Mostrar el registro sencillo del ítem

Título

Derivation of a continuous time dynamic planar system with two unstable foci from a three-dimensional chaotic piecewise linear system

dc.contributor.authorCampos Cantón, Eric
dc.date.accessioned2021-04-26T19:13:42Z
dc.date.available2021-04-26T19:13:42Z
dc.date.issued2020
dc.identifier.citationEric Campos-Cantón. (2020). Derivation of a continuous time dynamic planar system with two unstable foci from a three-dimensional chaotic piecewise linear system. Chaos 30, 053114. https://doi.org/10.1063/1.5144709
dc.identifier.urihttp://hdl.handle.net/11627/5567
dc.description.abstract"In this paper, we introduce a class of continuous time dynamical planar systems that is capable of generating attractors in the plane by means of the use of hysteresis and at least two unstable foci. This class of systems shows stretching and folding behavior due to unstable equilibria and hysteresis. Hysteresis is used to overwhelm the constraints on the behavior of planar systems. This class of systems is derived from three-dimensional piecewise linear systems that have two manifolds, one stable and the other unstable, to generate heteroclinic chaos. Two numerical examples are given accordingly to the developed theory."
dc.publisherAmerican Institute of Physics
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectHomoclinic Orbits
dc.subjectAttractors
dc.subjectDesign
dc.subject.classificationMATEMÁTICAS
dc.titleDerivation of a continuous time dynamic planar system with two unstable foci from a three-dimensional chaotic piecewise linear system
dc.typearticle
dc.identifier.doihttps://doi.org/10.1063/1.5144709
dc.rights.accessdic-21


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional