Título
Supersymmetric methods in the traveling variable: inside neurons and at the brain scale
11627/352911627/3529
Autor
Rosu Barbus, Haret-Codratian
Cornejo Pérez, Octavio
Pérez Terrazas, Jaime Enrique
Resumen
"We apply the mathematical technique of factorization of differential operators to two different problems. First we review our results related to the supersymmetry of the Montroll kinks moving onto the microtubule walls as well as mentioning the sine-Gordon model for the microtubule nonlinear excitations. Second, we find analytic expressions for a class of one-parameter solutions of a sort of diffusion equation of Bessel type that is obtained by supersymmetry from the homogeneous form of a simple damped wave equation derived in the works of P.A. Robinson and collaborators for the corticothalamic system. We also present a possible interpretation of the diffusion equation in the brain context."
Fecha de publicación
2008Tipo de publicación
bookPartDOI
https://doi.org/10.1142/9789812779953_0010Área de conocimiento
CIENCIAS FÍSICO MATEMÁTICAS Y CIENCIAS DE LA TIERRAEditor
World Scientific Publishing CompanyPalabras clave
BiophysicsComplex Systems
Quantum Information
Soliton excitation
Nonlinear Wave Equation
Brain Dynamics