dc.contributor.author | Rosu Barbus, Haret-Codratian | |
dc.contributor.author | Murguía, José | |
dc.contributor.author | Ludu, Andrei | |
dc.contributor.editor | Elsevier | |
dc.date.accessioned | 2018-03-21T23:42:35Z | |
dc.date.available | 2018-03-21T23:42:35Z | |
dc.date.issued | 2013 | |
dc.identifier.citation | Haret C. Rosu, José S. Murguía, Andrei Ludu, Scaling analyses based on wavelet transforms for the Talbot effect, Physica A: Statistical Mechanics and its Applications, Volume 392, Issue 17, 2013, Pages 3780-3788, ISSN 0378-4371, http://dx.doi.org/10.1016/j.physa.2013.04.015. | |
dc.identifier.uri | http://hdl.handle.net/11627/3519 | |
dc.description.abstract | "The fractal properties of the transverse Talbot images are analysed with two well-known scaling methods, the wavelet transform modulus maxima (WTMM) and the wavelet transform multifractal detrended fluctuation anal- ysis (WT-MFDFA). We use the widths of the singularity spectra, ? = H ? min, as a characteristic feature of these Talbot images. The scaling exponents of the q moments are linear in q within the two methods, which proves the monofractality of the transverse diffractive paraxial field in the case of these images." | |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject | Scaling exponent | |
dc.subject | Wavelet transform | |
dc.subject | Self-imaging e?ect | |
dc.subject | Near-?eld di?raction | |
dc.subject | Fibonacci convergents | |
dc.subject.classification | CIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA | |
dc.title | Scaling analyses based on wavelet transforms for the Talbot effect | |
dc.type | article | |
dc.identifier.doi | https://doi.org/10.1016/j.physa.2013.04.015 | |
dc.rights.access | Acceso Abierto | |