Show simple item record

Title

Ermakov systems with multiplicative noise

dc.contributor.authorRosu Barbus, Haret-Codratian
dc.contributor.editorElsevier
dc.date.accessioned2018-03-21T23:42:35Z
dc.date.available2018-03-21T23:42:35Z
dc.date.issued2014
dc.identifier.citationCervantes-López, P.B. Espinoza, A. Gallegos, H.C. Rosu, Ermakov systems with multiplicative noise, Physica A: Statistical Mechanics and its Applications, Volume 401, 2014, Pages 141-147, ISSN 0378-4371, http://dx.doi.org/10.1016/j.physa.2014.01.027.
dc.identifier.urihttp://hdl.handle.net/11627/3521
dc.description.abstract"Using the Euler-Maruyama numerical method, we present calculations of the Ermakov-Lewis invariant and the dynamic, geometric, and total phases for several cases of stochastic parametric oscillators, including the simplest case of the stochas-tic harmonic oscillator. The results are compared with the corresponding numerical noiseless cases to evaluate the effect of the noise. Besides, the noiseless cases are analytic and their analytic solutions are briefly presented. The Ermakov-Lewis in-variant is not affected by the multiplicative noise in the three particular examples presented in this work, whereas there is a shift effect in the case of the phases."
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectErmakov-Lewis invariant
dc.subjectEuler-Maruyama method
dc.subjectMultiplicative noise
dc.subjectTotal phase
dc.subjectGeometric phase
dc.subjectDynamic phase
dc.subject.classificationCIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA
dc.titleErmakov systems with multiplicative noise
dc.typearticle
dc.identifier.doihttps://doi.org/10.1016/j.physa.2014.01.027
dc.rights.accessAcceso Abierto


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internacional