dc.contributor.author | Planat, Michel | |
dc.contributor.author | Rosu Barbus, Haret-Codratian | |
dc.contributor.author | Perrine, Serge | |
dc.contributor.editor | Springer | |
dc.date.accessioned | 2018-03-21T23:42:22Z | |
dc.date.available | 2018-03-21T23:42:22Z | |
dc.date.issued | 2006 | |
dc.identifier.citation | Planat, M., Rosu, H.C. & Perrine, S. Found Phys (2006) 36: 1662. https://doi.org/10.1007/s10701-006-9079-3 | |
dc.identifier.uri | http://hdl.handle.net/11627/3468 | |
dc.description.abstract | "The basic methods of constructing the sets of mutually unbiased bases in the Hilbert space of an arbitrary finite dimension are reviewed and an emerging link between them is outlined. It is shown that these methods employ a wide range of important mathematical concepts like, e.g., Fourier trans-forms, Galois fields and rings, finite and related projective geometries, and entanglement, to mention a few. Some applications of the theory to quantum information tasks are also mentioned." | |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject | Mutually unbiased bases | |
dc.subject | d-dimensional Hilbert space | |
dc.subject | Galois fields and rings | |
dc.subject | Maximally entangled states | |
dc.subject.classification | CIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA | |
dc.title | A survey of finite algebraic geometrical structures underlying mutually unbiased quantum measurements | |
dc.type | article | |
dc.identifier.doi | https://doi.org/10.1007/s10701-006-9079-3 | |
dc.rights.access | Acceso Abierto | |