dc.contributor.author | Rosu Barbus, Haret-Codratian | |
dc.contributor.editor | Elsevier | |
dc.date.accessioned | 2018-03-21T23:42:35Z | |
dc.date.available | 2018-03-21T23:42:35Z | |
dc.date.issued | 2014 | |
dc.identifier.citation | Cervantes-López, P.B. Espinoza, A. Gallegos, H.C. Rosu, Ermakov systems with multiplicative noise, Physica A: Statistical Mechanics and its Applications, Volume 401, 2014, Pages 141-147, ISSN 0378-4371, http://dx.doi.org/10.1016/j.physa.2014.01.027. | |
dc.identifier.uri | http://hdl.handle.net/11627/3521 | |
dc.description.abstract | "Using the Euler-Maruyama numerical method, we present calculations of the Ermakov-Lewis invariant and the dynamic, geometric, and total phases for several cases of stochastic parametric oscillators, including the simplest case of the stochas-tic harmonic oscillator. The results are compared with the corresponding numerical noiseless cases to evaluate the effect of the noise. Besides, the noiseless cases are analytic and their analytic solutions are briefly presented. The Ermakov-Lewis in-variant is not affected by the multiplicative noise in the three particular examples presented in this work, whereas there is a shift effect in the case of the phases." | |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject | Ermakov-Lewis invariant | |
dc.subject | Euler-Maruyama method | |
dc.subject | Multiplicative noise | |
dc.subject | Total phase | |
dc.subject | Geometric phase | |
dc.subject | Dynamic phase | |
dc.subject.classification | CIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRA | |
dc.title | Ermakov systems with multiplicative noise | |
dc.type | article | |
dc.identifier.doi | https://doi.org/10.1016/j.physa.2014.01.027 | |
dc.rights.access | Acceso Abierto | |