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Glosario Estudio de Sistemas Dindmicos Isocronos

Glosario

Aproximacién local: Descripcién valida del sistema en un entorno cercano a un
punto de equilibrio.

Caos hamiltoniano: Comportamiento dinamico sensible a las condiciones iniciales
en sistemas conservativos.

Constante de movimiento: Funcién del espacio de fases que permanece invarian-
te a lo largo de la evolucion temporal del sistema.

Coordenadas candnicas: Variables conjugadas (g, p) que describen el espacio de
fases de un sistema hamiltoniano.

Dinamica no integrable: Dinamica para la cual no existe un conjunto completo
de constantes de movimiento.

Dinamica orbital: Estudio del movimiento bajo fuerzas centrales y potenciales
gravitatorios.

Ecuaciones de Hamilton: Conjunto de ecuaciones diferenciales de primer orden
que gobiernan la evolucién temporal de un sistema hamiltoniano.

Ecuaciones de movimiento: Ecuaciones diferenciales que describen la evolucién
temporal del sistema.

Espacio de fases: Espacio matemético formado por las coordenadas y momentos
del sistema, donde se representa su evolucion dinamica.

Estabilidad orbital: Propiedad que determina si una érbita permanece cercana a
una trayectoria de referencia.

Excentricidad: Pardametro geométrico que caracteriza la forma de una orbita.

Frecuencia fundamental: Frecuencia asociada al movimiento peridédico del siste-
ma.

Fuerza central: Fuerza que depende tinicamente de la distancia al centro de atrac-
cién y apunta radialmente hacia él.

Hamiltoniano: Funcién que describe la energia total de un sistema mecanico en
términos de coordenadas generalizadas y momentos conjugados.
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Glosario Estudio de Sistemas Dindmicos Isocronos

Hamiltoniano polinédmico: Hamiltoniano expresado como un polinomio.

Integrabilidad: Propiedad de un sistema hamiltoniano que admite suficientes cons-
tantes de movimiento en involucion para resolver su dinamica por cuadraturas.

Isocronismo: Propiedad dindamica por la cual todas las orbitas ligadas tienen el
mismo periodo.

Momento angular: Magnitud vectorial conservada en sistemas con simetria rota-
cional, asociada al movimiento orbital.

Orbita circular: Caso particular de érbita eliptica con excentricidad nula.
Orbita eliptica: Orbita cerrada correspondiente a energia negativa.

Orbita hiperbdlica: Orbita abierta correspondiente a energia positiva.
Orbita parabdlica: Orbita de escape con energia total nula.

Orbitas keplerianas: Trayectorias cénicas resultantes del problema de Kepler.
Periodo orbital: Tiempo necesario para completar una érbita cerrada.
Potencial central: Potencial que depende tinicamente de la coordenada radial.
Potencial efectivo: Potencial radial que incorpora el término centrifugo.

Potencial gravitatorio: Potencial asociado a la interaccién gravitatoria responsa-
ble del movimiento orbital.

Potencial isocrono: Potencial para el cual el periodo orbital es independiente de
la energia.

Potencial kepleriano: Potencial gravitatorio newtoniano inversamente proporcio-
nal a la distancia radial.

Punto de equilibrio: Punto del espacio de fases donde el sistema permanece en
reposo.

Resonancia: Condicién en la cual las frecuencias del sistema estan relacionadas por
relaciones racionales.
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Serie de Taylor: Expansion polinomica de una funcion alrededor de un punto de
referencia.

Sistema hamiltoniano: Sistema dinamico descrito por un Hamiltoniano que repre-
senta la energia total del sistema y cuyas ecuaciones de movimiento se obtienen
mediante las ecuaciones de Hamilton.

Teorema de Bertrand: Teorema que establece que los tinicos potenciales centrales
con Orbitas ligadas cerradas son el kepleriano y el armoénico isotropico.

Teoria de perturbaciones: Método analitico para estudiar desviaciones pequenas
respecto a un sistema integrable.

Truncamiento de Taylor: Aproximaciéon de una funcién mediante una serie de
Taylor de orden finito.

Vector de Runge—Lenz: Constante de movimiento adicional del problema de Ke-
pler.
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Resumen

En esta tesis se discute el fenémeno de isocronismo enfocado en mecanica celeste
con énfasis en el problema de Kepler y sus extensiones paramétricas conocidas en la
literatura como potenciales de Hénon.

Recientemente, el problema de Kepler ha sido analizada del punto de vista de
las édlgebras de Lie (SGA, por sus siglas en inglés), sin embargo nuestros calculos
muestran que la aplicaciéon del método SGA a los casos paramétricos de Hénon
presenta inconsistencias.

Dada la problematica de la metodologia SGA para los casos de Hénon aplicamos
el formalismo de sistemas dindmicos Hamiltonianos con los potenciales efectivos (in-
cluso el de Kepler) aproximados alrededor de sus minimos a través de sus series de
Taylor truncadas.

Nuestros resultados muestran que el isocronismo se manifiesta con una precision
al cuarto digito alcanzada en el sexto orden de la expansiéon de Taylor de estos
potenciales.




Abstract

This thesis discusses the phenomenon of isochronism in celestial mechanics, focusing
on Kepler’s problem and its parametric extensions known in the literature as Hénon
potentials.

Recently, Kepler’s problem has been analyzed from the perspective of Lie alge-
bras (SGAs); however, our calculations show that applying the SGA method to the
parametric cases of Hénon presents inconsistencies.

Given the problems with the SGA methodology for the Hénon cases, we applied
the formalism of Hamiltonian dynamical systems with the effective potentials (in-
cluding Kepler’s) approximated around their minima through their truncated Taylor
series.

Our results show that isochronism manifests itself with a precision to the fourth
digit, achieved in the sixth order of the Taylor expansion of these potentials.
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Capitulo 1

Introduccion

1.1. Antecedentes Historicos

El estudio sistemético del concepto de isocronismo, entendido [1] como igualdad
de los periodos de uno o mas movimientos periodicos se inicio en la primera parte del
siglo XVII con los trabajos de Johannes Kepler (1571-1630) y Galileo Galilei(1564-
1642) [10] y posteriormente con el descubrimiento del fenémeno de sincronizacién por
Christiaan Huygens (1629-1695) [18] y su invento tecnolégico del reloj de péndulo
hace 368 anos que fue el dispositivo dominante (en sus formas de reloj de pared, de
bolsillo y de pulsera) para la medicién del tiempo de manera rutinaria por casi tres
siglos.

Figura 1.1: (a) Galileo Galilei. (b) Johannes Kepler.
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En 1619, Johannes Kepler publicé su libro De Harmonises Mundi Libris V en la
cual incluyo su tercera ley del movimiento planetario. Esta ley es una de las mas
conocidas leyes de la naturaleza que tuvo un impacto radical en el conocimiento de
la humanidad. Se refiere a los periodos de revolucion de los planetas del sistema
solar, aseverando que el cuadrado de estos periodos es proporcional a las poten-
cias cubicas de los semiejes mayores de las trayectorias peridédicas de los planetas,
con la misma constante de proporcionalidad. Por otro lado, esta misma ley fue el
primer ejemplo de isocronismo reportado, entendido como un tipo de movimiento
periodico para el cual el periodo depende de una sola constante de movimiento, en
este caso la energia, ya que la energia es inversamente proporcional al semieje mayor.

Los trabajos de Galileo en fisica [22] estuvieron dedicados a la aceleracién y la os-

cilacién de los cuerpos. Menos conocidos que sus investigaciones sobre la aceleracién,
sus trabajos sobre las oscilaciones, especialmente sobre el isocronismo, no son menos
importantes a nivel matemético y metodoldgico. Sus primeros esfuerzos en establecer
una sélida base matematica se vieron plasmados en Dialogo sopra i due massimi sistems
(1632) y en Discorsi e dimostrazioni matematiche (1638). No solo se debe resaltar
su contribucion a la conceptualizacién del problema de isocronismo sino también su
aporte a la resolucion del problema de la oscilacion de cuerpos pesados.
En la ciencia galileana del movimiento, el problema del isocronismo se refiere a la
situacion fisica en la que se obtiene la igualdad de tiempos para los movimientos de
uno o varios cuerpos. Se dice que esta propiedad la notd por primera vez mientras
observaba una lampara oscilante en la Catedral de Pisa, usando su pulso para medir
el tiempo. En términos mas precisos, se trata de determinar las condiciones en las
que los periodos de descenso a lo largo de las cuerdas internas (considerados como
muchos planos inclinados) de un circulo vertical o durante las oscilaciones a lo largo
de arcos de circulo son constantes. El primer caso describe lo que podria llamarse
isocronismo de cuerdas, mientras que el segundo se refiere al isocronismo del péndu-
lo. Galileo abordo la cuestién del isocronismo para cuerdas y para arcos de circulo.
Galileo no logro establecer sélida prueba matematica, asi que busco validar esto a
partir de la ley de cuerdas y respaldando con varios montajes experimentales que
supuestamente le proporcionarian la confirmacién requerida. Sin embargo, la falta de
pruebas matematicas no le impidié considerarlo lo suficientemente sélido como para
apoyar una teoria del péndulo en la que se invirtieron las propiedades del péndulo,
esto para concebir diversos dispositivos para medir el tiempo.

Christiaan Huygens fue el primer fisico en observar y analizar el fenémeno de la
sincronizacion que se puede interpretar como una transferencia de isocronismo de un
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sistema a otro. Mas precisamente, el fisico y astrénomo holandés observé durante
el primero de marzo de 1665 que dos relojes de péndulo que estaban situados uno
en frente de otro, comenzaron a moverse en fase. Anteriormente, Huygens diseno
su reloj de péndulo en 1657 y fue construido por Salomon Coster. Posteriormente,
Huygens patenté su invento en 1657-1658 aunque no gozé mucho de su invento que
fue rapidamente copiado por otros constructores de relojes de péndulo. De cualquier
forma, Huygens no fue el primero en concebir un reloj de péndulo [23]. Como se
revel6 en su Horologium Oscillatorium (1673) [18], su invencién fue basada a su vez
en una invencién de Galileo Galilei sobre el principio de isocronismo [1].

Figura 1.2: (a) Christiaan Huygens. (b) El disefio de reloj de péndulo, invencién de
Huygens, que se encuentra en su libro Horologium Oscillatorium de 1673.

En astrofisica, el tema del isocronismo recibié un nuevo impulso solamente mu-
chos afios después, en 1959, en los trabajos de Michel Hénon (1931-2013) sobre los
cumulos globulares publicados en francés. Hénon descubrié tres deformaciones pa-
ramétricas del potencial de Kepler que se reducen al mismo en el limite en el cual
el parametro se anula y que tienen las mismas propiedades isécronas como el poten-
cial de Kepler. Cabe decir que a pesar de la importancia de este descubrimiento su
impacto no fue tan notable y en la actualidad la literatura al respecto es todavia
reducida.

En esta tesis se considera este isocronismo descubierto en problemas de mecéani-
ca celeste para los casos de sistemas planetarios y cimulos globulares modelados a
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través de los potenciales de Kepler-Newton y Hénon, respectivamente. El contenido
de los primeros tres capitulos es monografico con material preliminario en el tema del
isocronismo mencionado. En el capitulo 4 se extiende el formalismo ya desarrollado
en la literatura en el caso del problema de Kepler a los potenciales paramétricos de
Hénon. pero sin obtener resultados concluyentes. En el quinto capitulo usamos el
formalismo de sistemas dinamicos Hamiltonianos para los mismos potenciales desa-
rrollados en series de Taylor truncadas alrededor de los minimos de los potenciales
efectivos y encontramos que el sexto orden de truncamiento cumple con el isocronis-
mo con precision hasta el cuarto digito decimal.

También, en un anexo, se incluyo una versiéon en espanol del articulo de Bertrand
de 1873 sobre el teorema de Bertrand, un concepto béasico en dindmica iscrona.

1.2. Estado del arte

Los sistemas hamiltonianos constituyen un marco fundamental para la descrip-
cion de una amplia clase de fenémenos en la mecanica cldsica, particularmente en la
mecanica celeste y la teoria de sistemas dinamicos. Su formulaciéon permite describir
la evolucién temporal de un sistema a partir de una funcién escalar, el Hamiltoniano,
que generalmente representa la energia total del sistema.

Dentro de este contexto, el problema de Kepler es uno de los ejemplos mas repre-
sentativos de sistemas hamiltonianos integrables. Su formulacién en términos de un
potencial gravitatorio newtoniano ha permitido no solo describir el movimiento de
cuerpos bajo atraccion de una fuerza central, sino también establecer las bases para
el estudio de sistemas mas complejos. El caracter integrable del problema de Kepler
lo convierte en un punto de referencia fundamental para contrastar con sistemas que
presentan comportamientos no integrables.

Las variaciones del potencial gravitatorio clasico de Kepler, asi como la introduc-
cion de términos adicionales en el Hamiltoniano, conducen a sistemas cuyo com-
portamiento dinamico puede volverse significativamente més complejo. En este tipo
de sistemas, la aparicién de regiones cadticas en el espacio de fases ha motivado el
estudio de potenciales que permitan analizar la transicién entre dinamica regular y
cadtica.

En este marco surgen los potenciales de Hénon, introducidos originalmente como un
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modelo simplificado para el estudio del movimiento estelar en galaxias y posterior-
mente utilizado para el andlisis del caos hamiltoniano. El sistema de Hénon-Heiles,
en particular, ha sido objeto de estudio debido a su comportamineto dinamico y a
la coexistencia de drbitas regulares y cadticas dependiendo del nivel de energia.

La mayor parte de los trabajos existentes sobre los potenciales de Hénon se cen-
tran en el analisis numérico del sistema, empleando herramientas como secciones de
Poincaré, metodos mediante la integracion de Abel y simulaciones computacionales
para caracterizar su comportamiento dindmico. Sin embargo, estas aproximaciones
suelen apoyarse en desarrollos especificos del Hamiltoniano completo o en otra clase
de métodos, sin abordar de manera sistematica la aproximacion directa del potencial
mediante expansiones en series de Taylor truncadas.

A pesar de que las series de Taylor constituyen una herramienta ampliamente utili-
zada para aproximar funciones en diversos contextos de las ciencias e ingenierias, no
existe mucha literatura que estudie el impacto de truncar los potenciales de Hénon
a distintos ordenes y analizar las consecuencias dinamicas de dichas aproximaciones
en el sistema hamiltoniano resultante. Esta ausencia es particularmente relevante,
dado que tales aproximaciones podrian proporcionar modelos analiticamente mas
manejables y ofrecer una perspectiva alternativa sobre la estructura del espacio de
fases.

En este sentido, la presente tesis se propone contribuir al estudio de los sistemas
hamiltonianos asociados al potencial de Hénon mediante la aproximacién del poten-
cial original por medio de series de Taylor truncadas a distintos 6rdenes. El objetivo
es analizar cémo estas aproximaciones afectan la dinamica del sistema, identificar
las limitaciones de validez de cada truncamiento y evaluar en qué medida preservan
o alteran las caracteristicas fundamentales del sistema original. De este modo, el
trabajo busca llenar un vacio en la literatura existente y aportar una aproximacion
analitica complementaria al estudio clasico de los potenciales de Hénon.

1.3. Justificacion

El estudio de los sistemas hamiltonianos con fuerzas centrales constituye un area
fundamental de la mecanica clasica, debido a su relevancia en la descripcién del mo-
vimiento orbital y proporcionan un marco para el analisis cualitativo de la dinamica,
la estabilidad orbital y la transicion entre regimenes integrables y no integrables.
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El problema de Kepler es el sistema hamiltoniano integrable con fuerza central de
los més conocidos. Su estructura analitica ha servido como referencia para el desa-
rrollo de la teoria moderna de sistemas dindmicos, y su caracter excepcional queda
formalmente establecido por el teorema de Bertrand, el cual afirma que tinicamente
el potencial kepleriano y el potencial arménico generan orbitas cerradas para todas
las condiciones iniciales ligadas. Este resultado pone de manifiesto la fragilidad de la
integrabilidad ante perturbaciones del potencial y motiva el estudio de modelos que
se apartan de estos casos ideales.

En este contexto, los potenciales de Hénon surgen como una generalizaciéon natural
del problema de Kepler al preservar la propiedad de isocronia del movimiento liga-
do, aun cuando no todas las 6rbitas sean necesariamente cerradas. Estos potenciales
permiten construir modelos intermedios entre sistemas completamente integrables y
sistemas no integrables, y resultan especialmente ttiles para el analisis de estabilidad
orbital y métodos perturbativos.

Por otra parte, los potenciales de Hénon constituyen un modelo ampliamente utiliza-
do en dindmica galdctica y en el estudio del caos hamiltoniano. Su relevancia radica
en que describen campos gravitatorios realistas y presentan una importante fenome-
nologia dinamica caracterizada por la coexistencia de regiones regulares y cadticas
en el espacio de fases. No obstante, estos potenciales no admiten, en general, solu-
ciones analiticas exactas, lo que limita el andlisis detallado de su estructura dinamica.

En este sentido, las aproximaciones mediante expansiones en series de Taylor trunca-
das alrededor de puntos de equilibrio representan una estrategia eficaz para construir
modelos hamiltonianos polinémicos tratables, que conservan la estructura del siste-
ma original.

La presente investigacion se justifica por la necesidad de establecer un puente sis-
tematico entre los potenciales gravitatorios clasicos comprendidos, como el potencial
kepleriano y el potencial arménico, y otros modelos como los potenciales de Hénon.
En particular, la modificacion de estos ultimos mediante aproximaciones de series de
Taylor truncadas permite analizar cémo la forma funcional del potencial influye en la
estructura de las érbitas contribuyendo asi a una mejor comprension de la dindmica
hamiltoniana de tipo gravitatorio.
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1.4. Objetivos

Objetivo General

Investigar el isocronismo astrofisico (Kepler y Hénon), utilizando técnicas de ex-
pansion de series truncadas de Taylor, alrededor de los minimos de los potenciales
isocronos.

Objetivos particulares

» Realizar un andlisis local (mediante expansiones de Taylor truncadas) de los
potenciales de Kepler y de Hénon.

= Mostrar como las series de Taylor truncadas de estos potenciales alrededor
de sus minimos convergen hacia la propiedad de isocronismo, definido como
la independencia de los periodos de los movimientos periddicos respecto al
momento angular.




Capitulo 2

Preliminares

2.1. Ecuaciones de Hamilton

En el caso de una particula moviéndose en una dimensién bajo la accién de un
potencial U(x), como se muestra en [3], la ecuacion es

mi = F(x) = —% (2.1.1)

o bien, en forma de ecuaciones de primer orden, & = v, v = F//m. La energia total

1
E= §m02 + U(x) (2.1.2)
es una constante del movimiento, por lo que las trayectorias en el espacio de fase son
las curvas de nivel de la funcién E(x,v).
Resulta conveniente utilizar el momento p = mwv en vez de la velocidad. El Hamilto-

niano se escribe entonces )
p

H =—4U 2.1.3

(e.0) = £+ U(w) (213

y las ecuaciones de movimiento

oH , oH

e (2.1.4)

T

Asi escritas, se llaman ecuaciones de Hamilton o ecuaciones candnicas. A primera
vista puede parecer que solo se ha hecho un sencillo cambio de variables, sin muchas

8
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consecuencias. Pero, lejos de ser asi, la formulacién Hamiltoniano de la mecanica tiene
una gran elegancia y ofrece una vision profunda sobre la evolucién de los sistemas.
El campo vectorial en el espacio de fases (z,p) correspondiente a (2.1.4) es

OH O0H

u(z,p) = (a—p,—%) (2.1.5)

Para fijas ideas, se considera el sistema de la masa en la gravedad terrestre. El

Hamiltoniano y el vector u estan dados por
2
H: p_+mgx7 u= (27_7’”9)
2m m

Las consideraciones anteriores son igualmente validas para cualquier sistema conser-
vativo de un grado de libertad.

En el caso de n grados de libertad, en el formalismo Hamiltoniano usa como 2n
variables las n coordenadas g, y sus n momentos conjugados p; en vez de las ¢ y las
gk, teniendo en cuenta que la relacion entre velocidades y momentos esta dada por.
Al hacerlo asi, las derivadas parciales respecto a una ¢ o una p deben entenderse
manteniendo constantes las otras 2n — 1 cantidades. Si lo consideramos ahora el
Hamiltoniano como funcién de q, p, t, H = H(q, p,t).

(2.1.6)

A OL 8¢ OL ,
- S 2.1.6a
3qk Z *Ogi Z 0400 Ou ( )
OH 8q1 oL 0¢; .
=G+ Y pi = 2.1.6b
oy~ U Zp Z e oo~ (2.1.6b)

donde se ha hecho uso de las ecuaciones de Lagrange. Notese como al calcular las
derivadas de H respecto a g, y pi se consideran constantes las otras 2n — 1 y se toma
¢ = 4i(q,p)-

Py =———0), k=1..n (2.1.7)

que son las ecuaciones candnicas o de Hamilton para n grados de libertad. Son
equivalentes a las de Lagrange y se puede pasar de las unas a las otras, pero ofrecen
dos perspectivas diferentes de la evolucién de un sistema mecénico.

Consideremos ahora la derivada de H a lo largo de la trayectoria

i Z OH ., O0H O0H

O e+ (2.1.8)

™ T 2 op T or T o
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lo que indica que H se conserva si no depende explicitamente del tiempo, cosa que
ocurre cuando L tiene la misma propiedad. A pesar de que sus argumentos son
funciones del tiempo gx(t), px(t), sus variaciones se compensan de tal forma que la
derivada total respecto al tiempo de H se debe tinicamente a su dependencia explicita.
Lo mismo que un grado de libertad, H determina completamente la evolucion del
sistema, pues sus derivadas respecto a ¢ v pi fijan completamente las de estas
variables respecto al tiempo. Una forma elegante de expresar esta idea es escribir
(2.1.7) en la forma
:tk:uk(x,t), kzl,...,m

conm=2ny

(1, oy Tm) = (Q1y ooy Gry P1y -5 D) (2.1.9)
oH  od oH OH, (2.1.10)
Oop1 Opn O Iqy,
El vector u es la velocidad del punto representativo del sistema en el espacio de
fase y, se obtiene girando el gradiente de H 7/2 en sentido horario en cada plano
(qx, pr)- Por todo eso, se dice que H es el generador de la evolucién temporal, ya que
su gradiente indica como se mueve el sistema en el espacio de fase, lo que explica la
importancia de la funcién Hamiltoniana.

(U, ey Up) = (

2.2. Corchetes de Poisson

Sea F' = (q;, p;, t) cualquier variable dindmica de un sistema representado por las
variables conjugadas ¢;, p; [21]. Entonces:

dF OF OF  OF
=" — i) A SO 2.2.1
it~ 2 aqiql+;8pipl+ ot (2:2.1)

A partir de las ecuaciones canénicas de Hamilton se puede obtener:

: OFOH OFOH. OF
F=>

0q; Op; a Op; 0g; ) * W (2.2.2)

La expresién Zi(g—jg—f - g—ig—f) resulta ser muy significativo en el &mbito formal de

la mecanica y es llamado el corchete de Poisson de F' y H. En general, el corchete
de Poisson de cualesquiera variables X y Y es definido como:

0X oYy 0XoY

XY= g~ 5 o

9g; Op;  Op; Og;

) (2.2.3)

i

10
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El concepto no resuelve completamente el problema para las ecuaciones de movi-
miento de un sistema, pero es 1til para discutir las constantes de movimiento. Esto
conduce a un formalismo re-interpretado segiin un sencillo procedimiento, forma una
conveniente manera de introducir reglas cuanticas en el desarrollo de Heisenberg de
mecanica cuantica.

Las siguientes identidades se derivan inmediatamente de la definicion:

X.Y] = —[¥,X]
(X, X]=0
(XY + 7] =[X,Y]+[X, 7] (2.2.4)
(X, YZ]=Y[X,Z]+ [X,Y]|Z
también
[95: i) = 0 = [pi, Dilap
@i, ilgp = 0ij (2.2.5)
donde 9;; es el para delta con la propiedad
0ij =0 1#]
dij=1 i=]

2.2.1. Momento Angular

Los componentes del momento angular se han identificado con componentes del
momento generalizados en casos particulares [21][24]. En general, el momento con-
jugado con cualquier coordenada angular se puede identificar de esta manera en
un sistema mecanico simple donde, por ejemplo, no estan presentes efectos electro-
magnéticos. Para investigar el corchete de Poisson de dos componentes del momento
angular se considera una particula referida a un sistema de coordenadas cartesianas,
los componentes del momento angular vienen dados por:

[y = xop3 — x3p2 Iy = T3p1 — T1P3 I3 = x1ps — TP, (2-2-6)
donde p; = mz;, i = 1,2, 3. Evaluando el corchete de Poisson se obtiene:

11, ] = (p2x1 — pra2) = 13 (2.2.7)

11
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Se pueden obtener resultados similares de otras combinaciones y se resumen en la
siguiente expresion:
L, ;] = Zﬁijklk (2.2.8)
k
donde ¢;;, corresponde al simbolo de Levi-Civita.
La implicacién de (2.2.8) es que no hay dos componentes del momento angular que
puedan actuar simultaneamente como momentos conjugados.

Se considera ahora [l;,1?], donde [? es el cuadrado total del momento angular. Y
usando las identidades (2.2.5) y (2.2.8):

1, ) = [, 0 = [ 5] =Y {200} = 2jeinle = 0 (2.2.9)

Esto es [? y cualquier componente de [ puede considerarse simultdneamente como
momentos conjugados. Otros resultados con significado similar son:

(i, ;] = Z €ijk Tk i, lj] = Z €ijkDk (2.2.10)

k k

donde las p’s en este caso todavia denotan componentes cartesianas de momento
lineal.

2.2.2. Constantes de movimiento

Ya se ha enfatizado que para algunos propdsitos la solucion de un problema
puede considerarse logrado identificando las constantes de movimiento. Reescribiendo
(2.2.2) en notacién de los corchetes de Poisson, se observa que la variacién temporal
de cualquier variable dindamica F' esta dada por

F:[F,H]+E (2.2.11)
ot
Esto muestra que si la variable no contiene el tiempo explicitamente es suficiente para
el corchete de Poisson con H desaparezca para que sea una constante de movimiento.
Este resultado es independiente de si H en si es una constante de movimiento y
proporciona un medio util para identificar constantes de movimiento.
A continuacién se presentan algunos casos especiales de (2.2.2):

¢ =g, H]  pi = [pi, H] (2.2.12)

12
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estos son idénticos a las ecuaciones candnicas de Hamilton y podrian ser referidos
como las ecuaciones de movimiento en la forma de corchetes de Poisson.
Y otro caso especial es:

i _ [H,H] + on_oH

dt ot ot
Esta relacion también ha aparecido anteriormente.

(2.2.13)

2.3. Orbitas de Kepler

. Cudl es la érbita de una particula que se mueve en un campo de fuerza central
en el que la fuerza centripeta varia inversamente con el cuadrado de la distancia?.
La respuesta se conoce desde los tiempos de Newton (1687), quien descubrié que
existen tres tipos de érbitas: elipses, parabolas e hipérbolas [25][30]. De hecho, en
1687 Newton ya conocia la Primera ley de Kepler (1609) sobre las drbitas elipticas
de los planetas [8]. Para dar cuenta de este tipo de érbitas, Newton asumié la fuerza
de atraccion central inversamente proporcional al cuadrado de la distancia radial.

a  dPr do\?
-3 = i r <%) , (2.3.1)

donde « es la constante gravitacional y 6 es el angulo azimutal. El primer término
del lado derecho es la aceleracion radial, el segundo término representa la aceleracién
centripeta necesaria para mantener la particula en una 6rbita circular de radio r.

La ecuacién de la componente tangencial viene dada por la ley de conservacién del

momento angular [26].

df
7“2% = const. =3 . (2.3.2)

Esto es equivalente a la segunda ley de Kepler (1609) indicando que el radio vector
cubre areas iguales en tiempos iguales.
Reordenando (2.3.2) en la forma

ag B
y senalando que
1 d(:
2= (g;) . (2.3.4)

13
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entonces es posible reescribir (2.3.2) de la forma

i d(d)

— =—p—== . 2.3.5

dt p dr ( )
de (2.3.5), se puede obtener la siguiente expresién para la velocidad radial

dr d (1)

— = —p—== . 2.3.6

dt do ( )

Para obtener la aceleracién radial, primero hay que observar que (2.3.6) se puede
escribir como

dr  Bdr

dt— r2do -
Por tanto, se obtiene la siguiente relacién que puede aplicarse a la funciéon para la
distancia radial

(2.3.7)

d pd
Entonces la aceleracién radial puede calcularse de la siguiente forma
Pr_d(Bd\_pd (i _ 2 (d\ Pl gdr
a2 dt \r2df) r2do \r2do) 5 \db rde? " ot de? o

donde el primer término del lado derecho es descartado debido a que O(r~!) con
respecto al segundo término, sobre todo el contexto de la mecanica celeste.
Usando (2.3.9), se puede convertir (2.3.1) en la forma

o d? (l) 1
— = r - 2.3.1
/82 dQQ + r ’ ( 3 O)
con solucién
1 a
T E (1 —ecosb) , (2.3.11)

que es la ecuaciéon de la seccion cénica. Para € < 1, que corresponde a la ecuacion en
coordenadas polares de la elipse. Y en efecto, es sabido que en el caso de la elipse, el
modulo de la distancia de un punto de la elipse al foco es dado por

|z]12 =r12=axccosu (2.3.12)
y el azimut focal es
cosf — L = deosute (2.3.13)
r a4+ ccosu

14
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Eliminando el pardmetro u de las tdltimas dos ecuaciones (trabajando con ry), se
puede encontrar que la ecuacién polar de la elipse es dada por

1 1
o= ]—? (1 —ecosh) . (2.3.14)

Entonces, se obtiene la elipse celeste si se selecciona p = ?/a y € < 1, pero también
se obtienen parabolas si se selecciona € = 1.

2.4. Vector Runge - Lenz

El problema de Kepler [2][8] contiene otro vector adicional conservativo, ademés
del momento angular. Para una fuerza central, la segunda Ley de Newton de movi-
miento puede ser escrita vectorialmente por:

) r
p=fr)- (2.4.1)
El producto cruz de p con el vector del momento angular L entonces puede expandirse

como:

pr:M[rx(rxﬂ
r
= O ey — 2 (2.4.2)
r

La ecuacion (2.4.2) puede simplificarse aiin mas teniendo en cuenta que:

. 1d (r-1) = ri
r-r=—-—(r-r)=rr
2dt
(que también se puede interpretar como, la componente de la velocidad en la direccién
radial es ). Como L es constante, la ecuacién (2.4.2) puede también ser reescrita
como:

d r rr
&(P x L) = —mf(r)rz(; - ﬁ)
que también puede ser
d d/r
—(pxL)=—m (r)ﬁa(;) (2.4.3)

15



Capitulo 2 Estudio de Sistemas Dindmicos Isocronos

Sin especificar el término f(r), no se puede llegar muy lejos. Pero la ecuacién (2.4.3)
puede integrarse inmediatamente si f(r) es inversamente proporcional a 72 del pro-
blema de Kepler. Reescribiendo f(r) en:

d d (mkr
£ L) = =
ai P <L) dt(r)

que dice que para el problema de Kepler existe un vector conservativo A definido
por

A=pxL—mk- (2.4.4)
T

De la definicién de A, se observa que
A-L=0 (2.4.5)

como L es perpendicular a p X L y r es perpendicular a L = r x p. De esta
ortogonalidad de A a L que A debe ser algtin vector fijo en el plano de la 6rbita. Si 6
es usado para denotar el angulo entre r y la direccion fija de A, entonces el producto
punto de r y A es dado por

A-r=Arcosf =r-(p x L) —mkr (2.4.6)
Ahora, desarrollando los términos en el triple producto punto, tenemos
r-(pxL)=L-(rxp)=10
asi que la ecuacién (2.4.6) se convierte en

Arcos = 12 — mkr

o también l " 4

m
El vector Runge-Lenz, por tanto, provee otra forma de derivar la ecuacién de érbita
del problema de Kepler. Comparando la ecuacién (2.4.7) con la ecuacion de la 6rbita
de la ecuacién (2.4.7a) muestra que A estd en la direccién del vector de radio del

perihelio en la 6rbita y tiene una magnitud

2

1 k 2F
R m_(l +4/14+ COS(Q — 0’)) (247&)
T

mk?2
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A = mke (2.4.8)

Para el problema de Kepler se tienen identificadas dos constantes de movimiento
vectoriales, L y A, y un escalar E. Dado que un vector debe tener todas sus tres
componentes independientes, esto corresponde a siete cantidades conservadas en to-
tal.

Ahora, un sistema como este con tres grados de libertad tiene seis constantes inde-
pendientes del movimiento, correspondientes, a los tres componentes de la posicién
inicial y la velocidad inicial de la particula.

Mas aun, las constantes de movimiento se pueden encontrar en todas las funciones
algebraicas de r y p que describe la 6rbita como un todo (orientacién en el espacio,
excentricidad), ninguna de estas siete cantidades conservadas describe donde estd
localizada la particula en la orbital en un tiempo inicial. Ya que una constante de
movimiento debe describir esta informacion, en la forma de T, el tiempo de paso del
perihelio, solo puede haber cinco constantes independientes de movimiento descri-
biendo el tamano, forma y la orientacién de la orbita.

Se puede entonces concluir que no todas las cantidades componiendo L, A y E pue-
den ser independientes, debe haber dos relaciones conectando con estas cantidades.
Una de esas relaciones ya se ha obtenido como una relacién como la ortogonalidad
de A y L, ecuacién (2.4.5). La otra relacién se presenta como la ecuacién (2.4.8)
cuando la excentricidad es expresada en términos de E y ¢ de la ecuacién (2.4.8a),

dada por
/ 2E1?
e=14/1+ - (2.4.8a)

A? = m?k? + 2mEl? (2.4.9)

esto confirma que solo hay cinco constantes de movimiento en vez de siete.

El vector de momento angular y la energia por si solas contienen solo cuatro cons-
tantes independientes de movimiento: el vector Runge-Lenz de este modo agrega una
mas. Es natural preguntar por qué no deberia existir para cualquier ley general de
fuerza central alguna cantidad conservada que juntos con L y E sirva para definir la
orbita en una manera similar al vector Runge-Lenz para el caso especial del problema
de Kepler.

La respuesta parece ser que tales cantidades conservadas pueden construirse, pero
que ellas son en general funciones peculiares del movimiento. Las constantes de movi-
miento describen a la orbita entre ellas definen la érbita. Hemos visto que en orbitas
generales para un movimiento de fuerza central no son cerradas.

Las orbitas cerradas implican condiciones bastante estrictas sobre la forma de la ley
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de fuerza. Es una propiedad de orbitas no cerradas que la curva eventualmente pa-
sara a través de cualquier punto arbitrario (r,#) que se encuentra entre los limites
de inflexiéon de r.

Intuitivamente, este puede ser visto por la naturaleza no cerrada de la érbita, como
0 va alrededor de un circulo completo, la particula nunca debe volver sobre sus pasos
en una Orbita previa. Por tanto, la ecuacién de la érbita es tal que r es una funcién
multi evaluada de 6; en realidad, es una funcién infinita evaluada de 6.

La cantidad conservada correspondiente adicional a L y E definiendo la érbita de-
be involucrar de manera similar una funcién infinita valuada del movimiento de
particulas. Suponga la variable r es periddica con frecuencia angular w, y la coorde-
nada angular 6 es peridédica con frecuencia angular wy. Si estas dos frecuencias tiene
un radio (w,/wg) que es un entero o una fraccién entera, se dice que los periodos son
proporcionales.

Orbitas proporcionales son cerradas con la masa en érbita se retrae continuamente
en su trayectoria. Cuando wy > w, la 6rbita sera una espiral sobre el origen, ya que
la distancia varia entre los valores absidales, cerrandose solo si las frecuencias son
proporcionales.

Si, como en el problema de Kepler wy = w,., el periodo entonces se dice que es dege-
nerado. Si la érbita es degenerada, existe una cantidad conservada adicional que es
una funcion algebraica de r y p como el vector Runge-Lenz.

2.5. Superintegrabilidad

Son sistemas integrables, aquellos sistemas cuya ecuacién del movimiento es re-
ducible a cuadraturas, lo que significa que su solucion general puede encontrarse
realizando un nimero finito de integraciones y de inversiones de funciones. Algunos
sistemas de este tipo, son todos los lineales, todos los conservativos con un grado de
libertad, una particula sometida a un potencial central en dos o tres dimensiones y
el trompo de Lagrange, es decir, un sélido simétrico con un punto fijo y sometido a
la gravedad.

Conviene subrayar dos cuestiones. Primeramente, la solucién de un problema inte-
grable se puede obtener mediante un conjunto finito de operaciones. En segundo
lugar, a menudo no es facil poder afirmar que un problema no es integrable, porque
no conocer un método de reduccion a cuadraturas no significa que no existe. Quizds
si lo haya, pero, para encontrarlo, sea necesario dedicar mas tiempo o mas ingenio a
su busqueda. Sin embargo, podemos afirmar que existen sistemas que no son integra-
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bles. Y no solo eso, sino que para que uno lo sea debe haber alguna buena razén (por
ejemplo, que su Hamiltoniano o su Hagrangiano tengan alguna propiedad especial.
En cierto sentido, lo genérico son los no integrables.

2.5.1. Dos tipos de comportamiento

La divisién de los sistemas dinamicos en esas dos clases es importante y refleja
diferencias profundas en la estructura de las soluciones. En efecto, hay dos tipos de
comportamientos.

(a) En algunos casos es posible encontrar la solucién general de un problema, bien
de manera exacta, bien con un margen de precision € en todas las variables para
todo tiempo ¢, es decir, tal que || zx(t) - 25 (t) || < €, siendo z(¢) la solucién exacta,
mediante un nimero de operaciones que no depende de t. En otras palabras; el es-
fuerzo para encontrar la soluciéon no del tiempo. Es facil comprender que asi ocurre,
por ejemplo, en el oscilador armoénico o en el problema de los dos cuerpos.

(b) El comportamiento de otros sistemas es muy diferente, pues, para ellos, no
existe ningun algoritmo finito que de la solucién para todo ¢. En todos los métodos
que existen, la cantidad de operaciones N(t) que hay que realizar para encontrar la
solucion en el tiempo ¢ con precision e crece mas deprisa que t. Es decir que, si t —
oo, lim N(t)/t = co. Esto ocurre cuando la inestabilidad juega un papel importante,
de modo que mantener una precisién € cuesta cada vez mas esfuerzo, en término de
operaciones matematicas.

Para entender como y porque N(t) puede crecer tan deprisa, consideremos dos méto-
dos frecuentes de solucion: el desarrollo en serie de un parametro y el cdlculo numéri-
co. En el primero, que tan importante papel ha jugado en el establecimiento de la
mecanica celeste, ocurre a veces que el niimero de términos que es necesario emplear
para alcanzar una precisién € crece con t, pero mas deprisa que t. Cualquier suma
parcial de la serie pierde su operatividad al cabo de un cierto tiempo. Se toma aho-
ra la resolucién numérica de las ecuaciones. Si hay inestabilidad, de modo que los
errores se amplifiquen, llega a suceder que, para mantener la precision €, es necesario
hacer cada vez méas operaciones por unidad de tiempo, bien disminuyendo el paso de
integracion, bien pasando a esquemas numéricos mas complejos.

Se definen como comportamiento regular y comportamiento irregular a estos dos

19



Capitulo 2 Estudio de Sistemas Dindmicos Isocronos

tipos que se corresponden con las clasificaciones de los sistemas en integrables y no
integrables. Sin embargo, los integrables pueden tener y tienen soluciones inestables
y que los no integrables pueden tener y tienen soluciones estables. La diferencia esta
realmente en la proporcion de soluciones inestables y en la virulencia de la inestabi-
lidad.

2.5.2. El papel de las contantes de movimiento

La existencia de constantes de movimiento facilita en gran medida la resolucion
de un problema. Asi, todos los sistemas conservativos de un grado de libertad pueden
resolverse gracias a la integral de la energia, en el caso de una particula en un poten-
cial central juega un papel decisivo la conservacion del momento angular, mientras
que se llega a la solucién de las ecuaciones del trompo de Lagrange combinado la
constancia de la energia con las de los momentos conjugados a los angulos ¢ y .
Conviene, por tanto, examinar el papel que juegan esas constantes. Y para ellos se
anuncia el siguiente teorema.

Teorema

Un sistema dinamico de orden m tiene exactamente m integrales primeras inde-
pendientes entre si.

Prueba:

Sea el sistema & = ug(k), k =1,2,...,, m. La solucién general tiene la forma
T :fk(t;tg,ailo,...,l’mo), k= 1,2,...,777,. (251)

donde se indica la dependencia de los datos iniciales xyg = 5 (to) y del tiempo inicial
to. Quizas la funcién fsea de gran complejidad y desconocida, pero se sabe que existe,
bajo condiciones muy generales sobre uy. Es evidente que, considerando ahora a x(t)
como datos de Cauchy en el tiempo inicial ¢y a t; como tiempo actual, se cumple

Tro = feltort,x1(t), .., xpn(t)), k=1,2,...m. (2.5.2)

Las ecuaciones (2.5.2) son la expresion de m integrales primeras, ya que m funciones
de t y de xj(t) se mantienen constantemente igual a xy. Hay, pues, m constantes
independientes al menos. Enseguida se muestra porque no puede haber més. Se
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comienza si hubiera otra A(z(t)), t = a.

Sustituyendo (2.5.1), resulta A(x(t),t) = B(xo,t) = const y, derivando respecto a t,
dA dB 0B
dt  dt ot

lo que dice que B no depende de ¢, luego B = B(x() es una funcién de zxp y no

es independiente de ellas. Por tanto, hay m constantes independientes, ni mas ni
menos. Recuérdese que si el sistema es Newtoniano con n libertades, m = 2n. En
general, consideraremos conjuntos de m constantes Cy(z,t), independientes entre si.

Naturalmente, debe de ser funciones de las xy.

De esta propiedad parece deducirse que, si se conoce un conjunto de m constantes

del movimiento, independientes entre si, la solucion del problema es inmediata. Pues,

sean (1, ...C), constantes

(2.5.3)

Celz,t)=cx, K=1,2,...m (2.5.4)

Entre ellas, una al menos debe depender explicitamente del tiempo, pues, de no ser
asf, (2.5.4) implicarfa que las coordenadas pueden tomar solo un conjunto discreto
de valores (quizds uno solo) y no habria movimiento. En principio, y puesto que las
C} son funcionalmente independientes, se pueden invertir, obteniéndose asi

x = xRt c1y ey Cm) (2.5.5)

que es la solucion general del sistema, dependiente de m constantes de integracion.
Este procedimiento indico la intima relacion que hay entre las constantes del mo-
vimiento y la solucién de un problema. Se entiende mejor eliminado el tiempo en
(2.5.4) con lo que se obtienen m — 1 variables dindmicas que no dependen explicita-
mente del tiempo y que son constantes a lo largo de cada trayectoria, es decir, m — 1
cantidades conservadas.

Ap(z)=ar; k=1,..,m—1 (2.5.6)

La interpretacion geométrica es simple, pues cada una de esas ecuaciones es la de
una hipersuperficie de dimension, m — 1 es el espacio de fases de dimensiéon m. Por
lo tanto, las m — 1 ecuaciones (2.5.6) definen la trayectoria del sistema, de la misma
manera que una curva en tres dimensiones es la interseccion de dos superficies bidi-
mensionales. Para conocer en que momento del tiempo pasa por cada punto basta
con anadir una de las constantes C}), que depende efectivamente de t. Se entiende asi
como el conocimiento de una las constantes del movimiento independiente del tiem-
po permite eliminar una dimensién y rebajar en uno el orden del sistema dinamico
simplificando la soluciéon del problema.
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2.6. Problema de fuerza central

2.6.1. Ecuaciones de movimiento y primeras integrales

Es necesario comenzar senalando que el problema se concentra en las fuerzas
centrales conservativas, donde el potencial esta dado por V(r), una funcién de r tini-
camente, de modo que la fuerza siempre estd a lo largo de r. También se considera
que el problema trata sobre una sola particula de masa reducida m que se mueve
alrededor de un centro de fuerza estatico, que se tomara como origen del sistema de
coordenadas. Dado que la energia potencial involucra solo la distancia radial, el pro-
blema tiene simetria esférica; es decir, cualquier rotacion, sobre cualquier eje fijo, no
puede tener ningiin efecto sobre la solucion. Por lo tanto, una coordenada de angulo
que representa la rotacion alrededor de un eje fijo debe ser ciclica. Estas propiedades
de simetria dan como resultado una considerable simplificacién del problema. Como
el problema es esféricamente simétrico, el momento angular total vector es

L=rXxp

se conserva [28]. Por tanto, se deduce que r es siempre perpendicular a la direccién
fija de L en el espacio. Esto solo puede ser cierto si r siempre se encuentra en un
plano cuya normal es paralelo a L. Si bien este razonamiento se rompe si L es cero, el
movimiento en ese caso debe ser a lo largo de una linea recta que pasa por el centro
de fuerza, para L = 0. Requiere que r sea paralelo a r, lo cual solo puede satisfacerse
en un movimiento rectilineo. Por tanto, el movimiento de la fuerza central es siempre
un movimiento en un plano.

Ahora bien, el movimiento de una sola particula en el espacio se describe mediante
tres coordenadas; en coordenadas polares esféricas estos son el angulo de acimut 6,
el cenit 1, y la distancia radial r. Al elegir el eje polar que sera en la direccién de
L, el movimiento es siempre en el plano perpendicular al eje polar. La coordenada v
entonces solo tiene el valor constante 7/2 y puede eliminarse de la discusion posterior.
La conservacién del vector del momento angular. proporciona tres constantes de
movimiento independientes (correspondientes a las tres componentes cartesianos).
En efecto, dos de ellos, expresando la direccion constante del momento angular, se
han utilizado para reducir el problema de tres a dos grados de libertad. La tercera de
estas constantes, correspondiente a la conservacion de la magnitud de L, todavia esta
a nuestra disposicién para completar la solucién. Expresado ahora en coordenadas
polares planas, el lagrangiano es

L=T-V
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= %m(ﬂ +7%0%) — V(r) (2.6.1)

Como se habia previsto, # es una coordenada ciclica, cuyo correspondiente momento
canonico es el momento angular del sistema:

oL

.
Do = % mr<6
Entonces, una de las dos ecuaciones de movimiento es simplemente
Cd,
Do = %(mr 6) =0 (2.6.2)
con la integral inmediata .
mr?0 =1 (2.6.3)

donde [ es la constante de magnitud del momento angular, y a partir de (2.6.2) se

tiene que
d (1 26) =0 (2.6.4)
dt "2
El factor % es insertado porque %rzé es solo la velocidad area: el area barrida por el
radio vector por unidad de tiempo. El area diferencial barrida en el tiempo dt es

1
dA = 57“(7“0[9)
y por tanto
dA _ 1 ,df
dt 2 dt

La conservacion del momento angular es, por tanto, equivalente a decir que el area de
la velocidad es constante. Aqui tenemos la prueba de la segunda ley de Kepler. Ley
del movimiento planetario: El radio vector barre areas iguales en tiempos iguales. Sin
embargo, se debe enfatizar que la conservacion de la velocidad drea es una propiedad
general del movimiento de la fuerza central y no esta restringida a una ley de fuerza
de cuadrado inverso. La ecuacion de Lagrange restante, para la coordenada r, es

d . oV

—(mr) —mré* + — =0 2.6.5
dt( ) or ( )
Designando el valor de la fuerza a lo largo de r,—9V/0r, por f(r) la ecuacién puede

ser reescrita como '
mit — mr? = f(r) (2.6.6)
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Haciendo uso de la ecuacién (2.6.3), 6, puede ser eliminado de la ecuacién de movi-
miento produciendo una ecuacién diferencial de segundo orden que involucra solo a
r

mit — — = f(r) (2.6.7)

mr3
Hay otra primera integral de movimiento disponible, la energia total, ya que las
fuerzas son conservativas. Sobre la base del teorema de conservacién general de la
energia, podemos afirmar inmediatamente que una constante del movimiento es

B = Jm(?+ ) + V(r) (2.6.8)

donde F es la energia del sistema. Alternativamente, esta primera integral puede ser
derivada nuevamente de las ecuaciones de movimiento (2.6.2) y (2.6.7). Entonces se
puede escribir como

d 12
—(V 4+ =——

dr ( 2mr?
Si ambos lados de la ecuacién (2.6.9) son multiplicados por 7, el lado izquierdo ahora
es

) (2.6.9)

mi =

L. d, 1
mir = —(=mr
dt(2 )
El lado derecho similarmente puede ser escrito como una derivada total del tiempo,

si g(r) cualquier funcién de 7, entonces la derivada total del tiempo de g es
d (r) = dg dr
at”\" T dr dt

Por tanto, la ecuacion (2.6.9) es equivalente a

d1 d 1 2
a2 =iVt g
o bien p L
2
(= V)=
dt(2m * +2m7’2>
y por tanto
L2 4 v 4 L s tant (2.6.10)
2mr 2m7“2 = constante 0.

La ecuacién (2.6.10) es la declaracién total de la energia, y usando (2.6.6) para [, el
término del lado izquierdo puede ser escrito

I SV S (i

mr?  2mr? 2
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y (2.6.10) se reduce a (2.6.4). Estas dos primeras integrales proporcionan dos de
las cuadraturas necesarias para completar el problema. Como hay dos variables, r
y 0, se necesitan un total de cuatro integraciones para resolver las ecuaciones de
movimiento. Las dos primeras integraciones han dejado las ecuaciones de Lagrange
como dos ecuaciones de primer orden (2.6.3) y (2.6.10); las dos integraciones restantes
se pueden lograr (formalmente) de diversas maneras. Quizas el procedimiento mas
simple comience con la Ec. (2.6.10). Resolviendo para 7, tenemos

: \/2 (E-V ’ ) (2.6.11)
=1l Z(E_V — .6.
m 2mr?

o bien p
dt = L (2.6.12)

2 12
¢#E—V—%m>
En t = 0, para r en su valor inicial ry. Entonces la integral de ambos lados de la
ecuacion que va del estado inicial al estado en el momento ¢ toma la forma.

(2.6.13)

/ " dr
t =

2 12
"o \/E(E V- 2m7"2)
Tal como estd, la ecuacién (2.6.13) da ¢ como funcién de r y las constantes de
integracion F, [ y rg. Sin embargo, se puede invertir, al menos formalmente, para
dar r como funciéon de t y las constantes. Una vez que se encuentra la solucién
para 7, la solucién 6 se desprende inmediatamente de la ecuacion. (2.6.3), que puede
escribirse como

ldt

df = 2.6.14
- (2.6.14)
Si el valor inicial de 0 es 6y, entonces la integral de (2.6.14) es
boodt
0=1] ——=+16 2.6.15
), v o 2010

Las ecuaciones (2.6.13) y (2.6.15) son las dos integraciones restantes, y formalmente
el problema se ha reducido a cuadraturas (evaluacién de integrales), con cuatro
constantes de integracion FE, [, rq, 6y. Estas constantes no son las tinicas que pueden
considerarse. También se pudo haber tomado rq, 6y, 7o, bo, pero por supuesto, E
y [ siempre se pueden determinar en términos de este conjunto. Sin embargo, para
muchas aplicaciones, el conjunto que contiene la energia y el momento angular es
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el natural. En mecanica cuantica, constantes como los valores iniciales de r y 6, o
de 7 y 6, pierden su significado, pero ain podemos hablar en términos del sistema
energia o del momento angular del sistema. De hecho, dos diferencias destacadas
entre la mecanica clasica y la cuantica aparecen en las propiedades de E y [ en las
dos teorias. Para discutir la transicién a las teorias cuanticas es importante que la
descripcion clasica del sistema sea en términos de su energia y momento angular.
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Orbitas elipticas

3.1. Introduccion

La constante interrogacion sobre la regularidad y la elegancia geométrica de los
movimientos celestes ha impulsado la investigacién fundamental desde la antigiiedad.
Se plantea la cuestion central sobre la naturaleza de la fuerza invisible que deter-
mina el retorno periddico de los cometas. Asimismo, en el ambito de la ingenieria
aeroespacial contemporanea, es crucial establecer las condiciones de estabilidad e in-
mutabilidad que deben satisfacer las trayectorias satelitales en el campo gravitatorio
terrestre. La solucion a esta triada de problemas reside en los principios invariantes
de la Geometria Dinamica y el formalismo de la Mecanica Clasica. Es un principio
de la Mecanica Analitica que los sistemas fisicos acotados, sujetos a la influencia de
fuerzas centrales (planetas, satélites, cometas de periodo corto), describen una tra-
yectoria en el espacio de fases que se caracteriza por la ausencia de puntos de inicio
y fin bien definidos, configurando una orbita intrinsecamente cerrada y recurrente.

Como una elegante nota a pie de pagina en la historia de la fisica se puede apre-
ciar que Joseph Bertrand, un epitome del pensamiento racionalista, lograra articular
y redescubrir la profunda simetria inherente a las leyes gravitacionales newtonianas.
En la rigurosa terminologia de la Mecanica Analitica del siglo XX, la conclusién es
lapidaria: solamente las orbitas elipticas poseen la capacidad de admitir las deno-
minadas simetrias ocultas (o vectores de Runge-Lenz) cuando el movimiento estd
gobernado por un campo de fuerza central emanado de un tnico centro de atraccién
fisico.
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3.2. El Teorema de Bertrand como Condicién
Necesaria y Suficiente para la Cerrazén Uni-
versal

“Dentro del dominio exhaustivo de las posibles leyes de atraccién de fuerzas cen-
trales cuyo potencial asociado se anula asintéticamente al tender la distancia radial
al infinito, la ley de la inversa del cuadrado (F oc r772), caracteristica de la interac-
cion gravitatoria y electrostatica, es la inica que garantiza matematicamente que la
totalidad de las érbitas acotadas descritas alrededor de un centro de atraccién esta-
cionario sean rigurosamente cerradas y estables. Si bien formulaciones alternativas
de la ley de fuerza podrian admitir la existencia ocasional de drbitas cerradas [20]
para un subconjunto especifico de condiciones iniciales, solo la ley de gravitacién
las impone como el Unico resultado posible para cualquier movimiento acotado y
periodico.”

Conservacion y Reduccién Dimensional Mediante el Potencial Efectivo

Para abordar el andlisis formal de las trayectorias en presencia de potenciales
centrales, es imperativo establecer los principios de conservacion. La otra fuerza cen-
tral cuyas érbitas acotadas resultan elipticas [25][29] es la fuerza eldstica, definida
por la ley de Hooke (F oc 7). Su potencial asociado, V(r) o 2, difiere del poten-
cial gravitatorio en la condicion asintética de anulacién al infinito, asegurando su
compatibilidad con el Teorema de Bertrand. El cuestionamiento se reformula, por
ende: ;Existe alguna otra ley de potencial central que satisfaga estas condiciones de
estabilidad? Como se describe en [4], el Teorema de Bertrand establece que no.

El fundamento de este resultado radica en la invariancia de dos cantidades fun-
damentales. Para cualquier potencial central V(r), se conservan dos magnitudes es-
calares:

1. El Momento Angular (L): Se mantiene constante debido a que una fuerza
central no produce torque (7 =r x F = 0).

L = mr x v = constante

2. La Energia Mecédnica Total (E): Su conservacién es inherente al cardcter con-
servativo de la fuerza central, dependiente inicamente del radio r.

1
E = émv2 + V(r) = constante
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La constancia del vector L implica consecuencias geométricas y cinéticas directas:
(i) La orientacion espacial inmutable de L restringe a los vectores r y v a un plano
perpendicular a L. Esto justifica la seleccion de coordenadas polares (r,6) en el
plano de la 6rbita, donde la coordenada vertical z es ignorable. (ii) La magnitud del
momento angular en coordenadas polares se relaciona con la velocidad angular 0:

L =|L|| = mr?f

La energia cinética total T = %mv2 se descompone en las energias asociadas al
movimiento radial y al movimiento angular. En coordenadas polares, la velocidad v

es v=r1ru, + réug, donde u, y uy son los vectores unitarios.
1 Lo 95
T=—-m(v-v)=—-m(r*+r°6°)
2 2
Al sustituir la expresién para 0 derivada de la conservacién del momento angular L:

b

mr?

En la formulacién de la energia total (£ = T + V/(r)), se obtiene la Ecuacién de
Energia Radial:

1 1 L\?
E=—mr?+ imr2 <—> + V(r)

2 mr?
1, [ L2
E = Smr + (2mr2> + V(r)

Esta formulacién facilita la reduccién del problema a un tinico grado de libertad (r)
mediante la introduccién del Potencial Efectivo Vee(r):

Valr) = V0 + (5

2mr?

donde el término 2@% representa el Potencial Centrifugo de carédcter repulsivo, esen-
cialmente un término de energia potencial generado por el movimiento angular.

El escenario prototipico ocurre cuando el potencial centrifugo prevalece en el
entorno del origen (r — 0) y es contrarrestado por el potencial atractivo V(r) a
grandes distancias (r — 00). Si la energia E y el momento angular L se seleccionan
para coincidir con el minimo del potencial efectivo, la 6rbita resultante es un circulo
de radio r = ry. Una perturbacién de orden infinitesimal en las condiciones iniciales
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transforma esta orbita de equilibrio en una trayectoria que oscila entre un valor
minimo (a) y un valor méximo (b) para la coordenada radial .

La érbita solo cerrard si se cumple la condicién de conmensurabilidad entre la
frecuencia de oscilacién radial (v,.) y la frecuencia angular de revolucion (vy):

ﬁzgzne(@

Vo g
Esto implica que, tras p oscilaciones radiales (de a — b — a), la particula debe
completar exactamente ¢ revoluciones angulares (¢ - 2m), regresando al punto de
partida original.

3.2.1. Analisis de Estabilidad Orbital en el Limite Cuasi-
Circular

Para el andlisis de estabilidad de las orbitas cuasi-circulares, se desarrolla el
potencial efectivo Ve¢(r) en una serie de Taylor de segundo orden alrededor del punto
de equilibrio ry, donde d;ff |-, = 0. En este régimen, Vs se aproxima a un potencial de
oscilador armonico simple. Las oscilaciones radiales entre a y b exhibiran isocronismo
con una frecuencia angular radial v, dada por la raiz cuadrada de la segunda derivada
del potencial efectivo en el minimo (tras normalizacién por la masa):

1 d* Ve 1 d*v 3L2
V== = — | — T
r m d’]”2 0 m d7’2 70 mré

La frecuencia angular de revolucion esta dada por vy =0 en r = r:

L
Vg = —
mrd

La imposicién de la condicién de cerrazén de la érbita (v, = nuvy) a partir de las
ecuaciones anteriores deriva en la siguiente ecuacion diferencial trascendental sobre
el potencial V(r) en el punto de equilibrio r¢:

7"0)

o (dQV ) — (n?—3) (‘;—Z

dr?
La solucién general de esta ecuacién establece que el potencial debe manifestar un
comportamiento localmente caracterizado por una ley de potencias:

V(r) « P2
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donde n = p/q es un nimero racional.

Esta restriccién es una condicién necesaria (aunque no suficiente) para que la
totalidad de las orbitas acotadas del potencial sean cerradas, con independencia de
la energia y el momento angular.

3.2.2. La Integral de la Orbita y la Clasificacién Universal
de Bertrand

La condicién de conmensurabilidad se formaliza de manera rigurosa mediante la
integral de la drbita. Utilizando el cambio de variable w = 1/r, la diferencial del
angulo 6 es:

B L du

V2mE —2mV (u) — L2u?

Definiendo o = 1/by = 1/a como los inversos de las distancias radiales extremas
(puntos de retorno), la energia E'y el momento angular L se relacionan mediante las
condiciones de anulacién de la velocidad radial en los limites (E = Vie(a) = Vg(b)):

_ BV(a) - a*V(B)

do

E

82 _ o2
L*  V(a) = V(B)
om - B2—a2

Para que la orbita sea cerrada para cualquier par de a y 3, se debe satisfacer la
siguiente identidad integral (conmensurabilidad):

oo [ V(a) - V(B) ’
o=z TPV =V — (P — V() =) =V ()

donde 27 es el angulo total y la integral representa el avance angular Aé por semiciclo
radial.

Al evaluar esta integral bajo las condiciones singulares del potencial, el analisis
de Bertrand revel6 tinicamente dos soluciones que permiten la cerrazon para todo «

y B
1. Caso I: n =1 (Conmensurabilidad 1 : 1): Corresponde a V (r) oc 771, la ley de
la inversa del cuadrado (Gravitacion y Electrostética).

2. Caso II: n = 2 (Conmensurabilidad 2 : 1): Corresponde a V (r) o< r%, el poten-
cial del oscilador armoénico simple.
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Estos son los unicos dos potenciales centrales para los cuales la totalidad de las
orbitas acotadas resultan ser cerradas. Resulta notable que ambas leyes de fuerza
generan Orbitas con la misma forma geométrica: la elipse.

3.2.3. Simetrias Ocultas: El Vector de Runge-Lenz

La naturaleza especial de los potenciales V(r) oc 7= y V(r) o< r% no solo se evi-
dencia en su cerrazon orbital, sino también en la existencia de una tercera magnitud
vectorial que se conserva, ademds de la Energia (E) y el Momento Angular (L): el
Vector de Runge-Lenz (A).

El vector de Runge-Lenz se define para el caso de la fuerza de la inversa del

cuadrado (V(r) = —k/r) como:
A=pxL- mk;E
,

donde p es el momento lineal. La conservacién de A ( % = 0) es una manifestacién
de una simetria dinamica adicional, conocida como simetria accidental o simetria
oculta.

1. Justificacion de la Elipse y la Precesion Cero: El hecho de que A sea constante
implica que la érbita no precesa. Geométricamente, A apunta siempre a lo
largo del eje mayor de la elipse, desde el centro de fuerza hasta el periastro
(punto de maximo acercamiento).

2. Determinacién de la Excentricidad: La magnitud de A esté relacionada con la
excentricidad (g) de la érbita eliptica:

A = mke

La existencia de esta tercera magnitud conservada (un vector de tres componen-
tes, con dos restricciones cinematicas internas, dejando un grado de libertad adicio-
nal) eleva la simetria del problema del grupo O(3) (rotaciones, asociado a L) a un
grupo de simetria superior, O(4), que es el grupo de rotaciones en cuatro dimensio-
nes. Es esta simetria superior la que fuerza la cerrazon exacta de la elipse y previene
cualquier precesion a lo largo del tiempo. Los demas potenciales centrales no poseen
un vector de conservacién adicional de esta indole, lo que explica por qué sus Orbitas,
al ser perturbadas, exhiben precesién y no se cierran de manera exacta.
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3.2.4. Orbitas Cerradas No Elipticas: El Caso de la Fragili-
dad Dinamica

La aseveracion de que solo las elipses constituyen orbitas cerradas es, sorprenden-
temente, incorrecta. Si bien los casos n = 1 y n = 2 producen las elipses universales,
existen otras curvas cerradas que no son elipses y se dan en casos limite:

» Paran =1 (Gravitacién): La ecuacién de la érbita es + = B + Acos@ (Elipse
con foco en el polo).

» Para n = 2 (Armoénico): La ecuacién es -5 = B + Acos26 (Elipse con centro
en el polo).

Otras curvas cerradas satisfacen la condicién de conmensurabilidad inicamente bajo
una restriccién severa en las condiciones iniciales (por ejemplo, £ = 0 o una relacién
especifica entre E'y L).

El potencial V(u) = k'u* — ku3, por ejemplo, genera la trayectoria limacén de
Pascal r = A + Bcosf para F = 0. Andlogamente, el potencial V (u) = kuS — k'u?
genera una lemniscata 7%2 = B+ Acos 20 para E = 0.

El potencial efectivo para estos casos limite presenta un maximo y un minimo
en £ = 0. La curva cerrada existe solo si los parametros £ y L se seleccionan con
precision absoluta. Esto implica que estas dérbitas son intrinsecamente fragiles; una
desviacién infinitesimal en £ o L rompe la conmensurabilidad, resultando en una
orbita que precesa en lugar de cerrarse.

La grandeza conceptual del teorema de Bertrand reside en su capacidad para
seleccionar exclusivamente los potenciales con érbitas elipticas como soluciones es-
tables. Para cualquier otro potencial, la 6rbita cerrada es un caso limite inestable.
Todas las orbitas cerradas no elipticas son dindmicamente fragiles.

La fascinacién final por la elipse se basa en sus simetrias. El circulo, con simetria
infinita, impide la identificacién de un potencial inico. La elipse, en cambio, posee
dos ejes de simetria distintivos:

= Si el centro de fuerza coincide con el centro geométrico (Potencial Armonico),
la simetria es total (n = 2).

= Si el centro de fuerza coincide con uno de los focos (Potencial Gravitatorio),
la simetria se reduce a un solo eje (n = 1), coincidiendo con la direccién del
vector de Runge-Lenz.
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La ley de gravitacion newtoniana, al imponer la geometria del foco (n = 1), establece
un vinculo directo entre la simetria reducida, la existencia del Vector de Runge-Lenz
y la estabilidad inherente, confiriendo a la elipse su relevancia fundamental en la
fisica.
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Capitulo 4

Los potenciales is6cronos de Hénon

4.1. Concepto de potencial is6crono

El concepto de potencial isécrono fue propuesto por Michel Hénon en los anos
19507s [11][12] y lo desarrollo en su estudio enfocado en los cimulos globulares.
Hénon se hizo la siguiente pregunta basica:

¢ Qué potenciales podrian liderar el periodo de oscilacion que dependa

solo de la energia y no del momento angular?

Resolvié el problema a través de los potenciales isécronos. El problema de Hénon ha
sido explorado desde diferentes perspectivas y en anos recientes ha atraido la aten-
cién de los investigadores. El problema de Hénon fue resuelto a través de diferentes
metodologias [5][9][14][15].

Presentamos una solucién usando integracion de Abel [17]. Se comienza por presen-
tar el problema de fuerza central, su dindmica esta descrita por E'y L :

E= %7’“2 + U(r) (4.1.1)

donde U(r) representa el potencial efectivo y por simplificar se toma m = 1.

Ulr)=V(r)+ - (4.1.2)

272
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con V (r) siendo el potencial central. En (4.1.3) se muestra la expresion para el dngulo
azimutal que es un resultado bien conocido en la literatura

Tmazx 6 1
- dr
Tmin | V Q[E - U(?")]

que representa el angulo de variacion entre los puntos de menor y mayor aproximacién
al cuerpo central, periapsis y apoapsis y el periodo radial estd dado por

O(E, () = (4.1.3)

Tmax 1
S (4.1.4)

T(E,0) = V2 —
Tmin - T

Estas son dos cantidades fundamentales en el analisis del problema de dos cuerpos
en campo central. Note que el angulo apsidal, definido como angulo de variacion
durante un periodo radial, es dos veces el angulo azimutal. La condicién de isocronia
es equivalente a requerir que el periodo radial 7' no dependa del momento angular
¢. Hénon mostré que la condicién de isocronia requiere:

(az +bY ) +cx+dY +e=0 (4.1.5)

donde x = 2r3 y Y (x) = 2V (y//2) son conocidas como las variables de Hénon y a, b,
¢, d y e son constantes que pueden ser expresadas en términos de la dindmica original.

A partir de (4.1.5) se pueden desprender los potenciales de Newton y arménicos:

k k
Vve=—— Vha= §r2 (4.1.6)

son los potenciales isécronos mas simples. Sus periodos correspondientes son:

7k

V2Bl

Se puede observar que no dependen de £. El problema de isocronia de Hénon involucra
el teorema de Bertrand en el sentido que los dos potenciales isécronos que llevan
a orbitas cerradas son isocronos triviales, pero también existen otros potenciales
isécronos que no son cerrados. Los potenciales derivados de (5), ademads de ser casos
de Bertrand, son llamadas potenciales de Hénon:

k
b+ Vb +1?
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Y los potenciales V,, v V},, son:

k
b+ Vb2 —7r2

Es necesario observar que los potenciales V;, y Vj,, no estan definidos para todo r.
Si V(r) es un potencial isocrono, entonces V(r) +¢ + A/r? también lo serd a partir
de agregar algunos términos extra.

Una de las condiciones necesarias son la suavidad, aunque solo basta que sea con-
tinuamente diferenciables en contraste con otras condiciones en la literatura que
requieren que V'(r) sea analitica, ver [9][16].

Estas aproximaciones permiten mostrar que todos los potenciales isocronos de la
familia (4.1.8) y (4.1.9) tienen periodo radial T2 o |E|™ y sus érbitas pueden ser
llevadas a un problema tipico de Kepler.

Vilr) = Violr) = =5V =7 (4.L9)

4.2. Problema Inverso de Fuerza Central

Para obtener el potencial efectivo U en términos de T' y ©, es conveniente usar
un cambio de variable para la integracién [27], de r a U, tal que m(U) < r5(U) son
dos ramas de la funcién inversa para U(r) cerca de un minimo local Uy = U(r).
Entonces la integracion es

T'maz Vo d7’1 d?"g
o= | v+ | 2au 12.1
/TW " /E aU / aU (4.2.1)

y escribiendo (4.1.3) y (4.1.4):

L S SR R (4.2.2)

OE, ) = \/_ Uo VE—U dU'r, 19

T(El) = \fU \/lid‘;](m—n)dz] (4.2.3)

Las ecuaciones de tipo (4.2.2) y (4.2.3) pueden ser invertidas a través de la integracién
de Abel: si f y g son funciones tal que:

Flu) = / ’ \/Z@T)Udv (4.2.4)
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entonces:

g(v) = %d%} /u %du (4.2.5)

Para nuestro proposito es suficiente que f(u) sea continuamente diferenciable en el
intervalo I = [ug, u1] para asegurar que g(v), no necesariamente continua, es solucién
tnica en el intervalo I. Entonces, aplicando la integracién de Abel a (4.2.2) y (4.2.3):

1 1 V2 (Ve

roory @l v, VU—-FE

1 (Y T(E,¢)
_\/§7r v, VU —FE

dE (4.2.6)

o —7

dE (4.2.7)

4.3. Soluciones IsO6cronas

La condicién de isocronia, el requerimiento que el periodo radial 1" no dependa del
momento angular, ¢ es totalmente equivalente a la condiciéon que el angulo azimutal
no dependa de la energia E. Esto puede ser visto como la identidad:

or _ 09

=7 =237 (4.3.1)

Que a su vez puede ser deducida a través de la acciéon radial:

Tmin

A(E 0) =2 VE—-U(r,0) dr (4.3.2)

Tmax

recordando que:

0A, o—_ 0A,
OF ol
Y, por tanto, asumiendo la condicién de isocronia © = wA(¢), la condicién de di-
ferenciabilidad continua para la inversién de Abel es trivial y puede ser integrada

directamente como: ] ]
— — — =06, U = U (4.3.4)

1 T2

T =2

(4.3.3)

donde 3, = 2v/2\(¢)/¢, donde A es un nimero racional de acuerdo al teorema de
Bertrand, independiente de ¢. El lado izquierdo de la eecuacion (4.3.4) es una fun-
cién suave para U > Up y esto implica que ambos r1(U) y mo(U) son suaves y que
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consecuentemente U (r) también serd una funcion suave con una posible excepcion en
sus minimos Uy = U(rg). Se supone que V(r) no es suave, por ejemplo, en el punto
r = r3. A menos que V (r) tenga una falta de suavidad que se cancele en exactamente
r = ry, entonces la ecuacién (4.3.4) no se cumplird, con la tinica excepcién correspon-
diente a la falta de suavidad ubicada precisamente en r = rg, el inico punto comun
de las dos ramas.

Pero incluso si admitimos un potencial V(r) “afinado” que tenga exactamente térmi-
nos no suaves en r = r; y r = ro, dichos términos dependeran necesariamente de
¢, y esto queda excluido por la descomposicién del potencial efectivo (4.1.2) en una
barrera centrifuga y un potencial central puro, que nunca debe depender de /.

El caso de la integral (4.2.7) es diferente. La condicién de isocronia no impone nin-
guna restriccién a la funcién 7' = T'(E), es, en principio, una funcién completamente
arbitraria. Sin embargo, podemos escribir el lado derecho de (4.2.7) en una forma
funcional conveniente, sin pérdida de generalidad, como

VU =T,
U A 435
T U, 0) (4.3.5)

donde h(U,Uy) es una funcién arbitraria indeterminada. Para simplificar notacion,
se denotard esta funcién simplemente como h(u). Es importante resaltar que (4.3.5)
es simplemente una definicién de la funcién h(U), por lo tanto, no hay perdida de
generalidad en esta eleccién, cuya principal motivacién proviene del hecho de que U
debe tener un minimo local en r = ry para poder garantizar la existencia de orbitas
acotadas. Una expansién de series de Taylor de U arroja U—Uy — [U"(ro/2](r12—70)?
como 119 — 19 de modo que (4.3.5) puede ser localmente verificada, con h(Uy =
u” (7" 0) / 8.

Asi, (4.3.5) captura las caracteristicas del comportamiento de U(r), que debe tener
un minimo local en ry. Es importante senalar que el argumento de las series de Taylor
es solo una motivacién para obtener (4.3.5), aqui no es necesario ningin supuesto
de regularidad adicional sobre U alrededor de su minimo en 7. También hay que
notar que el lado izquierdo de (4.3.5) es suave para U > U, como consecuencia de la
condicion de isocronia, se tiene que A(U) también es una funcién suave para U > U,.
La conveniencia de la eleccién (4.3.5) quedard claro resolviendo las ecuaciones (4.3.4)
y (4.3.5) para las dos ramas 71 5(U), lo que lleva a

VT =Ty = rah(U) — —— = —[mh(U) — =] (4.3.6)

ﬁﬁé B
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de donde se tiene .

Ber
Como se puede observar la eleccién de (4.1.21) permite obtener expresiones simétri-
cas en (4.3.6) para ambas ramas r12(U) y, consecuentemente, una tnica expresién
(4.3.7) vélida para toda r.

La condicién de isocronia es ahora equivalente a la existencia de soluciones de (4.3.7)
para el potencial central efectivo U y, esto es suficiente para limitar la funcion des-
conocida h(U). La clave estd en que el potencial efectivo U(r) no es una funcién
arbitraria de r y ¢ pero este debe tener la forma de (4.1.2), con un V(r) que no
dependa dé ¢. Entonces la ecuacién (4.3.7) se lee

U—Uy=[rh(U) — —]? (4.3.7)

2h(U
r*h*(U) — é):vm+0@r%4h (4.3.8)
¢
con C({) = (% — ﬁ%?) Hay que observar Uy también puede depender de ¢. La ecuacion

(4.3.8) fija los términos dependientes de ¢ y esto resulta y esto resulta ser una fuerte
restriccién sobre las posibles funciones h(U). Por ejemplo, se puede observar que
(4.3.8) tendrd soluciones de la forma (4.1.2) para polinomio h(U) solo para el caso
lineal.

Recordando que el potencial efectivo para un V(r) atractivo es dominado por una
barrera centrifuga para r — 0. Examinando este limite en (4.3.8), para el término
r?h? del lado izquierdo, se tiene que una funcién polinémica h(U) de grado n, por
ejemplo, dard origen a un término proporcional a ¢4/ T4n72, que estara desequilibrado
con respecto del lado derecho, al menos que n = 1. Se volverd al caso general h(U).
Asumiendo una expresién lineal como h = aU + v y multiplicando ambos lados de
(4.3.7) por r? se tiene

al? 1

52
[ar?V +yr® + - - — 2=V - 7+ Uy =0 (4.3.9)
f

donde (4.1.2) fue empleada para esta expresién. Se puede observar que se tuvo la
pardbola de Hénon que estd en (4.1.5). sin méas supuesto que continuidad diferenciable
en V(r) y la condicién isocronfa. La expresién general H = alU + ~ se reduce a dos
casos cualitativamente distintos: &« = 0 0 v = 0. Si ambos coeficientes no desaparecen,
se puede reescribir h = a(U 4 v/«), y entonces 7/a puede ser ignorado, sin perdida
de generalidad, otro caso, podria significar agregar una constante al potencial V.

El caso més simple que se presenta es si la constante h(U) = /k/2, lo que arroja
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el potencial armonico isotrépico Vi, (r) en (4.1.6), junto con la condicién de érbita
cerrada A = 1/2, y, por tanto, es solucién del Teorema de Bertrand. Nétese que, en
este caso, de (4.3.7), se tiene Uy = (vk, como se esperaba para el potencial arménico.
El segundo caso, h(U) = aU, es un poco mas complicado. Se tiene de (4.3.9) en este
caso

1 14 U c
2172 _ (L _ 2 V(221 y—p 4.3.10
r (= +\/§OM) +(3+ ) ( )
donde se tiene
21 2 12 1

g1 e _ - 4.3.11
2T an dame) =€ (43.11)

El primer grupo de soluciones para potenciales isécronos proviene de ¢ = 0, después
de introducir los parametros

1 14 Uy
S =k — 0
a2 + \/5)\ o

donde £ > 0 y b > 0, resultando en los siguientes potenciales atractivos

= +k* (4.3.12)

Velr)= —
= e

que corresponden a los potenciales Hénon Vi (r)yVi,(r) respectivamente, se puede
ver (4.1.8) y (4.1.9). Los pardmetros a y A que conducen a las soluciones

1 1
o = J—
T V14 2bk/02 £ 1 + 4bk /(2

(4.3.13)

(4.3.14)

A:l(u !

2 /1 + 4bk/ 2

El segundo tipo de solucién surge de ajustar los parametros

1 l
— -+ =
a? V2a\

) (4.3.15)

0 (4.3.16)

c=bk —= =k
donde £ > 0y b > 0, resultando en el potencial atractivo

VTR

r2

Vir) = —k (4.3.17)
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que es el potencial isécrono restante V;,(r). Los pardmetros a y A para este caso son

1 1
a=—- (4.3.18)

EV1+ /T @k /)2
f\/1+\/1+ 20k /2)2 43.19)

1+ (20k/2)?

Obsérvese que el potencial Newtoniano es un caso particular del potencial Hénon en
(4.3.13) y el potencial "hueco”(4.3.17), en ambos casos con b = 0, con la condicién
de orbita cerrada A = 1, como también se esperaba del teorema de Bertrand. Notese,
que el potencial Hénon (4.1.8) y el potencial acotado (4.1.9) pueden ser escritos como

kb k

VHe(T) — ﬁ o ﬁ bQ + 7-2 (4320)
kb k
Violr) = oy — SVF 72 (4.3.21)

de donde se puede observar que ambos potenciales V() surgen para b < 0 en (4.1.28)
corresponde a algin (e, A)-gauge redefiniciones de potenciales isécronos estandar,
completando todos soluciones que podemos obtener de (4.3.9).

4.4. Los potenciales is6cronos son Keplerianos

Obsérvese que las ecuaciones (4.2.3) y (4.3.5) implican que

NG 1 d VU — Uy
v VE—U AU h(U)

Para el caso del potencial armoénico isotropico, de la seccidon anterior se sabe que
h(U) = \/k/2 y, por tanto, de (4.4.1) se tiene

T(E) = dU (4.4.1)

T(E) = (4.4.2)

El siguiente grupo de potenciales isdcronos se vuelve mas interesante. Usando h(U) =
aU y |Uy] = a®k2,
También se puede obtener la tercera ley de Kepler

T° = —a (4.4.3)
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Para obtener la tercera ley de Kepler, se debe encontrar una longitud orbital carac-
teristica a que es inversamente proporcional a la energia F. El punto de inicio es
la ecuacién peripasis y apoapsis, V(r) + £2/2r? = E. Para los potenciales isécronos
(4.3.13), se define £, = /b? + 12 que a su vez satisface la siguiente expresién

2

¢
|BIEL — ks + (kb + o — [Eb?) =0 (4.4.4)

y por tanto

_ \/b2 + T%naz + \/b2 + T?nin _ k
B 2 - 2|E|
De forma similar, se para el potencial isécrono (4.3.17) ahora se define £ = /12 — b?
que satisface

(4.4.5)

a4

62
|E|&® — kE+ (5 - |Eb*) =0 (4.4.6)
y por tanto
2o — b2 42— D2 k
— max min — 44
¢ 2 2\E] (447)

Para los casos con b = 0, a corresponde al eje semi mayor del problema de Kepler.
El hecho de los potenciales is6cronos (4.3.13) y (4.3.17) tengan el mismo periodo
Kepleriano (4.4.3) no es coincidencia. Resolviendo la ecuacién de movimiento bajo
energia constante (4.1.1)

1 1
t=— dr 4.4.8
ﬂ/\/E—V(r)—EQ/ZTQ ( )
y para que todos estos potenciales tengan una forma Kepleriana
1 1
t=— dr 4.4.9
V2 / VE A+ k[E =228 49

y realizando un cambio de variables &4 = +/b? £ r2 para los potenciales is6cronos
(4.3.13), con parametros orbitales
2o
E,=+E, 5 =5+ kb + E.b* (4.4.10)
y ahora efectuando un cambiando de variable £ = v/r? — b2 para el potencial (4.3.17),
con parametros orbitales
G

E,=FE, Z*=_—-FE. (4.4.11)
2 2
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Configurando los pardmetros

% [ 2E.02
p=+, e= 1—1—7 . (4.4.12)

Ahora se tiene un problema de Kepler que conduce a las siguientes soluciones pa-

ramétricas
3

£E=a(l —ecosv), t= %(@D—esind}) (4.4.13)
P 1P Y°

{=5+v%), = 5\/;&%?) (4.4.14)

¢ =alecoshy — 1), t= \/%(e sinh ) — @) (4.4.15)

para F, < 0, E, =0, y E, > 0, respectivamente, donde la condicion inicial £ toma
el valor mas pequeno en t = 0 para todos los casos.
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Isocronismo de las series Taylor
truncadas de los potenciales
efectivos de Kepler y Hénon

5.1. Los potenciales is6cronos de la astrofisica y
sus series de Taylor truncadas alrededor de
sus minimos

En este capitulo se analiza localmente (por expansiones de Taylor trunca-
das) el potencial de Kepler y los tres potenciales de Hénon que son formas
deformadas por un parametro b del potencial de Kepler. En la literatura
se sabe que estos potenciales radiales tienen isocronismo definido como
independencia de los periodos de los movimientos periédicos del momento
angular. En este capitulo se muestra como las series de Taylor truncadas
[19] de estos potenciales calculadas alrededor de sus minimos convergen
hacia la propiedad de isocronismo.

5.1.1. Introduccion

Los Hamiltonianos para estudiar del punto de vista del isocronismo pueden es-
cribirse de forma compacta como:
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-2 7',2 l2

H;(r,7;70,0,1) = 2T_m +Uj(r;a,b,1) = 3 + — Sy + V;(r;ro,b) (5.1)

donde U;(r;79,b,1) es el potencial efectivo con V;(r;ro,b) la expansién en series
de Taylor a orden j alrededor del minimo ry de los potenciales sin truncamiento Vs,
definidos como potencial gravitacional (de Kepler) para b = 0 y los potenciales de
Hénon para b # 0 que son potenciales gravitacionales de Kepler deformados a través
del parametro b. En forma explicita de sumatoria de Taylor truncada, los potenciales
efectivos se escriben como:

+ Z ) (r—ro)" (5.2)

n=0

b,1)
U; (7570, 2mr2

donde V ‘ es la derivada de orden n de V., calculada en el punto » = ry. Por lo
tanto los Hamiltonianos a estudiar seran:

, P2 IV (r,b)] .
Hj (T7 ra, b, l) % + 2m7“2 + Z n! : (T - TO) . (53)

n=0

Esta forma reduce el problema original a un Hamiltoniano H; = p* + 57 T

P;(r —ro), donde P;(r — ) es un polinomio de grado j en potencias de (r — 7).
Para estudiar Hamiltonianos en el contexto de sistemas dindmicos es necesario

construir el sistema Hamiltoniano asociado, que consiste en escribir las ecuaciones

cldsicas de Hamilton:

;= 9H;
p= -

Para este sistema dinamico podemos deducir los puntos de equilibrio, tomando
7 =0, p=0 en los cuales el sistema permanece en equilibrio infinitamente. Ademéds
si las ecuaciones p = 7~ = 0 tienen solo raices imaginarias entonces el sistema Hamil-
toniano no tiene un centro en el espacio de fase.

Para aap = 0 se obtendra siempre que p = 0, dada la forma del Hamiltoniano, sin

embargo para el caso —86% = 0 se obtiene una funciéon que depende del parametro
del potencial de Hénon (b) y del punto alrededor del cudl se realiza la expansién en
serie (79) por tanto si se buscan érbitas cerradas se debe fijar uno de los pardmetros
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y localizar la regién en la cudl se obtienen raices reales positivas, esto ltimo porque
el Hamiltoniano es radial.

En este capitulo se tomaran algunos casos del conjunto (rg,b) con érbitas pe-
riddicas y se indican también las coordenadas del centro, esta informacion se obtuvo
de forma numérica y coincide con los graficos mostrados.

Ademas, se calculan los periodos de los movimientos periédicos para todos estos
casos a través de la férmula clasica del periodo de oscilacion de una particula de
masa m en un pozo unidimensional U(r) entre los dos puntos de retorno r; y 7o
(donde U(r) = E) que esta dada por la integral, ver [7]:

"2 dr
T = \/2m/ _—. (5.5)
r \ E — U(’I")
5.1.2. Potencial de Kepler: Vi (r) = —é
En el caso b = 0 se tiene el potencial de Kepler V(1) = —é, con k la constante

gravitacional. Al aplicar una expansion en serie de Taylor a primer orden se obtiene
un potencial lineal en 7r:

Vi(r;7,0) = k(r—;”’) k. (5.6)

El Hamiltoniano es:
72 & k(r—mro) Kk

H & 0.]) = — - — 5.7
1(r,r'570,0,1) o + 52 + 2 o (5.7)

y el sistema dinamico Hamiltoniano se escribe:

OH, —_ P
0, m

or mr3

Para encontrar el punto critico (el centro) del sistema se establece que k = 1,1 =
1,m = 1/2 para después efectuar la expansion Taylor en la vecindad del minimo del
potencial efectivo en ry = 2 lo que lleva a:

OH; _
Op -
_od,  _
or -
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donde la iltima ecuacién tiene una sola raiz para —857{1 =0enrgs =19 =2. La

representacion grafica para este caso y el caso no truncado se puede observar en las
figuras 5.1 y 5.2

En orden 2, se tiene:

Vo(r,0) = - 4 (5.10)

con el Hamiltoniano

72 2 k(r —rg)? N k(r—ro) k

Hy(r,r") = — - - — 5.11
2(r 1) 2m + 2mr? re re To ( )
y el sistema Hamiltoniano:
0H, b
—_— == 5.12
op m ( )
8H2 12 2]6(7” — 7’0) k
— = - — 5.13
or mr3 + re re ( )
0H, b
—_— = — 5.14
o m (5.14)
0H, 2 r—2 1
—— = - = 5.15
or 73 + 4 4 ( )

En este caso, hay dos raices reales de 0Hs/Or = 0 en rog = 19 = 2y Ty =
2,467, pero solamente la primera corresponde al minimo del potencial mientras que
la otra corresponde al valor maximo de la energia para obtener puntos de retorno.
La existencia de estos puntos de equilibrio aseguran orbitas cerradas en el plano de
fase, de manera similar al caso de orden 1 como se puede notar en la figura 5.3.
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Figura 5.1: Potenciales efectivos de Kepler sin truncamiento (color azul) y truncado
a orden 1 (color rojo) para roy =19 = 2,0l =k = 1,m = 1/2 y los valores indicados
de energia E.

r E= E= J
0.4 ] 0.4) 1
‘ — 024 — 024 |
02 | — 2020 02 — 020/
i — 016 — 0.16 |
= 0.0f° 4 = 0.0F 1
| — _0.12 — 012 1
—02k | — 0081 —02f — _0.08 |
[ ~0.04 ~0.04 |
—0.4/ -0.4
o 5 10 15 20 25 30 10 15 20 25 30 35 40
T T
(a) (b)

Figura 5.2: (a) Plano de fase para el potencial efectivo de Kepler sin truncamiento
mostrando periodicidad para las energias indicadas. (b) Plano de fase para el po-
tencial efectivo de Kepler truncado a orden 1 mostrando la periodicidad para las F
escogidas.
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-0.20 0.10
E=
-0.21 — 0249 |
0.05 1
E _om L~ 000 0247
= ] ' ~0.246 |
~0.24 ]
1 005}

-0.25 — Up(r) ]

— Uity |
_026 ~0.10+ ‘ ‘ o
1.0 35 4.0 2.0 2.5 3.0 35

(a) (b)

Figura 5.3: (a) Potenciales efectivos de Kepler sin truncamiento (color azul) y trun-
cado a orden 2 (color rojo) para rog = 19 = 2,1 = k = 1,m = 1/2 y los valores
indicados de energia E. (b) Plano de fase mostrando movimiento periddico para las
E escogidas.

En la siguiente tabla se presentan los resultados del célculo a través de la ecuacion
(5.5) de los periodos de las trayectorias cerradas para las energias en el intervalo
[—0,246, —0,249] hasta el sexto orden de Taylor cuando el periodo converge hasta
milésimas al periodo del potencial de Kepler no truncado.

E [ TWVa(r)] | TVia(r)] | TVia(r)] | TVas(r)] | TVaa(r)] | TVes(r)] | T[Vis(r)]
-0.246 | 12.8741 | 7.2713 | no existe | 12.5117 | 12.9185 | 12.8645 | 12.8753
-0.247 | 12.7960 | 7.2672 | 16.0296 | 12.5344 | 12.8196 | 12.7911 | 12.7965
-0.248 | 12.7187 | 7.2632 | 14.2006 | 12.5516 | 12.7287 | 12.7168 | 12.7188
-0.249 | 12.6421 | 7.2592 | 13.2275 | 12.5625 | 12.6445 | 12.6417 | 12.6422

Ademas, se verifica que el periodo del potencial de Kepler no truncado es T'(E) =
W, es decir se respeta la tercera ley de Kepler que es una formulacién cuantitativa
del isocronismo. Esto se puede notar en la figura 5.4 donde se presentan las graficas de
T(|E|~3/?) para el potencial de Kepler no truncado y para los potenciales truncados
de 6rdenes mas altos de la tabla anterior. En el caso de Kepler no truncado se tiene
una recta de pendiente 7/2 mientras que en el caso de los Kepler truncados hay
pequenos desvios de la forma lineal lo que implica no isocronismo. También se puede
apreciar de manera visual la convergencia al subir el orden de truncamiento.
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ooooo

T(E)

812
|E|-372

Figura 5.4: Gréficas de T(|E|~*/?) usando los datos de la primera y tltimas tres
columnas de la tabla anterior.

5.1.3. Primer potencial de Hénon: Vi (r) = —ﬁ

Este primer caso de los potenciales de Hénon no presenta singularidad en el origen

donde su valor es V#1(0) = —k/2b. El Hamiltoniano para este caso es:
) 7‘,2 l2
Hj(?’, 7“) = % + —mea + Vj(ﬁ b), (516>

donde ahora V;(r,b) es la expansién Taylor a orden j de V#!(r). A orden uno se
tiene:

rok(r — ro) k
nen= VAT (VTR ) G 10
El Hamiltoniano a orden uno es
72 12 rok(r —ro k

T Vg4 b <(\/r3 +)b2 + b)2 T Vmrees O

Para este caso el sistema Hamiltoniano es:
aa_f;l _ % (5.19)
o _ 2 T (5.20)

- 3 3 2
or mr r \/T(Q] yr <\/7’8 yr —I—b)
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El minimo del potencial efectivo usando los mismos parametros k =1,l = 1,m =
1/2 se encuentra a ryg = 2,193 que se usaron en el calculo de los coeficientes de Taylor.

aHl . £
dp m
0H, 2
— L 2 0,18061
5 3 0,189617
A orden dos
k(r —
Vol ) = A0

E(-PVRBH 0+ 28I P 1) (r = ro)?
2 (r2 + 2)°? (\/rg 0%+ b>3

Con Hamiltoniano:

, 72 12
H = — b
2(’/", r ) om 2m7“2 + VZ(h )
y sistema Hamiltoniano:
8H2 . B
dp m
OH. 12 T
2= — - ° >+

Or  mr? <\/7’8 +b2+b>
(- VBFT + 2T 1) (r = 7o)
(r2 + b2)** (\/m + b>3

o, conrg=2,193y b=0,1

9Hy _p
odp m
OH 2
22 + 0,164873(7“ — 2,193) —0,189617 .
or r3

k
ViR P (\/r3+b2+b>2 VG b+ b

(5.21)

(5.22)

(5.23)

(5.24)

(5.25)

(5.26)

(5.27)

(5.28)
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También en este caso hay dos raices reales, ro = 2,193 y r; = 2,776, pero sola-
mente la primera corresponde al minimo del potencial efectivo. Las graficas corres-
pondientes para el caso no truncado y truncado a primer érden se pueden observar
en las figuras 5.5 y 5.6 y para el caso truncado a segundo orden se pueden observar
en la figura 5.7, respectivamente.

.00+
-0.05+
010
=)
=)
-0.15+
-0.20+ — U1 |
— Ui
0 2 4 6 8 10

Figura 5.5: Potenciales efectivos de primer caso de Hénon sin truncamiento (color
azul) y truncado a orden 1 (color rojo) empleando ro = 2,193, =0,1,l =k =1,m =

1/2 y los valores indicados de energia E.

0.4] - 0.4 -
| — 020 — 020 |
02k — -0.18 - 0.2F — -0.18 1
— 016 — 0.16 |
~ 00 « 00

— 2014 — 0.14 |
~02] — _0.12 ~02 — _0.12 |
~0.10 ~0.10 |
~04 ~04 |

0o 2 4 6 8 10 12 10 15 20 25 30 35 40

r r
(a) (b)

Figura 5.6: (a) Plano de fase para el potencial efectivo del primer caso de Hénon sin
truncamiento mostrando periodicidad para las energias indicadas. (b) Plano de fase
para el potencial efectivo del primer caso de Hénon truncado a orden 1 mostrando
la periodicidad para las E escogidas.
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Figura 5.7: (a) Potenciales efectivos de primer caso de Hénon sin truncamiento (color
azul) y truncado a orden 2 (color rojo) empleando 1o = 2,193,b = 0,1,1 = k =
1,m = 1/2 y los valores indicados de energia E. (b) Plano de fase mostrando dérbitas
periédicas para las E escogidas.

La tabla de los periodos para las trayectorias cerradas en el intervalo energético
[—0,223, —0,226] hasta el sexto orden de Taylor con convergencia alcanzada a milési-
mas al periodo del primer potencial de Hénon no truncado con b = 0,1 es presenta a
continuacion. Para el caso no truncado, la tercera ley de Kepler se respeta indicando
el isocronismo.

E [ TVi(r)] | TVia(r)] | TVia(n)] | TVis(r)] | T[Via(r)] | T[Vis(r)] | T[Vie(r)]
-0.223 | 14.9163 8.7511 no existe 14.4543 14.9863 14.9011 14.9186
-0.224 | 14.8166 8.7452 19.6017 14.4676 14.8576 14.8081 14.8176
-0.225 | 14.7179 8.7394 17.0237 14.4742 14.7388 14.7138 14.7183
-0.226 | 14.6203 8.7336 15.7645 14.4736 14.6283 14.6189 14.6204

En la figura 5.8, a continuacién se presentan las graficas de T(|E|~/?) para el

primer potencial de Hénon no truncado y para los truncados de 6rdenes mas altos
de la tabla anterior. De manera similar al caso de Kepler, el potencial de Hénon
respeta la forma lineal del isocronismo y los casos de los Hénon truncados presentan
desvios de la forma lineal pero muestran convergencia al escalamiento isécrono con
el aumento del orden de truncamiento.
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Figura 5.8: Gréficas de T(|E|~%/?) usando los datos de la primera y tltimas tres
columnas de la tabla anterior.

5.1.4. Segundo potencial de Hénon: Vs (r) = —kv/r2 — b2 /r?

Este potencial es real solamente desde r = b. A orden uno, su expresion es:

Vilrb k(=207 (r—ro) k1§ —b? % 99
1<7a7 )— 7“3\/m - r2 ( )
0 0 0

y el Hamiltoniano para este caso es

22 p(@—2)(r—a) kVa P
A iC J(r—a) _kva L (5.30)

2m  2mr? ad3v/a2 — b2 a?

H1<7“, T’) =

por lo tanto el sistema dinamico Hamiltoniano a orden uno es:

0H, b

- _ £ 31
o m (5.31)
H 2 2 2_22

4 ! l +__u (5.32)

o 3 3 3 /73 2
or mr r ré\/13 — b

Con k = 1,1 = 1,m = 1/2,b = 0,1, se encuentra que para el caso no truncado el
minimo del potencial efectivo se encuentra en rq = 2,0074. Entonces la expansion de
Taylor se realiza alrededor de este minimo. Usando estos valores numéricos para los
parametros, el sistema dindmico Hamiltoniano se escribe:

0H, b

e 5.33
op m ( )
0H, 2
—— = — —0,247236 5.34
or r3 ’ ( )
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que tiene la unica raiz real ro = 2,0074.

A orden dos:
Vo(r.b) = _k\/rg -0k (2rd —9r2v? + 6b%) (r — 7o)? N k(rd —20%) (r —ro)
2 g 2rg (r2 — 62)3/2 ro/ré — b2
(5.35)
el Hamiltoniano es:
) 7;2 12 ,
Hy(r,7) = 5— + = + V5,(1,b) (5.36)

2m  2mr?

y el sistema Hamiltoniano se escribe

OH, p
—_— == 5.37
o m (5.37)
_0Hy _ l23 N (2rg — 9r2b* + 6b43 gr —ro)  rg—2b° (5.38)
or 7 (g = )" by/ig =

La expansion Taylor se calcula en la vecindad del minimo del potencial de Hénon
no truncado que se encuentra en ro = 2,0074 y se obtiene

8H2 Y%

) 5.39

i (5.39)
OHy, 2

— 2 = = 40,245402(r — 2,0074) — 0,247236 . (5.40)
T r

La ecuacién —0H,/0r = 0 tiene dos raices reales en 1o = 2,0074 y 79y = 2,4815,
primera corresponde al minimo del potencial y la segunda a la energia maxima para
tener puntos de retorno, esto asegura la existencia de trayectorias cerradas en el plano
de fase. Para este caso, los potenciales efectivos truncados a orden uno y dos junto
con el potencial no truncado se muestran en las figuras 5.9 y 5.11(a) respectivamente
y los planos de fase para el no truncado y truncado a orden 1 en la figura 5.10(a) y
(b) respectivamente y para el truncado a segundo orden en la figura 5.11(b).
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Figura 5.9: Potenciales efectivos del segundo caso de Hénon sin truncamiento (color
azul) y truncado a orden 1 (color rojo) empleando ry = 2,0074,b = 0,1,l = k =
1,m = 1/2 y los valores indicados de energia F.
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Figura 5.10: ((a) Plano de fase para el potencial efectivo del segundo caso de Hénon
sin truncamiento mostrando periodicidad para las energias indicadas. (b) Plano de
fase para el potencial efectivo del segundo caso de Hénon truncado a orden 1 mos-
trando la periodicidad para las F seleccionadas.
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Figura 5.11: (a) Segundo potencial efectivo de Hénon truncado a segundo orden de
Taylor (en color rojo) y el mismo no truncado (en color azul) para ro = 2,0074,b =
0,1, =k =1,m=1/2y (b) plano de fase del caso truncado con algunas trayectorias

cerradas.

La tabla de los periodos para las trayectorias cerradas en el intervalo energético
[—0,245, —0,248] hasta el sexto orden de Taylor mostrada a continuacién presenta
las mismas caracteristicas de los casos anteriores.

E | TVa(r)] | T[Vau(r)] | T[Vao(r)] | T[Vaa(r)] | T[Vau(r)] | T[Vas(r)] | T[Vae(r)]
-0.245 | 12.9530 7.3270 no existe 12.5568 13.0062 12.9414 12.9545
-0.246 | 12.8741 7.3229 17.2610 12.5797 12.9041 12.8679 12.8748
-0.247 | 12.7960 7.3189 14.7197 12.5972 12.8101 12.7932 12.7962
-0.248 | 12.7187 7.3148 13.5762 12.6088 12.7232 12.7179 12.7187

Las graficas de T(|E|~3/2) para el segundo potencial de Hénon no truncado y sus
formas de series de Taylor truncadas a 6rdenes de 4 a 6 calculadas en el punto de
minimo en la tabla anterior se presentan en la figura 5.12 donde se pueden observar
las mismas propriedades con respecto al escalamiento is6crono como en los casos

anteriores.
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i
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Figura 5.12: Gréaficas de T(|E|~*/?) usando los datos de la primera y tltimas tres

columnas de la tabla anterior.

5.1.5. Tercer potencial de Hénon: Vy3(r) = ﬁ

El tercer potencial de Hénon es real solamente para r < b, con VH3(0) = k/2b y

es repulsivo.
A orden uno de la expansion de Taylor este potencial tiene la forma:

rok(r —rg)

k
_l’_
V02— (\/bQ—r§+b>2 VO =g +b

Vl (T, b) =

con Hamiltoniano
72 12 rok(r — o) k

= —s + +
2m 2mr? \/b2 —7"8 (\/b2 _7‘8 +b>2 \/W‘f’b

Hl(’f‘,’f')

y sistema Hamiltoniano:

0H,

Op
_3H1 2 o 7“0]{7

2
ot =R (VR =+ )

- 3=

(5.41)

(5.42)

(5.43)

(5.44)

Con los mismos valores numéricos de los parametros, k = 1,1 = 0,1, m = 1/2,b = 0,1,
se encuentra que el minimo del potencial efectivo no truncado de este caso esta en

ro = 0,075 adentro del segmento radial en el cual el potencial es real.
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Pasando al sistema Hamiltoniano con los mismos parametros:

8[—[1 P
—_— = 5.45
o " m (5.45)
0H, 0,02
——— = —— — 41,0775 5.46
or r3 (5.46)
se encuentra que la tnica raiz real de —% = 0 estd en ro; = 0,078.
A orden dos en la expansién Taylor se tiene el potencial:
rok(r —ro) k
Vo(r,b) = 5 + + (5.47)
\/bQ—r(Q,(\/b?—rSer) VO =g+
20 = 13)"* (VI 13 + b)
y el Hamiltoniano aproximado a este orden:
7;2 l2
H ) = A4
5 (7, 1) oy + 72 + Va(r, b) (5.48)
que resulta en el sistema Hamiltoniano:
0H, p
= i 5.49
Op m (5.49)
0OH 12 k
i il - (5.50)

or mr3 JE =12 <\/b2 —r2 4 b>2
k(P =+ 23/ =13+ 6 (r = o)
b2 — r2)3/? («/62 —r§+b)

Para obtener el punto de equilibrio de este sistema dindmico se usa ry para el
minimo del potencial efectivo no truncado de este caso de Hénon, es decir ro = 0,075
y los mismos valores k = 1,0l = 1,m = 1/2,b = 0,1 que nos lleva a la siguiente forma

del sistema dindmico aproximado:

0H, p
—_— == 5.51
o m (5.51)
0H, 0,02

—— = — — 1812 — 41 . .02
o 3 812,58(r — 0,075) — 41,0775 (5.52)
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La tnica raiz real de 0H,/0r = 0 estd en rgs = 0,0767.

Graéficas similares a los casos anteriores se presentan en las figuras 5.13, 5.14 y

5.15.

o
510
8 |
— Us1(0)
or — U |
0.00 0.05 0.10 0.15 0.20 0.25

T

Figura 5.13: Potenciales efectivos del tercer caso de Hénon sin truncamiento (color
azul) y truncado a orden 1 (color rojo) empleando ro; = 0,078, = b = 0,1,k =
1,m = 1/2 y los valores indicados de energia E.
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Figura 5.14: (a) Plano de fase para el potencial efectivo del tercer caso de Hénon sin
truncamiento mostrando periodicidad para las energias indicadas. (b) Plano de fase
para el potencial efectivo del tercer caso de Hénon truncado a orden 1 mostrando la
periodicidad para las F escogidas.
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Figura 5.15: (a) Potencial efectivo del tercer caso de Hénon truncado a segundo orden
de Taylor y (b) su plano de fase para movimientos periédicos para ros = 0,0767,1 =
b=01,=k=1m=1/2.

Finalmente, la tabla de los periodos para las trayectorias cerradas en el interva-
lo energético [8,5,9,5] hasta el sexto orden de Taylor se muestra a continuacién y
presenta caracteristicas semejantes a los casos precedentes.

E | TVs(r)] | TVaa(r)] | T[Vsa(r)] | T[Vss(r)] | TVsa(r)] | T[Vss(r)] | T[Vse(r)]
85 | 0.0633 | 0.1190 | 0.0736 | 0.0698 | 0.0655 | 0.0653 | 0.0641
0.0 | 0.0581 | 0.1235 | 0.0729 | 0.0678 | 0.0621 | 0.0622 | 0.0599
9.5 | 0.0536 | 0.1279 | 0.0723 | 0.0659 | 0.0594 | 0.0598 | 0.0564
10.0 | 0.0496 | 0.1323 | 0.0717 | 0.0642 | 0.0572 | 0.0577 | 0.0536

El escalamiento isécrono T'(| E|~%/2) para el tercer potencial de Hénon no truncado
y sus formas de series de Taylor truncadas a 6rdenes de 4 a 6 calculadas en el punto de
minimo tomadas de la tabla anterior se presentan en la figura 5.16 donde se pueden
observar las mismas propriedades como en los casos anteriores.
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Figura 5.16: Graficas de T(|E|~*/?) usando los datos de la primera y tltimas tres
columnas de la tabla anterior.
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Conclusiones

En esta tesis de maestria se estudio la propiedad de isocronia del movimiento periédi-
co en potenciales radiales de tipo Kepler (~ 1/r) y sus extensiones paramétricas de
tipo Hénon que en el limite hacia cero del parametro tienden al potencial de Kepler.
El isocronismo en este caso se define como dependencia del periodo del movimiento
periédico solamente de la constante de movimiento Hamiltoniana (la energia total del
sistema conservativo) e independencia de cualquier otra constante de movimiento,
en particular del momento angular.

En el caso de Kepler, esta forma estandar de isocronismo se expresa por la de-
pendencia puramente geométrica del cuadrado del periodo formulada en la tercera
ley de Kepler que se puede expresar también en dependencia inicamente de energia.

Se demostrd que un formalismo en términos de algebras de Lie desarrollado en la
literatura para el problema de Kepler no proporciona resultados consistentes en el
caso de los potenciales paramétricos de Hénon. Por otro lado, aplicando el formalismo
de sistemas dindmicos Hamiltonianos con los potenciales aproximados alrededor de
sus minimos en series de Taylor truncadas se obtuvieron resultados consistentes con el
isocronismo dependiente solamente de la energia del sistema dindmico con precisién
a cuarto digito obtenida con el sexto orden de truncamiento de las series de Taylor.

Los resultados muestran que los potenciales generados con la expansién truncada
a orden impar solo admiten un conjunto limitado de energias para las cuales se
obtienen oOrbitas periddicas en contraste con los casos truncadas a érdenes pares
en los cuales se obtienen potenciales de tipo parabdlico con un conjunto infinito
de energias admisibles que no son explicitamente negativas como en el caso de los
potenciales de Kepler o Hénon.
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Apéndice 1 - Teorema de Bertrand

Introducciéon

En 1873, Joseph Louis Francois Bertrand (1822-1900) public6 un breve, pero im-
portante articulo [6] en el que demostré que solo hay dos campos centrales para los
cuales todas las orbitas delimitadas son cerradas, a saber, la ley del oscilador armoéni-
co isotropico y la ley de gravitacion universal de Newton, que Bertrand llama ”La
loi de la Nature” (la ley de la naturaleza). Debido a esta simetria adicional, no es de
extranar que las propiedades mas esenciales de estos dos campos fueran estudiadas
por el propio Newton, quien las analiza en la Proposicién X y en la Proposicién XI
del Libro I de sus Principia. Newton demuestra que ambos campos dan lugar a una
6rbita eliptica con la diferencia de que en el primer caso la fuerza se dirige hacia el
centro geométrico de la elipse y en el segundo caso la fuerza se dirige a uno de los
focos.

El articulo de Bertrand aparecié en las Comptes Rendus de la Académie des Scien-
ces de Paris donde se publicaron las memorias y comunicaciones de los miembros
y corresponsales de esa academia de ciencias francesa. La sesion académica en que
Bertrand presenté su ponencia tuvo lugar el lunes 20 de octubre de 1873. El resul-
tado de Bertrand, también conocido como teorema de Bertrand, sigue fascinando a
las viejas y nuevas generaciones de fisicos interesados en la mecanica clasica y, como
era de esperar, se siguen publicando articulos dedicados a ella.

La prueba de Bertrand es concisa y elegante y, contrariamente a lo que a uno podria
inducir a pensar gracias a una serie de demostraciones perturbativas que se pueden
encontrar en la literatura, los libros de texto y los articulos modernos sobre el tema,
es completamente no perturbativa. Hasta la fecha no hay una versién en espanol del
articulo de Bertrand. En este anexo, se provee una version basada en la traduccién
de la versién en inglés que estd accesible en el ArXiv desde 2007 [13].
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Teorema relativo al movimiento de un punto atraido
hacia un centro fijo; por el Sr. J. Bertrand.

Las érbitas planetarias son curvas cerradas; esta es la causa principal de la esta-
bilidad de nuestro sistema planetario, y esta importante circunstancia surge de la ley
de atraccién que, cualquiera que sea la circunstancias iniciales, hace que cada cuerpo
celeste que no sea expulsado de nuestro sistema siga la circunferencia de una elipse.
Hasta ahora no se ha observado que la ley de atraccién de Newton sea la tinica que
cumple esta condicion.

Entre las leyes de atraccion que suponen nula la accién a una distancia infinita, la de
la naturaleza es la tinica segin la cual un cuerpo mévil lanzado arbitrariamente con
una velocidad inferior a un cierto limite y arrastrado hacia un centro fijo, describe
necesariamente una curva sobre este centro. Todas las leyes de la atraccion permiten
orbitas cerradas, pero la ley de la naturaleza es el tinico que los impone.
La prueba del teorema se muestra a continuacion: sea ¢(r) la atraccién ejercida sobre
una distancia r sobre la particula que se encuentra a la distancia r y con respecto al
centro de atraccién que se toma como origen de las coordenadas. Denotando por r
y 6 las dos coordenadas polares del cuerpo mévil, y se tiene la siguiente férmula.
o) =B+ L)

r2ir  db?

y haciendo un cambio de variable: % = 2.

r’p = (2) (1)
d*z 1
ﬁ +z— p (Z) =0
Se multiplican ambos miembros por 2 dz e integrando
dz., 5 1
(7)) +% = zwz) —h=0 (2)
h siendo una constante.
De esto se deduce que
dz

do =

+
\/h + mw(z) — 22
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Si la curva representada por la ecuaciéon que une z con 6 es cerrada, el valor de z
tendrda méaximos y minimos para los cuales dz/df serd nulo y el vector radio corres-
pondiente, normal a la trayectoria, necesariamente habra ejes de simetria para la
misma. Ahora cuando una curva admite dos ejes de simetria, la condicion necesaria
y suficiente para que sea cerrado es que su angulo sea conmensurable con 7. Por lo
tanto, si a y B representan un minimo de z y el méaximo que le sigue respectivamente,
la condicion requerida se expresa mediante la ecuacion

mm =

(3)

/B dz
a \/h+ki2w(z) — 22

donde m denota un numero conmensurable. Esta ecuacion debe tener cualquier b y
k que puedan ser y consecuentemente, los limites a y S que dependan de ellos.
Se tiene

1
h+ﬁw(oz) —a?=0
1
h+ﬁw(6) - B*=0
consecuentemente
1 62 _ a2

y la ecuacion (3) se convierte

v — /ﬁ Vw(f) —w(a) dz
o V2w(B) — Bw(a) + (82 — a?)w(z) — [w(B) — w(a)]z?

(4)

La funcién w(z) debe ser tal que esta ecuacién sea vélida para todos los valores a y
. Mas ain, el nimero conmensurable m debe ser una constante, porque si variara
de una dérbita a otra, una variacién infinitamente pequena de las condiciones iniciales
produciria una variacién finita del nimero y la disposicion de los ejes de simetria de
la trayectoria.

Se asume que « y [ difieren infinitesimalmente: dado

B=a+u
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z estando incluida entre o y f. se fija
zZ=oa+7y

Y ~ sera, tal como u, infinitamente pequena. Despreciando lo infinitamente pequeno
de segundo orden se tiene

w(f) —w(@) = vuw'(a)

En la expresiéon bajo el signo radical en el denominador de la integral (4) los in-
finitamente pequenos de primer orden se reducen a cero, y lo mismo ocurre con
los de segundo; son esos de tercero que son necesarios mantener, y descuidando lo
infinitamente pequeno de cuarto orden uno tiene

a’w(B) — Brw(a) + (B — a*)w(z) — 2°[w(B) — w(a)] = [/'(@) — aw”(a))(u*y — ur?)
La ecuacion (4) se convierte

dy\/w' ()

e / V(@) — awr (@) y/uy — 72

es decir, realizar la integracion y suprimir factores comunes

o \/ (@)
w(a) — aw” (@)

(1 —m*)w'(a) + m*W"(a) =0

De esto se deduce que

A
w'(ar) = oql/m?—1
2—1/m?
w(a) = AO; —+ B

Ay B denotando constantes.
De las relaciones asumidas entre las funciones w, ¥ y ¢ se tiene que

A
P(z) = o1
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U(r) = Dy
2
Esta es la tinica ley posible de atraccién, denotando aqui m cualquier nimero con-
mensurable; pero de esto no se sigue que cumpla todas las condiciones de la propo-
sicion para cualquier m. De hecho, se debe tener para los valores de o y (3,

2 2 1 1 1
51/il2—2 T oal/m2-2 + (62 - a2)z1/m2_2 - ZQ(Bl/m2—2 - al/m2—2)

1 1
1 dz\/ﬁl/m272 T gl/m2—2
- / (6)
0

A continuacién se asume inicialmente que 1/m? — 2 es negativo, también se asume
que o = 0, f =1, la ecuacion se convierte

2_
/1 dz /1 212y
mm = - - 13
0 1 _ 2 o 1—2zl/m

21/m2-2
2

mm=1m T

y de la ecuacion (6) se obtiene

m=1

La correspondiente a la ley de atraccion es

Si se asume que 1/m? — 2 es positivo, la ecuacién (6) para a =1, 8 = 0,

/ bdz s

mm = —_— ==

o Vv 1-— 2’2 2

De esto se deduce que m = 1/2, y la correspondiente ley de atraccién es

o(r) = Ar

Por lo tanto, solo dos leyes cumplen las condiciones requeridas, la de la naturaleza,
por lo cual la 6rbita cerrada tiene solo un eje de simetria que pasa a través del centro
de accion, y la atraccion proporcional a la distancia. por lo cual hay dos.
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