecuacién (4.17).
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CAPITULO 5

Conclusiones

En esta tesis doctoral se estudié el antiguo método de Lie-Darboux por el cual se
obtiene la ecuacién de Riccati de las curvas en el espacio euclideo de tres dimensiones.
Esto ofrecié la posibilidad de una extensién del método al demostrar que este puede
llevar a dos ecuaciones de Riccati, la segunda complementando a la ecuacién de Riccati
encontrada por Lie y Darboux.

Resolvimos las ecuaciones de Riccati estdndar y complementaria para las hélices
cilindricas que tienen como propiedad que la curvatura y la torsion son constantes y
para las hélices clotoidales que tienen como propiedad que estas cantidades intrinsecas
son proporcionales a la longitud de arco.

Se obtuvieron hélices generalizadas en el sentido del factor de deformidad del seno
y del coseno, con ciertas restricciones se obtienen las hélices cilindricas mas conocidas.
Por otro lado, se logré obtener y graficar las curvas clotoidales utilizando el método de
Lie-Darboux adicionalmente, se obtuvieron graficas para un analisis adicional con las
combinaciones de las funciones de la solucién de las curvas clotoidales.

La experiencia acumulada en el trabajo con este método podriamos aplicarla a casos
mas complicados donde /7 ya no es constante, sabiendo que se pueden obtener solucio-
nes graficas solo en el caso en el cual se obtiene la solucién general en formato racional
de la ecuacion de Riccati.

Para trabajo a futuro se buscaran ecuaciones de Riccati con los coeficientes intrinse-
cos no proporcionales que arrojen soluciones racionales y de tal manera permitan aplicar
el método de Lie- Darboux y las formulas de Scheffers.

También se buscara la posibilidad de generalizar el método de Lie- Darboux a curvas
espaciales en mas dimensiones tanto euclidianas como no euclidianas.
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APENDICE A

Ecuaciones de Riccati y sus soluciones

Riccati consideré ecuaciones diferenciales de la forma especial:

d—a — ac? + bs™ (A.1)
ds
donde (a,b = cte). Pero en realidad tienen el nombre de ecuaciones diferenciales de Ricca-
ti todas esas ecuaciones diferenciales ordinarias de primer orden extendidas, en donde
el cociente diferencial de la variable dependiente es un cuadrado de la funcién de la
variable independiente
Podemos remontarnos a tratados antiguos de matematicas y hallar algo al respecto,
por ejemplo en el libro digitalizado [24] encontramos que se menciona a ‘una clase de
ecuaciones cuya solucién general se puede determinar cuando se conoce una solucién
particular’.
Estudiemos la ecuacion diferencial ordinaria no lineal de primer orden de la forma

dy _

2= (@) +a (2)y+gq2(2)y? (A.2)

dicha ecuacion recibe el nombre de ecuacién de Riccati, desarrollada en el siglo XVIII
por el matematico italiano Jacopo Francesco Riccati. Resolver la ecuacién de Riccati
requiere del conocimiento previo de una solucién particular §(x).

Si hacemos la sustitucion

y(z) = §(z) +u(z) (A.3)

la ecuacién de Riccati adquiere la forma de una ecuacién de Bernoulli.
Sea §(x) una solucién particular de la ecuacion de Riccati y consideremos la sustitu-
cion

y(x) =9(x) + — . (A.4)

Derivando esta ecuacion,

dy dj 1 du
Qe de Zdn’ (A.5)
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como ¢ es una solucion de la ecuacion de Riccati entonces satisface la ecuacion diferen-
cial

dy . .
= (@) + @1 (@))+ @) (A.6)
Sustituyendo (A.6) en (A.5)
dy R o 1ldu
I q0(7) + q1(2)§ + g2(2)9”" — Zdr’ (A.7)
igualamos (A.7) con (A.2)
9 R o ldu
go(x) + a1 (@)y + a2(2)y” = qo(2) + 1(2)§ + @2(2)§" — 5
. N 1 du
a1 (@)y+e@)y’ = a@)j+e@)i’ - —

Ldu (@) - 0(@) + (@)§ — (o)

i dr
= (@) —) + @) )
Sustituyendo
” 2
ulzzi% =q(z) {@— (Q—i‘u(lm)ﬂ +¢2(2) [yz_ (Q+ u(lx)) 1
@) ) ) [P -2l ]
@) b (-2
5 b @
= az

Multiplicando por u?

Lot o o 9 e ®
w2 dx u(z) u(z) u(z)?
du

— = —q1u — 2q2u — q2
X

d
=(—q1 —2@))u—q .
Vemos
du N
I +(q1 4+ 2q29)u = —qa2(x) . (A.8)

Definimos las funciones

R(z)=qi(x)+2¢20 S(x)=—q(x).
La funcién (A.8) queda de la forma lineal no homogénea

dx
T + R(z)u=S(x) .
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Esto mismo lo encontramos en el libro de Serret de integrales y hallamos como ejem-
plo
Por ejemplo, la ecuacion

%—G—XyQ—i-le— (X2? + X1z +1)=0,

esta satisfecha cuando se pone y = z; donde la sustitucién
y=x+z

llevara esta ecuacion a la siguiente:

d
d—z+(X1—|—2X:U)z+X22 =0.
x

La ecuacion de Riccati pertenece a la clase de las ecuaciones mencionadas en el nu-
mero anterior; dicha ecuacion es la siguiente

W | g? = b, (A.9)
dx

a'y b son coeficientes constantes Cuando el nimero m tiene esta forma, siendo un entero
positivo, la ecuacién de Riccati es integrable por medio de las funciones algebraicas y
logaritmicas; pero existe, como se vera, otro caso de integrabilidad.

A.1. Constantes de las soluciones

En en el método estandar de Lie Darboux, las constantes de las soluciones para la
ecuacion de Riccati se toman como

01:1,02:i,63200, d1:—1,d2:—i,d3:0
debido a que si se considera en un caso que
ngg =1
y en otro que
63d3 =-1

solo ocurre en el caso que se cumplan de forma simultanea lo siguiente
C3 n C3=Tmn
(1) { d 1 (2) { 1
3 n

d3:_ﬁ‘

1 1

CgNﬁ 03:—5
(3){d3~n, (4){d3—n.

donde n es real. Observemos que cuando

n— oo (1){ 40, (2){ h_p. W=



ds =0, ds =0
c3=0 c3=0
n — 0o (3){d33 - (4){;;_00

Con las cuales, las ecuaciones correspondientes al caso
2(erdy + CQdQ) = c1dy +cadi +ci1co+dids .

proporcionan las constantes arménicas de los resultados de las propiedades de la so-
lucion general de la ecuaciéon de Riccati [25] 26]. Podemos verificar esto al evaluar las
constantes ¢y =1,co=1,d; =—1,do = —1

2(c1dy + cads) = c1da + cady 4 c1co + dido
2-1+1)=—i—ititi=0

tenemos que

_l—wizy (ft=13)—(f5-12)

BT 2(fifa—fafs)
a2:1—w2Z2: (f%‘f??)"‘(f%—ff) i

wy — 2o 2f1fa— faf3 ’
o = l—wsz3  f3fa—fife

wy—z3  fifa—fofs
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APENDICE B

Transformacion de coordenadas

Un artificio que nos permite simplificar las ecuaciones de muchas curvas consiste
en la transformacién de coordenadas. Una transformacion es el proceso que consiste en
cambiar una relacion, expresion o figura en otra.

Definicion 7. Una transformacion es una operacién por la cual una relacion, expresion
o figura se cambia en otra siguiendo una ley dada.

Analiticamente, la ley se expresa por una o mas ecuaciones llamadas ecuaciones de
transformacién. Un conjunto de ecuaciones lineales define una transformacion lineal de
cada punto (x,y) a su correspondiente imagen (z,y). En forma matricial, una transfor-
macion lineal puede escribirse x = Ax, si como en el conjunto de ecuaciones es uno a
uno, entonces |A| # 0.

La operacion de mover los ejes coordenados en el plano coordenado a una posicién
diferente, de manera que los nuevos ejes sean, respectivamente, paralelos a los ejes
primitivos, y dirigidos en el mismo sentido se llama traslacion de los ejes coordenados.
Para simplificar ecuaciones mediante la traslaciéon de los ejes coordenados se tiene el
siguiente

Teorema 7. Si se trasladan los ejes coordenados a un nuevo origen O'(h,k), y si las
coordenadas de cualquier punto P antes y después de la traslacion son (z,y)y (2',y),
respectivamente, las ecuaciones de transformacion del sistema primitivo al nuevo sistema
de coordenadas son [14]

r=x+h,
y=1y +k.

Rotacion de coordenadas o rotacion de los ejes coordenados

Los vectores han sido definidos especificando la magnitud y la direccién y también
especificando los componentes de los mismos. Una tercera representacién esta dada en
términos del comportamiento bajo la rotacién del sistema de coordenadas.

Para simplificar las ecuaciones por rotacién de los ejes de coordenadas tenemos el
siguiente

Teorema 8. Si los ejes coordenados giran un dngulo ¢ entorno de su origen como centro
de rotacion, y las coordenadas de un punto cualquiera P antes y después de la rotacion

63



son (z,y)y (2',y), respectivamente, las ecuaciones de transformacion del sistema original
al nuevo sistema de coordenadas estdn dadas por

/ ! .
=2z cosf—y sinf ,

y =x'sinf 4y cosf .
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APENDICE C

Curvas

En esta seccién, dejaremos de considerar los términos «, 5y v como cosenos directo-
res.

Definicioén 8. 16/ Una curva parametrizada en R™ es un mapeo v : (o, 3) — R"™ para
a,fcon —oo < a<f<oodonde (o,p) ={t € Rla<t< S}

Definicion 9. [27] Sea J un intervalo abierto no vacio en R. Entonces una curva en
U C R" es una funcion (de clase C" con 1 <r < oo):

v:J=>U.

Sea J un intervalo abierto no vacio en R. Entonces una curva en U C R" es una
funcién (de clase C" con 1 < r < o0) [27]:

v:J=U.

Nétese que la curva es una funcién y no el rango de dicha funcién. Utilizando las
coordenadas estdandar, tenemos para todo ¢ € J que

’Y(t) = ’71(75)7"‘77%(75) .

En calculo elemental, la derivada de v es

Y(t) = (' (), (1) (C.1)

y decimos que ¢/(t) € R" es un vector. Pero jes un vector tangente?. Esto es, ;sigue la
regla de transformacion para un vector tangente bajo un cambio de coordenadas? En
brevedad, en el confuso léxico estandar jel vector v/(¢) € R" es un vector?

Con el cambio de coordenadas ¢ : U — V C R"™ (con V abierto), la curva v: J — U se
transforma en la curva 5 := ¢o~:J — V, o0 en otras palabras, 5 := ¢(y(t)) paracada t € J.
Utilizando las coordenadas en V, tenemos que



de lo que sigue que

i) = d;(7(8)) = &5 (11(), -, 1m (1))

para j = 1,...,n. Entonces, utilizando las coordenadas estandar zi,...,z, en U, tomamos
la derivada utilizando la regla de la cadena y obtenemos

2253 (k1) = Y (DO k1)

() =
k k=1

1 ox k
o equivalentemente en forma matricial

3 (t) = Dp(v (1) ()

donde +/(t) y 7/(t) estan escritas como vectores columna (es decir, matrices n x 1) y D¢
es la matriz jacobiana n x n. La dltima férmula dice que la derivada de una curva es un
vector tangente, es decir, que transforma utilizando la derivada de ¢. (Compare con lo
resaltado en la relacion de equivalencia = ). En resumen, la derivada de una curva es
un vector.

C.1. Longitud de arco

A continuacién se presenta un método conciso para obtener la férmula de longitud
de arco en todo sistema admisible de coordenadas.
Consideremos que las expresiones tipicas de la longitud de arco conducen a una
formula general del tipo
b
L= /
a
2

donde g;; = g;;(z',22,...,2™) = g;; son funciones de las coordenadas y L da la longitud del
arco a <t < bdela curva 2! = 2%(t)(1 < i <n) [19].
La formula del admite la expresion diferencial

dat dzd

gijﬁﬁ (C.2)

ds? = (dz")? + (dz?)? 4 (da®)* = dijda‘da’ .
Mis en general [C.2)es equivalente a

+ds® = g;;da'da’ (C.3)

Formulacion con diferenciales

Definicion 10. [17]
Sea y = f(x) donde f es diferenciable y sea Ax un incremento de x

(i) el diferencial dx de la variable independiente x es dx = Ax.

(i1) el diferencial dy de la variable dependiente y es

dy = f'(x)Az = f'(x)du.
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dy

(a) Forma (i). (b) Forma (ii).

Figura C.1: Formulacién de la longitud de arco.

Figura C.2: (ds)? = (dx)? + (dy)?

Existe una interpretacion geométrica de la forma (ii) del teorema anterior. Considé-
rese y = f(x) y dado x un incremento Ax. Sea Ay el cambio en y y As el cambio en la
longitud de arco correspondiente a Az. Estos incrementos estan ilustrados en la Figura
[C.2|donde dy es la cantidad que la linea tangente sube o baja si la variable independiente
cambia de x a v+ A, vea también Figura
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APENDICE D

Actividades del periodo doctoral

A continuacién se listan las actividades en las que se participé durante este periodo
doctoral.

I. Participaciéon a nivel nacional en el concurso de péster del Congreso de la Sociedad
Mexicana de Fisica con la exposicion del tema “Generalizacion pseudoeuclidea del mé-
todo de Lie-Darboux para las curvas tres dimensionales”. Realizado en la ciudad de
Zacatecas, Zac. en Octubre del 2022.

I1. Publicacién del articulo titulado “Riccati equations of opposite torsions from the Lie-
Darboux method for spatial curves and possible applications” en 2023.
https://doi.org/10.1088/1402-4896/acf896

II1. Participacion en el articulo “Clothoid helices obtained via the Lie-Darboux method”,
por ser enviado.
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