dc.contributor.author | Sánchez Llamazares, José Luis | |
dc.contributor.author | Sánchez Valdés, Cesar Fidel | |
dc.contributor.author | Ibarra Gaytán, Pablo Jesús | |
dc.contributor.author | Álvarez Alonso, Pablo | |
dc.contributor.author | Gorria, Pedro | |
dc.contributor.author | Blanco Rodríguez, Jesús Angel | |
dc.contributor.editor | American Institute of Physics | |
dc.date.accessioned | 2018-04-03T19:23:09Z | |
dc.date.available | 2018-04-03T19:23:09Z | |
dc.date.issued | 2013-05 | |
dc.identifier.citation | J. L. Sánchez Llamazares et al., Journal of Applied Physics 113, 17A912 (2013); https://doi.org/10.1063/1.4794988 | |
dc.identifier.uri | http://hdl.handle.net/11627/3769 | |
dc.description.abstract | "The magnetocaloric effect in TbNi2 alloy ribbons synthesized by rapid solidification was investigated. This material crystallizes in a superstructure of the cubic Laves phase structure type C15 (space group F-43m). The saturation magnetization and Curie temperature are M-S = 134 +/- 2A m(2) kg(-1) and T-C = 37 +/- 1K, respectively. For a magnetic field change of 5 T, the material shows a maximum magnetic entropy change vertical bar Delta S-M(peak)vertical bar = 13.9 J kg(-1) K-1, with a full-width at half-maximum delta T-FWHM = 32 K, and a refrigerant capacity RC = 441 J kg(-1). The RC value is similar to those reported for other magnetic refrigerants operating within the temperature range of 10-80 K. Finally, it is worth noting that the use of rapid solidification circumvents the necessity for longterm high-temperature homogenization processes normally needed with these RNi2 alloys." | |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Internacional | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject.classification | FÍSICA | |
dc.title | Magnetic entropy change and refrigerant capacity of rapidly solidified TbNi2 alloy ribbons | |
dc.type | article | |
dc.identifier.doi | https://doi.org/10.1063/1.4794988 | |
dc.rights.access | Acceso Abierto | |