Mostrar el registro sencillo del ítem

Título

Constant-length random substitutions and gibbs measures

dc.contributor.authorMaldonado Ahumada, César Octavio
dc.contributor.authorTrejo Valencia, Liliana
dc.contributor.authorUgalde, Edgardo
dc.contributor.editorSpringer
dc.date.accessioned2018-11-15T18:58:40Z
dc.date.available2018-11-15T18:58:40Z
dc.date.issued2018
dc.identifier.citationMaldonado, C., Trejo-Valencia, L. & Ugalde, E. J Stat Phys (2018) 171: 269. https://doi.org/10.1007/s10955-018-2010-4
dc.identifier.urihttp://hdl.handle.net/11627/4745
dc.description.abstract"This work is devoted to the study of processes generated by random substitutions over a finite alphabet. We prove, under mild conditions on the substitutions rule, the existence of a unique process which remains invariant under the substitution, and which exhibits a polynomial decay of correlations. For constant-length substitutions, we go further by proving that the invariant state is precisely a Gibbs measure which can be obtained as the projective limit of its natural Markovian approximations. We end up the paper by studying a class of substitutions whose invariant state is the unique Gibbs measure for a hierarchical two-body interaction."
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectGibbs measures
dc.subjectRandom substitutions
dc.subjectProjective convergence
dc.subject.classificationMATEMÁTICAS
dc.titleConstant-length random substitutions and gibbs measures
dc.typearticle
dc.identifier.doihttps://doi.org/10.1007/s10955-018-2010-4
dc.rights.accessAcceso Abierto


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional