Show simple item record

Title

Traveling wave solutions for wave equations with two exponential nonlinearities

dc.contributor.authorMancas, Stefan C
dc.contributor.authorRosu Barbus, Haret-Codratian
dc.contributor.authorPérez Maldonado, Maximino
dc.date.accessioned2019-09-12T17:36:25Z
dc.date.available2019-09-12T17:36:25Z
dc.date.issued2018
dc.identifier.citationMancas, S., Rosu, H. & Pérez-Maldonado, M. (2018). Travelling-Wave Solutions for Wave Equations with Two Exponential Nonlinearities. Zeitschrift für Naturforschung A, 73(10), pp. 883-892. doi:10.1515/zna-2018-0055
dc.identifier.urihttp://hdl.handle.net/11627/5204
dc.description.abstract"We use a simple method that leads to the integrals involved in obtaining the travelling-wave solutions of wave equations with one and two exponential nonlinearities. When the constant term in the integrand is zero, implicit solutions in terms of hypergeometric functions are obtained, while when that term is nonzero, all the basic travelling-wave solutions of Liouville, Tzitzéica, and their variants, as as well sine/sinh-Gordon equations with important applications in the phenomenology of nonlinear physics and dynamical systems are found through a detailed study of the corresponding elliptic equations."
dc.publisherWalter de Gruyter GmbH
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectDodd-Bullough
dc.subjectDodd-Bullough-Mikhailov
dc.subjectLiouville Equation
dc.subjectsine-Gordon
dc.subjectsinh-Gordon
dc.subjectTzitzéica
dc.subjectWeierstrass Function
dc.subject.classificationFÍSICA
dc.titleTraveling wave solutions for wave equations with two exponential nonlinearities
dc.typearticle
dc.identifier.doihttps://doi.org/10.1515/zna-2018-0055
dc.rights.accessAcceso Abierto


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internacional