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Glosario Estudio de Sistemas Dinámicos Isocronos

Glosario

Aproximación local: Descripción válida del sistema en un entorno cercano a un
punto de equilibrio.

Caos hamiltoniano: Comportamiento dinámico sensible a las condiciones iniciales
en sistemas conservativos.

Constante de movimiento: Función del espacio de fases que permanece invarian-
te a lo largo de la evolución temporal del sistema.

Coordenadas canónicas: Variables conjugadas (q, p) que describen el espacio de
fases de un sistema hamiltoniano.

Dinámica no integrable: Dinámica para la cual no existe un conjunto completo
de constantes de movimiento.

Dinámica orbital: Estudio del movimiento bajo fuerzas centrales y potenciales
gravitatorios.

Ecuaciones de Hamilton: Conjunto de ecuaciones diferenciales de primer orden
que gobiernan la evolución temporal de un sistema hamiltoniano.

Ecuaciones de movimiento: Ecuaciones diferenciales que describen la evolución
temporal del sistema.

Espacio de fases: Espacio matemático formado por las coordenadas y momentos
del sistema, donde se representa su evolución dinámica.

Estabilidad orbital: Propiedad que determina si una órbita permanece cercana a
una trayectoria de referencia.

Excentricidad: Parámetro geométrico que caracteriza la forma de una órbita.

Frecuencia fundamental: Frecuencia asociada al movimiento periódico del siste-
ma.

Fuerza central: Fuerza que depende únicamente de la distancia al centro de atrac-
ción y apunta radialmente hacia él.

Hamiltoniano: Función que describe la enerǵıa total de un sistema mecánico en
términos de coordenadas generalizadas y momentos conjugados.
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Glosario Estudio de Sistemas Dinámicos Isocronos

Hamiltoniano polinómico: Hamiltoniano expresado como un polinomio.

Integrabilidad: Propiedad de un sistema hamiltoniano que admite suficientes cons-
tantes de movimiento en involución para resolver su dinámica por cuadraturas.

Isocronismo: Propiedad dinámica por la cual todas las órbitas ligadas tienen el
mismo periodo.

Momento angular: Magnitud vectorial conservada en sistemas con simetŕıa rota-
cional, asociada al movimiento orbital.

Órbita circular: Caso particular de órbita eĺıptica con excentricidad nula.

Órbita eĺıptica: Órbita cerrada correspondiente a enerǵıa negativa.

Órbita hiperbólica: Órbita abierta correspondiente a enerǵıa positiva.

Órbita parabólica: Órbita de escape con enerǵıa total nula.

Órbitas keplerianas: Trayectorias cónicas resultantes del problema de Kepler.

Periodo orbital: Tiempo necesario para completar una órbita cerrada.

Potencial central: Potencial que depende únicamente de la coordenada radial.

Potencial efectivo: Potencial radial que incorpora el término centŕıfugo.

Potencial gravitatorio: Potencial asociado a la interacción gravitatoria responsa-
ble del movimiento orbital.

Potencial isocrono: Potencial para el cual el periodo orbital es independiente de
la enerǵıa.

Potencial kepleriano: Potencial gravitatorio newtoniano inversamente proporcio-
nal a la distancia radial.

Punto de equilibrio: Punto del espacio de fases donde el sistema permanece en
reposo.

Resonancia: Condición en la cual las frecuencias del sistema están relacionadas por
relaciones racionales.
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Glosario Estudio de Sistemas Dinámicos Isocronos

Serie de Taylor: Expansión polinómica de una función alrededor de un punto de
referencia.

Sistema hamiltoniano: Sistema dinámico descrito por un Hamiltoniano que repre-
senta la enerǵıa total del sistema y cuyas ecuaciones de movimiento se obtienen
mediante las ecuaciones de Hamilton.

Teorema de Bertrand: Teorema que establece que los únicos potenciales centrales
con órbitas ligadas cerradas son el kepleriano y el armónico isotrópico.

Teoŕıa de perturbaciones: Método anaĺıtico para estudiar desviaciones pequeñas
respecto a un sistema integrable.

Truncamiento de Taylor: Aproximación de una función mediante una serie de
Taylor de orden finito.

Vector de Runge–Lenz: Constante de movimiento adicional del problema de Ke-
pler.
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Resumen

En esta tesis se discute el fenómeno de isocronismo enfocado en mecánica celeste
con énfasis en el problema de Kepler y sus extensiones paramétricas conocidas en la
literatura como potenciales de Hénon.

Recientemente, el problema de Kepler ha sido analizada del punto de vista de
las álgebras de Lie (SGA, por sus siglas en inglés), sin embargo nuestros cálculos
muestran que la aplicación del método SGA a los casos paramétricos de Hénon
presenta inconsistencias.

Dada la problemática de la metodoloǵıa SGA para los casos de Hénon aplicamos
el formalismo de sistemas dinámicos Hamiltonianos con los potenciales efectivos (in-
cluso el de Kepler) aproximados alrededor de sus mı́nimos a través de sus series de
Taylor truncadas.

Nuestros resultados muestran que el isocronismo se manifiesta con una precisión
al cuarto d́ıgito alcanzada en el sexto orden de la expansión de Taylor de estos
potenciales.
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Abstract

This thesis discusses the phenomenon of isochronism in celestial mechanics, focusing
on Kepler’s problem and its parametric extensions known in the literature as Hénon
potentials.

Recently, Kepler’s problem has been analyzed from the perspective of Lie alge-
bras (SGAs); however, our calculations show that applying the SGA method to the
parametric cases of Hénon presents inconsistencies.

Given the problems with the SGA methodology for the Hénon cases, we applied
the formalism of Hamiltonian dynamical systems with the effective potentials (in-
cluding Kepler’s) approximated around their minima through their truncated Taylor
series.

Our results show that isochronism manifests itself with a precision to the fourth
digit, achieved in the sixth order of the Taylor expansion of these potentials.
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Caṕıtulo 1

Introducción

1.1. Antecedentes Historicos

El estudio sistemático del concepto de isocronismo, entendido [1] como igualdad
de los periodos de uno o más movimientos periodicos se inició en la primera parte del
siglo XVII con los trabajos de Johannes Kepler (1571-1630) y Galileo Galilei(1564-
1642) [10] y posteriormente con el descubrimiento del fenómeno de sincronización por
Christiaan Huygens (1629-1695) [18] y su invento tecnológico del reloj de péndulo
hace 368 años que fue el dispositivo dominante (en sus formas de reloj de pared, de
bolsillo y de pulsera) para la medición del tiempo de manera rutinaria por casi tres
siglos.

(a) (b)

Figura 1.1: (a) Galileo Galilei. (b) Johannes Kepler.

1



Caṕıtulo 1 Estudio de Sistemas Dinámicos Isocronos

En 1619, Johannes Kepler publicó su libro De Harmonises Mundi Libris V en la
cual incluyo su tercera ley del movimiento planetario. Esta ley es una de las más
conocidas leyes de la naturaleza que tuvo un impacto radical en el conocimiento de
la humanidad. Se refiere a los periodos de revolución de los planetas del sistema
solar, aseverando que el cuadrado de estos periodos es proporcional a las poten-
cias cubicas de los semiejes mayores de las trayectorias periódicas de los planetas,
con la misma constante de proporcionalidad. Por otro lado, esta misma ley fue el
primer ejemplo de isocronismo reportado, entendido como un tipo de movimiento
periódico para el cual el periodo depende de una sola constante de movimiento, en
este caso la enerǵıa, ya que la enerǵıa es inversamente proporcional al semieje mayor.

Los trabajos de Galileo en f́ısica [22] estuvieron dedicados a la aceleración y la os-
cilación de los cuerpos. Menos conocidos que sus investigaciones sobre la aceleración,
sus trabajos sobre las oscilaciones, especialmente sobre el isocronismo, no son menos
importantes a nivel matemático y metodológico. Sus primeros esfuerzos en establecer
una sólida base matemática se vieron plasmados enDialogo sopra i due massimi sistemi
(1632) y en Discorsi e dimostrazioni matematiche (1638). No solo se debe resaltar
su contribución a la conceptualización del problema de isocronismo sino también su
aporte a la resolución del problema de la oscilación de cuerpos pesados.
En la ciencia galileana del movimiento, el problema del isocronismo se refiere a la
situación f́ısica en la que se obtiene la igualdad de tiempos para los movimientos de
uno o varios cuerpos. Se dice que esta propiedad la notó por primera vez mientras
observaba una lámpara oscilante en la Catedral de Pisa, usando su pulso para medir
el tiempo. En términos más precisos, se trata de determinar las condiciones en las
que los periodos de descenso a lo largo de las cuerdas internas (considerados como
muchos planos inclinados) de un ćırculo vertical o durante las oscilaciones a lo largo
de arcos de ćırculo son constantes. El primer caso describe lo que podŕıa llamarse
isocronismo de cuerdas, mientras que el segundo se refiere al isocronismo del péndu-
lo. Galileo abordó la cuestión del isocronismo para cuerdas y para arcos de ćırculo.
Galileo no logro establecer sólida prueba matemática, aśı que buscó validar esto a
partir de la ley de cuerdas y respaldando con varios montajes experimentales que
supuestamente le proporcionaŕıan la confirmación requerida. Sin embargo, la falta de
pruebas matemáticas no le impidió considerarlo lo suficientemente sólido como para
apoyar una teoŕıa del péndulo en la que se invirtieron las propiedades del péndulo,
esto para concebir diversos dispositivos para medir el tiempo.

Christiaan Huygens fue el primer f́ısico en observar y analizar el fenómeno de la
sincronización que se puede interpretar como una transferencia de isocronismo de un

2



Caṕıtulo 1 Estudio de Sistemas Dinámicos Isocronos

sistema a otro. Más precisamente, el f́ısico y astrónomo holandés observó durante
el primero de marzo de 1665 que dos relojes de péndulo que estaban situados uno
en frente de otro, comenzaron a moverse en fase. Anteriormente, Huygens diseñó
su reloj de péndulo en 1657 y fue construido por Salomon Coster. Posteriormente,
Huygens patentó su invento en 1657-1658 aunque no gozó mucho de su invento que
fue rápidamente copiado por otros constructores de relojes de péndulo. De cualquier
forma, Huygens no fue el primero en concebir un reloj de péndulo [23]. Como se
reveló en su Horologium Oscillatorium (1673) [18], su invención fue basada a su vez
en una invención de Galileo Galilei sobre el principio de isocronismo [1].

(a) (b)

Figura 1.2: (a) Christiaan Huygens. (b) El diseño de reloj de péndulo, invención de
Huygens, que se encuentra en su libro Horologium Oscillatorium de 1673.

En astrof́ısica, el tema del isocronismo recibió un nuevo impulso solamente mu-
chos años después, en 1959, en los trabajos de Michel Hénon (1931-2013) sobre los
cúmulos globulares publicados en francés. Hénon descubrió tres deformaciones pa-
ramétricas del potencial de Kepler que se reducen al mismo en el ĺımite en el cual
el parámetro se anula y que tienen las mismas propiedades isócronas como el poten-
cial de Kepler. Cabe decir que a pesar de la importancia de este descubrimiento su
impacto no fue tan notable y en la actualidad la literatura al respecto es todav́ıa
reducida.

En esta tesis se considera este isocronismo descubierto en problemas de mecáni-
ca celeste para los casos de sistemas planetarios y cúmulos globulares modelados a

3



Caṕıtulo 1 Estudio de Sistemas Dinámicos Isocronos

través de los potenciales de Kepler-Newton y Hénon, respectivamente. El contenido
de los primeros tres caṕıtulos es monográfico con material preliminario en el tema del
isocronismo mencionado. En el caṕıtulo 4 se extiende el formalismo ya desarrollado
en la literatura en el caso del problema de Kepler a los potenciales paramétricos de
Hénon. pero sin obtener resultados concluyentes. En el quinto caṕıtulo usamos el
formalismo de sistemas dinámicos Hamiltonianos para los mismos potenciales desa-
rrollados en series de Taylor truncadas alrededor de los mı́nimos de los potenciales
efectivos y encontramos que el sexto orden de truncamiento cumple con el isocronis-
mo con precisión hasta el cuarto d́ıgito decimal.

También, en un anexo, se incluyo una versión en español del art́ıculo de Bertrand
de 1873 sobre el teorema de Bertrand, un concepto básico en dinámica isócrona.

1.2. Estado del arte

Los sistemas hamiltonianos constituyen un marco fundamental para la descrip-
ción de una amplia clase de fenómenos en la mecánica clásica, particularmente en la
mecánica celeste y la teoŕıa de sistemas dinámicos. Su formulación permite describir
la evolución temporal de un sistema a partir de una función escalar, el Hamiltoniano,
que generalmente representa la enerǵıa total del sistema.

Dentro de este contexto, el problema de Kepler es uno de los ejemplos más repre-
sentativos de sistemas hamiltonianos integrables. Su formulación en términos de un
potencial gravitatorio newtoniano ha permitido no solo describir el movimiento de
cuerpos bajo atracción de una fuerza central, sino también establecer las bases para
el estudio de sistemas más complejos. El carácter integrable del problema de Kepler
lo convierte en un punto de referencia fundamental para contrastar con sistemas que
presentan comportamientos no integrables.

Las variaciones del potencial gravitatorio clásico de Kepler, aśı como la introduc-
ción de términos adicionales en el Hamiltoniano, conducen a sistemas cuyo com-
portamiento dinámico puede volverse significativamente más complejo. En este tipo
de sistemas, la aparición de regiones caóticas en el espacio de fases ha motivado el
estudio de potenciales que permitan analizar la transición entre dinámica regular y
caótica.

En este marco surgen los potenciales de Hénon, introducidos originalmente como un
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Caṕıtulo 1 Estudio de Sistemas Dinámicos Isocronos

modelo simplificado para el estudio del movimiento estelar en galaxias y posterior-
mente utilizado para el análisis del caos hamiltoniano. El sistema de Hénon–Heiles,
en particular, ha sido objeto de estudio debido a su comportamineto dinámico y a
la coexistencia de órbitas regulares y caóticas dependiendo del nivel de enerǵıa.

La mayor parte de los trabajos existentes sobre los potenciales de Hénon se cen-
tran en el análisis numérico del sistema, empleando herramientas como secciones de
Poincaré, metodos mediante la integración de Abel y simulaciones computacionales
para caracterizar su comportamiento dinámico. Sin embargo, estas aproximaciones
suelen apoyarse en desarrollos espećıficos del Hamiltoniano completo o en otra clase
de métodos, sin abordar de manera sistemática la aproximación directa del potencial
mediante expansiones en series de Taylor truncadas.

A pesar de que las series de Taylor constituyen una herramienta ampliamente utili-
zada para aproximar funciones en diversos contextos de las ciencias e ingenieŕıas, no
existe mucha literatura que estudie el impacto de truncar los potenciales de Hénon
a distintos órdenes y analizar las consecuencias dinámicas de dichas aproximaciones
en el sistema hamiltoniano resultante. Esta ausencia es particularmente relevante,
dado que tales aproximaciones podŕıan proporcionar modelos anaĺıticamente más
manejables y ofrecer una perspectiva alternativa sobre la estructura del espacio de
fases.

En este sentido, la presente tesis se propone contribuir al estudio de los sistemas
hamiltonianos asociados al potencial de Hénon mediante la aproximación del poten-
cial original por medio de series de Taylor truncadas a distintos órdenes. El objetivo
es analizar cómo estas aproximaciones afectan la dinámica del sistema, identificar
las limitaciones de validez de cada truncamiento y evaluar en qué medida preservan
o alteran las caracteŕısticas fundamentales del sistema original. De este modo, el
trabajo busca llenar un vaćıo en la literatura existente y aportar una aproximación
anaĺıtica complementaria al estudio clásico de los potenciales de Hénon.

1.3. Justificación

El estudio de los sistemas hamiltonianos con fuerzas centrales constituye un área
fundamental de la mecánica clásica, debido a su relevancia en la descripción del mo-
vimiento orbital y proporcionan un marco para el análisis cualitativo de la dinámica,
la estabilidad orbital y la transición entre reǵımenes integrables y no integrables.

5
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El problema de Kepler es el sistema hamiltoniano integrable con fuerza central de
los más conocidos. Su estructura anaĺıtica ha servido como referencia para el desa-
rrollo de la teoŕıa moderna de sistemas dinámicos, y su carácter excepcional queda
formalmente establecido por el teorema de Bertrand, el cual afirma que únicamente
el potencial kepleriano y el potencial armónico generan órbitas cerradas para todas
las condiciones iniciales ligadas. Este resultado pone de manifiesto la fragilidad de la
integrabilidad ante perturbaciones del potencial y motiva el estudio de modelos que
se apartan de estos casos ideales.

En este contexto, los potenciales de Hénon surgen como una generalización natural
del problema de Kepler al preservar la propiedad de isocrońıa del movimiento liga-
do, aun cuando no todas las órbitas sean necesariamente cerradas. Estos potenciales
permiten construir modelos intermedios entre sistemas completamente integrables y
sistemas no integrables, y resultan especialmente útiles para el análisis de estabilidad
orbital y métodos perturbativos.

Por otra parte, los potenciales de Hénon constituyen un modelo ampliamente utiliza-
do en dinámica galáctica y en el estudio del caos hamiltoniano. Su relevancia radica
en que describen campos gravitatorios realistas y presentan una importante fenome-
noloǵıa dinámica caracterizada por la coexistencia de regiones regulares y caóticas
en el espacio de fases. No obstante, estos potenciales no admiten, en general, solu-
ciones anaĺıticas exactas, lo que limita el análisis detallado de su estructura dinámica.

En este sentido, las aproximaciones mediante expansiones en series de Taylor trunca-
das alrededor de puntos de equilibrio representan una estrategia eficaz para construir
modelos hamiltonianos polinómicos tratables, que conservan la estructura del siste-
ma original.

La presente investigación se justifica por la necesidad de establecer un puente sis-
temático entre los potenciales gravitatorios clásicos comprendidos, como el potencial
kepleriano y el potencial armónico, y otros modelos como los potenciales de Hénon.
En particular, la modificación de estos últimos mediante aproximaciones de series de
Taylor truncadas permite analizar cómo la forma funcional del potencial influye en la
estructura de las órbitas contribuyendo aśı a una mejor comprensión de la dinámica
hamiltoniana de tipo gravitatorio.
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1.4. Objetivos

Objetivo General

Investigar el isocronismo astrof́ısico (Kepler y Hénon), utilizando técnicas de ex-
pansión de series truncadas de Taylor, alrededor de los mı́nimos de los potenciales
isocronos.

Objetivos particulares

Realizar un análisis local (mediante expansiones de Taylor truncadas) de los
potenciales de Kepler y de Hénon.

Mostrar cómo las series de Taylor truncadas de estos potenciales alrededor
de sus mı́nimos convergen hacia la propiedad de isocronismo, definido como
la independencia de los periodos de los movimientos periódicos respecto al
momento angular.
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Caṕıtulo 2

Preliminares

2.1. Ecuaciones de Hamilton

En el caso de una part́ıcula moviéndose en una dimensión bajo la acción de un
potencial U(x), como se muestra en [3], la ecuación es

mẍ = F (x) = −dU
dx

(2.1.1)

o bien, en forma de ecuaciones de primer orden, ẋ = v, v̇ = F/m. La enerǵıa total

E =
1

2
mv2 + U(x) (2.1.2)

es una constante del movimiento, por lo que las trayectorias en el espacio de fase son
las curvas de nivel de la función E(x, v).
Resulta conveniente utilizar el momento p = mv en vez de la velocidad. El Hamilto-
niano se escribe entonces

H(x, p) =
p2

2m
+ U(x) (2.1.3)

y las ecuaciones de movimiento

ẋ =
∂H

∂p
, ṗ = −∂H

∂x
(2.1.4)

Aśı escritas, se llaman ecuaciones de Hamilton o ecuaciones canónicas. A primera
vista puede parecer que solo se ha hecho un sencillo cambio de variables, sin muchas
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consecuencias. Pero, lejos de ser aśı, la formulación Hamiltoniano de la mecánica tiene
una gran elegancia y ofrece una visión profunda sobre la evolución de los sistemas.
El campo vectorial en el espacio de fases (x, p) correspondiente a (2.1.4) es

u(x, p) = (
∂H

∂p
,−∂H

∂x
) (2.1.5)

Para fijas ideas, se considera el sistema de la masa en la gravedad terrestre. El
Hamiltoniano y el vector u están dados por

H =
p2

2m
+mgx, u = (

p

m
,−mg) (2.1.6)

Las consideraciones anteriores son igualmente válidas para cualquier sistema conser-
vativo de un grado de libertad.
En el caso de n grados de libertad, en el formalismo Hamiltoniano usa como 2n
variables las n coordenadas qk y sus n momentos conjugados pk en vez de las qk y las
q̇k, teniendo en cuenta que la relación entre velocidades y momentos está dada por.
Al hacerlo aśı, las derivadas parciales respecto a una q o una p deben entenderse
manteniendo constantes las otras 2n − 1 cantidades. Si lo consideramos ahora el
Hamiltoniano como función de q, p, t, H = H(q, p, t).

∂H

∂qk
=

∑
i

pi
∂q̇i
∂qk

−
∑
i

∂L

∂q̇i

∂q̇i
∂qk

− ∂L

∂qk
= −ṗk (2.1.6a)

∂H

∂pk
= q̇k +

∑
i

pi
∂q̇i
∂pk

−
∑
i

∂L

∂q̇i

∂q̇i
∂pk

= q̇k (2.1.6b)

donde se ha hecho uso de las ecuaciones de Lagrange. Nótese como al calcular las
derivadas de H respecto a qk y pk se consideran constantes las otras 2n−1 y se toma
q̇i = q̇i(q, p).

q̇k =
∂H

∂pk
, ṗk = −∂H

∂qk
, k = 1..., n (2.1.7)

que son las ecuaciones canónicas o de Hamilton para n grados de libertad. Son
equivalentes a las de Lagrange y se puede pasar de las unas a las otras, pero ofrecen
dos perspectivas diferentes de la evolución de un sistema mecánico.
Consideremos ahora la derivada de H a lo largo de la trayectoria

Ḣ =
∑
k

∂H

∂qk
q̇k +

∑
k

∂H

∂pk
ṗk +

∂H

∂t
=
∂H

∂t
(2.1.8)
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lo que indica que H se conserva si no depende expĺıcitamente del tiempo, cosa que
ocurre cuando L tiene la misma propiedad. A pesar de que sus argumentos son
funciones del tiempo qk(t), pk(t), sus variaciones se compensan de tal forma que la
derivada total respecto al tiempo de H se debe únicamente a su dependencia explicita.
Lo mismo que un grado de libertad, H determina completamente la evolución del
sistema, pues sus derivadas respecto a qk y pk fijan completamente las de estas
variables respecto al tiempo. Una forma elegante de expresar esta idea es escribir
(2.1.7) en la forma

ẋk = uk(x, t), k = 1, ...,m

con m = 2n y
(x1, ..., xm) = (q1, ..., qn, p1, ..., pn) (2.1.9)

(u1, ..., um) = (
∂H

∂p1
, ...,

∂H

∂pn
,−∂H

∂q1
, ...,−∂H

∂qn
) (2.1.10)

El vector u es la velocidad del punto representativo del sistema en el espacio de
fase y, se obtiene girando el gradiente de H π/2 en sentido horario en cada plano
(qk, pk). Por todo eso, se dice que H es el generador de la evolución temporal, ya que
su gradiente indica como se mueve el sistema en el espacio de fase, lo que explica la
importancia de la función Hamiltoniana.

2.2. Corchetes de Poisson

Sea F = (qi, pi, t) cualquier variable dinámica de un sistema representado por las
variables conjugadas qi, pi [21]. Entonces:

Ḟ =
dF

dt
=

∑
i

∂F

∂qi
q̇i +

∑
i

∂F

∂pi
ṗi +

∂F

∂t
(2.2.1)

A partir de las ecuaciones canónicas de Hamilton se puede obtener:

Ḟ =
∑
i

(
∂F

∂qi

∂H

∂pi
− ∂F

∂pi

∂H

∂qi
) +

∂F

∂t
(2.2.2)

La expresión
∑

i(
∂F
∂qi

∂H
∂pi

− ∂F
∂pi

∂H
∂qi

) resulta ser muy significativo en el ámbito formal de
la mecánica y es llamado el corchete de Poisson de F y H. En general, el corchete
de Poisson de cualesquiera variables X y Y es definido como:

[X, Y ] =
∑
i

(
∂X

∂qi

∂Y

∂pi
− ∂X

∂pi

∂Y

∂qi
) (2.2.3)
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El concepto no resuelve completamente el problema para las ecuaciones de movi-
miento de un sistema, pero es útil para discutir las constantes de movimiento. Esto
conduce a un formalismo re-interpretado según un sencillo procedimiento, forma una
conveniente manera de introducir reglas cuánticas en el desarrollo de Heisenberg de
mecánica cuántica.
Las siguientes identidades se derivan inmediatamente de la definición:

[X, Y ] = −[Y,X]

[X,X] = 0

[X, Y + Z] = [X, Y ] + [X,Z] (2.2.4)

[X, Y Z] = Y [X,Z] + [X, Y ]Z

también
[qi, qi] = 0 = [pi, pj]q,p

[qi, pi]q,p = δij (2.2.5)

donde δij es el para delta con la propiedad

δij = 0 i ̸= j

δij = 1 i = j

2.2.1. Momento Angular

Los componentes del momento angular se han identificado con componentes del
momento generalizados en casos particulares [21][24]. En general, el momento con-
jugado con cualquier coordenada angular se puede identificar de esta manera en
un sistema mecánico simple donde, por ejemplo, no están presentes efectos electro-
magnéticos. Para investigar el corchete de Poisson de dos componentes del momento
angular se considera una part́ıcula referida a un sistema de coordenadas cartesianas,
los componentes del momento angular vienen dados por:

l1 = x2p3 − x3p2 l2 = x3p1 − x1p3 l3 = x1p2 − x2p| (2.2.6)

donde pi = mẋi, i = 1, 2, 3. Evaluando el corchete de Poisson se obtiene:

[l1, l2] = (p2x1 − p1x2) = l3 (2.2.7)

11
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Se pueden obtener resultados similares de otras combinaciones y se resumen en la
siguiente expresión:

[li, lj] =
∑
k

ϵijklk (2.2.8)

donde ϵijk corresponde al śımbolo de Levi-Civita.
La implicación de (2.2.8) es que no hay dos componentes del momento angular que
puedan actuar simultáneamente como momentos conjugados.
Se considera ahora [li, l

2], donde l2 es el cuadrado total del momento angular. Y
usando las identidades (2.2.5) y (2.2.8):

[li, l
2] = [li,

∑
j

l2j ] =
∑
j

[li, l
2
j ] =

∑
j

{2lj[li,lj ]} =
∑
j,k

2ljϵijklk = 0 (2.2.9)

Esto es l2 y cualquier componente de l puede considerarse simultáneamente como
momentos conjugados. Otros resultados con significado similar son:

[xi, li] =
∑
k

ϵijkxk [pi, lj] =
∑
k

ϵijkpk (2.2.10)

donde las p′s en este caso todav́ıa denotan componentes cartesianas de momento
lineal.

2.2.2. Constantes de movimiento

Ya se ha enfatizado que para algunos propósitos la solución de un problema
puede considerarse logrado identificando las constantes de movimiento. Reescribiendo
(2.2.2) en notación de los corchetes de Poisson, se observa que la variación temporal
de cualquier variable dinámica F está dada por

Ḟ = [F,H] +
∂F

∂t
(2.2.11)

Esto muestra que si la variable no contiene el tiempo expĺıcitamente es suficiente para
el corchete de Poisson con H desaparezca para que sea una constante de movimiento.
Este resultado es independiente de si H en śı es una constante de movimiento y
proporciona un medio útil para identificar constantes de movimiento.
A continuación se presentan algunos casos especiales de (2.2.2):

q̇i = [qi, H] ṗi = [pi, H] (2.2.12)
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estos son idénticos a las ecuaciones canónicas de Hamilton y podŕıan ser referidos
como las ecuaciones de movimiento en la forma de corchetes de Poisson.
Y otro caso especial es:

dH

dt
= [H,H] +

∂H

∂t
=
∂H

∂t
(2.2.13)

Esta relación también ha aparecido anteriormente.

2.3. Orbitas de Kepler

¿Cuál es la órbita de una part́ıcula que se mueve en un campo de fuerza central
en el que la fuerza centŕıpeta vaŕıa inversamente con el cuadrado de la distancia?.
La respuesta se conoce desde los tiempos de Newton (1687), quien descubrió que
existen tres tipos de órbitas: elipses, parábolas e hipérbolas [25][30]. De hecho, en
1687 Newton ya conoćıa la Primera ley de Kepler (1609) sobre las órbitas eĺıpticas
de los planetas [8]. Para dar cuenta de este tipo de órbitas, Newton asumió la fuerza
de atracción central inversamente proporcional al cuadrado de la distancia radial.

− α

r2
=
d2r

dt2
− r

(
dθ

dt

)2

, (2.3.1)

donde α es la constante gravitacional y θ es el ángulo azimutal. El primer término
del lado derecho es la aceleración radial, el segundo término representa la aceleración
centŕıpeta necesaria para mantener la part́ıcula en una órbita circular de radio r.
La ecuación de la componente tangencial viene dada por la ley de conservación del
momento angular [26].

r2
dθ

dt
= const. = β . (2.3.2)

Esto es equivalente a la segunda ley de Kepler (1609) indicando que el radio vector
cubre áreas iguales en tiempos iguales.
Reordenando (2.3.2) en la forma

dθ

dt
=
β

r2
, (2.3.3)

y señalando que
1

r2
= −

d
(
1
r

)
dr

. (2.3.4)
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entonces es posible reescribir (2.3.2) de la forma

dθ

dt
= −β

d
(
1
r

)
dr

. (2.3.5)

de (2.3.5), se puede obtener la siguiente expresión para la velocidad radial

dr

dt
= −β

d
(
1
r

)
dθ

. (2.3.6)

Para obtener la aceleración radial, primero hay que observar que (2.3.6) se puede
escribir como

dr

dt
=
β

r2
dr

dθ
. (2.3.7)

Por tanto, se obtiene la siguiente relación que puede aplicarse a la función para la
distancia radial

d

dt
=
β

r2
d

dθ
. (2.3.8)

Entonces la aceleración radial puede calcularse de la siguiente forma

d2r

dt2
=

d

dt

(
β

r2
dr

dθ

)
=
β

r2
d

dθ

(
β

r2
dr

dθ

)
= −2β2

r5

(
dr

dθ

)2

+
β2

r4
d2r

dθ2
≈ β2

r4
d2r

dθ2
, (2.3.9)

donde el primer término del lado derecho es descartado debido a que O(r−1) con
respecto al segundo término, sobre todo el contexto de la mecánica celeste.
Usando (2.3.9), se puede convertir (2.3.1) en la forma

α

β2
=
d2

(
1
r

)
dθ2

+
1

r
, (2.3.10)

con solución
1

r
=

α

β2
(1− e cos θ) , (2.3.11)

que es la ecuación de la sección cónica. Para ϵ < 1, que corresponde a la ecuación en
coordenadas polares de la elipse. Y en efecto, es sabido que en el caso de la elipse, el
módulo de la distancia de un punto de la elipse al foco es dado por

|z|1,2 = r1,2 = a± c cosu (2.3.12)

y el azimut focal es

cos θ =
x

r
=
a cosu+ c

a+ c cosu
. (2.3.13)
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Eliminando el parámetro u de las últimas dos ecuaciones (trabajando con r1), se
puede encontrar que la ecuación polar de la elipse es dada por

1

r
=

1

p
(1− e cos θ) . (2.3.14)

Entonces, se obtiene la elipse celeste si se selecciona p = β2/α y ϵ < 1, pero también
se obtienen parábolas si se selecciona ϵ = 1.

2.4. Vector Runge - Lenz

El problema de Kepler [2][8] contiene otro vector adicional conservativo, además
del momento angular. Para una fuerza central, la segunda Ley de Newton de movi-
miento puede ser escrita vectorialmente por:

ṗ = f(r)
r

r
(2.4.1)

El producto cruz de ṗ con el vector del momento angular L entonces puede expandirse
como:

ṗ× L =
mf(r)

r
[r× (r× ṙ]

=
mf(r)

r
[r(r · ṙ)− r2ṙ] (2.4.2)

La ecuación (2.4.2) puede simplificarse aún más teniendo en cuenta que:

r · ṙ = 1

2

d

dt
(r · r) = rṙ

(que también se puede interpretar como, la componente de la velocidad en la dirección
radial es ṙ). Como L es constante, la ecuación (2.4.2) puede también ser reescrita
como:

d

dt
(p× L) = −mf(r)r2(

ṙ

r
− rṙ

r2
)

que también puede ser
d

dt
(p× L) = −mf(r)r2

d

dt

(r
r

)
(2.4.3)
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Sin especificar el término f(r), no se puede llegar muy lejos. Pero la ecuación (2.4.3)
puede integrarse inmediatamente si f(r) es inversamente proporcional a r2 del pro-
blema de Kepler. Reescribiendo f(r) en:

d

dt
(p× L) =

d

dt

(
mkr

r

)
que dice que para el problema de Kepler existe un vector conservativo A definido
por

A = p× L−mk
r

r
(2.4.4)

De la definición de A, se observa que

A · L = 0 (2.4.5)

como L es perpendicular a p × L y r es perpendicular a L = r × p. De esta
ortogonalidad de A a L que A debe ser algún vector fijo en el plano de la órbita. Si θ
es usado para denotar el ángulo entre r y la dirección fija de A, entonces el producto
punto de r y A es dado por

A · r = Ar cos θ = r · (p× L)−mkr (2.4.6)

Ahora, desarrollando los términos en el triple producto punto, tenemos

r · (p× L) = L · (r× p) = l2

aśı que la ecuación (2.4.6) se convierte en

Ar cos θ = l2 −mkr

o también
l

r
=
mk

l2
(1 +

A

mk
cos θ) (2.4.7)

El vector Runge-Lenz, por tanto, provee otra forma de derivar la ecuación de órbita
del problema de Kepler. Comparando la ecuación (2.4.7) con la ecuación de la órbita
de la ecuación (2.4.7a) muestra que A está en la dirección del vector de radio del
perihelio en la órbita y tiene una magnitud

1

r
=
mk

l2
(1 +

√
1 +

2El2

mk2
cos(θ − θ′)) (2.4.7a)
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A = mke (2.4.8)

Para el problema de Kepler se tienen identificadas dos constantes de movimiento
vectoriales, L y A, y un escalar E. Dado que un vector debe tener todas sus tres
componentes independientes, esto corresponde a siete cantidades conservadas en to-
tal.
Ahora, un sistema como este con tres grados de libertad tiene seis constantes inde-
pendientes del movimiento, correspondientes, a los tres componentes de la posición
inicial y la velocidad inicial de la part́ıcula.
Más aún, las constantes de movimiento se pueden encontrar en todas las funciones
algebraicas de r y p que describe la órbita como un todo (orientación en el espacio,
excentricidad), ninguna de estas siete cantidades conservadas describe donde está
localizada la part́ıcula en la orbital en un tiempo inicial. Ya que una constante de
movimiento debe describir esta información, en la forma de T , el tiempo de paso del
perihelio, solo puede haber cinco constantes independientes de movimiento descri-
biendo el tamaño, forma y la orientación de la órbita.
Se puede entonces concluir que no todas las cantidades componiendo L, A y E pue-
den ser independientes, debe haber dos relaciones conectando con estas cantidades.
Una de esas relaciones ya se ha obtenido como una relación como la ortogonalidad
de A y L, ecuación (2.4.5). La otra relación se presenta como la ecuación (2.4.8)
cuando la excentricidad es expresada en términos de E y ℓ de la ecuación (2.4.8a),
dada por

e =

√
1 +

2El2

mk2
(2.4.8a)

A2 = m2k2 + 2mEl2 (2.4.9)

esto confirma que solo hay cinco constantes de movimiento en vez de siete.
El vector de momento angular y la enerǵıa por śı solas contienen solo cuatro cons-
tantes independientes de movimiento: el vector Runge-Lenz de este modo agrega una
más. Es natural preguntar por qué no debeŕıa existir para cualquier ley general de
fuerza central alguna cantidad conservada que juntos con L y E sirva para definir la
órbita en una manera similar al vector Runge-Lenz para el caso especial del problema
de Kepler.
La respuesta parece ser que tales cantidades conservadas pueden construirse, pero
que ellas son en general funciones peculiares del movimiento. Las constantes de movi-
miento describen a la órbita entre ellas definen la órbita. Hemos visto que en órbitas
generales para un movimiento de fuerza central no son cerradas.
Las órbitas cerradas implican condiciones bastante estrictas sobre la forma de la ley
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Caṕıtulo 2 Estudio de Sistemas Dinámicos Isocronos

de fuerza. Es una propiedad de órbitas no cerradas que la curva eventualmente pa-
sara a través de cualquier punto arbitrario (r, θ) que se encuentra entre los ĺımites
de inflexión de r.
Intuitivamente, este puede ser visto por la naturaleza no cerrada de la órbita, como
θ va alrededor de un ćırculo completo, la part́ıcula nunca debe volver sobre sus pasos
en una órbita previa. Por tanto, la ecuación de la órbita es tal que r es una función
multi evaluada de θ; en realidad, es una función infinita evaluada de θ.
La cantidad conservada correspondiente adicional a L y E definiendo la órbita de-
be involucrar de manera similar una función infinita valuada del movimiento de
part́ıculas. Suponga la variable r es periódica con frecuencia angular ωr y la coorde-
nada angular θ es periódica con frecuencia angular ωθ. Si estas dos frecuencias tiene
un radio (ωr/ωθ) que es un entero o una fracción entera, se dice que los periodos son
proporcionales.
Órbitas proporcionales son cerradas con la masa en órbita se retrae continuamente
en su trayectoria. Cuando ωθ > ωr la órbita será una espiral sobre el origen, ya que
la distancia vaŕıa entre los valores absidales, cerrándose solo si las frecuencias son
proporcionales.
Śı, como en el problema de Kepler ωθ = ωr, el periodo entonces se dice que es dege-
nerado. Si la órbita es degenerada, existe una cantidad conservada adicional que es
una función algebraica de r y p como el vector Runge-Lenz.

2.5. Superintegrabilidad

Son sistemas integrables, aquellos sistemas cuya ecuación del movimiento es re-
ducible a cuadraturas, lo que significa que su solución general puede encontrarse
realizando un número finito de integraciones y de inversiones de funciones. Algunos
sistemas de este tipo, son todos los lineales, todos los conservativos con un grado de
libertad, una part́ıcula sometida a un potencial central en dos o tres dimensiones y
el trompo de Lagrange, es decir, un sólido simétrico con un punto fijo y sometido a
la gravedad.
Conviene subrayar dos cuestiones. Primeramente, la solución de un problema inte-
grable se puede obtener mediante un conjunto finito de operaciones. En segundo
lugar, a menudo no es fácil poder afirmar que un problema no es integrable, porque
no conocer un método de reducción a cuadraturas no significa que no existe. Quizás
si lo haya, pero, para encontrarlo, sea necesario dedicar más tiempo o más ingenio a
su búsqueda. Sin embargo, podemos afirmar que existen sistemas que no son integra-
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bles. Y no solo eso, sino que para que uno lo sea debe haber alguna buena razón (por
ejemplo, que su Hamiltoniano o su Hagrangiano tengan alguna propiedad especial.
En cierto sentido, lo genérico son los no integrables.

2.5.1. Dos tipos de comportamiento

La división de los sistemas dinámicos en esas dos clases es importante y refleja
diferencias profundas en la estructura de las soluciones. En efecto, hay dos tipos de
comportamientos.

(a) En algunos casos es posible encontrar la solución general de un problema, bien
de manera exacta, bien con un margen de precisión ϵ en todas las variables para
todo tiempo t, es decir, tal que ∥ xk(t) - x∗k(t) ∥ < ϵ, siendo x∗k(t) la solución exacta,
mediante un número de operaciones que no depende de t. En otras palabras; el es-
fuerzo para encontrar la solución no del tiempo. Es fácil comprender que aśı ocurre,
por ejemplo, en el oscilador armónico o en el problema de los dos cuerpos.

(b) El comportamiento de otros sistemas es muy diferente, pues, para ellos, no
existe ningún algoritmo finito que de la solución para todo t. En todos los métodos
que existen, la cantidad de operaciones N(t) que hay que realizar para encontrar la
solución en el tiempo t con precisión ϵ crece más deprisa que t. Es decir que, śı t →
∞, lim N(t)/t = ∞. Esto ocurre cuando la inestabilidad juega un papel importante,
de modo que mantener una precisión ϵ cuesta cada vez más esfuerzo, en término de
operaciones matemáticas.
Para entender como y porque N(t) puede crecer tan deprisa, consideremos dos méto-
dos frecuentes de solución: el desarrollo en serie de un parámetro y el cálculo numéri-
co. En el primero, que tan importante papel ha jugado en el establecimiento de la
mecánica celeste, ocurre a veces que el número de términos que es necesario emplear
para alcanzar una precisión ϵ crece con t, pero más deprisa que t. Cualquier suma
parcial de la serie pierde su operatividad al cabo de un cierto tiempo. Se toma aho-
ra la resolución numérica de las ecuaciones. Si hay inestabilidad, de modo que los
errores se amplifiquen, llega a suceder que, para mantener la precisión ϵ, es necesario
hacer cada vez más operaciones por unidad de tiempo, bien disminuyendo el paso de
integración, bien pasando a esquemas numéricos más complejos.

Se definen como comportamiento regular y comportamiento irregular a estos dos
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tipos que se corresponden con las clasificaciones de los sistemas en integrables y no
integrables. Sin embargo, los integrables pueden tener y tienen soluciones inestables
y que los no integrables pueden tener y tienen soluciones estables. La diferencia está
realmente en la proporción de soluciones inestables y en la virulencia de la inestabi-
lidad.

2.5.2. El papel de las contantes de movimiento

La existencia de constantes de movimiento facilita en gran medida la resolución
de un problema. Aśı, todos los sistemas conservativos de un grado de libertad pueden
resolverse gracias a la integral de la enerǵıa, en el caso de una part́ıcula en un poten-
cial central juega un papel decisivo la conservación del momento angular, mientras
que se llega a la solución de las ecuaciones del trompo de Lagrange combinado la
constancia de la enerǵıa con las de los momentos conjugados a los ángulos ϕ y ψ.
Conviene, por tanto, examinar el papel que juegan esas constantes. Y para ellos se
anuncia el siguiente teorema.

Teorema

Un sistema dinámico de orden m tiene exactamente m integrales primeras inde-
pendientes entre śı.

Prueba:

Sea el sistema ẋk = uk(k), k = 1, 2, ..., ,m. La solución general tiene la forma

xk = fk(t; t0, x10, ..., xm0), k = 1, 2, ...,m. (2.5.1)

donde se indica la dependencia de los datos iniciales xk0 = xk(t0) y del tiempo inicial
t0. Quizás la función f sea de gran complejidad y desconocida, pero se sabe que existe,
bajo condiciones muy generales sobre uk. Es evidente que, considerando ahora a xk(t)
como datos de Cauchy en el tiempo inicial t y a t0 como tiempo actual, se cumple

xk0 = fk(t0; t, x1(t), ..., xm(t)), k = 1, 2, ...,m. (2.5.2)

Las ecuaciones (2.5.2) son la expresión de m integrales primeras, ya que m funciones
de t y de xk(t) se mantienen constantemente igual a xk0. Hay, pues, m constantes
independientes al menos. Enseguida se muestra porque no puede haber más. Se
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comienza si hubiera otra A(x(t)), t = a.
Sustituyendo (2.5.1), resulta A(x(t), t) = B(x0, t) = const y, derivando respecto a t,

dA

dt
=

dB

dt
=
∂B

∂t
(2.5.3)

lo que dice que B no depende de t, luego B = B(x0) es una función de xk0 y no
es independiente de ellas. Por tanto, hay m constantes independientes, ni más ni
menos. Recuérdese que si el sistema es Newtoniano con n libertades, m = 2n. En
general, consideraremos conjuntos de m constantes Ck(x, t), independientes entre śı.
Naturalmente, debe de ser funciones de las xk0.
De esta propiedad parece deducirse que, si se conoce un conjunto de m constantes
del movimiento, independientes entre śı, la solución del problema es inmediata. Pues,
sean C1, ...Cm constantes

Ck(x, t) = ck, K = 1, 2, ...,m (2.5.4)

Entre ellas, una al menos debe depender expĺıcitamente del tiempo, pues, de no ser
aśı, (2.5.4) implicaŕıa que las coordenadas pueden tomar solo un conjunto discreto
de valores (quizás uno solo) y no habŕıa movimiento. En principio, y puesto que las
Ck son funcionalmente independientes, se pueden invertir, obteniéndose aśı

xk = xk(t; c1, ..., cm) (2.5.5)

que es la solución general del sistema, dependiente de m constantes de integración.
Este procedimiento ı́ndico la ı́ntima relación que hay entre las constantes del mo-
vimiento y la solución de un problema. Se entiende mejor eliminado el tiempo en
(2.5.4) con lo que se obtienen m− 1 variables dinámicas que no dependen expĺıcita-
mente del tiempo y que son constantes a lo largo de cada trayectoria, es decir, m− 1
cantidades conservadas.

Ak(x) = ak; k = 1, ...,m− 1 (2.5.6)

La interpretación geométrica es simple, pues cada una de esas ecuaciones es la de
una hipersuperficie de dimensión, m− 1 es el espacio de fases de dimensión m. Por
lo tanto, las m− 1 ecuaciones (2.5.6) definen la trayectoria del sistema, de la misma
manera que una curva en tres dimensiones es la intersección de dos superficies bidi-
mensionales. Para conocer en que momento del tiempo pasa por cada punto basta
con añadir una de las constantes Ck que depende efectivamente de t. Se entiende aśı
como el conocimiento de una las constantes del movimiento independiente del tiem-
po permite eliminar una dimensión y rebajar en uno el orden del sistema dinámico
simplificando la solución del problema.
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2.6. Problema de fuerza central

2.6.1. Ecuaciones de movimiento y primeras integrales

Es necesario comenzar señalando que el problema se concentra en las fuerzas
centrales conservativas, donde el potencial esta dado por V(r), una función de r úni-
camente, de modo que la fuerza siempre está a lo largo de r. También se considera
que el problema trata sobre una sola part́ıcula de masa reducida m que se mueve
alrededor de un centro de fuerza estático, que se tomará como origen del sistema de
coordenadas. Dado que la enerǵıa potencial involucra solo la distancia radial, el pro-
blema tiene simetŕıa esférica; es decir, cualquier rotación, sobre cualquier eje fijo, no
puede tener ningún efecto sobre la solución. Por lo tanto, una coordenada de ángulo
que representa la rotación alrededor de un eje fijo debe ser ćıclica. Estas propiedades
de simetŕıa dan como resultado una considerable simplificación del problema. Como
el problema es esféricamente simétrico, el momento angular total vector es

L = r× p

se conserva [28]. Por tanto, se deduce que r es siempre perpendicular a la dirección
fija de L en el espacio. Esto solo puede ser cierto si r siempre se encuentra en un
plano cuya normal es paralelo a L. Si bien este razonamiento se rompe si L es cero, el
movimiento en ese caso debe ser a lo largo de una ĺınea recta que pasa por el centro
de fuerza, para L = 0. Requiere que r sea paralelo a ṙ, lo cual solo puede satisfacerse
en un movimiento rectiĺıneo. Por tanto, el movimiento de la fuerza central es siempre
un movimiento en un plano.
Ahora bien, el movimiento de una sola part́ıcula en el espacio se describe mediante
tres coordenadas; en coordenadas polares esféricas estos son el ángulo de acimut θ,
el cenit ψ, y la distancia radial r. Al elegir el eje polar que será en la dirección de
L, el movimiento es siempre en el plano perpendicular al eje polar. La coordenada ψ
entonces solo tiene el valor constante π/2 y puede eliminarse de la discusión posterior.
La conservación del vector del momento angular. proporciona tres constantes de
movimiento independientes (correspondientes a las tres componentes cartesianos).
En efecto, dos de ellos, expresando la dirección constante del momento angular, se
han utilizado para reducir el problema de tres a dos grados de libertad. La tercera de
estas constantes, correspondiente a la conservación de la magnitud de L, todav́ıa está
a nuestra disposición para completar la solución. Expresado ahora en coordenadas
polares planas, el lagrangiano es

L = T − V
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=
1

2
m(ṙ2 + r2θ̇2)− V (r) (2.6.1)

Como se hab́ıa previsto, θ es una coordenada ćıclica, cuyo correspondiente momento
canónico es el momento angular del sistema:

pθ =
∂L

∂θ̇
= mr2θ̇

Entonces, una de las dos ecuaciones de movimiento es simplemente

ṗθ =
d

dt
(mr2θ̇) = 0 (2.6.2)

con la integral inmediata
mr2θ̇ = l (2.6.3)

donde l es la constante de magnitud del momento angular, y a partir de (2.6.2) se
tiene que

d

dt
(
1

2
r2θ̇) = 0 (2.6.4)

El factor 1
2
es insertado porque 1

2
r2θ̇ es solo la velocidad área: el área barrida por el

radio vector por unidad de tiempo. El área diferencial barrida en el tiempo dt es

dA =
1

2
r(rdθ)

y por tanto
dA

dt
=

1

2
r2
dθ

dt

La conservación del momento angular es, por tanto, equivalente a decir que el área de
la velocidad es constante. Aqúı tenemos la prueba de la segunda ley de Kepler. Ley
del movimiento planetario: El radio vector barre áreas iguales en tiempos iguales. Sin
embargo, se debe enfatizar que la conservación de la velocidad área es una propiedad
general del movimiento de la fuerza central y no está restringida a una ley de fuerza
de cuadrado inverso. La ecuación de Lagrange restante, para la coordenada r, es

d

dt
(mṙ)−mrθ̇2 +

∂V

∂r
= 0 (2.6.5)

Designando el valor de la fuerza a lo largo de r,−∂V/∂r, por f(r) la ecuación puede
ser reescrita como

mr̈ −mrθ̇2 = f(r) (2.6.6)
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Haciendo uso de la ecuación (2.6.3), θ̇, puede ser eliminado de la ecuación de movi-
miento produciendo una ecuación diferencial de segundo orden que involucra solo a
r

mr̈ − l2

mr3
= f(r) (2.6.7)

Hay otra primera integral de movimiento disponible, la enerǵıa total, ya que las
fuerzas son conservativas. Sobre la base del teorema de conservación general de la
enerǵıa, podemos afirmar inmediatamente que una constante del movimiento es

E =
1

2
m(ṙ2 + r2θ̇2) + V (r) (2.6.8)

donde E es la enerǵıa del sistema. Alternativamente, esta primera integral puede ser
derivada nuevamente de las ecuaciones de movimiento (2.6.2) y (2.6.7). Entonces se
puede escribir como

mr̈ = − d

dr
(V +

1

2

l2

mr2
) (2.6.9)

Si ambos lados de la ecuación (2.6.9) son multiplicados por ṙ, el lado izquierdo ahora
es

mr̈ṙ =
d

dt
(
1

2
mṙ2)

El lado derecho similarmente puede ser escrito como una derivada total del tiempo,
si g(r) cualquier función de r, entonces la derivada total del tiempo de g es

d

dt
g(r) =

dg

dr

dr

dt

Por tanto, la ecuación (2.6.9) es equivalente a

d

dt
(
1

2
mṙ2) = − d

dt
(V +

1

2

l2

mr2
)

o bien
d

dt
(
1

2
mṙ2 + V +

1

2

l2

mr2
) = 0

y por tanto
1

2
mṙ2 + V +

1

2

l2

mr2
= constante (2.6.10)

La ecuación (2.6.10) es la declaración total de la enerǵıa, y usando (2.6.6) para l, el
término del lado izquierdo puede ser escrito

l2

mr2
=

1

2mr2
m2r4θ̇2 =

mr2θ̇2

2
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y (2.6.10) se reduce a (2.6.4). Estas dos primeras integrales proporcionan dos de
las cuadraturas necesarias para completar el problema. Como hay dos variables, r
y θ, se necesitan un total de cuatro integraciones para resolver las ecuaciones de
movimiento. Las dos primeras integraciones han dejado las ecuaciones de Lagrange
como dos ecuaciones de primer orden (2.6.3) y (2.6.10); las dos integraciones restantes
se pueden lograr (formalmente) de diversas maneras. Quizás el procedimiento más
simple comience con la Ec. (2.6.10). Resolviendo para ṙ, tenemos

ṙ =

√
2

m
(E − V − l2

2mr2
) (2.6.11)

o bien

dt =
dr√

2
m
(E − V − l2

2mr2
)

(2.6.12)

En t = 0, para r en su valor inicial r0. Entonces la integral de ambos lados de la
ecuación que va del estado inicial al estado en el momento t toma la forma.

t =

∫ r

r0

dr√
2
m
(E − V − l2

2mr2
)

(2.6.13)

Tal como está, la ecuación (2.6.13) da t como función de r y las constantes de
integración E, l y r0. Sin embargo, se puede invertir, al menos formalmente, para
dar r como función de t y las constantes. Una vez que se encuentra la solución
para r, la solución θ se desprende inmediatamente de la ecuación. (2.6.3), que puede
escribirse como

dθ =
ldt

mr2
(2.6.14)

Si el valor inicial de θ es θ0, entonces la integral de (2.6.14) es

θ = l

∫ t

0

dt

mr2(t)
+ θ0 (2.6.15)

Las ecuaciones (2.6.13) y (2.6.15) son las dos integraciones restantes, y formalmente
el problema se ha reducido a cuadraturas (evaluación de integrales), con cuatro
constantes de integración E, l, r0, θ0. Estas constantes no son las únicas que pueden
considerarse. También se pudo haber tomado r0, θ0, ṙ0, θ̇0, pero por supuesto, E
y l siempre se pueden determinar en términos de este conjunto. Sin embargo, para
muchas aplicaciones, el conjunto que contiene la enerǵıa y el momento angular es
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el natural. En mecánica cuántica, constantes como los valores iniciales de r y θ, o
de ṙ y θ̇, pierden su significado, pero aún podemos hablar en términos del sistema
enerǵıa o del momento angular del sistema. De hecho, dos diferencias destacadas
entre la mecánica clásica y la cuántica aparecen en las propiedades de E y l en las
dos teoŕıas. Para discutir la transición a las teoŕıas cuánticas es importante que la
descripción clásica del sistema sea en términos de su enerǵıa y momento angular.
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Orbitas eĺıpticas

3.1. Introducción

La constante interrogación sobre la regularidad y la elegancia geométrica de los
movimientos celestes ha impulsado la investigación fundamental desde la antigüedad.
Se plantea la cuestión central sobre la naturaleza de la fuerza invisible que deter-
mina el retorno periódico de los cometas. Asimismo, en el ámbito de la ingenieŕıa
aeroespacial contemporánea, es crucial establecer las condiciones de estabilidad e in-
mutabilidad que deben satisfacer las trayectorias satelitales en el campo gravitatorio
terrestre. La solución a esta tŕıada de problemas reside en los principios invariantes
de la Geometŕıa Dinámica y el formalismo de la Mecánica Clásica. Es un principio
de la Mecánica Anaĺıtica que los sistemas f́ısicos acotados, sujetos a la influencia de
fuerzas centrales (planetas, satélites, cometas de periodo corto), describen una tra-
yectoria en el espacio de fases que se caracteriza por la ausencia de puntos de inicio
y fin bien definidos, configurando una órbita intŕınsecamente cerrada y recurrente.

Como una elegante nota a pie de página en la historia de la f́ısica se puede apre-
ciar que Joseph Bertrand, un eṕıtome del pensamiento racionalista, lograra articular
y redescubrir la profunda simetŕıa inherente a las leyes gravitacionales newtonianas.
En la rigurosa terminoloǵıa de la Mecánica Anaĺıtica del siglo XX, la conclusión es
lapidaria: solamente las órbitas eĺıpticas poseen la capacidad de admitir las deno-
minadas simetŕıas ocultas (o vectores de Runge-Lenz) cuando el movimiento está
gobernado por un campo de fuerza central emanado de un único centro de atracción
f́ısico.
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Caṕıtulo 3 Estudio de Sistemas Dinámicos Isocronos

3.2. El Teorema de Bertrand como Condición

Necesaria y Suficiente para la Cerrazón Uni-

versal

“Dentro del dominio exhaustivo de las posibles leyes de atracción de fuerzas cen-
trales cuyo potencial asociado se anula asintóticamente al tender la distancia radial
al infinito, la ley de la inversa del cuadrado (F ∝ r−2), caracteŕıstica de la interac-
ción gravitatoria y electrostática, es la única que garantiza matemáticamente que la
totalidad de las órbitas acotadas descritas alrededor de un centro de atracción esta-
cionario sean rigurosamente cerradas y estables. Si bien formulaciones alternativas
de la ley de fuerza podŕıan admitir la existencia ocasional de órbitas cerradas [20]
para un subconjunto espećıfico de condiciones iniciales, solo la ley de gravitación
las impone como el único resultado posible para cualquier movimiento acotado y
periódico.”

Conservación y Reducción Dimensional Mediante el Potencial Efectivo

Para abordar el análisis formal de las trayectorias en presencia de potenciales
centrales, es imperativo establecer los principios de conservación. La otra fuerza cen-
tral cuyas órbitas acotadas resultan eĺıpticas [25][29] es la fuerza elástica, definida
por la ley de Hooke (F ∝ r). Su potencial asociado, V (r) ∝ r2, difiere del poten-
cial gravitatorio en la condición asintótica de anulación al infinito, asegurando su
compatibilidad con el Teorema de Bertrand. El cuestionamiento se reformula, por
ende: ¿Existe alguna otra ley de potencial central que satisfaga estas condiciones de
estabilidad? Como se describe en [4], el Teorema de Bertrand establece que no.

El fundamento de este resultado radica en la invariancia de dos cantidades fun-
damentales. Para cualquier potencial central V (r), se conservan dos magnitudes es-
calares:

1. El Momento Angular (L): Se mantiene constante debido a que una fuerza
central no produce torque (τ = r× F = 0).

L = mr× v = constante

2. La Enerǵıa Mecánica Total (E): Su conservación es inherente al carácter con-
servativo de la fuerza central, dependiente únicamente del radio r.

E =
1

2
mv2 + V (r) = constante
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La constancia del vector L implica consecuencias geométricas y cinéticas directas:
(i) La orientación espacial inmutable de L restringe a los vectores r y v a un plano
perpendicular a L. Esto justifica la selección de coordenadas polares (r, θ) en el
plano de la órbita, donde la coordenada vertical z es ignorable. (ii) La magnitud del
momento angular en coordenadas polares se relaciona con la velocidad angular θ̇:

L = ∥L∥ = mr2θ̇

La enerǵıa cinética total T = 1
2
mv2 se descompone en las enerǵıas asociadas al

movimiento radial y al movimiento angular. En coordenadas polares, la velocidad v
es v = ṙur + rθ̇uθ, donde ur y uθ son los vectores unitarios.

T =
1

2
m(v · v) = 1

2
m(ṙ2 + r2θ̇2)

Al sustituir la expresión para θ̇ derivada de la conservación del momento angular L:

θ̇ =
L

mr2

En la formulación de la enerǵıa total (E = T + V (r)), se obtiene la Ecuación de
Enerǵıa Radial:

E =
1

2
mṙ2 +

1

2
mr2

(
L

mr2

)2

+ V (r)

E =
1

2
mṙ2 +

(
L2

2mr2

)
+ V (r)

Esta formulación facilita la reducción del problema a un único grado de libertad (r)
mediante la introducción del Potencial Efectivo Vef(r):

Vef(r) = V (r) +

(
L2

2mr2

)
donde el término L2

2mr2
representa el Potencial Centŕıfugo de carácter repulsivo, esen-

cialmente un término de enerǵıa potencial generado por el movimiento angular.
El escenario protot́ıpico ocurre cuando el potencial centŕıfugo prevalece en el

entorno del origen (r → 0) y es contrarrestado por el potencial atractivo V (r) a
grandes distancias (r → ∞). Si la enerǵıa E y el momento angular L se seleccionan
para coincidir con el mı́nimo del potencial efectivo, la órbita resultante es un ćırculo
de radio r = r0. Una perturbación de orden infinitesimal en las condiciones iniciales

29
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transforma esta órbita de equilibrio en una trayectoria que oscila entre un valor
mı́nimo (a) y un valor máximo (b) para la coordenada radial r.

La órbita solo cerrará si se cumple la condición de conmensurabilidad entre la
frecuencia de oscilación radial (νr) y la frecuencia angular de revolución (νθ):

νr
νθ

=
p

q
= n ∈ Q

Esto implica que, tras p oscilaciones radiales (de a → b → a), la part́ıcula debe
completar exactamente q revoluciones angulares (q · 2π), regresando al punto de
partida original.

3.2.1. Análisis de Estabilidad Orbital en el Ĺımite Cuasi-
Circular

Para el análisis de estabilidad de las órbitas cuasi-circulares, se desarrolla el
potencial efectivo Vef(r) en una serie de Taylor de segundo orden alrededor del punto
de equilibrio r0, donde

dVef

dr
|r0 = 0. En este régimen, Vef se aproxima a un potencial de

oscilador armónico simple. Las oscilaciones radiales entre a y b exhibirán isocronismo
con una frecuencia angular radial νr dada por la ráız cuadrada de la segunda derivada
del potencial efectivo en el mı́nimo (tras normalización por la masa):

ν2r =
1

m

[(
d2Vef
dr2

∣∣∣
r0

)]
=

1

m

[(
d2V

dr2

∣∣∣
r0

)
+

3L2

mr40

]
La frecuencia angular de revolución está dada por νθ = θ̇ en r = r0:

νθ =
L

mr20

La imposición de la condición de cerrazón de la órbita (νr = nνθ) a partir de las
ecuaciones anteriores deriva en la siguiente ecuación diferencial trascendental sobre
el potencial V (r) en el punto de equilibrio r0:

r0

(
d2V

dr2

∣∣∣
r0

)
= (n2 − 3)

(
dV

dr

∣∣∣
r0

)
La solución general de esta ecuación establece que el potencial debe manifestar un
comportamiento localmente caracterizado por una ley de potencias:

V (r) ∝ rn
2−2
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donde n = p/q es un número racional.
Esta restricción es una condición necesaria (aunque no suficiente) para que la

totalidad de las órbitas acotadas del potencial sean cerradas, con independencia de
la enerǵıa y el momento angular.

3.2.2. La Integral de la Órbita y la Clasificación Universal
de Bertrand

La condición de conmensurabilidad se formaliza de manera rigurosa mediante la
integral de la órbita. Utilizando el cambio de variable u = 1/r, la diferencial del
ángulo θ es:

dθ =
L du√

2mE − 2mV (u)− L2u2

Definiendo α = 1/b y β = 1/a como los inversos de las distancias radiales extremas
(puntos de retorno), la enerǵıa E y el momento angular L se relacionan mediante las
condiciones de anulación de la velocidad radial en los ĺımites (E = Vef(a) = Vef(b)):

E =
β2V (α)− α2V (β)

β2 − α2

L2

2m
=
V (α)− V (β)

β2 − α2

Para que la órbita sea cerrada para cualquier par de α y β, se debe satisfacer la
siguiente identidad integral (conmensurabilidad):

q · 2π = p · 2
∫ β

α

√
V (α)− V (β)√

β2V (α)− α2V (β)− (β2 − α2)V (u)− u2(V (α)− V (β)
du

donde 2π es el ángulo total y la integral representa el avance angular ∆θ por semiciclo
radial.

Al evaluar esta integral bajo las condiciones singulares del potencial, el análisis
de Bertrand reveló únicamente dos soluciones que permiten la cerrazón para todo α
y β:

1. Caso I: n = 1 (Conmensurabilidad 1 : 1): Corresponde a V (r) ∝ r−1, la ley de
la inversa del cuadrado (Gravitación y Electrostática).

2. Caso II: n = 2 (Conmensurabilidad 2 : 1): Corresponde a V (r) ∝ r2, el poten-
cial del oscilador armónico simple.
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Estos son los únicos dos potenciales centrales para los cuales la totalidad de las
órbitas acotadas resultan ser cerradas. Resulta notable que ambas leyes de fuerza
generan órbitas con la misma forma geométrica: la elipse.

3.2.3. Simetŕıas Ocultas: El Vector de Runge-Lenz

La naturaleza especial de los potenciales V (r) ∝ r−1 y V (r) ∝ r2 no solo se evi-
dencia en su cerrazón orbital, sino también en la existencia de una tercera magnitud
vectorial que se conserva, además de la Enerǵıa (E) y el Momento Angular (L): el
Vector de Runge-Lenz (A).

El vector de Runge-Lenz se define para el caso de la fuerza de la inversa del
cuadrado (V (r) = −k/r) como:

A = p× L−mk
r

r

donde p es el momento lineal. La conservación de A (dA
dt

= 0) es una manifestación
de una simetŕıa dinámica adicional, conocida como simetŕıa accidental o simetŕıa
oculta.

1. Justificación de la Elipse y la Precesión Cero: El hecho de que A sea constante
implica que la órbita no precesa. Geométricamente, A apunta siempre a lo
largo del eje mayor de la elipse, desde el centro de fuerza hasta el periastro
(punto de máximo acercamiento).

2. Determinación de la Excentricidad: La magnitud de A está relacionada con la
excentricidad (ε) de la órbita eĺıptica:

A = mkε

La existencia de esta tercera magnitud conservada (un vector de tres componen-
tes, con dos restricciones cinemáticas internas, dejando un grado de libertad adicio-
nal) eleva la simetŕıa del problema del grupo O(3) (rotaciones, asociado a L) a un
grupo de simetŕıa superior, O(4), que es el grupo de rotaciones en cuatro dimensio-
nes. Es esta simetŕıa superior la que fuerza la cerrazón exacta de la elipse y previene
cualquier precesión a lo largo del tiempo. Los demás potenciales centrales no poseen
un vector de conservación adicional de esta ı́ndole, lo que explica por qué sus órbitas,
al ser perturbadas, exhiben precesión y no se cierran de manera exacta.
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3.2.4. Órbitas Cerradas No Eĺıpticas: El Caso de la Fragili-
dad Dinámica

La aseveración de que solo las elipses constituyen órbitas cerradas es, sorprenden-
temente, incorrecta. Si bien los casos n = 1 y n = 2 producen las elipses universales,
existen otras curvas cerradas que no son elipses y se dan en casos ĺımite:

Para n = 1 (Gravitación): La ecuación de la órbita es 1
r
= B + A cos θ (Elipse

con foco en el polo).

Para n = 2 (Armónico): La ecuación es 1
r2

= B + A cos 2θ (Elipse con centro
en el polo).

Otras curvas cerradas satisfacen la condición de conmensurabilidad únicamente bajo
una restricción severa en las condiciones iniciales (por ejemplo, E = 0 o una relación
espećıfica entre E y L).

El potencial V (u) = k′u4 − ku3, por ejemplo, genera la trayectoria limacón de
Pascal r = A + B cos θ para E = 0. Análogamente, el potencial V (u) = ku6 − k′u4

genera una lemniscata 1
r2

= B + A cos 2θ para E = 0.
El potencial efectivo para estos casos ĺımite presenta un máximo y un mı́nimo

en E = 0. La curva cerrada existe solo si los parámetros E y L se seleccionan con
precisión absoluta. Esto implica que estas órbitas son intŕınsecamente frágiles; una
desviación infinitesimal en E o L rompe la conmensurabilidad, resultando en una
órbita que precesa en lugar de cerrarse.

La grandeza conceptual del teorema de Bertrand reside en su capacidad para
seleccionar exclusivamente los potenciales con órbitas eĺıpticas como soluciones es-
tables. Para cualquier otro potencial, la órbita cerrada es un caso ĺımite inestable.
Todas las órbitas cerradas no eĺıpticas son dinámicamente frágiles.

La fascinación final por la elipse se basa en sus simetŕıas. El ćırculo, con simetŕıa
infinita, impide la identificación de un potencial único. La elipse, en cambio, posee
dos ejes de simetŕıa distintivos:

Si el centro de fuerza coincide con el centro geométrico (Potencial Armónico),
la simetŕıa es total (n = 2).

Si el centro de fuerza coincide con uno de los focos (Potencial Gravitatorio),
la simetŕıa se reduce a un solo eje (n = 1), coincidiendo con la dirección del
vector de Runge-Lenz.
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La ley de gravitación newtoniana, al imponer la geometŕıa del foco (n = 1), establece
un v́ınculo directo entre la simetŕıa reducida, la existencia del Vector de Runge-Lenz
y la estabilidad inherente, confiriendo a la elipse su relevancia fundamental en la
f́ısica.
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Los potenciales isócronos de Hénon

4.1. Concepto de potencial isócrono

El concepto de potencial isócrono fue propuesto por Michel Hénon en los años
1950´s [11][12] y lo desarrollo en su estudio enfocado en los cúmulos globulares.
Hénon se hizo la siguiente pregunta básica:

¿Qué potenciales podŕıan liderar el periodo de oscilación que dependa

solo de la enerǵıa y no del momento angular?

Resolvió el problema a través de los potenciales isócronos. El problema de Hénon ha
sido explorado desde diferentes perspectivas y en años recientes ha atráıdo la aten-
ción de los investigadores. El problema de Hénon fue resuelto a través de diferentes
metodoloǵıas [5][9][14][15].
Presentamos una solución usando integración de Abel [17]. Se comienza por presen-
tar el problema de fuerza central, su dinámica está descrita por E y L :

E =
1

2
ṙ2 + U(r) (4.1.1)

donde U(r) representa el potencial efectivo y por simplificar se toma m = 1.

U(r) = V (r) +
ℓ2

2r2
(4.1.2)
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con V (r) siendo el potencial central. En (4.1.3) se muestra la expresión para el ángulo
azimutal que es un resultado bien conocido en la literatura

Θ(E, ℓ) =

∫ rmax

rmin

ℓ

r2
1√

2[E − U(r)]
dr (4.1.3)

que representa el ángulo de variación entre los puntos de menor y mayor aproximación
al cuerpo central, periapsis y apoapsis y el periodo radial está dado por

T (E, ℓ) =
√
2

∫ rmax

rmin

1√
E − U(r)

dr (4.1.4)

Estas son dos cantidades fundamentales en el análisis del problema de dos cuerpos
en campo central. Note que el ángulo apsidal, definido como ángulo de variación
durante un periodo radial, es dos veces el ángulo azimutal. La condición de isocrońıa
es equivalente a requerir que el periodo radial T no dependa del momento angular
ℓ. Hénon mostró que la condición de isocrońıa requiere:

(ax+ bY )2 + cx+ dY + e = 0 (4.1.5)

donde x = 2r3 y Y (x) = xV (
√
x/2) son conocidas como las variables de Hénon y a, b,

c, d y e son constantes que pueden ser expresadas en términos de la dinámica original.

A partir de (4.1.5) se pueden desprender los potenciales de Newton y armónicos:

VNe = −k
r
, Vha =

k

2
r2 (4.1.6)

son los potenciales isócronos más simples. Sus periodos correspondientes son:

TNe =
πk√
2|E|3

, Tha =
π

k
(4.1.7)

Se puede observar que no dependen de ℓ. El problema de isocrońıa de Hénon involucra
el teorema de Bertrand en el sentido que los dos potenciales isócronos que llevan
a órbitas cerradas son isócronos triviales, pero también existen otros potenciales
isócronos que no son cerrados. Los potenciales derivados de (5), además de ser casos
de Bertrand, son llamadas potenciales de Hénon:

VHe(r) = − k

b+
√
b2 + r2

(4.1.8)
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Y los potenciales Vbo y Vho son:

Vbo(r) =
k

b+
√
b2 − r2

, Vho(r) = − k

r2

√
r2 − b2 (4.1.9)

Es necesario observar que los potenciales Vbo y Vho no están definidos para todo r.
Si V (r) es un potencial isocrono, entonces V (r) +ϵ + Λ/r2 también lo será a partir
de agregar algunos términos extra.
Una de las condiciones necesarias son la suavidad, aunque solo basta que sea con-
tinuamente diferenciables en contraste con otras condiciones en la literatura que
requieren que V (r) sea anaĺıtica, ver [9][16].
Estas aproximaciones permiten mostrar que todos los potenciales isocronos de la
familia (4.1.8) y (4.1.9) tienen periodo radial T 2 ∝ |E|−3 y sus órbitas pueden ser
llevadas a un problema t́ıpico de Kepler.

4.2. Problema Inverso de Fuerza Central

Para obtener el potencial efectivo U en términos de T y Θ, es conveniente usar
un cambio de variable para la integración [27], de r a U , tal que r1(U) ≤ r2(U) son
dos ramas de la función inversa para U(r) cerca de un mı́nimo local U0 = U(r0).
Entonces la integración es∫ rmax

rmax

dr =

∫ U0

E

dr1
dU

dU +

∫ E

U0

dr2
dU

dU (4.2.1)

y escribiendo (4.1.3) y (4.1.4):

Θ(E, ℓ) =
ℓ√
2

∫ E

U0

1√
E − U

d

dU
(
1

r1
− 1

r2
) dU (4.2.2)

Y

T (E, ℓ) =
√
2

∫ E

U0

1√
E − U

d

dU
(r2 − r1) dU (4.2.3)

Las ecuaciones de tipo (4.2.2) y (4.2.3) pueden ser invertidas a través de la integración
de Abel: si f y g son funciones tal que:

f(u) =

∫ u

u0

g(v)√
u− v

dv (4.2.4)
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entonces:

g(v) =
1

π

d

dv

∫ u

u0

f(u)√
u− v

du (4.2.5)

Para nuestro propósito es suficiente que f(u) sea continuamente diferenciable en el
intervalo I = [u0, u1] para asegurar que g(v), no necesariamente continua, es solución
única en el intervalo I. Entonces, aplicando la integración de Abel a (4.2.2) y (4.2.3):

1

r1
− 1

r2
=

√
2

πℓ

∫ U

U0

Θ(E, ℓ)√
U − E

dE (4.2.6)

r2 − r1 =
1√
2π

∫ U

U0

T (E, ℓ)√
U − E

dE (4.2.7)

4.3. Soluciones Isócronas

La condición de isocrońıa, el requerimiento que el periodo radial T no dependa del
momento angular, ℓ es totalmente equivalente a la condición que el ángulo azimutal
no dependa de la enerǵıa E. Esto puede ser visto como la identidad:

∂T

∂ℓ
= −2

∂Θ

∂E
(4.3.1)

Que a su vez puede ser deducida a través de la acción radial:

Ar(E, ℓ) =
√
2

∫ rmin

rmax

√
E − U(r, ℓ) dr (4.3.2)

recordando que:

T = 2
∂Ar

∂E
. Θ = −∂Ar

∂ℓ
(4.3.3)

Y, por tanto, asumiendo la condición de isocrońıa Θ = πλ(ℓ), la condición de di-
ferenciabilidad continua para la inversión de Abel es trivial y puede ser integrada
directamente como:

1

r1
− 1

r2
= βℓ

√
U − U0 (4.3.4)

donde βℓ = 2
√
2λ(ℓ)/ℓ, donde λ es un número racional de acuerdo al teorema de

Bertrand, independiente de ℓ. El lado izquierdo de la eecuacion (4.3.4) es una fun-
ción suave para U > U0 y esto implica que ambos r1(U) y r2(U) son suaves y que
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consecuentemente U(r) también será una función suave con una posible excepción en
sus mı́nimos U0 = U(r0). Se supone que V (r) no es suave, por ejemplo, en el punto
r = r2. A menos que V (r) tenga una falta de suavidad que se cancele en exactamente
r = r1, entonces la ecuación (4.3.4) no se cumplirá, con la única excepción correspon-
diente a la falta de suavidad ubicada precisamente en r = r0, el único punto común
de las dos ramas.
Pero incluso si admitimos un potencial V (r) “afinado” que tenga exactamente térmi-
nos no suaves en r = r1 y r = r2, dichos términos dependerán necesariamente de
ℓ, y esto queda excluido por la descomposición del potencial efectivo (4.1.2) en una
barrera centŕıfuga y un potencial central puro, que nunca debe depender de ℓ.
El caso de la integral (4.2.7) es diferente. La condición de isocrońıa no impone nin-
guna restricción a la función T = T (E), es, en principio, una función completamente
arbitraria. Sin embargo, podemos escribir el lado derecho de (4.2.7) en una forma
funcional conveniente, sin pérdida de generalidad, como

r2 − r1 =

√
U − U0

h(U,U0)
(4.3.5)

donde h(U,U0) es una función arbitraria indeterminada. Para simplificar notación,
se denotará esta función simplemente como h(u). Es importante resaltar que (4.3.5)
es simplemente una definición de la función h(U), por lo tanto, no hay perdida de
generalidad en esta elección, cuya principal motivación proviene del hecho de que U
debe tener un mı́nimo local en r = r0 para poder garantizar la existencia de órbitas
acotadas. Una expansión de series de Taylor de U arroja U−U0 → [U ′′(r0/2](r1,2−r0)2
como r1,2 → r0 de modo que (4.3.5) puede ser localmente verificada, con h(U0 =√
U ′′(r0)/8.

Aśı, (4.3.5) captura las caracteŕısticas del comportamiento de U(r), que debe tener
un mı́nimo local en r0. Es importante señalar que el argumento de las series de Taylor
es solo una motivación para obtener (4.3.5), aqúı no es necesario ningún supuesto
de regularidad adicional sobre U alrededor de su mı́nimo en r0. También hay que
notar que el lado izquierdo de (4.3.5) es suave para U > U0 como consecuencia de la
condición de isocrońıa, se tiene que h(U) también es una función suave para U > U0.
La conveniencia de la elección (4.3.5) quedará claro resolviendo las ecuaciones (4.3.4)
y (4.3.5) para las dos ramas r1,2(U), lo que lleva a√

U − U0 = r2h(U)−
1

βℓr2
= −[r1h(U)−

1

βℓr1
] (4.3.6)
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de donde se tiene

U − U0 = [rh(U)− 1

βℓr
]2 (4.3.7)

Como se puede observar la elección de (4.1.21) permite obtener expresiones simétri-
cas en (4.3.6) para ambas ramas r1,2(U) y, consecuentemente, una única expresión
(4.3.7) válida para toda r.
La condición de isocrońıa es ahora equivalente a la existencia de soluciones de (4.3.7)
para el potencial central efectivo U y, esto es suficiente para limitar la función des-
conocida h(U). La clave está en que el potencial efectivo U(r) no es una función
arbitraria de r y ℓ pero este debe tener la forma de (4.1.2), con un V (r) que no
dependa dé ℓ. Entonces la ecuación (4.3.7) se lee

r2h2(U)− 2h(U)

βℓ
= V (r) + C(ℓ)r−2 − U0 (4.3.8)

con C(ℓ) = ( ℓ
2

2
− 1

β2
ℓ
). Hay que observar U0 también puede depender de ℓ. La ecuación

(4.3.8) fija los términos dependientes de ℓ y esto resulta y esto resulta ser una fuerte
restricción sobre las posibles funciones h(U). Por ejemplo, se puede observar que
(4.3.8) tendrá soluciones de la forma (4.1.2) para polinomio h(U) solo para el caso
lineal.
Recordando que el potencial efectivo para un V (r) atractivo es dominado por una
barrera centŕıfuga para r → 0. Examinando este ĺımite en (4.3.8), para el término
r2h2 del lado izquierdo, se tiene que una función polinómica h(U) de grado n, por
ejemplo, dará origen a un término proporcional a ℓ4n/r

4n−2
, que estará desequilibrado

con respecto del lado derecho, al menos que n = 1. Se volverá al caso general h(U).
Asumiendo una expresión lineal como h = αU + γ y multiplicando ambos lados de
(4.3.7) por r2 se tiene

[αr2V + γr2 +
αℓ2

2
− 1

βℓ
]2 − r2V − ℓ2

2
+ r2U0 = 0 (4.3.9)

donde (4.1.2) fue empleada para esta expresión. Se puede observar que se tuvo la
parábola de Hénon que está en (4.1.5). sin más supuesto que continuidad diferenciable
en V (r) y la condición isocrońıa. La expresión general H = αU + γ se reduce a dos
casos cualitativamente distintos: α = 0 o γ = 0. Si ambos coeficientes no desaparecen,
se puede reescribir h = α(U + γ/α), y entonces γ/α puede ser ignorado, sin perdida
de generalidad, otro caso, podŕıa significar agregar una constante al potencial V.
El caso más simple que se presenta es si la constante h(U) =

√
k/2, lo que arroja
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el potencial armónico isotrópico Vha(r) en (4.1.6), junto con la condición de órbita
cerrada λ = 1/2, y, por tanto, es solución del Teorema de Bertrand. Nótese que, en
este caso, de (4.3.7), se tiene U0 = ℓ

√
k, como se esperaba para el potencial armónico.

El segundo caso, h(U) = αU , es un poco más complicado. Se tiene de (4.3.9) en este
caso

r2V 2 − (
1

α2
− ℓ2 +

ℓ√
2αλ

)V + (
U0

α2
+

c

r2
) = 0 (4.3.10)

donde se tiene

−ℓ
2

2
(
1

α2
− ℓ2

2
+

ℓ√
2αλ

− 1

4α2λ2
) = c (4.3.11)

El primer grupo de soluciones para potenciales isócronos proviene de c = 0, después
de introducir los parámetros

1

α2
− ℓ2 +

ℓ√
2λ

= 2bk − U0

α2
= ±k2 (4.3.12)

donde k > 0 y b ≥ 0, resultando en los siguientes potenciales atractivos

V∓(r) =
∓k

b+
√
b2 + r2

(4.3.13)

que corresponden a los potenciales Hénon VHe(r)yVbo(r) respectivamente, se puede
ver (4.1.8) y (4.1.9). Los parámetros α y λ que conducen a las soluciones

α = ∓1

ℓ

1√
1 + 2bk/ℓ2 ± 1 + 4bk/ℓ2

(4.3.14)

λ =
1

2
(1± 1√

1 + 4bk/ℓ2
) (4.3.15)

El segundo tipo de solución surge de ajustar los parámetros

1

α2
− ℓ2 +

ℓ√
2αλ

= 0 (4.3.16)

c = b2k2, −U0

α2
= k2

donde k > 0 y b ≥ 0, resultando en el potencial atractivo

V (r) = −k
√
r2 − b2

r2
(4.3.17)
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que es el potencial isócrono restante Vho(r). Los parámetros α y λ para este caso son

α = −1

ℓ

1√
1 +

√
1 + (2bk/ℓ2)2

(4.3.18)

λ =
1√
2

√
1 +

√
1 + (2bk/ℓ2)2

1 + (2bk/ℓ2)2
(4.3.19)

Obsérvese que el potencial Newtoniano es un caso particular del potencial Hénon en
(4.3.13) y el potencial ”hueco”(4.3.17), en ambos casos con b = 0, con la condición
de órbita cerrada λ = 1, como también se esperaba del teorema de Bertrand. Nótese,
que el potencial Hénon (4.1.8) y el potencial acotado (4.1.9) pueden ser escritos como

VHe(r) =
kb

r2
− k

r2

√
b2 + r2 (4.3.20)

Vbo(r) =
kb

r2
− k

r2

√
b2 − r2 (4.3.21)

de donde se puede observar que ambos potenciales V∓(r) surgen para b < 0 en (4.1.28)
corresponde a algún (ϵ,Λ)-gauge redefiniciones de potenciales isócronos estándar,
completando todos soluciones que podemos obtener de (4.3.9).

4.4. Los potenciales isócronos son Keplerianos

Obsérvese que las ecuaciones (4.2.3) y (4.3.5) implican que

T (E) =
√
2

∫ E

U0

1√
E − U

d

dU

√
U − U0

h(U)
dU (4.4.1)

Para el caso del potencial armónico isotrópico, de la sección anterior se sabe que
h(U) =

√
k/2 y, por tanto, de (4.4.1) se tiene

T (E) =
π√
k

(4.4.2)

El siguiente grupo de potenciales isócronos se vuelve más interesante. Usando h(U) =
αU y |U0| = α2k2.
También se puede obtener la tercera ley de Kepler

T 2 =
4π2

k
a3 (4.4.3)
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Para obtener la tercera ley de Kepler, se debe encontrar una longitud orbital carac-
teŕıstica a que es inversamente proporcional a la enerǵıa E. El punto de inicio es
la ecuación peripasis y apoapsis, V (r) + ℓ2/2r2 = E. Para los potenciales isócronos
(4.3.13), se define ξ± =

√
b2 + r2 que a su vez satisface la siguiente expresión

|E|ξ2± − kξ± + (kb+
ℓ2

2
− |E|b2) = 0 (4.4.4)

y por tanto

a± =

√
b2 ± r2max +

√
b2 ± r2min

2
=

k

2|E|
(4.4.5)

De forma similar, se para el potencial isócrono (4.3.17) ahora se define ξ =
√
r2 − b2

que satisface

|E|ξ2 − kξ + (
ℓ2

2
− |E|b2) = 0 (4.4.6)

y por tanto

a =

√
r2max − b2 +

√
r2min − b2

2
=

k

2|E|
(4.4.7)

Para los casos con b = 0, a corresponde al eje semi mayor del problema de Kepler.
El hecho de los potenciales isócronos (4.3.13) y (4.3.17) tengan el mismo periodo
Kepleriano (4.4.3) no es coincidencia. Resolviendo la ecuación de movimiento bajo
enerǵıa constante (4.1.1)

t =
1√
2

∫
1√

E − V (r)− ℓ2/2r2
dr (4.4.8)

y para que todos estos potenciales tengan una forma Kepleriana

t =
1√
2

∫
1√

E∗ + k/ξ − ℓ2∗/2ξ
2
dr (4.4.9)

y realizando un cambio de variables ξ± =
√
b2 ± r2 para los potenciales isócronos

(4.3.13), con parámetros orbitales

E∗ = ±E, ℓ2∗
2

=
ℓ2

2
+ kb+ E∗b

2 (4.4.10)

y ahora efectuando un cambiando de variable ξ =
√
r2 − b2 para el potencial (4.3.17),

con parámetros orbitales

E∗ = E ,
ℓ2∗
2

=
ℓ2

2
− E∗b

2 . (4.4.11)
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Caṕıtulo 4 Estudio de Sistemas Dinámicos Isocronos

Configurando los parámetros

p =
ℓ2∗
k
, e =

√
1 +

2E∗ℓ2∗
k2

. (4.4.12)

Ahora se tiene un problema de Kepler que conduce a las siguientes soluciones pa-
ramétricas

ξ = a(1− e cosψ), t =

√
a3

k
(ψ − e sinψ) (4.4.13)

ξ =
p

2
(1 + ψ2), t =

1

2

√
p3

k
(ψ +

ψ3

3
) (4.4.14)

ξ = a(e coshψ − 1), t =

√
a3

k
(e sinhψ − ψ) (4.4.15)

para E∗ < 0, E∗ = 0, y E∗ > 0, respectivamente, donde la condición inicial ξ toma
el valor mas pequeño en t = 0 para todos los casos.
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Caṕıtulo 5

Isocronismo de las series Taylor
truncadas de los potenciales
efectivos de Kepler y Hénon

5.1. Los potenciales isócronos de la astrof́ısica y

sus series de Taylor truncadas alrededor de

sus mı́nimos

En este caṕıtulo se analiza localmente (por expansiones de Taylor trunca-
das) el potencial de Kepler y los tres potenciales de Hénon que son formas
deformadas por un parámetro b del potencial de Kepler. En la literatura
se sabe que estos potenciales radiales tienen isocronismo definido como
independencia de los periodos de los movimientos periódicos del momento
angular. En este caṕıtulo se muestra como las series de Taylor truncadas
[19] de estos potenciales calculadas alrededor de sus mı́nimos convergen
hacia la propiedad de isocronismo.

5.1.1. Introducción

Los Hamiltonianos para estudiar del punto de vista del isocronismo pueden es-
cribirse de forma compacta como:
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Hj(r, ṙ; r0, b, l) =
ṙ2

2m
+ Uj(r; a, b, l) =

ṙ2

2m
+

l2

2mr2
+ Vj(r; r0, b) , (5.1)

donde Uj(r; r0, b, l) es el potencial efectivo con Vj(r; r0, b) la expansión en series
de Taylor a orden j alrededor del mı́nimo r0 de los potenciales sin truncamiento V∞
definidos como potencial gravitacional (de Kepler) para b = 0 y los potenciales de
Hénon para b ̸= 0 que son potenciales gravitacionales de Kepler deformados a través
del parámetro b. En forma explicita de sumatoria de Taylor truncada, los potenciales
efectivos se escriben como:

Uj(r; r0, b, l) =
l2

2mr2
+

j∑
n=0

V(n)
∞ (r, b)

∣∣
r0

n!
(r − r0)

n (5.2)

donde V(n)
∞

∣∣
r0

es la derivada de orden n de V∞ calculada en el punto r = r0. Por lo
tanto los Hamiltonianos a estudiar serán:

Hj(r, ṙ; a, b, l) =
ṙ2

2m
+

l2

2mr2
+

j∑
n=0

V(n)
∞ (r, b)

∣∣
r0

n!
(r − r0)

n . (5.3)

Esta forma reduce el problema original a un Hamiltoniano Hj = p2 + l
2mr2

+
Pj(r − r0), donde Pj(r − r0) es un polinomio de grado j en potencias de (r − r0).

Para estudiar Hamiltonianos en el contexto de sistemas dinámicos es necesario
construir el sistema Hamiltoniano asociado, que consiste en escribir las ecuaciones
clásicas de Hamilton:

{
ṙ =

∂Hj

∂p

ṗ = −∂Hj

∂r

(5.4)

Para este sistema dinámico podemos deducir los puntos de equilibrio, tomando
ṙ = 0, ṗ = 0 en los cuales el sistema permanece en equilibrio infinitamente. Además
si las ecuaciones ṗ = ṙ = 0 tienen solo ráıces imaginarias entonces el sistema Hamil-
toniano no tiene un centro en el espacio de fase.

Para
∂Hj

∂p
= 0 se obtendrá siempre que p = 0, dada la forma del Hamiltoniano, sin

embargo para el caso −∂Hj

∂r
= 0 se obtiene una función que depende del parámetro

del potencial de Hénon (b) y del punto alrededor del cuál se realiza la expansión en
serie (r0) por tanto si se buscan órbitas cerradas se debe fijar uno de los parámetros
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y localizar la región en la cuál se obtienen ráıces reales positivas, esto último porque
el Hamiltoniano es radial.

En este caṕıtulo se tomarán algunos casos del conjunto (r0, b) con órbitas pe-
riódicas y se indican también las coordenadas del centro, esta información se obtuvo
de forma numérica y coincide con los gráficos mostrados.

Además, se calculan los periodos de los movimientos periódicos para todos estos
casos a través de la fórmula clásica del periodo de oscilación de una part́ıcula de
masa m en un pozo unidimensional U(r) entre los dos puntos de retorno r1 y r2
(donde U(r) = E) que está dada por la integral, ver [7]:

T =
√
2m

∫ r2

r1

dr√
E − U(r)

. (5.5)

5.1.2. Potencial de Kepler: VK(r) = −k
r

En el caso b = 0 se tiene el potencial de Kepler V∞(r) = −k
r
, con k la constante

gravitacional. Al aplicar una expansión en serie de Taylor a primer orden se obtiene
un potencial lineal en r:

V1(r; r0, 0) =
k(r − r0)

r20
− k

r0
. (5.6)

El Hamiltoniano es:

H1(r, r
′; r0, 0, l) =

ṙ2

2m
+

l2

2mr2
+
k(r − r0)

r20
− k

r0
(5.7)

y el sistema dinámico Hamiltoniano se escribe:{
∂H1

∂p
= p

m

−∂H1

∂r
= l2

mr3
− k

r20

(5.8)

Para encontrar el punto critico (el centro) del sistema se establece que k = 1, l =
1,m = 1/2 para después efectuar la expansión Taylor en la vecindad del mı́nimo del
potencial efectivo en r0 = 2 lo que lleva a:

{
∂H1

∂p
= p

m
,

−∂H1

∂r
= 2

r3
− 1

4
,

(5.9)
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donde la última ecuación tiene una sola raiz para −∂H1

∂r
= 0 en r01 = r0 = 2. La

representación gráfica para este caso y el caso no truncado se puede observar en las
figuras 5.1 y 5.2

En orden 2, se tiene:

V2(r, 0) = −k(r − r0)
2

r30
+
k(r − r0)

r20
− k

r0
. (5.10)

con el Hamiltoniano

H2(r, r
′) =

ṙ2

2m
+

l2

2mr2
− k(r − r0)

2

r30
+
k(r − r0)

r20
− k

r0
(5.11)

y el sistema Hamiltoniano:

∂H2

∂p
=

p

m
(5.12)

−∂H2

∂r
=

l2

mr3
+

2k(r − r0)

r30
− k

r20
(5.13)

∂H2

∂p
=

p

m
(5.14)

−∂H2

∂r
=

2

r3
+
r − 2

4
− 1

4
. (5.15)

En este caso, hay dos ráıces reales de ∂H2/∂r = 0 en r02 = r0 = 2 y rM2 =
2,467, pero solamente la primera corresponde al mı́nimo del potencial mientras que
la otra corresponde al valor máximo de la enerǵıa para obtener puntos de retorno.
La existencia de estos puntos de equilibrio aseguran órbitas cerradas en el plano de
fase, de manera similar al caso de orden 1 como se puede notar en la figura 5.3.
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Figura 5.1: Potenciales efectivos de Kepler sin truncamiento (color azul) y truncado
a orden 1 (color rojo) para r01 = r0 = 2, l = k = 1,m = 1/2 y los valores indicados
de enerǵıa E.

(a) (b)

Figura 5.2: (a) Plano de fase para el potencial efectivo de Kepler sin truncamiento
mostrando periodicidad para las enerǵıas indicadas. (b) Plano de fase para el po-
tencial efectivo de Kepler truncado a orden 1 mostrando la periodicidad para las E
escogidas.
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(a) (b)

Figura 5.3: (a) Potenciales efectivos de Kepler sin truncamiento (color azul) y trun-
cado a orden 2 (color rojo) para r02 = r0 = 2, l = k = 1,m = 1/2 y los valores
indicados de enerǵıa E. (b) Plano de fase mostrando movimiento periódico para las
E escogidas.

En la siguiente tabla se presentan los resultados del cálculo a través de la ecuación
(5.5) de los periodos de las trayectorias cerradas para las enerǵıas en el intervalo
[−0,246,−0,249] hasta el sexto orden de Taylor cuando el periodo converge hasta
milésimas al periodo del potencial de Kepler no truncado.

E T [Vk(r)] T [Vk,1(r)] T [Vk,2(r)] T [Vk,3(r)] T [Vk,4(r)] T [Vk,5(r)] T [Vk,6(r)]
-0.246 12.8741 7.2713 no existe 12.5117 12.9185 12.8645 12.8753
-0.247 12.7960 7.2672 16.0296 12.5344 12.8196 12.7911 12.7965
-0.248 12.7187 7.2632 14.2006 12.5516 12.7287 12.7168 12.7188
-0.249 12.6421 7.2592 13.2275 12.5625 12.6445 12.6417 12.6422

Además, se verifica que el periodo del potencial de Kepler no truncado es T (E) =
π

2|E|3/2 , es decir se respeta la tercera ley de Kepler que es una formulación cuantitativa

del isocronismo. Esto se puede notar en la figura 5.4 donde se presentan las gráficas de
T (|E|−3/2) para el potencial de Kepler no truncado y para los potenciales truncados
de órdenes más altos de la tabla anterior. En el caso de Kepler no truncado se tiene
una recta de pendiente π/2 mientras que en el caso de los Kepler truncados hay
pequeños desv́ıos de la forma lineal lo que implica no isocronismo. También se puede
apreciar de manera visual la convergencia al subir el orden de truncamiento.
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Figura 5.4: Gráficas de T (|E|−3/2) usando los datos de la primera y últimas tres
columnas de la tabla anterior.

5.1.3. Primer potencial de Hénon: VH1(r) = − k√
b2+r2+b

Este primer caso de los potenciales de Hénon no presenta singularidad en el origen
donde su valor es V H1(0) = −k/2b. El Hamiltoniano para este caso es:

Hj(r, ṙ) =
ṙ2

2m
+

l2

2mr2
+ Vj(r, b), (5.16)

donde ahora Vj(r, b) es la expansión Taylor a orden j de V H1(r). A orden uno se
tiene:

V1(r, b) =
r0k(r − r0)√

r20 + b2
(√

r20 + b2 + b
)2 − k√

r20 + b2 + b
(5.17)

El Hamiltoniano a orden uno es

H1(r, r
′) =

ṙ2

2m
+

l2

2mr2
+

r0k(r − r0)√
r20 + b2

(√
r20 + b2 + b

)2 − k√
r20 + b2 + b

(5.18)

Para este caso el sistema Hamiltoniano es:

∂H1

∂p
=

p

m
(5.19)

−∂H1

∂r
=

l2

mr3
+

2

r3
− r0√

r20 + b2
(√

r20 + b2 + b
)2 (5.20)
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El mı́nimo del potencial efectivo usando los mismos parámetros k = 1, l = 1,m =
1/2 se encuentra a r0 = 2,193 que se usaron en el cálculo de los coeficientes de Taylor.

∂H1

∂p
=

p

m
(5.21)

−∂H1

∂r
=

2

r3
− 0,189617 (5.22)

A orden dos

V2(r, b) =
r0k(r − a)√

r20 + b2
(√

r20 + b2 + b
)2 − k√

r20 + b2 + b
− (5.23)

k
(
−b2

√
r20 + b2 + 2r20

√
r20 + b2 − b3

)
(r − r0)

2

2 (r20 + b2)
3/2

(√
r20 + b2 + b

)3

Con Hamiltoniano:

H2(r, r
′) =

ṙ2

2m
+

l2

2mr2
+ V2(r, b) (5.24)

y sistema Hamiltoniano:
∂H2

∂p
=

p

m
(5.25)

−∂H2

∂r
=

l2

mr3
+− r0√

r20 + b2
(√

r20 + b2 + b
)2+ (5.26)

(
−b2

√
r20 + b2 + 2r20

√
r20 + b2 − b3

)
(r − r0)

(r20 + b2)
3/2

(√
r20 + b2 + b

)3

o, con r0 = 2,193 y b = 0,1

∂H2

∂p
=

p

m
(5.27)

−∂H2

∂r
=

2

r3
+ 0,164873(r − 2,193)− 0,189617 . (5.28)
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También en este caso hay dos ráıces reales, r0 = 2,193 y r1 = 2,776, pero sola-
mente la primera corresponde al mı́nimo del potencial efectivo. Las gráficas corres-
pondientes para el caso no truncado y truncado a primer órden se pueden observar
en las figuras 5.5 y 5.6 y para el caso truncado a segundo orden se pueden observar
en la figura 5.7, respectivamente.

Figura 5.5: Potenciales efectivos de primer caso de Hénon sin truncamiento (color
azul) y truncado a orden 1 (color rojo) empleando r0 = 2,193, b = 0,1, l = k = 1,m =
1/2 y los valores indicados de enerǵıa E.

(a) (b)

Figura 5.6: (a) Plano de fase para el potencial efectivo del primer caso de Hénon sin
truncamiento mostrando periodicidad para las enerǵıas indicadas. (b) Plano de fase
para el potencial efectivo del primer caso de Hénon truncado a orden 1 mostrando
la periodicidad para las E escogidas.
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(a) (b)

Figura 5.7: (a) Potenciales efectivos de primer caso de Hénon sin truncamiento (color
azul) y truncado a orden 2 (color rojo) empleando r0 = 2,193, b = 0,1, l = k =
1,m = 1/2 y los valores indicados de enerǵıa E. (b) Plano de fase mostrando órbitas
periódicas para las E escogidas.

La tabla de los periodos para las trayectorias cerradas en el intervalo energético
[−0,223,−0,226] hasta el sexto orden de Taylor con convergencia alcanzada a milési-
mas al periodo del primer potencial de Hénon no truncado con b = 0,1 es presenta a
continuación. Para el caso no truncado, la tercera ley de Kepler se respeta indicando
el isocronismo.

E T [V1(r)] T [V1,1(r)] T [V1,2(r)] T [V1,3(r)] T [V1,4(r)] T [V1,5(r)] T [V1,6(r)]
-0.223 14.9163 8.7511 no existe 14.4543 14.9863 14.9011 14.9186
-0.224 14.8166 8.7452 19.6017 14.4676 14.8576 14.8081 14.8176
-0.225 14.7179 8.7394 17.0237 14.4742 14.7388 14.7138 14.7183
-0.226 14.6203 8.7336 15.7645 14.4736 14.6283 14.6189 14.6204

En la figura 5.8, a continuación se presentan las gráficas de T (|E|−3/2) para el
primer potencial de Hénon no truncado y para los truncados de órdenes más altos
de la tabla anterior. De manera similar al caso de Kepler, el potencial de Hénon
respeta la forma lineal del isocronismo y los casos de los Hénon truncados presentan
desv́ıos de la forma lineal pero muestran convergencia al escalamiento isócrono con
el aumento del orden de truncamiento.
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Figura 5.8: Gráficas de T (|E|−3/2) usando los datos de la primera y últimas tres
columnas de la tabla anterior.

5.1.4. Segundo potencial de Hénon: VH2(r) = −k
√
r2 − b2/r2

Este potencial es real solamente desde r = b. A orden uno, su expresión es:

V1(r, b) =
k (r20 − 2b2) (r − r0)

r30
√
r20 − b2

− k
√
r20 − b2

r20
(5.29)

y el Hamiltoniano para este caso es

H1(r, ṙ) =
ṙ2

2m
+

l2

2mr2
+
k (a2 − 2b2) (r − a)

a3
√
a2 − b2

− k
√
a2 − b2

a2
, (5.30)

por lo tanto el sistema dinámico Hamiltoniano a orden uno es:

∂H1

∂p
=

p

m
(5.31)

−∂H1

∂r
=

l2

mr3
+

2

r3
− r20 − 2b2

r30
√
r20 − b2

(5.32)

Con k = 1, l = 1,m = 1/2, b = 0,1, se encuentra que para el caso no truncado el
mı́nimo del potencial efectivo se encuentra en r0 = 2,0074. Entonces la expansión de
Taylor se realiza alrededor de este mı́nimo. Usando estos valores numéricos para los
parámetros, el sistema dinámico Hamiltoniano se escribe:

∂H1

∂p
=

p

m
(5.33)

−∂H1

∂r
=

2

r3
− 0,247236 (5.34)
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que tiene la única ráız real r0 = 2,0074.

A orden dos:

V2(r, b) = −k
√
r20 − b2

r20
− k (2r40 − 9r20b

2 + 6b4) (r − r0)
2

2r40 (r
2
0 − b2)

3/2
+
k (r20 − 2b2) (r − r0)

r30
√
r20 − b2

(5.35)
el Hamiltoniano es:

H2(r, ṙ) =
ṙ2

2m
+

l2

2mr2
+ V ′

2,2(r, b) (5.36)

y el sistema Hamiltoniano se escribe

∂H2

∂p
=

p

m
(5.37)

−∂H2

∂r
=

l2

mr3
+

(2r40 − 9r20b
2 + 6b4) (r − r0)

r40 (r
2
0 − b2)

3/2
− r20 − 2b2

r30
√
r20 − b2

(5.38)

La expansión Taylor se calcula en la vecindad del mı́nimo del potencial de Hénon
no truncado que se encuentra en r0 = 2,0074 y se obtiene

∂H2

∂p
=

p

m
(5.39)

−∂H2

∂r
=

2

r3
+ 0,245402(r − 2,0074)− 0,247236 . (5.40)

La ecuación −∂H2/∂r = 0 tiene dos ráıces reales en r0 = 2,0074 y r2M = 2,4815,
primera corresponde al mı́nimo del potencial y la segunda a la enerǵıa máxima para
tener puntos de retorno, esto asegura la existencia de trayectorias cerradas en el plano
de fase. Para este caso, los potenciales efectivos truncados a orden uno y dos junto
con el potencial no truncado se muestran en las figuras 5.9 y 5.11(a) respectivamente
y los planos de fase para el no truncado y truncado a orden 1 en la figura 5.10(a) y
(b) respectivamente y para el truncado a segundo orden en la figura 5.11(b).
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Figura 5.9: Potenciales efectivos del segundo caso de Hénon sin truncamiento (color
azul) y truncado a orden 1 (color rojo) empleando r0 = 2,0074, b = 0,1, l = k =
1,m = 1/2 y los valores indicados de enerǵıa E.

(a) (b)

Figura 5.10: ((a) Plano de fase para el potencial efectivo del segundo caso de Hénon
sin truncamiento mostrando periodicidad para las enerǵıas indicadas. (b) Plano de
fase para el potencial efectivo del segundo caso de Hénon truncado a orden 1 mos-
trando la periodicidad para las E seleccionadas.
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(a) (b)

Figura 5.11: (a) Segundo potencial efectivo de Hénon truncado a segundo orden de
Taylor (en color rojo) y el mismo no truncado (en color azul) para r0 = 2,0074, b =
0,1, l = k = 1,m = 1/2 y (b) plano de fase del caso truncado con algunas trayectorias
cerradas.

La tabla de los periodos para las trayectorias cerradas en el intervalo energético
[−0,245,−0,248] hasta el sexto orden de Taylor mostrada a continuación presenta
las mismas caracteŕısticas de los casos anteriores.

E T [V2(r)] T [V2,1(r)] T [V2,2(r)] T [V2,3(r)] T [V2,4(r)] T [V2,5(r)] T [V2,6(r)]
-0.245 12.9530 7.3270 no existe 12.5568 13.0062 12.9414 12.9545
-0.246 12.8741 7.3229 17.2610 12.5797 12.9041 12.8679 12.8748
-0.247 12.7960 7.3189 14.7197 12.5972 12.8101 12.7932 12.7962
-0.248 12.7187 7.3148 13.5762 12.6088 12.7232 12.7179 12.7187

Las gráficas de T (|E|−3/2) para el segundo potencial de Hénon no truncado y sus
formas de series de Taylor truncadas a órdenes de 4 a 6 calculadas en el punto de
mı́nimo en la tabla anterior se presentan en la figura 5.12 donde se pueden observar
las mismas propriedades con respecto al escalamiento isócrono como en los casos
anteriores.
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Figura 5.12: Gráficas de T (|E|−3/2) usando los datos de la primera y últimas tres
columnas de la tabla anterior.

5.1.5. Tercer potencial de Hénon: VH3(r) =
k√

b2−r2+b

El tercer potencial de Hénon es real solamente para r ≤ b, con V H3(0) = k/2b y
es repulsivo.

A orden uno de la expansión de Taylor este potencial tiene la forma:

V1(r, b) =
r0k(r − r0)√

b2 − r20

(√
b2 − r20 + b

)2 +
k√

b2 − r20 + b
(5.41)

con Hamiltoniano

H1(r, ṙ) =
ṙ2

2m
+

l2

2mr2
+

r0k(r − r0)√
b2 − r20

(√
b2 − r20 + b

)2 +
k√

b2 − r20 + b
(5.42)

y sistema Hamiltoniano:

∂H1

∂p
=

p

m
(5.43)

−∂H1

∂r
=

l2

mr3
− r0k√

b2 − r20

(√
b2 − r20 + b

)2 (5.44)

Con los mismos valores numéricos de los parámetros, k = 1, l = 0,1,m = 1/2, b = 0,1,
se encuentra que el mı́nimo del potencial efectivo no truncado de este caso está en
r0 = 0,075 adentro del segmento radial en el cual el potencial es real.
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Pasando al sistema Hamiltoniano con los mismos parámetros:

∂H1

∂p
=

p

m
(5.45)

−∂H1

∂r
=

0,02

r3
− 41,0775 (5.46)

se encuentra que la única ráız real de −∂H1

∂r
= 0 está en r01 = 0,078.

A orden dos en la expansión Taylor se tiene el potencial:

V2(r, b) =
r0k(r − r0)√

b2 − r20

(√
b2 − r20 + b

)2 +
k√

b2 − r20 + b
+ (5.47)

k
(
b2
√
b2 − r20 + 2r20

√
b2 − r20 + b3

)
(r − r0)

2

2 (b2 − r20)
3/2

(√
b2 − r20 + b

)3

y el Hamiltoniano aproximado a este orden:

H2(r, ṙ) =
ṙ2

2m
+

l2

2mr2
+ V2(r, b) (5.48)

que resulta en el sistema Hamiltoniano:

∂H2

∂p
=

p

m
(5.49)

−∂H2

∂r
=

l2

mr3
− r0k√

b2 − r20

(√
b2 − r20 + b

)2− (5.50)

k
(
b2
√
b2 − r20 + 2r20

√
b2 − r20 + b3

)
(r − r0)

(b2 − r20)
3/2

(√
b2 − r20 + b

)3

Para obtener el punto de equilibrio de este sistema dinámico se usa r0 para el
mı́nimo del potencial efectivo no truncado de este caso de Hénon, es decir r0 = 0,075
y los mismos valores k = 1, l = 1,m = 1/2, b = 0,1 que nos lleva a la siguiente forma
del sistema dinámico aproximado:

∂H2

∂p
=

p

m
(5.51)

−∂H2

∂r
=

0,02

r3
− 1812,58(r − 0,075)− 41,0775 . (5.52)
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Caṕıtulo 5 Estudio de Sistemas Dinámicos Isocronos

La única ráız real de ∂H2/∂r = 0 está en r02 = 0,0767.

Gráficas similares a los casos anteriores se presentan en las figuras 5.13, 5.14 y
5.15.

Figura 5.13: Potenciales efectivos del tercer caso de Hénon sin truncamiento (color
azul) y truncado a orden 1 (color rojo) empleando r01 = 0,078, l = b = 0,1, k =
1,m = 1/2 y los valores indicados de enerǵıa E.

(a) (b)

Figura 5.14: (a) Plano de fase para el potencial efectivo del tercer caso de Hénon sin
truncamiento mostrando periodicidad para las enerǵıas indicadas. (b) Plano de fase
para el potencial efectivo del tercer caso de Hénon truncado a orden 1 mostrando la
periodicidad para las E escogidas.
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(a) (b)

Figura 5.15: (a) Potencial efectivo del tercer caso de Hénon truncado a segundo orden
de Taylor y (b) su plano de fase para movimientos periódicos para r02 = 0,0767, l =
b = 0,1,= k = 1,m = 1/2.

Finalmente, la tabla de los periodos para las trayectorias cerradas en el interva-
lo energético [8,5, 9,5] hasta el sexto orden de Taylor se muestra a continuación y
presenta caracteŕısticas semejantes a los casos precedentes.

E T [V3(r)] T [V3,1(r)] T [V3,2(r)] T [V3,3(r)] T [V3,4(r)] T [V3,5(r)] T [V3,6(r)]
8.5 0.0633 0.1190 0.0736 0.0698 0.0655 0.0653 0.0641
9.0 0.0581 0.1235 0.0729 0.0678 0.0621 0.0622 0.0599
9.5 0.0536 0.1279 0.0723 0.0659 0.0594 0.0598 0.0564
10.0 0.0496 0.1323 0.0717 0.0642 0.0572 0.0577 0.0536

El escalamiento isócrono T (|E|−3/2) para el tercer potencial de Hénon no truncado
y sus formas de series de Taylor truncadas a órdenes de 4 a 6 calculadas en el punto de
mı́nimo tomadas de la tabla anterior se presentan en la figura 5.16 donde se pueden
observar las mismas propriedades como en los casos anteriores.
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Figura 5.16: Gráficas de T (|E|−3/2) usando los datos de la primera y últimas tres
columnas de la tabla anterior.
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Caṕıtulo 6

Conclusiones

En esta tesis de maestŕıa se estudió la propiedad de isocrońıa del movimiento periódi-
co en potenciales radiales de tipo Kepler (∼ 1/r) y sus extensiones paramétricas de
tipo Hénon que en el ĺımite hacia cero del parámetro tienden al potencial de Kepler.
El isocronismo en este caso se define como dependencia del periodo del movimiento
periódico solamente de la constante de movimiento Hamiltoniana (la enerǵıa total del
sistema conservativo) e independencia de cualquier otra constante de movimiento,
en particular del momento angular.

En el caso de Kepler, esta forma estándar de isocronismo se expresa por la de-
pendencia puramente geométrica del cuadrado del periodo formulada en la tercera
ley de Kepler que se puede expresar también en dependencia únicamente de enerǵıa.

Se demostró que un formalismo en términos de álgebras de Lie desarrollado en la
literatura para el problema de Kepler no proporciona resultados consistentes en el
caso de los potenciales paramétricos de Hénon. Por otro lado, aplicando el formalismo
de sistemas dinámicos Hamiltonianos con los potenciales aproximados alrededor de
sus mı́nimos en series de Taylor truncadas se obtuvieron resultados consistentes con el
isocronismo dependiente solamente de la enerǵıa del sistema dinámico con precisión
a cuarto d́ıgito obtenida con el sexto orden de truncamiento de las series de Taylor.

Los resultados muestran que los potenciales generados con la expansión truncada
a orden impar solo admiten un conjunto limitado de enerǵıas para las cuales se
obtienen órbitas periódicas en contraste con los casos truncadas a órdenes pares
en los cuales se obtienen potenciales de tipo parabólico con un conjunto infinito
de enerǵıas admisibles que no son expĺıcitamente negativas como en el caso de los
potenciales de Kepler o Hénon.
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[13] Bertrand, J. (1873). Théorème relatif au mouvement d’un point attiré vers un
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Apéndice 1 - Teorema de Bertrand

Introducción

En 1873, Joseph Louis Francois Bertrand (1822-1900) publicó un breve, pero im-
portante art́ıculo [6] en el que demostró que solo hay dos campos centrales para los
cuales todas las órbitas delimitadas son cerradas, a saber, la ley del oscilador armóni-
co isotrópico y la ley de gravitación universal de Newton, que Bertrand llama ”La
loi de la Nature”(la ley de la naturaleza). Debido a esta simetŕıa adicional, no es de
extrañar que las propiedades más esenciales de estos dos campos fueran estudiadas
por el propio Newton, quien las analiza en la Proposición X y en la Proposición XI
del Libro I de sus Principia. Newton demuestra que ambos campos dan lugar a una
órbita eĺıptica con la diferencia de que en el primer caso la fuerza se dirige hacia el
centro geométrico de la elipse y en el segundo caso la fuerza se dirige a uno de los
focos.
El art́ıculo de Bertrand apareció en las Comptes Rendus de la Académie des Scien-
ces de Paŕıs donde se publicaron las memorias y comunicaciones de los miembros
y corresponsales de esa academia de ciencias francesa. La sesión académica en que
Bertrand presentó su ponencia tuvo lugar el lunes 20 de octubre de 1873. El resul-
tado de Bertrand, también conocido como teorema de Bertrand, sigue fascinando a
las viejas y nuevas generaciones de f́ısicos interesados en la mecánica clásica y, como
era de esperar, se siguen publicando art́ıculos dedicados a ella.
La prueba de Bertrand es concisa y elegante y, contrariamente a lo que a uno podŕıa
inducir a pensar gracias a una serie de demostraciones perturbativas que se pueden
encontrar en la literatura, los libros de texto y los art́ıculos modernos sobre el tema,
es completamente no perturbativa. Hasta la fecha no hay una versión en español del
art́ıculo de Bertrand. En este anexo, se provee una versión basada en la traducción
de la versión en inglés que está accesible en el ArXiv desde 2007 [13].
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Teorema relativo al movimiento de un punto atráıdo

hacia un centro fijo; por el Sr. J. Bertrand.

Las órbitas planetarias son curvas cerradas; esta es la causa principal de la esta-
bilidad de nuestro sistema planetario, y esta importante circunstancia surge de la ley
de atracción que, cualquiera que sea la circunstancias iniciales, hace que cada cuerpo
celeste que no sea expulsado de nuestro sistema siga la circunferencia de una elipse.
Hasta ahora no se ha observado que la ley de atracción de Newton sea la única que
cumple esta condición.
Entre las leyes de atracción que suponen nula la acción a una distancia infinita, la de
la naturaleza es la única según la cual un cuerpo móvil lanzado arbitrariamente con
una velocidad inferior a un cierto ĺımite y arrastrado hacia un centro fijo, describe
necesariamente una curva sobre este centro. Todas las leyes de la atracción permiten
órbitas cerradas, pero la ley de la naturaleza es el único que los impone.
La prueba del teorema se muestra a continuación: sea φ(r) la atracción ejercida sobre
una distancia r sobre la part́ıcula que se encuentra a la distancia r y con respecto al
centro de atracción que se toma como origen de las coordenadas. Denotando por r
y θ las dos coordenadas polares del cuerpo móvil, y se tiene la siguiente fórmula.

φ(r) =
k2

r2
(
1

r
+
d2 1

r

dθ2
)

y haciendo un cambio de variable: 1
r
= z.

r2φ = ψ(z) (1)

d2z

dθ2
+ z − 1

k2
ψ(z) = 0

Se multiplican ambos miembros por 2 dz e integrando

(
dz

dθ
)2 + z2 − 1

k2
ω(z)− h = 0 (2)

h siendo una constante.
De esto se deduce que

dθ = ± dz√
h+ 1

k2
ω(z)− z2
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Si la curva representada por la ecuación que une z con θ es cerrada, el valor de z
tendrá máximos y mı́nimos para los cuales dz/dθ será nulo y el vector radio corres-
pondiente, normal a la trayectoria, necesariamente habrá ejes de simetŕıa para la
misma. Ahora cuando una curva admite dos ejes de simetŕıa, la condición necesaria
y suficiente para que sea cerrado es que su ángulo sea conmensurable con π. Por lo
tanto, si α y β representan un mı́nimo de z y el máximo que le sigue respectivamente,
la condición requerida se expresa mediante la ecuación

mπ =

∫ β

α

dz√
h+ 1

k2
ω(z)− z2

(3)

donde m denota un numero conmensurable. Esta ecuación debe tener cualquier h y
k que puedan ser y consecuentemente, los limites α y β que dependan de ellos.
Se tiene

h+
1

k2
ω(α)− α2 = 0

h+
1

k2
ω(β)− β2 = 0

consecuentemente
1

k2
=

β2 − α2

ω(β)− ω(α)

h =
α2ω(β)− β2ω(α)

ω(β)− ω(α)

y la ecuacion (3) se convierte

mπ =

∫ β

α

√
ω(β)− ω(α) dz√

α2ω(β)− β2ω(α) + (β2 − α2)ω(z)− [ω(β)− ω(α)]z3
(4)

La función ω(z) debe ser tal que esta ecuación sea válida para todos los valores α y
β. Más aún, el número conmensurable m debe ser una constante, porque si variara
de una órbita a otra, una variación infinitamente pequeña de las condiciones iniciales
produciŕıa una variación finita del número y la disposición de los ejes de simetŕıa de
la trayectoria.
Se asume que α y β difieren infinitesimalmente: dado

β = α + u
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z estando incluida entre α y β. se fija

z = α + γ

Y γ será, tal como u, infinitamente pequeña. Despreciando lo infinitamente pequeño
de segundo orden se tiene √

ω(β)− ω(α) =
√
uω′(α)

En la expresión bajo el signo radical en el denominador de la integral (4) los in-
finitamente pequeños de primer orden se reducen a cero, y lo mismo ocurre con
los de segundo; son esos de tercero que son necesarios mantener, y descuidando lo
infinitamente pequeño de cuarto orden uno tiene

α2ω(β)− β2ω(α) + (β2 − α2)ω(z)− z3[ω(β)− ω(α)] = [ω′(α)− αω′′(α)](u2γ − uγ2)

La ecuación (4) se convierte

mπ =

∫ u

0

dγ
√
ω′(α)√

[ω′(α)− αω′′(α)
√
uγ − γ2

(5)

es decir, realizar la integración y suprimir factores comunes

m =

√
ω′(α)

ω′(α)− αω′′(α)

o
(1−m2)ω′(α) +m2ω′′(α) = 0

De esto se deduce que

ω′(α) =
A

α1/m2−1

ω(α) = A
α2−1/m2

2− 1
m2

+B

A y B denotando constantes.
De las relaciones asumidas entre las funciones ω, ψ y φ se tiene que

ψ(z) =
A

2z1/m2−1
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ψ(r) =
A

2
r1/m

2−3

Ésta es la única ley posible de atracción, denotando aqúı m cualquier número con-
mensurable; pero de esto no se sigue que cumpla todas las condiciones de la propo-
sición para cualquier m. De hecho, se debe tener para los valores de α y β,

mπ =

∫ 1

0

dz
√

1

β1/m2−2
− 1

α1/m2−2

α2

β1/m2−2
− β2

α1/m2−2
+ (β2 − α2) 1

z1/m
2−2

− z2( 1

β1/m2−2
− 1

α1/m2−2
)

(6)

A continuación se asume inicialmente que 1/m2 − 2 es negativo, también se asume
que α = 0, β = 1, la ecuación se convierte

mπ =

∫ 1

0

dz√
1

z1/m
2−2

− z2
=

∫ 1

0

z1/2m
2−1dz

1− z1/m2

y de la ecuación (6) se obtiene
mπ = m2π

m = 1

La correspondiente a la ley de atracción es

φ(r) =
A

r2

Si se asume que 1/m2 − 2 es positivo, la ecuación (6) para α = 1, β = 0,

mπ =

∫ 1

0

dz√
1− z2

=
π

2

De esto se deduce que m = 1/2, y la correspondiente ley de atracción es

φ(r) = Ar

Por lo tanto, solo dos leyes cumplen las condiciones requeridas, la de la naturaleza,
por lo cual la órbita cerrada tiene solo un eje de simetŕıa que pasa a través del centro
de acción, y la atracción proporcional a la distancia. por lo cual hay dos.
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